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CHARACTERISTIC DISTRIBUTION: AN
APPLICATION TO MATERIAL BODIES

VÍCTOR MANUEL JIMÉNEZ, MANUEL DE LEÓN,
AND MARCELO EPSTEIN

Abstract. Associated to each material body B there exists a
groupoid Ω (B) consisting of all the material isomorphisms con-
necting the points of B. The uniformity character of B is reflected
in the properties of Ω (B): B is uniform if, and only if, Ω (B) is
transitive. Smooth uniformity corresponds to a Lie groupoid and,
specifically, to a Lie subgroupoid of the groupoid Π1 (B,B) of 1-
jets of B. We consider a general situation when Ω (B) is only an
algebraic subgroupoid. Even in this case, we can cover B by a
material foliation whose leaves are transitive. The same happens
with Ω (B) and the corresponding leaves generate transitive Lie
groupoids (roughly speaking, the leaves covering B). This result
opens the possibility to study the homogeneity of general material
bodies using geometric instruments.
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1. Introduction

As it is well-known, associated to any simple material body B there
exists a groupoid Ω (B) over B called the material groupoid of B (see
for example [2], [4], [5] or [7]). A material body is simple (or of grade
1) if the mechanical response functional at each point depends on the

Key words and phrases. smooth distribution, singular foliation, groupoid, uni-
formity, material groupoid.
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deformation gradient alone (and not on higher gradients). Ω (B) con-
sists of all linear isomorphisms P between the tangent spaces TXB and
TYB such that

W (FP,X) = W (F, Y ) ,

for any deformation gradient F at Y , where X, Y run along the body
B. Here, W is the mechanical response of the body B tipically the
stored energy per unit mass.

The uniformity of B is reflected on the properties of the material
groupoid Ω (B). In particular, B is (smoothly) uniform if, and only if,
Ω (B) is a transitive (Lie) subgroupoid of Π1 (B,B), where Π1 (B,B)
is the Lie groupoid over B, called 1−jets groupoid on B, of all linear
isomorphisms P between the tangent spaces TXB and TYB, for X, Y ∈
B.

In this paper, we consider a more general situation. We study the
problem from a purely mathematical framework, since we are convinced
that this analysis should be relevant not only for its applications to
Continuum Mechanics, but also for the general theory of groupoids.

So, let Γ ⊆ Γ be a subgroupoid of a Lie groupoid Γ ⇒ M ; notice
that we are not assuming, in principle, any differentiable structure on

Γ. Even in that case, we can construct a generalized distribution AΓ
T

over Γ generated by the (local) left-invariant vector fields on Γ whose

flow at the identities is totally contained in Γ. This distribution AΓ
T

will be called the characteristic distribution of Γ. Due to the groupoid

structure, we can still associate two new objects to AΓ
T
, denoted by

AΓ and AΓ
♯
, and defined by the following diagram:

Γ P (TΓ)

M P (TM)

AΓ
T

Tαǫ

AΓ
♯

AΓ

Here P (E) defines the power set of E, ǫ (x) the unit for an element
x ∈ M and α, β : Γ ⇒ M denote the source and the target maps
respectively. Therefore, for each x ∈ M , we have

AΓx = AΓ
T

ǫ(x)

AΓ
♯

x = Tǫ(x)α
(

AΓx

)

AΓ
♯

is called the base-characteristic distribution of Γ and it is a
generalized distribution (in the sense of Stefan and Sussmann) on M .

The relevant fact is that both distributions, AΓ
T

and AΓ
♯
, are inte-

grable (in the sense of Stefan and Sussmann), and they provide two
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foliations, F on Γ and F on M .
In this paper, we have studied the properties of these foliations and
obtained the following two main results:

Theorem 3.2 Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid
of Γ (not necessarily a Lie groupoid) over M . Then, there exists a
foliation F of Γ such that Γ is a union of leaves of F.

Theorem 3.6 For each x ∈ M there exists a transitive Lie sub-
groupoid Γ (F (x)) of Γ with base F (x).

So, although our groupoid Γ is not a Lie subgroupoid of Γ, we can still
cover it by manifolds (leaves of the foliation F) and extract “transitive"
and “differentiable" components (the Lie groupoids Γ (F (x)) ⇒ F (x)).

The next step is to apply our result to the theory a simple bodies in
Continuum Mechanics. In particular, let B be a simple material and
Ω (B) its material groupoid. Then, Ω (B) is not necessarily a Lie sub-
groupoid of Π1 (B,B). But, applying the results of the previous section
we have that B can be covered by a foliation of some kind of smoothly
uniform “subbodies" (these are not exactly subbodies in the usual sense
of continuum mechanics [13] because of the dimension), called material
submanifolds.

Finally, we present several examples in which the material groupoid
is not a Lie subgroupoid of Π1 (B,B). In each case, we give explicitily
the characteristic foliation which decomposes the body into smoothly
uniform material submanifolds.

The paper is structured as follows: In section 2 we give a brief in-
troduction to (Lie) groupoids (see [8] or [12] for a detailed account of
the theory of groupoids). Section 3 is devoted to develop the theory
of the characteristic distribution and prove the two main theorems. In
section 4 we apply these results to continuum mechanics. Finally, some
examples are discussed in Section 5.

2. Groupoids

First, we shall give a brief introduction to Lie groupoids. The stan-
dard reference on groupoid is [8]; for a short introduction see [12].

Definition 2.1. Let M be a set. A groupoid over M is given by a
set Γ provided with two maps α, β : Γ → M (source and target maps,
respectively), ǫ : M → Γ (identities map), i : Γ → Γ (inversion map)
and · : Γ(2) → Γ (composition law) where for each k ∈ N,

Γ(k) := {(g1, . . . , gk) ∈ Γk : α (gi) = β (gi+1) , i = 1, . . . , k − 1},

satisfying the following properties:
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(1) α and β are surjective and, for each (g, h) ∈ Γ(2), we have

α (g · h) = α (h) , β (g · h) = β (g) .

