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LIE GROUPOIDS AND ALGEBROIDS APPLIED TO

THE STUDY OF UNIFORMITY AND HOMOGENEITY

OF COSSERAT MEDIA

VÍCTOR MANUEL JIMÉNEZ, MANUEL DE LEÓN,
AND MARCELO EPSTEIN

Abstract. A Lie groupoid, called second-order non-holonomic
material Lie groupoid, is associated in a natural way to any Cosserat
media. This groupoid is used to give a new definition of homogene-
ity which does not depend on a reference crystal. The correspond-
ing Lie algebroid, called second-order non-holonomic material Lie
algebroid, is used to characterize the homogeneity property of the
material. We also relate these results with the previously ones in
terms of non-holonomic second-order G-structures.
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1. Introduction

In the theory of Continuum Mechanics a body is presented by a three-
dimensional manifold B which can be covered with just one chart (see
[37]). A configuration ψ is an embbeding of B in R

3 and it is very usual
to identify the body with one of the configurations ψ0 which is called
reference configuration. A change of configuration ψ ◦ψ−1

0 is said to be
a deformation.

A problem of importance from the point of view of theoretical and
practical physics is the following: given a mechanical response as a
function of the positions on the body, how to decide if all the points of
the body are made of the same material. W. Noll developed a geomet-
ric theory to deal with the properties of the material in [41] (see also
[46, 47, 48]). As the Noll’s and Wang’s approach shows us, the use of
G−structures has redefined the formulation and facilited the derivation
of specific results (see for example [25, 26, 27, 23]). In fact, the lack of
integrability of the associated G−structure manifests the presence of
inhomogeneities (such as dislocations).

Thus, we could say that the theory of inhomogeneities of simple ma-
terials is well established in terms of differential geometric structures.
However, there are many non-simple materials. In fact, materials like
granular solids, rocks or bones cannot be modelled without extra kine-
matic variables [3, 28]. The theory of generalized media was introduced
by Eugène and François Cosserat between 1905 and 1910 in [6]. The
Cosserat’s associated to each point of the body a family of vector (di-
rectors). In a more mathematical way, a Cosserat continuum can be
described as a manifold of dimension m and a family of vector n fields
on the manifold. Some of the developments of the theory can be found
in Maugin [38, 39], Kröner [33] or Eringen [28].

The geometrical structures which are necessary to develop a rigorous
theory has been available for some time. Actually, the notion of direc-
tor given by Cosserats is closely related with frame bundles. In 1950 C.
Ehresmann (see [13, 14, 15, 16, 17]) formalized the notion of principal
bundles and studied many frame bundles associated in a natural way to
an arbitrary manifold: non-holonomic and holonomic frame bundles.
Thus, we can intepret a Cosserat medium as a linear frame bundle FB
of a manifold B which can be covered with just one chart (see [24]).
Then, a configuration of FB is an embedding Ψ : FB → FR3 of prin-
cipal bundles such that the induced Lie group morphism is the identity
map. Again, we fix a configuration Ψ0, as the reference configuration,
and a deformation is a change of configurations.
The constitutive elastic law is now written as

W = W (X,F ) ,

where X is a point of the Cosserat medium and F is the gradient of
a deformation at a point X . This constitutive equation permits us to
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associate to each point two points X, Y of B the family of material iso-
morphisms from X to Y , i.e., the local principal bundle isomorphisms
from X to Y that are invariants by W .

This paper is devoted to study the geometrical description of Cosserat
media using the notions of Lie groupoids and Lie algebroids. The no-
tion of non-holonomic material groupoid of second order associated to
a material body B arises in a very natural way. Actually, the collection
of all the 1−jets of material isomorphisms constitutes a groupoid over
the body B. This approach considering 1−jet prolongations has been
developed in [24]. In that paper [24], the authors have characterized
the homogeneity of a Cosserat medium in terms of the integrability
of the natural associated non-holonomic G−structures of second order
(see also [25, 26, 27, 8, 9, 10]).

Thus, as in the case of simple materials (see [31]), a Cosserat medium
has associated in a natural way a groupoid, called second-order non-
holonomic material groupoid. The goal of our research is to intro-
duce a new definition of homogeneity, based on the second-order non-
holonomic material groupoid, and to characterize some materials prop-
erties like uniformity and homogeneity in terms of the Lie algebroid
associated to the second-order non-holonomic material groupoid. An
interesting feature is that our Lie algebroid can be described as the
space of derivations on the tangent bundle of a manifold M [35].

Groupoids are an old topic coming back to the German mathemati-
cian Heinrich Brandt [2]; Brandt was led to this concept by his studies
in number theory. Of course, it is possible to find groupoids present im-
plicitly in many early works, for instance the notion of continuous group
of local transformations used by Sophus Lie leads to Lie groupoids no
less to Lie groups [29].

One should remark that a groupoid can be defined as an small cat-
egory in which all morphisms are invertible. However, the notion of
category were introduced some years later (1945) by Eilenberg and
MacLane [22].

On the other hand, The concept of Lie groupoid was defined by
Ehresmann in a collection of articles [18, 19, 20, 21] where the author
added topological and differential structures to the groupoid. Pradines
redefined the notion of Lie groupoid in [43]. In this paper, as an in-
finitesimal version of Lie groupoids, Pradines defined the notion of Lie
algebroid. Thus, Pradines extended the construction of the Lie alge-
bra associated to a Lie group. This construction allows to associate a
Lie algebroid to any Lie groupoid, generating a functor between these
categories. This functor was given by Pradines [44] and is detailed by
Mackenzie in [36] for the case of Lie algebroids with the same base and
by Higgins and Mackenzie in [30] for the case of Lie algebroids with
different bases.
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In this way, arose the natural question of extending the three Lie’s
fundamental theorems (see [12]):

Lie’s first fundamental theorem

Any integrable Lie algebra can be integrated to a simply connected Lie
group.

Lie’s second fundamental theorem

Any morphism between integrable Lie algebras can be integrated to a
morphism of Lie groups.

Lie’s third fundamental theorem

Any Lie algebra can be integrated to a Lie group.

It is possible to extend Lie’s first fundamental theorem and Lie’s
second fundamental theorem. Finally, in order to generalize Lie’s third
fundamental theorem, in [45] the next question appears: is any Lie alge-
broid integrable? i.e., is any Lie algebroid associated to a Lie groupoid?
Pradines thought in [45] that the answer was affirmative and, for a long
time, it was believed that he was right. However, Almeida and Molino
found a counterexample in [1], i.e., there exist not integrable Lie alge-
broids. This result has a great importance because it resists with the
one for Lie groups and Lie algebras. In [7] the authors give necessary
and sufficient conditions for the integrability of any Lie algebroid. We
will need to use some results of integrabiliy to characterize the homo-
geneity in terms of the Lie algebroid associated to the second-order
non-holonomic material groupoid.

This paper is structured as follows: Section 2 is devoted to recall
the main notions on principal bundles. As an important case, we
present the notion of linear frame bundle FM of a manifold M . As-
sociated to this concept, we introduce the notion of the second-order

non-holonomic frame bundle F
2
M of a manifold M . We also deal

with the second-order non-holonomic G−structures and its associated
notion of integrability.

In Section 3 we describe a method to prolongate a pair of ordinary
parallelisms to obtain a non-holonomic parallelism of second order.
This method can be used to define a more general notion of integrabil-
ity: integrable prolongation.

Groupoids and Lie groupoids are the matter of Section 4. We have
developed a general introduction to this topic. We consider with more
detail the Lie groupoid Π1 (M,M) of 1−jets of local diffeomorphisms
of a manifold M . As a subgroupoid of Π1 (FM,FM) we consider the
Lie groupoid J1 (FM) of local automorphisms of FM over the identity
map of Gl (n,R). Finally, the non-holonomic groupoid of second order
J̃1 (FM) over M is presented as a quotient space. In Section 5 we
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introduce Lie algebroids and construct the Lie algebroid associated to
an arbitrary Lie groupoid. The construction is similar to the corre-
sponding one for Lie groups and Lie algebras. Many examples, as the
1−jets algebroid AΠ1 (M,M) over M and the non-holonomic algebroid

of second order AJ̃1 (FM) over M , are also exhibited. An alterna-
tive description of the Lie algebroid AΠ1 (M,M) associated to the Lie
groupoid Π1 (M,M) is given in Section 6 in terms of derivations of the
tangent bundle TM . To do this rigurously we need the corresponding
notion of exponential map that generalizes that for Lie groups.

In Section 7 we construct the non-holonomic material groupoid of
second order Ω (B) of a Cosserat media B as a reduced subgroupoid

of J̃1 (FB). We use this object to characterize the uniformity and to
define a new notion of homogeneity of the Cosserat medium B.

Section 8 deals with the notion of integrability of reduced subgroupoid
of second-order non-holonomic groupoid by introducing the concept of
standard flat subgroupoid of J̃1 (Rn). We also give a precise construc-
tion of prolongation of sections to generalize the notion of integrability
of reduced subgroupoids of J̃1 (FM). A similar development is made
for Lie algebroids. The results of Section 8 are applied to characterize
the homogeneity of Cosserat media.

Finally, in Section 10 we recall the characterization of homogeneity
using the notion of G−structures [24] and relate them with the current
one in terms of his groupoid. In particular, the homogeneity defined in
this paper is equivalent to the homogeneity in terms of non-holonomic
G−structures of second order for some reference crystal.

2. Principal bundles

Firstly, we will present the notion of principal bundle (see [32]) and,
as particular cases, we will introduce the concepts of second-order non-
holonomic frame bundle and non-holonomic G−structure of second or-
der. This will permit us to introduce the notion of integrability.