(2) Associativity of the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).

(3) For all g ∈ Γ,

g · ǫ (α (g)) = g = ǫ (β (g)) · g.

In particular,

α ◦ ǫ ◦ α = α, β ◦ ǫ ◦ β = β.

Since α and β are surjetive we get

α ◦ ǫ = IdΓ, β ◦ ǫ = IdΓ.

(4) For each g ∈ Γ,

i (g) · g = ǫ (α (g)) , g · i (g) = ǫ (β (g)) .

Then,

α ◦ i = β, β ◦ i = α.

These maps α, β, i, ǫ will be called structure maps. In what follows, we
will denote this groupoid by Γ ⇒M .

If Γ is a groupoid over M , then M is also denoted by Γ(0) and it is
often identified with the set ǫ (M) of identity elements of Γ. Γ is also
denoted by Γ(1). The map (α, β) : Γ →M ×M is called the anchor of
the groupoid.

Now, we define the morphisms in the category of groupoids.

Definition 2.2. If Γ1 ⇒ M1 and Γ2 ⇒ M2 are two groupoids then a
morphism from Γ1 ⇒M1 to Γ2 ⇒M2 consists of two maps Φ : Γ1 → Γ2

and φ :M1 → M2 such that for any g1 ∈ Γ1

α2 (Φ (g1)) = φ (α1 (g1)) , β2 (Φ (g1)) = φ (β1 (g1)) , (2.1)

where αi and βi are the source and the target map of Γi ⇒Mi respec-
tively, for i = 1, 2, and preserves the composition, i.e.,

Φ (g1 · h1) = Φ (g1) · Φ (h1) , ∀ (g1, h1) ∈ (Γ1)(2) .

We will denote this morphism by (Φ, φ) or by Φ (because, using Eq.
2.1, φ is completely determined by Φ).

Observe that, as a consequence, Φ preserves the identities, i.e., de-
noting by ǫi the section of identities of Γi ⇒Mi for i = 1, 2, we have

Φ ◦ ǫ1 = ǫ2 ◦ φ.
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Using this definition we define a subgroupoid of a groupoid Γ ⇒M as
a groupoid Γ′ ⇒M ′ such that M ′ ⊆M , Γ′ ⊆ Γ and the corresponding
inclusion map is a morphism of groupoids.

Remark 2.3. There is a more abstract way of defining a groupoid. A
groupoid is a "small" category (the class of objects and the class of
morphisms are sets) in which each morphism is invertible.
If Γ ⇒M is the groupoid, then M is the set of objects and Γ is the set
of morphisms. In this sense, we can think about a groupoid as a set M
of objects and a set Γ of invertible maps between objects of M . Then,
for each map g ∈ Γ, α (g) is the domain of g, β (g) is the codomain g
and i (g) is the inverse of g. For all x ∈ M , ǫ (x) is the identity map
at x and, finally, the operation · can be thought as the composition of
maps.
A groupoid morphism is a functor between these categories, which is a
more natural definition. ⋄

Now, we present the most basic examples of groupoids.

Example 2.4. A group is a groupoid over a point. In fact, let G be a
group and e the identity element of G. Then, G ⇒ {e} is a groupoid,
where the operation of the groupoid, ·, is just the operation in G.

Example 2.5. For any set M , we can consider the product space
M ×M . Then M ×M has a groupoid structure over M such that

(x, y) · (z, x) = (z, y) ,

for all x, y, z ∈M . M ×M ⇒ M is said to be the pair groupoid of M .
Note that, if Γ ⇒M is an arbitrary groupoid over M , then the anchor
(α, β) : Γ →M ×M is a morphism from Γ ⇒M to the pair groupoid
of M .

Next, we introduce the notion of orbits and isotropy group.

Definition 2.6. Let Γ ⇒ M be a groupoid with α and β the source
map and target map, respectively. For each x ∈M , we denote

Γx
x = β−1 (x) ∩ α−1 (x) ,

which is called the isotropy group of Γ at x. The set

O (x) = β
(

α−1 (x)
)

= α
(

β−1 (x)
)

,

is called the orbit of x, or the orbit of Γ through x.
If O (x) = M for all x ∈ M , or equivalently (α, β) : Γ → M ×M is

a surjective map, then the groupoid Γ ⇒M is called transitive.
Furthermore, the preimages of the source map α of a groupoid are

called α−fibres. Those of the target map β are called β−fibres. We will
usually denote the α−fibre (resp. β−fibre) at a point x by Γx (resp.
Γx).



6 V. M. JIMÉNEZ, M. DE LEÓN, AND M. EPSTEIN

Definition 2.7. Let Γ ⇒ M be a groupoid with α and β the source
and target map, respectively. We may define the left translation on
g ∈ Γ as the map Lg : β

−1 (α (g)) → β−1 (β (g)), given by

h 7→ g · h.

Similarly, we may define the right translation on g, Rg : α
−1 (β (g)) →

α−1 (α (g)).

Note that,
Idβ−1(x) = Lǫ(x). (2.2)

So, for all g ∈ Γ, the left (resp. right) translation on g, Lg (resp. Rg),
is a bijective map with inverse Li(g) (resp. Ri(g)), where i : Γ → Γ is
the inverse map.

Different structures (topological and geometrical) can be imposed
on groupoids, depending on the context we are dealing with. We are
interested in a particular case, the so-called Lie groupoids.