Definition 2.1. Let P be a manifold and G be a Lie group which acts
over P by the right satisfying:

(i) The action of G is free, i.e.,

xg = x⇔ g = e,

where e ∈ G is the identity of G.
(ii) The canonical projection π : P → M = P/G, where P/G is

the space of orbits, is a surjective submersion.
(iii) P is locally trivial, i.e., P is locally a product U×G, where U is

an open set ofM . More precisely, there exists a diffeomorphism
Φ : π−1 (U) → U × G, such that Φ (u) = (π (u) , φ (u)), where
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the map φ : π−1 (U) → G satisfies that

φ (ua) = φ (u) a, ∀u ∈ U, ∀a ∈ G.

Φ is called a trivialization on U .

A principal bundle will be denoted by P (M,G), or simply π : P →
M if there is no ambiguity about to the structure group G. P is called
the total space, M is the base space, G is the structure group and π is
the projection. The closed submanifold π−1 (x), x ∈ M will be called
the fibre over x. For each point u ∈ P , we have π−1 (x) , uG, where
π (u) = x, and uG will be called the fibre through u. Every fibre is
diffeomorphic to G, but this diffeomorphism depends on the choice of
the trivialization.

Now, we will define the morphisms of this category.

Definition 2.2. Given P (M,G) and P ′ (M ′, G′) principal bundles, a
principal bundle morphism from P (M,G) to P ′ (M ′, G′) consists of
a differentiable map Φ : P → P ′ and a Lie group homomorphism
ϕ : G→ G′ such that

Φ (ua) = Φ (u)ϕ (a) , ∀u ∈ P, ∀a ∈ G.

Notice that, in this case, Φ maps fibres into fibres and it induces a dif-
ferentiable map φ : M → M ′ by the equality φ (x) = π (Φ (u)), where
u ∈ π−1 (x).
If these maps are embeddings, the principal bundle morphism will be
called embedding. In such case, we can identify P with Φ (P ), G with
ϕ (G) and M with φ (M) and P (M,G) is said to be a subbundle of
P ′ (M ′, G′). Furthermore, if M = M ′ and ϕ = IdM , then P (M,G)
will be called a reduced subbundle and we also say that G′ reduces to
the subgroup G.
Finally, a principal bundle morphism is called isomorphism if it can be
inverted by another principal bundle morphism.

Example 2.3. Given a manifoldM and G a Lie group, we can consider
M×G as a principal bundle overM with projection pr1 :M×G →M
and structure group G. The action is given by,

(x, a) b = (x, ab) , ∀x ∈M, ∀a, b ∈ G.

This principal bundle is called a trivial principal bundle.

Now, we will introduce an important example of principal bundle,
the frame bundle. In order to do that, we will start with the following
definition.

Definition 2.4. Let M be a manifold. A linear frame at the point
x ∈M is an ordered basis of TxM .
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Remark 2.5. Alternatively, a linear frame at x can be viewed as a
linear isomorphism z : Rn → TxM identifying a basis on TxM as the
image of the canonical basis of Rn by z.
There is a third way to interpret a linear frame by using the theory of
jets. Indeed, a linear frame z at x ∈M may be considered as the 1-jet
j10,xφ of a local diffeomorphism φ from an open neighbourhood of 0 in
R
n onto an open neighbourhood of x in M such that φ (0) = x. So,

z = T0φ.

Thus, we denote by FM the set of all linear frames at all the points of
M . We can view FM as a principal bundle over M with the structure
group Gl (n,R) and projection πM : FM → M given by

πM
(

j10,xφ
)

= x, ∀j10,xφ ∈ FM.

This principal bundle is called the frame bundle on M . Let (xi) be a
local coordinate system on an open set U ⊆M . Then we can introduce
local coordinates

(

xi, xij
)

over FU ⊆ FM such that

xij
(

j10,xψ
)

=
∂ (xi ◦ ψ)

∂xj|0
. (2.1)

If ψ : N →M is a local diffeomorphism, we denote by Fψ : FN → FM
the local isomorphism induced from ψ, and defined by

Fψ
(

j10,φ(0)φ
)

= j10,ψ(φ(0)) (ψ ◦ φ) .

We denote by e1 the frame j10,0IdRn ∈ FRn, where IdRn is the identity
map on R

n. Let Ψ : FRn → FM be a local isomorphism of principal
bundles such that its domain contains e1 and the induced isomorphism
on Lie groups is the identity, i.e.,

Ψ (z · g) = Ψ (z) · g, ∀z ∈ Dom (Ψ) ⊆ FRn, ∀g ∈ Gl (n,Rn) .

We denote by ψ : Rn → M the local diffeomorphism induced by Ψ.
We recall that

ψ ◦ πRn = πM ◦Ψ.

The collection of all 1−jets j1e1,Ψ(e1)
Ψ is a manifold which will be de-

noted by F
2
M . Of course, j1e1,Ψ(e1)

Ψ can be identified with a linear

frame at the point Ψ (e1) since Te1Ψ : Te1 (FR
n) ∼= R

n+n2

→ TΨ(e1)FM

is a linear isomorphism, and we have F
2
M ⊂ F (FM).

There are two canonical projections π2
1 : F

2
M → FM and π2 : F

2
M →

M given by:

• π2
1

(

j1e1,Ψ(e1)
Ψ
)

= Ψ (e1)

• π2
(

j1e1,Ψ(e1)
Ψ
)

= ψ (0)
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Of course, we have π2 = πM ◦π2
1. We can show that F

2
M is a principal

bundle over FM with canonical projection π2
1 and structure group,

G
2

1 (n) := {j1e1,e1Ψ ∈ F
2
R
n/ Ψ (e1) = e1} = π2

1

−1
(e1) .

Notice that G
2

1 (n) is a Lie subgroup of Gl (n+ n2,R) acting on F
2
M

by composition of jets.

We also have that F
2
M is a principal bundle over M with canonical

projection π2 and structure group

G
2
(n) := {j1e1,Ψ(e1)Ψ ∈ F

2
R
n/ ψ (0) = 0} = π2−1

(0) ,

which, again, acts on F
2
M by composition of jets.

The principal bundle F
2
M will be called the non-holonomic frame

bundle of second order and its elements will be called non-holonomic
frames of second order. There are more principal bundles defined over
the 1−jets of local isomorphisms j1e1,ZΨ on FM (holonomic and semi-
holonomic). To know about the relations between them see [11]

Remark 2.6. Notice that there exists a canonical projection π̃2
1 :

F
2
M → FM defined by

π̃2
1

(

j1e1,ZΨ
)

= j10,zψ.

Observe that π̃2
1 is a principal bundle morphism from F

2
M to FM

according to the diagram

FM
πM

✲ M

π2
1

❄

πM

❄

F
2
M

π̃2
1 ✲ FM

As we did with FM , having a local coordinate system (xi) on an
open set U ⊆ M , we can introduce local coordinates

(

xi, xij
)

over
FU ⊆ FM and, therefore, we can also introduce local coordinates
((

xi, xij
)

, xi,j, x
i
,jk, x

i
j,k, x

i
j,kl

)

over F (FU) such that

• xi,j
(

j1e1,ZΨ
)

=
∂ (xi ◦Ψ)

∂xj|e1

• xi,jk
(

j1e1,ZΨ
)

=
∂ (xi ◦Ψ)

∂xjk |e1

• xij,k
(

j1e1,ZΨ
)

=
∂
(

xij ◦Ψ
)

∂xk |e1
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• xij,kl
(

j1e1,ZΨ
)

=
∂
(

xij ◦Ψ
)

∂xkl |e1

Hence, if we restrict to F
2
U we have that

• xi,jk = 0

• xij,kl = xikδ
j
l

So, the induced coordinates on F
2
U are

((

xi, xij
)

, xi,j, x
i
j,k

)

. (2.2)

Then, locally

• πM
(

xi, xij
)

= xi

• πFM
((

xi, xij
)

, xi,j, x
i
,jk, x

i
j,k, x

i
j,kl

)

=
(

xi, xij
)

• π2
1

((

xi, xij
)

, xi,j, x
i
j,k

)

=
(

xi, xij
)

• π2
((

xi, xij
)

, xi,j, x
i
j,k

)

= xi

• π̃2
1

((

xi, xij
)

, xi,j, x
i
j,k

)

=
(

xi, xi,j
)

Notice that there exists a canonical isomorphism F
2
R
n ∼= R

n ×

G
2
(n). In fact, let us define a global section s : Rn → F

2
R
n as follows,

s (x) = j1e1,e1xFτx,

where τx denote the translation on R
n by the vector x. Then, locally

s
(

xi
)

=
((

xi, δij
)

, δij , 0
)

.

So, a non-holonomic frame of second order Z at a point x ∈ R
n may

be written in a unique way as

Z = s (x) · g,

where g ∈ G
2
(n). We have thus obtained a principal bundle isomor-

phism F
2
R
n ∼= R

n ×G
2
(n). Now, if G is a Lie subgroup of G

2
(n), we

can transport Rn×G by this isomorphism to obtain a G−reduction of

F
2
R
n.

Definition 2.7. Let G be a Lie subgroup of G
2
(n). A second-order

non-holonomic G−structure ωG (M) is a reduced subbundle of F
2
M

with structure group G.

Hence, the G−reduction of F
2
R
n obtained above is a second-order

non-holonomic G−structure on R
n which will be called the standard

flat second-order non-holonomic G−structure.

Next, we will introduce the notion of integrability of a second-order
non-holonomic G−structure.
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Definition 2.8. Let ωG (M) be a second-order non-holonomic
G−structure on M . ωG (M) is said to be integrable if it is locally
isomorphic to the trivial principal bundle Rn×G, or equivalently, it is
locally isomorphic to the standard flat G−structure on R

n.

What we mean by ”locally isomorphic” is that for each point x ∈M ,
there exists a local chart through x, ψU : U → U such that induces an
isomorphism of principal bundles given by

ΨU : ωG (U) → U ×G,

where

ΨU

(

j1e1,ZΨ
)

=
(

ψU (z) , j1e1,Z0

(

F
(

τ−ψU (z) ◦ ψU
)

◦Ψ
))

,

with πM (Z) = z.

Remark 2.9. There exists an alternative definition of second-order
non-holonomic frames (see [42]). Consider a differentiable map φ :
U → FM defined on some open neighbourhood of 0 in R

n such that
πM ◦ φ is an embedding. Then the 1−jet j10,φ(0)φ is a non-holonomic

frame of second order at x = πM (φ (0)). In fact, given φ we define a
local principal bundle isomorphism Φ : FRn → FM over U given by

Φ (r, R) = φ (r)R,

where r ∈ R
n and R ∈ Gl (n,R). Thus, j1e1,ZΦ defines a non-holonomic

frame of second order at x. Conversely, having a local principal bundle
isomorphism Φ : FRn → FM over an open set U , we define φ as
follows:

φ (r) = Φ (r, e) ,

where r ∈ R
n and e ∈ Gl (n,R) is the identity.

Any second-order non-holonomic {e}−structure on M , with e the

identity of G
2
(n), will be called non-holonomic parallelism of second-

order. It is easy to show that any non-holonomic parallelism of second-
order is, indeed, a global section of the second-order non-holonomic

frame bundle F
2
M . So, we can consider integrable sections. Let (xi) be

a local coordinate system on an open set U ⊆ M and
((

xi, xij
)

, xi,j, x
i
j,k

)

be the induced coordinates on F
2
U we have that

(locally) any integrable sections can be written as follows

P
(

xi
)

=
((

xi, δij
)

, δij, 0
)

.

Indeed, we can show that
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Proposition 2.10. Let ωG (M) be a second-order non-holonomic
G−structure on M . ωG (M) is integrable if, and only if, for each point
x ∈ M there exists a local coordinate system (xi) on M such that the
local section,

P
(

xi
)

=
((

xi, δij
)

, δij, 0
)

, (2.3)

takes values into ωG (M).

Notice that, in a similar way to the case of the integrable
G−structures in the frame bundle (see [31]), Eq. (2.3) is equivalent
to the following: for each z ∈ M , there exists a local chart (ψU , U)
over z such that for all x ∈ U

P (x) = j1e1,X
(

Fψ−1
U ◦ FτψU (x)

)

= j1e1,X
(

F
(

ψ−1
U ◦ τψU (x)

))

, (2.4)

where τψU (x) denote the translation on R
n by the vector ψU (x).

Next, we shall describe a particular subbundle of F
2
M . Consider

the non-holonomic frames of second order given by j1e1,X (Fψ), where
ψ : Rn → M is a local diffeomorphism at 0. These kind of frames are
called holonomic frames of second order or second order frame bundle
(by short). The set of all holonomic frames of second order is denoted
by F 2M and it is called second-order holonomic frame bundle. The
restrictions of π2

1 and π2 to F 2M are denoted by π2
1 : F 2M → FM

and π2 : F 2M → M . π2
1 endows to F 2M with a principal bundle

structure with structure group G2
1 (n), which is the set of all 1−jets

of local isomorphism of the form Fψ, where ψ : Rn → R
n is a local

diffeomorphism with Fψ (e1) = e1 (equivalently, j10,0φ = e1).

π2 : F 2M → M is also a principal bundle which structure group
G2 , (π2)

−1
(0).

We deduce that π2
1 (resp. π2) is a principal subbundle of π2

1 (resp. π
2).

So, restricting the isomorphism F
2
R
n ∼= R

n ×G
2
(n) we have that

F 2
R
n ∼= R

n ×G2 (n) .

Then, for each Lie subgroup G of G2 (n) we obtain a G−reduction of
F 2

R
n which is isomorphic to R

n ×G.

Definition 2.11. Let G be a Lie subgroup of G2 (n). A second-order
holonomic G−structure ωG (M) is a reduced subbundle of F 2M with
structure group G.

Hence, the G−reduction of F 2
R
n obtained above is a second-order

holonomic G−structure on R
n which will be called the standard flat

second-order holonomic G−structure.

Note that each second-order holonomic G−structure ωG (M) can be
seen as a second-order non-holonomic G−structure. So, the notion of
integrability will be the same.
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A holonomic parallelism of second order is a second-order holonomic
trivial structure or, equivalently, a global section of π2 : F 2M → M .
So, we will also speak about integrable sections of F 2M .

Observe that, by definition, any integrable non-holonomic paral-
lelism of second order is in fact holonomic.
Summarizing we have the following sequence of Lie subgroups:

G2 (n) ⊂ G
2
(n) ⊂ Gl (n,R)×Gl (n+ n2,R) ,

G2
1 (n) ⊂ G

2

1 (n) ⊂ Gl (n + n2,R) ,

and the following sequence of principal bundles:

F 2M ⊂ F
2
M ⊂ F (FM) ,

over FM and

F 2M ⊂ F
2
M,

over M .
Let (x)i be a local coordinate system on an open U ⊆M . Then, we can

induce local coordinates over F
2
M
((

xi, xij
)

, xi,j, x
i
j,k

)

(see Eq. (2.2)).

Then, if we restrict to F 2M we have that

xij = xi,j ; xij,k = xik,j.

Thus, we may obtain local coordinates on F 2M denoted as follows:
(

xi, xij , x
i
jk

)

, xijk , xij,k = xik,j. (2.5)

3. Non-holonomic prolongations of parallelisms of
second order

Let M be a manifold and P be a section of the second-order non-
holonomic frame bundle F

2
M . Then, P (xi) =

((

xi, P i
j

)

, P i
,j, R

i
j,k

)

induces two sections P and Q of FM (i.e. induces two ordinary par-
allelisms on M) by projecting P via the two canonical projections π2

1

and π̃2
1, i.e.,

P = π2
1 ◦ P, Q = π̃2

1 ◦ P .

So, we obtain

P
(

xi
)

=
(

xi, P i
j

)

, Q
(

xi
)

=
(

xi, P i
,j

)

.

Conversely, let P,Q : M → FM be two sections of FM . Hence,
P (resp. Q) defines a family of n (where n is the dimension of M)
linearly independent vector fields {P1, · · · , Pn} (resp. {Q1, · · · , Qn}).
We define a horizontal subspace HP (x) at the point P (x) by translating
the basis {Qa (x)} at x into a set of linearly independent tangent vectors
at P (x),

{TxP (Qa (x))}.
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Locally,

TxP

(

∑

i

Qi
a (x)

∂

∂xi|x

)

=
∑

i,r,s

Qi
a (x)

∂

∂xi|P (x)

+Qi
a (x)

∂P r
s

∂xi|x

∂

∂xrs |P (x)

,

where,

Pa (x) =
∑

i

P i
a (x)

∂

∂xi|x
, Qa (x) =

∑

i

Qi
a (x)

∂

∂xi|x
.

By completing this set of linearly independent tangent vectors to a ba-
sis of TP (x)FM we obtain a second-order non-holonomic frame at x.

We have so obtained a section of F
2
M (i.e. a non-holonomic paral-

lelism of second order on M), which is denoted by P 1 (Q).

Definition 3.1. A non-holonomic parallelism of second order P is said
to be a prolongation if P = P 1 (Q) where P and Q are the induced
ordinary parallelisms.

The local expression of P 1 (Q) becomes

P 1 (Q)
(

xi
)

=

(

(

xi, P i
j

)

, Qi
j ,
∑

l

Ql
k

∂P i
j

∂xl

)

. (3.1)

Hence, a section of F
2
M , P (xi) =

((

xi, P i
j

)

, Qi
j , R

i
j,k

)

, is a second-
order non-holonomic prolongation if, and only if,

Ri
j,k =

∑

l

Ql
k

∂P i
j

∂xl
. (3.2)

Remark 3.2. Now, we will describe another way to construct P 1 (Q)
which will be useful in what follows. Let P,Q : M → FM be two
sections and we denote

Q (x) = j10,xψx.

Then, for each a = 1, · · · , n

Qa (x) = T0ψx

(

∂

∂xa|0

)

,

which implies that

TxP (Qa (x)) = T0 (P ◦ ψx)

(

∂

∂xa|0

)

.

Taking into account this equality we construct the following map

P ◦ ψx : FU → FV
j10,vf 7→ P (ψx (v)) · j

1
0,0 (τ−v ◦ f) .
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where ψx : U → V . It easy to show that P ◦ ψx is an isomorphism of
principal bundle over ψx with inverse given by

j10,wg ∈ FV 7→ j1
0,ψ−1

x (w)
τψ−1

x (w) · [P (w)]−1 · j10,wg.

Thus, we can define,

P : M → F
2
M

x 7→ j1e1,Z
(

P ◦ ψx
)

which satisfies

(i) π2
1 ◦ P (x) = P ◦ ψx (e1) = P (x)

(ii) π̃2
1 ◦ P (x) = j10,zψx = Q (x)

(iii)
∂
(

P i
j ◦Ψx

)

∂xk|0
= dP i

j |x
◦
∂Ψx

∂xk|0
= dP i

j |x
◦ (Q1

k (x) , · · · , Q
n
k (x))

Then, by definition of induced coordinates, Ri
j,k is given by

Ri
j,k (x) =

∑

l

Ql
k (x)

∂P i
j

∂xl|x
.

Therefore P = P 1 (Q).

Notice that, if Q is integrable, then there exists local coordinates
(xi) on M such that

Qi
j = δij ,

and hence,

Ri
j,k =

∂P i
j

∂xk
,

where P 1 (Q) =
(

xi, P i
j , Q

i
j , R

i
j,k

)

. In such a case, P 1 (Q) is said to be

integrable. However, in general P 1 (Q) is not integrable as a paralellism
(see Proposition 3.3).
In this case for each z ∈ M , there exists a local chart (ψU , U) over z
such that for each x ∈ U

P 1 (Q) (x) = j1e1,Z

(

P ◦
(

ψ−1
U ◦ τψU (x)

)

)

= j1e1,Z

(

P ◦ ψ−1
U ◦ FτψU (x)

)

.