Definition 2.8. A Lie groupoid is a groupoid Γ ⇒ M such that Γ
and M are smooth manifolds, and all the structure maps are smooth.
Furthermore, the source and the target maps are submersions.
A Lie groupoid morphism is a groupoid morphism which is differen-
tiable.

Definition 2.9. Let Γ ⇒ M be a Lie groupoid. A Lie subgroupoid of
Γ ⇒ M is a Lie groupoid Γ′ ⇒ M ′ such that Γ′ and M ′ are submani-
folds of Γ andM , respectively; and the pair given by the inclusion maps
jΓ′ : Γ′ →֒ Γ jM ′ :M ′ →֒ M become a morphism of Lie groupoids.

Observe that, taking into account that α ◦ ǫ = IdM = β ◦ ǫ, then ǫ
is an injective immersion.

On the other hand, in the case of a Lie groupoid, Lg (resp. Rg) is
clearly a diffeomorphism for every g ∈ Γ.

Example 2.10. A Lie group is a Lie groupoid over a point.

Example 2.11. Let M be a manifold. The pair groupoidM×M ⇒M
is a Lie groupoid.

Next, we will introduce an example which will be fundamental in
this paper.

Example 2.12. Let M be a manifold, and denote by Π1 (M,M) the
set of all vector space isomorphisms Lx,y : TxM → TyM for x, y ∈ M
or, equivalently, the space of the 1−jets of local diffeomorphisms on
M . An element of Π1 (M,M) will by denoted by j1x,yψ, where ψ is a
local diffeomorphism from M into M such that ψ (x) = y.

Π1 (M,M) can be seen as a groupoid over M where, for all x, y ∈M
and j1x,yψ, j

1
y,zϕ ∈ Π1 (M,M), we have
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(i) α
(

j1x,yψ
)

= x

(ii) β
(

j1x,yψ
)

= y

(iii) j1y,zϕ · j1x,yψ = j1x,z (ϕ ◦ ψ)

This groupoid is called the 1−jets groupoid on M . In fact, let (xi) and
(yj) be local coordinate systems on open sets U, V ⊆ M . Then, we can
consider a local coordinate system on Π1 (M,M) given by

Π1 (U, V ) :
(

xi, yj, yji
)

, (2.3)

where, for each j1x,yψ ∈ Π1 (U, V )

• xi
(

j1x,yψ
)

= xi (x).

• yj
(

j1x,yψ
)

= yj (y).

• yji
(

j1x,yψ
)

=
∂ (yj ◦ ψ)

∂xi|x
.

These local coordinates turn this groupoid into a Lie groupoid.

3. Characteristic distribution

Sometimes it could be necessary to work with a groupoid which does
not have a structure of Lie groupoid. In fact, the constitutive theory
of continuum mechanics is an example. In this case, the set of mate-
rial isomorphisms is not necessarily a Lie groupoid but it is contained
in a Lie groupoid (the 1−jets groupoid on a manifold). This will be
discussed in the next section in some detail.
Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid of Γ (not nec-
essarily a Lie subgroupoid of Γ) over the same manifold M . We will
denote by α, β, ǫ and i the restrictions of the structure maps of Γ to Γ
(see the diagram below).

Γ Γ

M

j

where j is the inclusion map. Now, we can construct a distribution

AΓ
T

over the manifold Γ in the following way,

g ∈ Γ 7→ AΓ
T

g ≤ TgΓ,

such that AΓ
T

g is generated by the (local) left-invariant vector fields

X ∈ Xloc (Γ) whose flow at the identities is totally contained in Γ, i.e.,

(i) X is tangent to the β−fibres,

X (g) ∈ Tgβ
−1 (β (g)) ,
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for all g in the domain of X.
(ii) X is invariant by left translations,

X (g) = Tǫ(α(g))Lg (X (ǫ (α (g)))) ,

for all g in the domain of X.
(iii) The (local) flow ϕX

t of X satisfies

ϕX
t (ǫ (x)) ∈ Γ,

for all x ∈M .

Notice that, for each g ∈ Γ, the zero vector 0g ∈ TgΓ is contained in the

fibre of the distribution at g, namely AΓ
T

g (we remit to the last section
for non-trivial examples). On the other hand, it is easy to prove that
a vector field X satisfies conditions (i) and (ii) if, and only if, its local
flow ϕX

t is left-invariant or, equivalently,

Lg ◦ ϕ
X
t = ϕX

t ◦ Lg, ∀g, t.

Then, taking into account that all the identities are in Γ (because it is
a subgroupoid of Γ), condition (iii) is equivalent to the following,

(iii)’ The (local) flow ϕX
t of X at g is totally contained in Γ, for all

g ∈ Γ.

Thus, we are taking the left-invariant vector fields on Γ whose integral
curves are confined inside or outside Γ. It is also remarkable that, by
definition, this distribution is differentiable.

The distribution AΓ
T

is called the characteristic distribution of Γ.
For the sake of simplicity, we will denote the family of the vector fields
which satisfy conditions (i), (ii) and (iii) by C.

We can still construct two new objects associated to the distribution

AΓ
T
. The first one is a smooth distribution over the base M denoted

by AΓ
♯
. The second one is a “differentiable" correspondence AΓ which

associates to any point x of M a vector subspace of Tǫ(x)Γ. Both
constructions are characterized by the commutativity of the following
diagram

Γ P (TΓ)

M P (TM)

AΓ
T

Tαǫ

AΓ
♯

AΓ
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where P (E) defines the power set of E. Therefore, for each x ∈M , we
have

AΓx = AΓ
T

ǫ(x)

AΓ
♯

x = Tǫ(x)α
(

AΓx

)

The distribution AΓ
♯

is called base-characteristic distribution of Γ.
Notice that both distributions are characterized by the differentiable
correspondence AΓ in the following way

AΓ
T

g = Tǫ(α(g))Lg

(

AΓα(g)

)

.

This equality can be proved using the construction of the associated

distribution AΓ
T

by left-invariant vector fields whose (local) flows at
the identities are contained in Γ. We could have used Grassmannian
manifolds instead of power sets in the above diagram for the distribu-
tions but we prefer power sets because of the simplicity.

To summarize, associated to Γ we have three differentiable objects

AΓ, AΓ
T

and AΓ
♯
. Now, we will study how these objects endow Γ with

a sort of “differentiable" structure.

Consider a left-invariant vector field X on Γ whose (local) flow ϕX
t at

the identities is contained in Γ. We want to prove that the characteristic

distribution AΓ
T

is invariant by the flow ϕX
t , i.e., for all g ∈ Γ and t in

the domain of ϕX
g we have

Tgϕ
X
t

(

AΓ
T

g

)

= AΓ
T

ϕX
t (g). (3.1)

Indeed, let be vg = Y (g) ∈ AΓ
T

g with Y ∈ C. Then,

Tgϕ
X
t (vg) = Tgϕ

X
t (Y (g))

=
∂

∂s|0

(

ϕX
t ◦ ϕY

s (g)
)

,

where ϕY
s is the flow of Y .

Let us consider the (local) vector field on Γ given by

Z (h) = {
(

ϕX
t

)∗
Y } (h) = TϕX

−t(h)
ϕX
t

(

Y
(

ϕX
−t (h)

))

.

Obviously, Z ∈ C (the flow of Z is given by ϕX
t ◦ϕY

s ◦ϕ
X
−t). Furthermore,

Tgϕ
X
t (vg) = Z

(

ϕX
t (g)

)

.

So, Tgϕ
X
t

(

AΓ
T

g

)

⊆ AΓ
T

ϕX
t (g). We can prove the converse in an analo-

gous way.
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Thus, the associated distribution AΓ
T

is generated by a family of
vector fields C, and it is invariant with respect this family. Now, we re-
fer to a classical theorem, due to Stefan [10] and Sussmann [11], which
gives an answer to the following question: what are the conditions for
a smooth singular distribution to be the tangent distribution of a sin-
gular foliation?

Theorem 3.1 (Stefan-Sussmann). Let D be a smooth singular distri-
bution on a smooth manifold M . Then the following three conditions
are equivalent:

(a) D is integrable.
(b) D is generated by a family C of smooth vector fields, and is

invariant with respect to C.
(c) D is the tangent distribution DF of a smooth singular foliation

F.

There is still another theorem to deal with the integrability of gener-
alized distributions which could be confused with the Stefan-Sussmann
theorem, the Hermann theorem, that states that any locally finitely
generated differentiable involutive distribution on a manifold is inte-
grable. We refer to [1] for a straightforward and clear exposition of
these two theorems.
So, the distribution AΓ

T
is the tangent distribution of a smooth sin-

gular foliation F. The leaf at a point g ∈ Γ is denoted by F (g). The
collection of the leaves of F which are contained in Γ is called the
characteristic foliation of Γ. Note that the leaves of the characteristic
foliation covers Γ but it is not exactly a foliation of Γ (because Γ is not
manifold).
The following assertions can be easily proved:

(i) For each g ∈ Γ,

F (g) ⊆ Γβ(g).

Indeed, if g ∈ Γ, then

F (g) ⊆ Γ
β(g)

.

(ii) For each g, h ∈ Γ such that α (g) = β (h), we have

F (g · h) = g · F (h) .

The property (ii) is proved by arguments of maximility. On the other
hand, the property (i) can be proved by checking the charts of the
leaves given in the proof of the Stefan-Sussmann’s theorem (see for
instance [9]). It is remarkable that property (i) means that each leaf of

the foliation F which integrates AΓ
T

is contained in just one β−fibre,
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i.e., for each g ∈ Γ the leaf F (g) satisfies that

β (h) = β (g) ,

for all h ∈ F (g). Notice also that, one could expect that F (g) = Γ
β(g)

but this is not true in general (see the example in the last section).

So, we have proved the following result.

Theorem 3.2. Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid
of Γ (not necessarily a Lie groupoid) over M . Then, there exists a
foliation F of Γ such that Γ is a union of leaves of F.

In this way, without assuming that Γ is a manifold, we prove that
Γ is union of leaves of a foliation of Γ. This gives us some kind of
“differentiable" structure over Γ.
Let us consider a (local) left-invariant vector field X ∈ C. Then, the
flow of X restrics to the fibers, i.e., X is a left-invariant vector field in
Γ such that,

X|F(g) ∈ X
(

F (g)
)

, (3.2)

for all g in the domain of X. Reciprocally, Eq. (3.2) is equivalent to
conditions (i), (ii) and (iii) which characterize the set C.
An obvious consequence of the construction of the characteristic folia-

tion is the following: β
−1

(x) is a submanifold of Γ for all x ∈ M if,

and only if, β
−1

(x) = F (ǫ (x)) for all x ∈M .

Remark 3.3. We can construct another distribution D on Γ generated
by the (local) vector fields whose flows are confined inside or outside
Γ. So, we will obtain a foliation G of Γ such that Γ is covered by some
of the leaves.
We could expect that the leaves at the identities G (ǫ (x)) are sub-
groupoids of Γ. However, this is not necessarily true. Because of this

fact, we work with AΓ
T

instead of D (see Theorem 3.6).

⋄

Notice that, in an analogous way, we can prove that the base distri-

bution AΓ
♯
is also integrable. So, we will denote the foliation given by

this distribution over the base M by F. For each point x ∈M , the leaf
of F through x is denoted by F (x). F is called the base-characteristic
foliation of Γ.