In fact, for each j10,vf ∈ FψU (U) we have

P ◦
(

ψ−1
U ◦ τψU (x)

) (

j10,vf
)

= P
(

ψ−1
U (v + ψU (x))

)

· j10,0 (τ−v ◦ f)

=
(

P ◦ ψ−1
U ◦ FτψU (x)

)

(

j10,vf
)

.

Thus, let P 1 (Q) be a non-holonomic integrable prolongation of second-
order; then, for each z ∈ M , there exists a local principal bundle
isomorphism Ψ from an open set FU ⊆ FM with z ∈ U to an open
subset of FRn such that for all x ∈ U

P 1 (Q) (x) = j1e1,Z
(

Ψ−1 ◦ Fτψ(x)
)

, (3.3)
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where ψ is the induced map of Ψ onto the base manifolds. On the other
hand, using ψ as a local chart we can prove that Eq. (3.3) implies that
P 1 (Q) is a non-holonomic integrable prolongation of second order.
This equality reminds us Eq. (2.4), for second-order non-holonomic
integrable sections. Indeed, a second-order non-holonomic integrable
prolongation P 1 (Q) satisfying Eq. (3.3) is integrable if, and only if,
we have

j1Z,e1xΨ = j1Z,e1xFψ,

for all x, where e1x = j10,xτψ(x). Thus, a second-order non-holonomic
prolongation is integrable if, and only if, takes values in the holonomic
frame, i.e., the only integrable prolongations in F 2M are the integrable
sections.

In general, we can think about the second-order non-holonomic in-
tegrable prolongations as an intermediate step beetwen sections and
integrable sections. The following result is obvious.

Proposition 3.3. Let P be a section of F
2
M . P is integrable if,

and only if, P = P 1 (Q) is a second-order non-holonomic integrable
prolongation and P = Q. In particular, a second-order non-holonomic
integrable prolongation P 1 (Q) is integrable if, and only if, P = Q.

This result provides us with examples of second-order no-holonomic
integrable prolongations which are not integrable. Indeed, any pro-
longation of two different ordinary parallelisms is not a second-order
no-holonomic integrable prolongation.

Now, to end this section, we will define the concept prolongation for
non-holonomic G−structures of second order.

Definition 3.4. Let ωG (M) be a second-order non-holonomic
G−structure. ωG (M) is a non-holonomic integrable prolongation of
second-order if we can cover M by local non-holonomic integrable pro-
longations of second order which take values in ωG (M).

Notice that Definition 3.4 can be expressed as follows: For any point
x ∈ M there exists a local coordinate system (xi) over an open set
U ⊆M which contains x such that the local section on U

P 1 (Q)
(

xi
)

=

(

xi, P i
j , δ

i
j ,
∂P i

j

∂xk

)

,

is contained in ωG (M).
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As we have noticed, a second-order non-holonomicG−structure which
is contained in F 2M is integrable if, and only if, it is an integrable pro-
longation.

Remark 3.5. Let ωG (M) be a second-order non-holonomic
G−structure. Then, we could define a non-holonomic integrable pro-
longation of second order in a similar way to integrable G−structures.
In fact, using Eq. (3.3), we can prove that ωG (M) is a non-holonomic
integrable prolongation of second-order if, and only if, for all point
x ∈ M , there exists a local isomorphism of principal bundles whose
isomorphism of Lie groups is the identity map, Φ : FU → FU , with
x ∈ U such that it induces an isomorphism of principal bundles given
by

Υ : ωG (U) → U ×G,

where Υ
(

j1e1,ZΨ
)

=
(

φ (z) ,Υ
(

j1e1,ZΨ
))

and

Υ
(

j1e1,ZΨ
)

= j1e1,Z0

(

F
(

τ−φ(z)
)

◦ Φ ◦Ψ
)

,

with φ the induced map of Φ over the base manifold and πM (Z) = z.
Thus, ωG (M) is a non-holonomic integrable prolongation of second-
order if it is locally isomorphic to the trivial principal bundle R

n × G
by a more general class of local charts (see Definition 2.8).

Proposition 3.6. Let ωG (M) be a second-order non-holonomic
G−structure. If ωG (M) is integrable, then ωG (M) is a non-holonomic
integrable prolongation of second-order.

Not all non-holonomic integrable prolongation of second-order is in-
tegrable (see Proposition 3.3).

It directly follows that if ωG (M) is a second-order non-holonomic
integrable prolongation, then the projected G−structure by π̃2

1 is inte-
grable.

4. Groupoids

In this section, we will briefly introduce the notion of Lie groupoid
which is a fundamental concept for the rest of this paper (a good refer-
ence on groupoids is [35]). A particular groupoid, the 1-jets groupoid,
will be closely related with the frame bundle of the base manifold.

Definition 4.1. Let M be a set. A groupoid over M is given by a set
Γ provided with the maps α, β : Γ → M (source map and target map
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respectively), ǫ : M → Γ (identities map), i : Γ → Γ (inversion map)
and · : Γ(2) → Γ (composition law) where for each k ∈ N,

Γ(k) := {(g1, . . . , gk) ∈ Γ× k). . . ×Γ : α (gi) = β (gi+1) , i = 1, . . . , k−1},

which satisfy the following properties:

(1) α and β are surjective and for each (g, h) ∈ Γ(2),

α (g · h) = α (h) , β (g · h) = β (g) .

(2) Associative law with the composition law, i.e.,

g · (h · k) = (g · h) · k, ∀ (g, h, k) ∈ Γ(3).

(3) For all g ∈ Γ,

g · ǫ (α (g)) = g = ǫ (β (g)) · g.

In particular,

α ◦ ǫ ◦ α = α, β ◦ ǫ ◦ β = β.

Since α and β are surjetive we get

α ◦ ǫ = IdΓ, β ◦ ǫ = IdΓ.

(4) For each g ∈ Γ,

i (g) · g = ǫ (α (g)) , g · i (g) = ǫ (β (g)) .

Then,
α ◦ i = β, β ◦ i = α.

These maps will be called structure maps. We will denote this groupoid
by Γ ⇒M .

If Γ is a groupoid over M , then M is also denoted by Γ(0) and it is
often identified with the set ǫ (M) of identity elements of Γ. Γ is also
denoted by Γ(1). The space of sections of the map (α, β) : Γ →M ×M
is denoted by Γ(α,β) (Γ).

Now, we define the morphisms of the category of groupoids.

Definition 4.2. If Γ1 ⇒ M1 and Γ2 ⇒ M2 are two groupoids; then a
morphism from Γ1 ⇒M1 to Γ2 ⇒M2 consists of two maps Φ : Γ1 → Γ2

and φ :M1 → M2 such that for any g1 ∈ Γ1

α2 (Φ (g1)) = φ (α1 (g1)) , β2 (Φ (g1)) = φ (β1 (g1)) , (4.1)

where αi and βi are the source and the target map of Γi ⇒Mi respec-
tively, for i = 1, 2, and preserves the composition, i.e.,

Φ (g1 · h1) = Φ (g1) · Φ (h1) , ∀ (g1, h1) ∈ Γ(2).

We will denote this morphism as (Φ, φ).
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Observe that, as a consequence, Φ preserves the identities, i.e., de-
noting by ǫi the section of identities of Γi ⇒ Mi for i = 1, 2,

Φ ◦ ǫ1 = ǫ2 ◦ φ.

Note that, using equations 4.1, φ is completely determined by Φ.

Using this definition we define a subgroupoid of a groupoid Γ ⇒ M
as a groupoid Γ′ ⇒ M ′ such that M ′ ⊆ M , Γ′ ⊆ Γ and the inclusion
map is a morphism of groupoids.

Remark 4.3. There is a more abstract way of defining a groupoid. We
can say that a groupoid is a ”small” category (the class of objects and
the class of morphisms are sets) in which each morphism is invertible.
If Γ ⇒M is the groupoid, then M is the set of objects and Γ is the set
of morphisms.
A groupoid morphism is a functor between these categories which is a
more natural definition.

Now, we present some basic examples of groupoids.

Example 4.4. A group is a groupoid over a point. In fact, let G be a
group and e the identity element of G. Then, G ⇒ {e} is a groupoid,
where the operation of the groupoid, ·, is the operation in G.

Example 4.5. For any set M , the product space M ×M can be seen
as a groupoid over M where the composition is given by:

(y, z) · (x, y) = (x, z) , ∀ (x, y) , (y, z) ∈M ×M.

This groupoid is called the pair groupoid on M . Note that, if Γ ⇒ M
is an arbitrary groupoid over M , then the map (α, β) : Γ → M ×M ,
which is sometimes called the anchor of Γ, is a morphism from Γ ⇒M
to the pair groupoid of M .

Example 4.6. Let A be a vector bundle over a manifold M . Let
Φ (A) denote the set of all vector space isomorphisms Lx,y : Ax → Ay
for x, y ∈M , where for each z ∈M , Az is the fibre of A over z. We can
consider Φ (A) as a groupoid Φ (A) ⇒ M such that, for all x, y ∈ M
and Lx,y ∈ Φ (A),

(i) α (Lx,y) = x
(ii) β (Lx,y) = y
(iii) Ly,z ·Gx,y = Ly,z ◦Gx,y, Ly,z : Ay → Az, Gx,y : Ax → Ay

This groupoid is called the frame groupoid on A. As a particular case,
when A is the tangent bundle over M we have the 1-jets groupoid on
M which is denoted by Π1 (M,M).

Next, we will introduce the notions of orbit and isotropy group of an
action.
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Definition 4.7. Let Γ ⇒ M be a groupoid with α and β the source
map and target map, respectively. For each x ∈M , then

Γxx = β−1 (x) ∩ α−1 (x) ,

is called the isotropy group of Γ at x. The set

O (x) = β
(

α−1 (x)
)

= α
(

β−1 (x)
)

,

is called the orbit of x, or the orbit of Γ through x.