Next, we will prove that the leaves of F have even more geometric
structure. In fact, we will find a Lie groupoid structure over each leaf
of F. To do this, we will prove the following technical proposition.
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Proposition 3.4. Let Γ ⇒ M be a Lie groupoid and Γ be a sub-
groupoid of Γ with F and F the characteristic foliation and the base-
characteristic foliation of Γ, respectively. Then, for all x ∈ M , the
mapping

α|F(ǫ(x)) : F (ǫ (x)) → F (x) ,

is a surjective submersion.

Proof. First, let us notice that

x ∈ α
(

F (ǫ (x))
)

∩ F (x) 6= ∅.

Next, consider a family {X i, Y j}i=1,...,r,j=1,...,s of left-invariant vector

fields in C such that {Tǫ(x)α (X i (ǫ (x)))}i=1,...,r is a basis of AΓ
♯

x and

{X i (ǫ (x)) , Y j (ǫ (x))}i=1,...,r,j=1,...,s is a basis of AΓ
T

ǫ(x).

Notice that the family {Tα ◦X i ◦ ǫ, Tα ◦ Y j ◦ ǫ}i=1,...,r,j=1,...,s of vector

fields on M is tangent to the base-characteristic distribution AΓ
♯
. So,

their flows at x are contained in F (x).
Furthermore, the map

α ◦ ϕX1

t1
◦ ǫ ◦ · · · ◦ α ◦ ϕXr

tr
(ǫ (x)) = α

(

ϕX1

t1
◦ · · · ◦ ϕXr

tr
(ǫ (x))

)

,

defines a local chart of F (x) containing x, where ϕXi

ti
is the (local)

flow of X i for each i. Following this argument, one can prove that
α
(

F (ǫ (x))
)

is an open subset of F (x).
Then, F (x) is the disjoint union of open subsets. Using that F (x) is
connected we have that

α
(

F (ǫ (x))
)

= F (x) ,

i.e., α|F(ǫ(x)) is surjective. Hence, α|F(ǫ(x)) is a submersion.
�

Let be x ∈ M and X ∈ X (F (x)). Then, by using local sections of
α|F(ǫ(x)), we can extend (locally) X to a vector field on F (ǫ (x)). In
this way, X is a local vector field tangent to the base-characteristic
distribution if, and only if, it satisfies that

X|F(x) ∈ X (F (x)) , (3.3)

for all x in the domain of X.
As a corollary, we have the following interesting result.

Corollary 3.5. Let Γ ⇒ M be a Lie groupoid and Γ be a subgroupoid
of Γ. Then, the manifolds F (ǫ (x)) ∩ α−1 (x) are Lie subgroups of Γx

x

for all x ∈M .

Proof. Let be h, g ∈ F (ǫ (x)) ∩ α−1 (x). Then,

F (h · g) = h · F (g) = h · F (ǫ (x)) = F (h) = F (ǫ (x)) .

�
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Let us denote the groupoid generated by F (ǫ (x)) by Γ (F (x)), in-
deed, we construct Γ (F (x)) in several steps:

(i) For all g ∈ F (ǫ (x)),

g−1 ∈ Γ (F (x)) .

(ii) For all g, h ∈ F (ǫ (x)), we have that:

If α (h) = β (g),

h · g ∈ Γ (F (x)) .

If α (h) = α (g),

h · g−1 ∈ Γ (F (x)) .

If β (h) = β (g),

h−1 · g ∈ Γ (F (x)) .

We could define Γ (F (x)) as the smallest subgroupoid of Γ which con-
tains F (ǫ (x)). Actually, we will prove that

Γ (F (x)) = ⊔g∈F(ǫ(x))F (ǫ (α (g))) ,

or, equivalently, Γ (F (x)) is a union of fibres at the identities (see Eq.
3.4).

This groupoid is obviously a transitive groupoid over F (x) and it
satisfies the following properties:

(a) For all g ∈ F (ǫ (x)),

F
(

g−1
)

= F (ǫ (α (g))) ⊆ Γ (F (x)) .

(b) For all h, g ∈ F (ǫ (x)),

F
(

h−1 · g
)

= h−1 · F (ǫ (x)) ⊆ Γ (F (x)) .

(c) For all h, g ∈ F (ǫ (x)) with α (g) = α (h),

F
(

h · g−1
)

= h · F (ǫ (α (g))) ⊆ Γ (F (x)) .

(d) For all g ∈ Γ (F (x)),

α
(

F (g)
)

= F (x) .

(b), (c) and (d) are direct consequences of (a). Furthermore, for each
g ∈ F (ǫ (x)), we have

F (ǫ (x)) = F (g) = g · F (ǫ (α (g))) .

Then,

F
(

g−1
)

= g−1 · F (ǫ (x)) = F (ǫ (α (g))) ⊆ Γ (F (x)) .
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This proves (a).
Notice that, putting together all these conditions we have that

Γ (F (x)) = ⊔g∈F(ǫ(x))F (ǫ (α (g))) . (3.4)

Futhermore, the β−fibre of this groupoid at a point y ∈ F (x) is given
by F (ǫ (y)). Hence, the α−fibre at y is

F
−1

(ǫ (y)) = i ◦ F (ǫ (y)) .

Thus, the fact of that the β−fibres (resp. α−fibres) are manifolds in-
spires the following result. Notice also that the Lie groups F (ǫ (y)) ∩
α−1 (y) are exactly the isotropy groups of Γ (F (x)).

Theorem 3.6. For each x ∈ M there exists a transitive Lie sub-
groupoid Γ (F (x)) of Γ with base F (x).

Proof. Let be g ∈ Γ (F (x)). Then, by Proposition 3.4, the restriction

β
|F

−1
(g)

: F
−1 (

g−1
)

→ F (x) , (3.5)

is a surjective submersion, where F
−1

(g−1) = i ◦ F (g−1). Using this
fact, we will endow with a differentiable structure to Γ (F (x)). Let

be g ∈ Γ (F (x)). Consider σg : U → F
−1

(g−1) a (local) section of
β
|F

−1
(g−1)

such that σg (β (g)) = g.

On the other hand, let {Xi}
r
i=1 be a finite collection of vector fields

in C such that {Xi (ǫ (α (g)))}ri=1 is a basis of AΓ
T

ǫ(α(g)). Then, a local
chart over g can be given by

ϕX : W × U → Γ

(t1, . . . , tr, z) 7→ σg (z) · [ϕ
Xr

tr
◦ · · · ◦ ϕX1

t1
(ǫ (α (g)))]

,

where ϕXi

t is the flow of X i. By using that {X i (ǫ (α (g)))}ri=1 is a basis

of AΓ
T

ǫ(α(g)), we have that ϕX is an immersion. Also, it satisfies that

ϕX (W × U) ⊆ Γ.

So, these charts give us an atlas over Γ (F (x)) which induces a Haus-
dorff second contable topology on Γ (F (x)) such that Γ (F (x)) is an
immersed submanifold of Γ. To end the proof we just have to use Eq.
(3.5) to prove that the source and the target mappings are submersions.

�

Remark 3.7. Our construction of the characteristic distribution as-
sociated to a subgroupoid Γ of a Lie groupoid Γ can be seen as a
generalization of the Lie functor which associates to any Lie groupoid
a Lie algebroid (see [8]). In fact, if Γ is a Lie subgroupoid of Γ, the

chacteristic distribution AΓ
T

induces the associated Lie algebroid to Γ.
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⋄

4. Material groupoid and Material Distribution

In this section we will apply the results of the section 3 to the case
of continuum mechanics.
A body B is a 3-dimensional differentiable manifold which can be cov-
ered with just one chart. An embedding φ : B → R

3 is called a
configuration of B and its 1−jet j1X,φ(X)φ at X ∈ B is called an infini-
tesimal configuration at X. We usually identify the body with any one
of its configurations, say φ0, called reference configuration. Given any
arbitrary configuration φ, the change of configurations κ = φ ◦ φ−1

0 is
called a deformation, and its 1−jet j1φ0(X),φ(X)κ is called an infinitesimal

deformation at φ0 (X).

For simple elastic bodies, the mechanical response of a material is
completely characterized by one function W which depends, at each
point X ∈ B, on the gradient of the deformations evaluated at the
point. Thus, W is defined as a differentiable map

W : Π1 (B,B) → V,

which does not depend on the final point, i.e., for all X, Y, Z ∈ B

W
(

j1X,Y φ
)

=W
(

j1X,Z (τZ−Y ◦ φ)
)

, ∀j1X,Y φ ∈ Π1 (B,B) , (4.1)

where V is a real vector space and τv is the translation map on R
3 by

the vector v. This map will be called response functional. There are
other equivalent definitions (for the other definitions see [2], [3], [5] or
[7]) of this function but we will use this one for convenience.

Now, just imagine that an infinitesimal neighbourhood of the mate-
rial around the point Y can be grafted so perfecly into a neighbourhood
of X, that the graft cannot be detected by any mechanical experiment.
If this condition is satisfied with every point X of B, the body is said
uniform. We can express this physical property in a geometric way as
follows.

Definition 4.1. A body B is said to be uniform if for each two points
X, Y ∈ B there exists a local diffeomorphism ψ from an open neigh-
bourhood U ⊆ B of X to an open neighbourhood V ⊆ B of Y such
that ψ (X) = Y and

W
(

j1Y,κ(Y )κ · j
1
X,Y ψ

)

= W
(

j1Y,κ(Y )κ
)

, (4.2)

for all infinitesimal deformation j1Y,κ(Y )κ. j1X,Y ψ is called a material
isomorphism.
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These kind of maps are going to be important and we will en-
dow these maps of a groupoid structure over B. For each two points
X, Y ∈ B, we will denote by G (X, Y ) the collection of all 1−jets j1X,Y ψ
which satisfy Eq. (4.2). So, the set Ω (B) = ∪X,Y ∈BG (X, Y ) can be
considered as a groupoid over B which is, indeed, a subgroupoid of the
1−jets groupoid Π1 (B,B).

A material symmetry at a point X is a material isomorphism which
takes X to X. We denote by G (X) the set of all material symmetries
which is, indeed, the isotropy group of Ω (B) at X. For each X ∈ B,
we will denote the set of material isomorphisms from X to any other
point (resp. from any point to X) by ΩX (B) (resp. ΩX (B)). Finally,
we will denote the structure maps of Ω (B) by α, β, ǫ and i which are
just the restrictions of the corresponding ones on Π1 (B,B).
As a consequence of the continuity of W we have that, for all X ∈ B,
G (X) is a closed subgroup of Π1 (B,B)XX . Hence, the following result
is immediate.

Proposition 4.2. Let B be a simple body. Then, for all X ∈ B the
set of all material symmetries G (X) is a Lie subgroup of Π1 (B,B)XX .

This could make us think that Ω (B) is a Lie subgroupoid of Π1 (B,B).
However, this is not true because the dimensions of the groups of ma-
terial symmetries could change (see the examples of the last section).
Now, the following result is obvious.

Proposition 4.3. Let B be a body. B is uniform if and only if Ω (B)
is a transitive subgroupoid of Π1 (B,B).

We will still deal with another (more restrictive) notion of uniformity.