If O (x) = {x}, or equivalently, β−1 (x) = α−1 (x) = Γxx then x is
called a fixed point. The orbit space of Γ is the space of orbits of Γ on
M , i.e., the quotient space of M by the equivalence relation induced
by Γ: two points of M are equivalent if, and only if, they lie on the
same orbit.
If O (x) = M for all x ∈ M , or equivalently (α, β) : Γ → M ×M is
a surjective map, the groupoid Γ ⇒ M is called transitive. If every
x ∈ M is fixed point, then the groupoid Γ ⇒ M is called totally in-
transitive. Furthermore, a subset N of M is called invariant if it is a
union of some orbits.
Finally, the preimages of the source map α of a Lie groupoid are called
α−fibres. Those of the target map β are called β−fibres.

Definition 4.8. Let Γ ⇒ M be a groupoid with α and β the source
and target map, respectively. We may define the right translation on
g ∈ Γ as the map Rg : α

−1 (β (g)) → α−1 (α (g)), given by

h 7→ h · g.

We may define the left translation on g, Lg : β
−1 (α (g)) → β−1 (β (g))

similarly.

Note that,
Idα−1(x) = Rǫ(x). (4.2)

So, for all g ∈ Γ, the right (left) translation on g, Rg (resp. Lg), is a
bijective map with inverse Ri(g) (resp. Li(g)), where i : Γ → Γ is the
inverse map.
One may impose various topological and geometrical structures on a
groupoid, depending on the context. We will be mainly interested in
Lie groupoids.

Definition 4.9. A Lie groupoid is a groupoid Γ ⇒M such that Γ is a
smooth manifold, M is a smooth manifold and all the structure maps
are smooth. Furthermore, the source and the target map are submer-
sions.
A Lie groupoid morphism is a groupoid morphism which is differen-
tiable.
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Definition 4.10. Let Γ ⇒ M be a Lie groupoid. A Lie subgroupoid
of Γ ⇒M is a Lie groupoid Γ′ ⇒ M ′ such that Γ′ and M ′ are subman-
ifolds of Γ and M respectively, and the inclusion maps iΓ′ : Γ′ →֒ Γ
iM ′ : M ′ →֒ M become a morphism of Lie groupoids. Γ′ ⇒ M ′ is said
to be a reduced Lie subgroupoid if it is transitive and M =M ′.

Observe that, taking into account that α ◦ ǫ = IdM = β ◦ ǫ, then ǫ
is an injective immersion.

On the other hand, in the case of a Lie groupoid, Rg (resp. Lg) is
clearly a diffeomorphism for all g ∈ Γ.

Note also that, for each k ∈ N, Γ(k) is a pullback space given by β
and the operation map on Γ(k−1). Thus, by induction, we may prove
that Γ(k) is a smooth manifold for all k ∈ N.

Example 4.11. A Lie group is a Lie groupoid over a point.

Example 4.12. Let M be a manifold. It is trivial to prove that the
pair groupoid on M is a Lie groupoid.

Example 4.13. Let π : P → M be a principal bundle with structure
group G. Denote by φ : P ×G→ P the action of G on P .
Now, suppose that Γ ⇒ P is a Lie groupoid, with φ : Γ × G → Γ a
free and proper action of G on Γ such that, for each h ∈ G, the pair
(

φh, φh
)

is an isomorphism of Lie groupoids.
We can construct a Lie groupoid Γ/G⇒M such that the source map,
α, and the target map, β, are given by

β ([g]) = π (β (g)) , α ([g]) = π (α (g)) ,

for all g ∈ Γ, α and β being the source and the target map on Γ ⇒ P ,
respectively, and [·] denotes the equivalence class in the quotient space
Γ/G. These kind of Lie groupoids are called quotient Lie groupoids by
the action of a Lie group.

There is an interesting particular case of the above example.

Example 4.14. Let π : P → M be a principal bundle with structure
group G and P × P ⇒ P the pair groupoid. Take φ : (P × P )×G→
P × P the diagonal action of φ, where φ : P ×G→ P is the action of
G on P .
Then it is easy to prove that

(

φg, φg
)

is an isomorphism of Lie groupoids
and thus, we may construct the groupoid (P × P ) /G ⇒ M . This
groupoid is called gauge groupoid and is denoted by Gauge (P ).

Example 4.15. Let G be a Lie group and M be a manifold. The
Trivial Lie groupoid on M with group G is given by M ×M ×G⇒M
where the structure maps are the following:
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(i) α (x, y, g) = x
(ii) β (x, y, g) = y
(iii) (y, z, h) · (x, y, g) = (x, y, h · g)

Example 4.16. Let A be a vector bundle over M then the frame
groupoid is a Lie groupoid (see Example 4.6). In fact, let (xi) and (yj)
be local coordinate systems on open sets U, V ⊆M and {αp} and {βq}
be local basis of sections of AU and AV respectively. The corresponding
local coordinates (xi ◦ π, αp) and (yj ◦ π, βq) on AU and AV are given
by

• a =
∑

p α
p (a)αp (x

i (π (a))) , ∀a ∈ AU
• b =

∑

q β
q (b) βq (y

j (π (b))) , ∀b ∈ AV

Then, we can consider a local coordinate system Φ (A)

Φ (AU,V ) :
(

xi, yj, yji
)

,

where, AU,V = α−1 (U)∩β−1 (V ) and for each Lx,y ∈ α−1 (x)∩β−1 (y) ⊆
α−1 (U) ∩ β−1 (V ), we have

• xi (Lx,y) = xi (x)
• yj (Lx,y) = yj (y)

• yji (Lx,y) = ALx,y
, where ALx,y

is the induced matrix of the
induced map of Lx,y by the local coordinates (xi ◦ π, αp) and
(yj ◦ π, βq)

In particular, if A = TM , then the 1−jets groupoid on M , Π1 (M,M),
is a Lie groupoid and its local coordinates will be denoted as follows

Π1 (U, V ) :
(

xi, yj, yji
)

, (4.3)

where, for each j1x,yψ ∈ Π1 (U, V )

• xi
(

j1x,yψ
)

= xi (x)

• yj
(

j1x,yψ
)

= yj (y)

• yji
(

j1x,yψ
)

=
∂ (yj ◦ ψ)

∂xi|x

Next, as an important example, we will introduce the second-order
non-holonomic groupoid.

Let M be a manifold and FM the frame bundle over M . So, we
can consider the 1−jets groupoid on FM , Π1 (FM,FM) ⇒ FM .
Thus, we denote by J1 (FM) the subset of Π1 (FM,FM) given by the
1−jets j1X,YΨ of local automorphism Ψ of FM such that

Ψ (v · g) = Ψ (v) · g, ∀v ∈ Dom (Ψ) , ∀g ∈ Gl (n,R) .

Let (xi) and (yj) be local coordinate systems over two open sets U, V ⊆
M , the induced coordinate systems over FM are denoted by

FU :
(

xi, xij
)
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FV :
(

yj, yji
)

.

Hence, we can construct induced coordinates over Π1 (FM,FM)

Π1 (FU, FV ) , (α, β)−1 (U, V ) :
((

xi, xij
)

,
(

yj, yji
)

, yj,i, y
j
,ik, y

j
i,k, y

j
i,kl

)

,

where for each j1X,YΨ ∈ Π1 (FU, FV ), we have

• xi
(

j1X,YΨ
)

= xi (X)

• xij
(

j1X,YΨ
)

= xij (X)

• yj
(

j1X,YΨ
)

= yj (Ψ (X))

• yji
(

j1X,YΨ
)

= yji (Ψ (X))

• yj,i
(

j1X,YΨ
)

=
∂ (yj ◦Ψ)

∂xi|X

• yj,ik
(

j1X,YΨ
)

=
∂ (yj ◦Ψ)

∂xik |X

• yji,k
(

j1X,YΨ
)

=
∂
(

yji ◦Ψ
)

∂xk |X

• yji,kl
(

j1X,YΨ
)

=
∂
(

yji ◦Ψ
)

∂xkl |X

Then, using these coordinates, J1 (FM) can be described as follows:

J1 (FU, FV ) , J1 (FM) ∩ (α, β)−1 (U, V ) :
(

(

xi, xi
j

)

,
(

yj, y
j
i

)

, y
j
,i, 0, y

j
i,k, y

j
i,kl

)

,

where

yji,kl =

(

∑

m

yjm
(

x−1
)m

k

)

δil .

Thus, J1 (FM) is a submanifold of Π1 (FM,FM) and its induced local
coordinates will be denoted by

J1 (FU, FV ) :
((

xi, xij
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

. (4.4)

Finally, restricting the structure maps we can ensure that J1 (FM) ⇒
FM is a reduced Lie subgroupoid of the 1−jets groupoid over FM .

Analogously to F 2M , we may construct j1 (FM) as the set of the
1−jets of the form j1X,Y Fψ, where ψ : M → M is a local diffeomor-

phism. Let (xi) be a local coordinate system on M ; then, restricting
the induced local coordinates given in Eq. (4.4) to j1 (FM) we have
that

yji = yj,lx
l
i ; yji,k = yjk,i.

We deduce that j1 (FM) ⇒ FM is a reduced Lie subgroupoid of the
1−jets groupoid over FM and we denoted the coordinates on j1 (FM)
by

j1 (FU, FV ) :
((

xi, xij
)

,
(

yj, yji
)

, yji,k
)

, yji,k = yjk,i. (4.5)
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Now, we will work with a quotient space of J1 (FM) (resp. j1 (FM))
which will be our non-holonomic groupoid of second order (resp. holo-
nomic groupoid of second order).

We consider the following right action of Gl (n,R) over J1 (FM),

Φ : J1 (FM)×Gl (n,R) → J1 (FM)
(

j1X,YΨ, g
)

7→ j1X·g,Y ·gΨ.
(4.6)

Thus, for each g ∈ Gl (n,R) the pair (Φg, Rg) (where R is the natural
right action of Gl (n,R) over FM) is a Lie groupoid automorphism.
Therefore, we can consider the quotient Lie groupoid by this action
J̃1 (FM) ⇒ M which is called second-order non-holonomic groupoid
over M .
We will denote the structure maps of J̃1 (FM) by α and β (source and
target maps respectively), ǫ (identities map) and i (inversion map).
The elements of J̃1 (FM) are denoted by j1x,yΨ with x, y ∈ M and

α
(

j1x,yΨ
)

= x and β
(

j1x,yΨ
)

= y.
Then, the induced local coordinates are given by

J̃1 (FU, FV ) ,
(

α, β
)−1

(U, V ) :
((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

. (4.7)

Considering e1x as the 1−jet through x ∈ M which satisfies that
xij (e1x) = δij for all i, j, for each j

1
x,yΨ ∈ J̃1 (FM) we have

• xi
(

j1x,yΨ
)

= xi (x)

• yj
(

j1x,yΨ
)

= yj (y)

• yji
(

j1x,yΨ
)

= yji (Ψ (e1x)).

• yj,i
(

j1x,yΨ
)

=
∂ (yj ◦Ψ)

∂xi|e1x

• yji,k
(

j1x,yΨ
)

=
∂
(

yji ◦Ψ
)

∂xk |e1x

Observe that we can restrict the action Φ to an action of Gl (n,R)
over j1 (FM). So, by quotienting, we can build a reduced subgroupoid

of J̃1 (FM) ⇒ M which is denoted by j̃1 (FM) ⇒ M and is called
second-order holonomic groupoid over M . Finally, by restriction, the
local coordinates on j1 (FM) are given by

j̃1 (FU, FV ) :
((

xi
)

,
(

yj, yji
)

, yji,k
)

, yji,k = yjk,i. (4.8)

5. Lie Algebroids

The notion of Lie algebroid was introduced by J. Pradines in 1966
[43] as an infinitesimal version of Lie groupoid and for this reason the
author called it infinitesimal groupoid. Now, we will recall this concept
(we also refer to [35]).
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Definition 5.1. A Lie algebroid over M is a triple (A→ M, ♯, [·, ·]),
where π : A → M is a vector bundle together with a vector bundle
morphism ♯ : A → TM , called the anchor, and a Lie bracket [·, ·] on
the space of sections, such that the Leibniz rule holds

[α, fβ] = f [α, β] + ♯ (α) (f)β, (5.1)

for all α, β ∈ Γ (A) and f ∈ C∞ (M).
A is transitive if ♯ is surjective and totally intransitive if ♯ ≡ 0. Also,
A is said to be regular if ♯ has constant rank.

Looking at ♯ as a C∞ (M)-module morphism from Γ (A) to X (M),
for each section α ∈ Γ (A) we are going to denote ♯ (α) by α♯. Next,
let us show the following fundamental property:

Lemma 5.2. If (A→M, ♯, [·, ·]) is a Lie algebroid, then the anchor
map is a morphism of Lie algebras, i.e.

[α, β]♯ = [α♯, β♯], ∀α, β ∈ Γ (A) . (5.2)

Remark 5.3. Eq. (5.2) is often considered as a part of the definition
of a Lie algebroid though it is a consequence of the other conditions.

An important remark is that the Lie algebra structure on sections
is of local type i.e. [α, β] (x) will depend on β (therefore, on α too)
around x only, ∀x ∈ M . As a consequence, the restriction of a Lie
algebroid over M to a open subset of M is again a Lie algebroid.

Now, we will give some examples of Lie algebroids

Example 5.4. Any Lie algebra is a Lie algebroid over a single point.
Indeed, identifying Γ (g) with g, the Lie bracket on sections is simply
the Lie algebra bracket and the anchor map is the trivial one.

This kind of Lie algebroid is a particular case of the following example.

Example 5.5. Let (A→M, ♯, [·, ·]) be a Lie algebroid where ♯ ≡ 0.
Then, the Lie bracket on Γ (A) is a point-wise Lie bracket, that is,
the restriction of [·, ·] to the fibres induces a Lie algebra structure on
each of them. These kind of Lie algebroids (with ♯ ≡ 0) are called Lie
algebra bundles. Note that the Lie algebra structures on the fibres are
not necessary isomorphic to each other.

Example 5.6. If M is a smooth manifold, then the tangent bundle of
M , TM , is a Lie algebroid: the anchor map is the identity map and
the Lie bracket is the usual Lie bracket of vector fields. This is called
the tangent algebroid of M .

Example 5.7. Let τ : P → M be a principal bundle with structure
groupG. Denote by φ : G×P → P the action of G on P . Now, suppose
that (A→ P, ♯, [·, ·]) is a Lie algebroid, with vector bundle projection
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π : A→ P and that φ : G×A→ A is an action of G on A such that π
is a vector bundle action under the action φ where for each g ∈ G, the
pair

(

φg, φg
)

satisfies that

(1) ♯ ◦ φg = Tφg ◦ ♯.

(2) [φg ◦ α ◦ φ−1
g , φg ◦ β ◦ φ−1

g ] = φg ◦ [α, β] ◦ φ
−1
g , ∀α, β ∈ Γ (A).

This fact will be equivalent to the fact of that
(

φg, φg
)

is a Lie algebroid
isomorphism. Let π : A/G→ M be the quotient vector bundle of π by
the action of G. Then, we can construct a Lie algebroid structure on
π such that:

(i) The anchor map ♯ : A/G→ TM is given by

♯ (u) = Tπ(a)τ (♯ (a)) ,

for all u ∈ A/G and a ∈ A, where τ : A → A/G the quotient
projection and τ (a) = u.

(ii) Taking into account (2), the Lie bracket on Γ (A) restricts to

Γ (A)G, i.e., the φ−invariant sections of π. Then, it is easy to
prove that

Γ (A)G ∼= Γ (A/G) .

Hence, the induced a Lie algebra structure on Γ (A/G) coin-
cides just with our Lie bracket of the Lie algebroid structure
on π.

This kind of Lie algebroids are called quotient Lie algebroids by the
action of a Lie group.

A particular but interesting example of this construction is obtained
when we consider the tangent lift of a free and proper action of a Lie
group on a manifold.

Example 5.8. Let π : P → M be a principal bundle with structure
group G. Denote by φ the action of G on P . Let (TP → P, IdTP , [·, ·])
be the tangent algebroid and φT : G × TP → TP be the tangent lift
of φ.
Then, φT satisfies the conditions of Example 5.7. Thus, one may con-

sider the quotient Lie algebroid
(

TP/G→M, ♯, [·, ·]
)

by the action of

G. This algebroid is called the Atiyah algebroid associated with the
principal bundle π : P →M .
Note that, as we have seen, the space of sections can be considered as
the space of invariant vector fields by the action φ over M .

Example 5.9. Let M be a manifold and g be a Lie algebra. We
can construct a Lie algebroid structure over the vector bundle A =
TM ⊕ (M × g) → M such that
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(i) The anchor ♯ : TM ⊕ (M × g) → TM is the projection.
(ii) Lie algebra structure over the space of sections is given by:

[X ⊕ f, Y ⊕ g] = [X, Y ]⊕ {X (g)− Y (f) + [f, g]},

for all X ⊕ f, Y ⊕ g ∈ Γ (A).

This Lie algebroid is called the Trivial Lie algebroid on M with struc-
ture algebra g.

Next, we introduce the definition of a morphism in the category of Lie
algebroids. The main problem is that a morphism between vector bun-
dles does not, in general, induce a map between the modules of sections,
so it is not immediately clear what should be meant by bracket relation.
We will give a direct definition in terms of (Φ, φ)−decompositons of
sections which is easy to use, and is amenable to categorical methods.
Let Φ : A′ → A, φ : M ′ → M be a vector bundle morphism between
π : A → M and π′ : A′ → M ′. We know that for each α′ ∈ Γ (A′),
there exists fi ∈ C∞ (M ′) and αi ∈ Γ (A) such that

Φ ◦ α′ =
k
∑

i=1

fi (αi ◦ φ) .

Thus, we are ready to give the definiton of Lie algebroid morphism.

Definition 5.10. Let (A→ M, ♯, [·, ·]), (A′ →M ′, ♯′, [·, ·]′) be Lie al-
gebroids. A morphism of Lie algebroids is a vector bundle morphism
Φ : A′ → A, φ :M ′ →M such that

♯ ◦ Φ = Tφ ◦ ♯′, (5.3)

and such that for arbitrary α′, β ′ ∈ Γ (A′) with (Φ, φ)−decompositions

Φ ◦ α′ =

k
∑

i=1

fi (αi ◦ φ) ,Φ ◦ β ′ =

k
∑

j=1

gj (βj ◦ φ) ,

we have

Φ◦[α′, β′] =

k
∑

i,j=1

figj ([αi, βj ] ◦ φ)+

k
∑

j=1

α′♯
′

(gj) (βj ◦ φ)−

k
∑

i=1

β′♯
′

(fi) (αi ◦ φ) .

(5.4)

In fact, the right-hand side of Eq. (5.4) is independent of the choice
of the (Φ, φ)−decompositions of α′ and β ′.

It is easy to prove that the composition preserves Lie agebroid mor-
phisms and, hence, we can define the category of Lie algebroids.

Remark 5.11. In particular, if α′ ∼(Φ,φ) α and β ′ ∼(Φ,φ) β, then Eq.
(5.4) reduces to

Φ ◦ [α′, β ′] = [α, β] ◦ φ.
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On the other hand, if M =M ′ and φ = IdM then Eq. (5.4) reduces
to

Φ ◦ [α′, β ′] = [Φ ◦ α′,Φ ◦ β ′], ∀α′, β ′ ∈ Γ (A′) .

Next, we will introduce the notion of Lie subalgebroid.