Definition 4.4. A body B is said to be smoothly uniform if for each
point X ∈ B there is an neighbourhood U around X such that for
all Y ∈ U and j1Y,Xφ ∈ Ω (B) there exists a smooth field of material

isomorphisms P from ǫ (X) to j1Y,Xφ.

Equivalently, for all X ∈ B the map

α : ΩX (B) → B,

admits local sections for any point in B. Obviously, smooth uniformity
implies uniformity.
Therefore, B is smoothly uniform if, and only if, for each two points
X, Y ∈ B there are two open subsets U, V ⊆ B around X and Y
respectively and P : U × V → Ω (B) ⊆ Π1 (B,B), a differentiable
section of the anchor map

(

α, β
)

. When X = Y it is easy to realize
that we can assume U = V and P is a morphism of groupoids over the
identity map, i.e.,

P (Z, T ) = P (R, T )P (Z,R) , ∀T,R, Z ∈ U.
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So, we may prove a corollary of Proposition 4.2.

Corollary 4.5. Let B be a body. B is smoothly uniform if and only if
Ω (B) is a transitive Lie subgroupoid of Π1 (B,B).

Proof. Suppose that B is smoothly uniform. Fix j1X,Y ψ ∈ Ω (B) and
consider P : U ×V → Ω (B), a differentiable section of the anchor map
(

α, β
)

with X ∈ U and Y ∈ V . Then, we may construct the following
bijection

ΨU,V : Ω (U, V ) → B×B×G (X, Y )

j1Z,Tφ 7→
(

Z, T, P (Z, Y )
[

j1Z,Tφ
]−1

P (X, T )
)

,

where Ω (U, V ) is the set of material isomorphisms from U to V . By
using Proposition 4.2, we deduce that G (X, Y ) is a differentiable man-
ifold. Thus, we can endow Ω (B) with a differentiable structure of a
manifold. Now, the result follows (the converse has been proved in [8]).

�

Remark 4.6. Let P be a left-invariant vector field on Π1 (B,B) such
that

TW (P ) = 0 (4.3)

Then, for all g ∈ Π1 (B,B), the flow ϕP
t of P satisfies that

TW (P (g)) =
∂

∂t|0

(

W
(

ϕP
t (g)

))

=
∂

∂t|0

(

W
(

g · ϕP
t (ǫ (α (g)))

))

= 0.

Hence, ϕP
t (ǫ (X)) ∈ Ω (B) for all X ∈ B, i.e., the flow of P restricts

to Ω (B).
Equivalently, if the flow of P can be restricted to Ω (B) then, Eq. (4.3)
is satisfied.
Thus, let g ∈ Π1 (B,B); then the fibre of the characteristic distribu-

tion AΩ (B)Tg to the material groupoid at g is generated by the vectors

vg ∈ Tgβ
−1 (β (g)) such that there exists a left-invariant (local) tangent

vector field P ∈ XL (Π
1 (B,B)) which satisfies Eq. (4.3) and P (g) = vg.

So, for the material groupoid, the characteristic distribution is defined
in a more straightforward way as the distribution generated by the left-
invariant vector fields on Π1 (B,B) which are in the kernel of TW .
This characteristic distribution will be called material distribution. The
distribution on the base AΩ (B)♯ will be called body-material distribu-
tion. Denote again the family of left-invariant vector fields on Π1 (B,B)
which satisfy Eq. (4.3) by C.

⋄
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Let F (ǫ (X)) and F (X) be the foliations associated to the material
distribution and the body-material distribution respectively. For each
X ∈ B, we denote the Lie groupoid Ω (B) (F (X)) by Ω (F (X)).

Notice that, strictly speaking, in continuum mechanics a subbody of
a body B is just an open submanifold of B but, here, the foliation F

gives us submanifolds of different dimensions. So, we will consider a
more general definition so that, a material submanifold of B is just a
submanifold of B. A generalized subbody P inherits certain material
structure from B. In fact, we will measure the material response of
a material submanifold P by restricting W to the 1−jets of local dif-
feomorphisms φ on B from P to P. However, it easy to observe that
a material submanifold of a body is not exactly a body. See [6] for a
discussion on this subject.

Then, as a corollary of Theorem 3.6, we have the following result.

Theorem 4.7. For all X ∈ B, Ω (F (X)) is a transitive Lie sub-
groupoid of Π1 (B,B). Thus, any body B can be covered by a foliation
of smoothly uniform material submanifolds.

Notice that, for each X ∈ B, all the material symmetries at X
are contained in Ω (F (X)), i.e., G (X) is the isotropy group at X of
Ω (F (X)).

Remark 4.8. Just imagine that there is, at least, a leaf F (g) inside
ΩX (B) for some X ∈ B such that

F (g) ∩ F (ǫ (X)) = ∅.

Then, we are not including this leaf inside any subgroupoid Ω (F (X)).
Thus, we are discarding these material isomorphisms.
However,

F (g) = g · F (ǫ (α (g))) , (4.4)

and F (ǫ (α (g))) is included in Ω (F (α (g))), i.e., using Eq. (4.4), we
can reconstruct F (g). ⋄

5. Examples

Finally, let us introduce a large family of examples. We will see that,
in some of them, the material groupoid is not a Lie groupoid (this kind
of examples justify the study of groupoids without structure of Lie
groupoids). We shall also give the decomposition of the material by
smoothly uniform material submanifolds provided by the characteris-
tic distribution. In these examples we will also show that the leaves
F (ǫ (X)) are contained in the β−fibres of Ω (B) but they do not coin-
cide in general.
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Let B be an open ball Br (0) in R
3 of radius r and center 0 ∈ R

3 whose
functional response is given by

W : B×Gl (3,R) → gl (3,R)
(X, Y, Z, F ) 7→ f (‖ (X, Y, Z) ‖2)

(

F · F T − Id
) ,

where f : R → R is a differentiable map. Here, we will consider
different cases:

(1) f is strictly monotonic.
Then, two points (X, Y, Z) , (T, S, R) of B are materially iso-
morphic if, and only if,

‖ (X, Y, Z) ‖=‖ (T, S, R) ‖ .

In fact, we have

Ω (B)(X,Y,Z) ∼= S (‖ (X, Y, Z) ‖)×O (3) ,

where S (‖ (X, Y, Z) ‖) is the sphere of radius ‖ (X, Y, Z) ‖ and
centre 0 and O (3) is the orthogonal group of 3 × 3 matrices
with coefficients in R.
Hence, considering local coordinates over the sphere we can
prove that Ω (B) is, indeed, an embedded Lie subgroupoid of
Π1 (B,B). The material distribution (which, in this case, is a
Lie algebroid) is given by

AΩ (B)Tǫ(X,Y,Z)
∼= R

2 × o (3) ,

for all (X, Y, Z) ∈ B where o (3) is the Lie algebra associated
to the orthogonal group O (3). Thus, the decomposition in
material submanifolds is given by spheres of radius < r. Here,
it is easy to construct non-trivial examples of left-invariant
vector fields tangent to the characteristic distribution. In fact,
any differentiable map R

3 → R
2 × o (3) generates (local) left-

invariant vector fields tangent to AΩ (B)T .
(2) f is strictly monotonic and locally constant.

In this case, we will suppose that there exists s < r such that

f|[0,s2] ≡ 1,

and is strictly monotonic non-zero outside of [0, s2]. Denoting
the closure of Bs (0) by Bs (0), we have that

– For (X, Y, Z) ∈ Bs (0),

Ω (B)(X,Y,Z) ∼= Bs (0)× O (3) .

– For (X, Y, Z) /∈ Bs (0).

Ω (B)(X,Y,Z) ∼= S (‖ (X, Y, Z) ‖)×O (3) .



20 V. M. JIMÉNEZ, M. DE LEÓN, AND M. EPSTEIN

Thus, the material groupoid is the following

Ω (B) ∼= {(X,Y, h) : h ∈ O (3) , ‖ X ‖=‖ Y ‖ or ‖ X ‖, ‖ Y ‖≤ s}, (5.1)

therefore, the dimension of the β−fibres of the material groupoid
is not constant and, then, the material groupoid cannot be a
Lie groupoid. In fact, as we can see in Eq. 5.1, the material
groupoid is not a submanifold of Π1 (B,B).

As we predicted, this example also shows the leaves F (ǫ (X))
could be different from the β−fibres of Ω (B) (because in this
case the β−fibres are not manifolds without boundary).
Now, the material distribution satisfies
(i) AΩ (B)Tǫ(X,Y,Z)

∼= R
3 × o (3) ,

for all (X, Y, Z) ∈ Bs (0).

(ii) AΩ (B)Tǫ(X,Y,Z)
∼= R

2 × o (3) ,

for all (X, Y, Z) ∈ (B− Bs (0)).
Notice that, because of the left-invariance, the material distri-
bution is characterized by the fibres at the identities.
With this, the decomposition of B given by uniform material
submanifolds is the following:

F = {Bs (0) , S (‖ T ‖) : T ∈ (B− Bs (0))}.

To prove this fact it is not difficult to check the following:
- Let be a point (X, Y, Z) ∈ Bs (0). So, by taking an

open neighbourhood U of (X, Y, Z) contained in Bs (0),
we prove (i).

- Any (local) vector field P tangent to the characteristic dis-
tribution satisfy that its flow ϕP

t at a point (X, Y, Z) out-
side Bs (0) is contained in S (‖ (X, Y, Z) ‖). This proves
(ii).

(3) f is neither monotonic nor locally constant.
In this case, two points (X, Y, Z) , (T, S, R) of B are materially
isomorphic if, and only if,

‖ (X, Y, Z) ‖2∈ f−1
(

f
(

‖ (T, S, R) ‖2
))

.

So, for each (R, T, S) ∈ B, we have

Ω (B)(T,S,R) ∼= ⊔‖(X,Y,Z)‖2∈f−1(f(‖(T,S,R)‖2))S (‖ (X, Y, Z) ‖)× O (3) .

Fix a point (X, Y, Z) ∈ B such that

∂ f

∂t|‖(X,Y,Z)‖2
≶ 0.

Then, f is not constant and, hence, this kind of points have to
exist.
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So, by using the inverse function theorem, there is an open
neighbourhood U around ‖ (X, Y, Z) ‖2 such that f|U is a dif-
feomorphism onto its image. Then, the intersection of U×U×
Gl (3,R) (which is an open set of Π1 (B,B)) with the material
groupoid is given by

Ω (U) := {
(

(X, Y, Z) , (T, S, R) , F i
j

)

}F i
j∈O(3), X,Y,Z,T,S,R∈U, ‖(X,Y,Z)‖=‖(T,S,R)‖.

Hence, if it there exists a differentiable structure over Ω (B)
such that it is a Lie subgroupoid of Π1 (B,B), Ω (U) will be an
open subset and, in this way, Ω (B) will have dimension 8.
So, we can ensure that, Ω (B) is a Lie subgroupoid of Π1 (B,B)
if, and only if, for all (T, S, R) ∈ B f−1 (f (‖ (T, S, R) ‖2)) has
a countable number of connected components (by using the
fact that manifolds are second countable).
Notice that, in this case, we can find a map f such that the de-
composition is still given by spheres (all with the same dimen-
sion) but the material groupoid does not have a differentiable
structure.
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