Definition 5.12. Let (A→ M, ♯, [·, ·]) be a Lie algebroid. Suppose
that A′ is an embedded submanifold of A and M ′ is a inmersed sub-
manifold of M with inclusion maps iA′ : A′ →֒ A and iM ′ : M ′ →֒ M .
A′ is called a Lie subalgebroid of A if A′ is a Lie algebroid on M ′ which
is a vector subbundle of π|M ′, where π : A→ M is the projection map
of A, such that the inclusion is a morphism of Lie algebroids. A reduced
subalgebroid of A is a transitive Lie subalgebroid with M as the base
manifold.

Remark 5.13. Suppose that M ′ ⊆ M is a closed submanifold then,
using the (iA′, iM ′)− decomposition and extending functions, it satisfies
that for all α′ ∈ Γ (A′) there exists α ∈ Γ (A) such that

iA′ ◦ α′ = α ◦ iM ′.

So, Eq. (5.4) reduces to

iA′ ◦ [α′, β ′]M ′ = [α, β]M ◦ iM ′ , ∀α′, β ′ ∈ Γ (A′) .

Example 5.14. Let (A→M, ♯, [·, ·]) be a Lie algebroid over M . Then
from Lemma 5.2 and Remark 5.11 we deduce the anchor map ♯ : A→
TM is a Lie algebroid morphism from A to the tangent algebroid of
M .

Example 5.15. Let φ : M1 → M2 be a smooth map. Then (Tφ, φ)
is a Lie algebroid morphism between the tangent algebroids TM1 and
TM2.

Example 5.16. Let τ : P → M be a principal bundle with structure
group G and (A→ P, ♯, [·, ·]) be a Lie algebroid (with vector bundle
projection π : A→ P ) in the conditions of Example 5.7. If π : A/G→
M is the quotient Lie algebroid by the action of the Lie group G then
(τ , τ) is a Lie algebroid morphism.

Next, as an important example of Lie algebroid, we will explain
briefly how to associate a Lie algebroid to a Lie groupoid (which gen-
eralize the construction of the Lie algebra associated to a Lie group).
Fix Γ ⇒ M a Lie groupoid with structure maps α, β, ǫ and i. A vec-
tor field X ∈ X (Γ) is said to be a left-invariant vector field on Γ if it
satisfies the following two properties:

(a) X is tangent to β−1 (x), for all x ∈M .
(b) For each g ∈ Γ, the left translation Lg preserves X .
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We denote the space of left-invariant vector fields on Γ by XL (Γ).
Similarly to the case of Lie groups, it is clear that the Lie bracket of
two left-invariant vector fields is again a left-invariant vector field, say

[XL (Γ) ,XL (Γ)] ⊂ XL (Γ) . (5.5)

Now, we will describe the associated Lie algebroid to Γ:

(i) The vector bundle πǫ : AΓ → M satisfy that for each x ∈ M ,
the fibre of AΓ at x is

AΓx = Tǫ(x)β
−1 (x) .

(ii) Let Λ be a section of AΓ. Then, we can define the left-invariant
vector field on Γ given by

XΛ (g) = Tǫ(α(g))Lg (Λ (α (g))) , ∀g ∈ Γ,

i.e., XΛ is determinated by the following equality

XΛ (ǫ (x)) = Λ (x) , ∀x ∈M.

Conversely, if X ∈ XL (Γ), then ΛX = X ◦ ǫ : M → TΓ in-
duces a section of AΓ and, indeed, the correspondence Λ 7→ XΛ

is an R−bilinear isomorphism from Γ (AΓ) to XL (Γ) with in-
verse X 7→ ΛX . With this identification Γ (AΓ) inherits a Lie
bracket from XL (Γ).

(iii) The anchor map ♯ is defined by

♯ (Λ (x)) = Tǫ(x)α (Λ (x)) , (5.6)

for all Λ (x) ∈ AΓx and x ∈ M . In fact, for all Λ ∈ Γ (AΓ),

Λ♯ = Tα ◦ Λ. (5.7)

The Lie algebroid (AΓ → M, ♯, [·, ·]) is called the Lie algebroid associ-
ated to the Lie groupoid Γ ⇒M , and sometimes denoted by AΓ.

Remark 5.17. Let Γ ⇒ M be a Lie groupoid. For any x ∈ M , the
associated Lie algebra to the isotropy Lie group Γxx, A (Γxx) is isomorphic
to the isotropy Lie algebra through x, i.e.,

A (Γxx)
∼= Ker (♯x) , (5.8)

where ♯x is the restriction of ♯ to the fibre at x of AΓ.

Theorem 5.18. There is a natural functor from the category of Lie
groupoids to the category of Lie algebroids.

Proof. We will given an sketch of the proof (a detailed proof can found
in [30]).
We already have given the definition of the correspondence between
objects (Γ ⇒ M → AΓ) and we will obtain the correspondence be-
tween morphisms.
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Let (Φ, φ) : Γ1 ⇒ M1 → Γ2 ⇒ M2 be a Lie groupoid morphism, with
Φ : Γ1 → Γ2 and φ : M1 → M2. Then, (Φ, φ) induces a morphism
of Lie algebroids from AΓ1 to AΓ2 given by (Φ∗, φ) such that for each
vx ∈ Tǫ1(x)β

−1
1 (x) ,

Φ∗ (vx) , Tǫ1(x)Φx (vx) (5.9)

where Φx : β
−1
1 (x) → β−1

2 (x) is the restriction of Φ to β−1
1 (x) for each

x ∈M . �

This morphism induced by a morphism (Φ, φ) of Lie groupoids over
the associated Lie algebroids will be denoted by AΦ.

Now, we will give some examples of the above general construction.

Example 5.19. LetM be a smooth manifold andM×M ⇒ M be the
pair groupoid (see Example 4.5). Then, the vector bundle A (M ×M)
can be seen as the tangent bundle πM : TM → M . It follows that the
associated Lie algebroid to M ×M ⇒ M is the tangent algebroid.

Example 5.20. Let M be a manifold and G be a Lie group. Consider
the trivial Lie groupoid onM with group G (see Example 4.15). Then,
the associated Lie algebroid is the trivial Lie algebroid on M with
structure algebra g (see Example 5.9), i.e., TM ⊕ (M × g) →M .
Notice that, using the Lie’s third fundamental theorem, every trivial
Lie algebroid onM with structure algebra g is the induced Lie algebroid
of a trivial groupoid on M with a group G.

Example 5.21. Let π : P → M be a principal bundle with structure
group G. Denote by φ : P ×G→ P the action of G on P .
Now, suppose that Γ ⇒ P is a Lie groupoid, with φ : Γ × G → Γ a
free and proper action of G on Γ such that, for each g ∈ G, the pair
(

φg, φg
)

is an isomorphism of Lie groupoids. So, we may construct the
quotient Lie groupoid by the action of a Lie group, Γ/G ⇒ M (see
Example 4.13).
Then, by construction, we may identify A (Γ/G) with the quotient Lie
algebroids by the action of a Lie group, AΓ/G (see Example 5.7).

As a particular case, we may give the following interesting example.

Example 5.22. Let π : P → M be a principal bundle with structure
group G and gauge (P ) be the gauge groupoid (see Example 4.14).
Then, the associated Lie algebroid to gauge (P ) is the Atiyah algebroid
associated with the principal bundle π : P → M (see Example 5.8).

Example 5.23. Let Φ (A) ⇒M be the frame groupoid. Then AΦ (A)
is called frame algebroid (see Example 4.16). As a particular case
AΠ1 (M,M) is called 1−jets algebroid.
Let (xi) be a local coordinate system defined on some open subset U ⊆
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M , using Eq. (4.3) we can consider local coordinates on AΠ1 (M,M)
as follows

AΠ1 (U, U) :
((

xi, xi, δij
)

, vj, 0, vji
)

∼=
(

xi, vj, vji
)

. (5.10)

Example 5.24. Let J̃1 (FM) be the second-order non-holonomic
groupoid over a manifold M and (xi) be a local coordinate system
on an open set U ⊆ M . Using Eq. (4.7) we can construct induced
local coordinates over AJ̃1 (FM) as follows:

AJ̃1 (FU) :
(((

xi
)

,
(

xi, δij
)

, δij , 0
)

, vi, vij , 0, v
i
,j , v

i
j,k

)

∼=
(

xi, vi, vij , v
i
,j , v

i
j,k

)

.

(5.11)

AJ̃1 (FM) is called the second-order non-holonomic algebroid over M .
We will denote the anchor of this Lie algebroid by ♯.

Example 5.25. Let j̃1 (FM) be the second-order holonomic
groupoid over a manifold M and (xi) be a local coordinate system
on an open set U ⊆ M . Using the above example we can construct
induced local coordinates over Aj̃1 (FM) as follows:

Aj̃1 (FU) :
(

xi, vi, vij , v
i
j,k

)

, vij,k = vik,j (5.12)

Aj̃1 (FM) is called the second-order holonomic algebroid over M .

6. Derivation algebroid

In this section, we will extend the notion of exponential map for Lie
groups to the context of Lie groupoids and algebroids. Next, we are
going to use the exponential map in order to get another way of in-
terpreting the associated Lie algebroid of Π1 (M,M). A more detailed
construction of this algebroid can be found in [35] (see also [34]).

Let Γ ⇒ M be a Lie groupoid and Λ ∈ Γ (AΓ) be a section of AΓ.
We consider the left-invariant vector field associated to Λ, XΛ ∈ XL (Γ),
{ϕt : Ut → U−t} the local flow of XΛ and {ψt : Ut → U−t} the local
flow of Λ♯. Then, we have

(i) β ◦ ϕt = β, ∀t
(ii) α ◦ ϕt = ψt ◦ α, ∀t

Then, we can define a differentiable map ExptΛ : Ut → Γ in the
following way

ExptΛ (x) = i (ξ) · ϕt (ξ) , ∀x ∈ Ut,

being ξ ∈ Ut ∩ α
−1 (x).

Observe that, for all t

(i) β ◦ ExptΛ = IdUt
.

(ii) α ◦ExptΛ = ψt ◦ α.

Therefore, we have the following result.
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Proposition 6.1. Let Γ ⇒ M be a Lie groupoid, W ⊆ M be an open
subset, and take Λ ∈ ΓW (AΓ). Then, there is a differentiable map
ExpΛ : D → Γ given by

(t, x) 7→ ExptΛ (x) ,

where D is the domain of the flow of Λ♯, such that

(i)
∂

∂t|t=0

(ExptΛ) = Λ.

(ii) Exp0Λ = ǫU .
(iii) {α◦ExptΛ : U → U−t}, is a local 1−parameter group of trans-

formations of Λ♯

This map is the called exponential of Λ.

Now, as a second step, we will have to construct a new Lie algebroid.
To do this, first we have to introduce some notions.

Definition 6.2. Let π : A → M be a vector bundle. A derivation on
A is a R−linear map D : Γ (A) → Γ (A) with a vector field X ∈ X (M)
such that for each f ∈ C∞ (M) and Λ ∈ Γ (A),

D (fΛ) = fD (Λ) +X (f) Λ.

We call X the base vector field of D. So, a derivation on A is charac-
terized by two geometrical objects, D and X .

Let us give some examples of these objects.

Example 6.3. Let (A→M, ♯, [·, ·]) be a Lie algebroid. For each Λ ∈
Γ (A), the map

[Λ, ·] : Γ (A) → Γ (A)
Θ 7→ [Λ,Θ].

is a derivation on A with base vector field Λ♯.

Example 6.4. Let π : A → M be a vector bundle and ∇ : X (M) ×
Γ (A) → Γ (A) be a covariant derivative, i.e., ∇ is a R−bilinear map
such that,

(1) It is C∞ (M)−linear in the first variable.
(2) For all X ∈ X (M), Θ ∈ Γ (A) and f ∈ C∞ (M),

∇XfΘ = f∇XΘ+X (f)Θ. (6.1)

Then, any vector field X ∈ X (M) generates a derivation on A, ∇X ,
(with base vector field X) fixing the first coordinate again, i.e.,

∇X : Γ (A) → Γ (A) ,

such that

∇X (Θ) = ∇XΘ, ∀Θ ∈ Γ (A) .
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Now, the space of derivations on A can be considered as the space
of sections of a vector bundle D (A) on M . We can endow this vector
bundle with a Lie algebroid structure.

• Let D1, D2 be derivations on A, we can define [D1, D2] as the
commutator, i.e.,

[D1, D2] = D1 ◦D2 −D2 ◦D1.

A simple computation shows that the commutator of two deriva-
tions is again a derivation, indeed, the base vector field of
[D1, D2] is given by

[X1, X2], (6.2)

where X1 and X2 are the base vector fields of D1 and D2 re-
spectively.

• Let D be a derivation on A, then D♯ is its base vector field.

Thus, with this structure D (A) is a transitive Lie algebroid called the
Lie algebroid of derivations on A. The space of sections of D (A), the
derivations on A, will be denoted by Der (A).

Note that in this Lie algebroid the linear sections of ♯ are
C∞ (M)−linear maps from X (M) to Der (A). So, the space of lin-
ear sections of ♯ is, indeed, the space of covariant derivatives on M .
Conversely, it is easy to see that a covariant derivative ∇ is a section
(in the category of Lie algebroids) of ♯ if, and only if, ∇ is flat, i.e., for
all X, Y ∈ X (M)

R (X, Y ) = ∇[X,Y ] −∇X∇Y +∇Y∇X = 0. (6.3)

Finally, as a last step, it is turn to relate this algebroid with the frame
algebroid. Let Φ (A) ⇒ M be the frame groupoid of a vector bundle
A → M . Consider Λ ∈ Γ (AΦ (A)) and its exponential map ExptΛ :
Ut → Φ (A). Then, we can define a (local) linear map ExptΛ

∗ : Γ (A) →
Γ (A) satisfying

{ExptΛ
∗ (X)} (x) = ExptΛ (x) (X ((α ◦ExptΛ) (x))) ,

for each X ∈ Γ (A) and x ∈ Ut. Thus, we can give the following result,

Theorem 6.5. Let A be a vector bundle over M . We can consider a
map D : Γ (AΦ (A)) → Der (A) given by

D (Λ) , DΛ =
∂

∂t|t=0

(ExptΛ
∗) ,

which define a Lie algebroid isomorphism D : AΦ (A) → D (A) over
the identity map on M .

More detailed, for each X ∈ Γ (A) and x ∈M we have

DΛX (x) =
∂

∂t|t=0

(ExptΛ (x) (X (α ◦ ExptΛ) (x))) .
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Notice that, for all f ∈ C∞ (M)

DΛfX (x) =
∂

∂t|t=0
(ExptΛ (x) (f ((α ◦ ExptΛ) (x))X ((α ◦ ExptΛ) (x))))

=
∂

∂t|t=0
(f ((α ◦ ExptΛ) (x))ExptΛ (x) (X ((α ◦ ExptΛ) (x))))

= Λ♯ (x) (f)X (x) + f (x)DΛX (x) .

This theorem gives us another way of interpreting the 1−jets Lie
algebroid. In fact, the 1−jets Lie algebroid AΠ1 (M,M) is isomorphic
to the algebroid of derivations on TM .

Notice that using this isomorphism, we can consider a one-to-one
map from linear sections of ♯ in AΠ1 (M,M) to covariant derivatives
overM . Thus, having a section Λ of ♯ in AΠ1 (M,M) we will denote its
associated covariant derivative by ∇Λ. Furthermore, Λ is a morphism
of Lie algebroids if, and only if, ∇Λ is flat.

Let (xi) and (yj) be coordinate systems on M , then we can induce
local coordinates over Π1 (M,M) and AΠ1 (M,M), i.e.,

• Π1 (M,M) :
(

xi, yj, yji
)

.

• AΠ1 (M,M) :
(

xi, vj, vji
)

.

With these (local) coordinates we can give a result which can help us
to understand the shape of the above theorem.

Lemma 6.6. Let M be a manifold and Λ be a section of the 1−jets
algebroid with local expression

Λ
(

xi
)

=
(

xi,Λj,Λji
)

.

The matrix Λji is (locally) the associated matrix to DΛ, i.e.,

DΛ

(

∂

∂xi

)

=
∑

j

Λji
∂

∂xj
,

and the base vector field of DΛ is Λ♯ which is given locally by (xi,Λj).

Proof. Let Λ ∈ Γ (AΠ1 (M,M)) be a section of the 1−jets algebroid
and XΛ its associated left-invariant vector field over Π1 (M,M). Con-
sidering the flow of XΛ, {ϕt : Ut → U−t} we have by construction
that

ExptΛ (x) = ξ−1 · ϕt (ξ) , ∀x ∈ α (Ut) ,

where ξ ∈ Ut ∩ α
−1 (x).

Now, let us take local coordinate systems (xi) and (yj) and its induced
local coordinates over Λ, then

Λ
(

xi
)

=
(

xi,Λj,Λji
)

.

Thus, the associated left-invariant vector field is (locally) as follows

XΛ

(

xi, yj, yji
)

=
((

xi, yj, yji
)

,Λj, 0, yjl · Λ
l
i

)

.
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Therefore, its flow

ϕt
(

xi, yj, yji
)

=
(

ψt
(

xi
)

, yj, yjl · ϕt
(

xi
))

,

satisfies that

(i) ψt is the flow of Λ♯.

(ii)
∂

∂t|t=0

(ϕt (x
i)) = Λji .

So,

ExptΛ
(

xi
)

=
(

ψt
(

xi
)

, xi, ϕt
(

xi
))

.

Then,

ExptΛ
∗

(

∂

∂xk|xi

)

=
(

ψt
(

xi
)

, xi, ϕt
(

xi
))

(

∂

∂xk|ψt(xi)

)

= ϕt
(

xi
) ∂

∂xk
|xi

Hence,

DΛ ∂

∂xk
=
∑

j

Λjk
∂

∂xj
,

i.e., the matrix Λji is (locally) the associated matrix to DΛ. �

Let Λ be a linear section of ♯ in AΠ1 (M,M). Then, D induces a
covariant derivative on M , ∇Λ. Thus, for each (xi) local coordinate
system on M

Λ

(

xi,
∂

∂xj

)

=

(

xi,
∂

∂xj
,Λji

)

,

where Λji depends on
∂

∂xj
. Taking into account that Λji is linear in the

second coordinate we will change the notation as follows

Λji

(

xl,
∂

∂xk

)

, Λji,k
(

xl
)

. (6.4)

Therefore, locally Λ will be written in the following way

Λ

(

xi,
∂

∂xj

)

=

(

xi,
∂

∂xj
,Λki,j

)

.

and thus

∇Λ

∂

∂xj

∂

∂xi
= D

Λ





∂

∂xj





∂

∂xi
=
∑

k

Λki,j
∂

∂xk
,
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where Λ

(

∂

∂xj

)

is the (local) section of AΠ1 (M,M) given by

Λ

(

∂

∂xj

)

(x) = Λ (x)

(

∂

∂xj|x

)

.

So, Λki,j are just the Christoffel symbols of ∇Λ.

Thus, our goal is to use this isomorphism to give another interpre-
tation of the second-order non-holonomic algebroid. Then, as a first
approximation to the second-order non-holonomic case we are going to
restrict the isomorphism constructed in Theorem 6.5 to a particular
case.

Consider the 1−jets groupoid on FM , Π1 (FM,FM) ⇒ FM and
J1 (FM) ⇒ FM the Lie subgroupoid of all 1−jets of local automor-
phisms on FM .
Let (xi) and (yj) be local coordinate systems over two opens U, V ⊆M ;
then, the induced coordinate systems over FM are denoted by

FU :
(

xi, xij
)

FV :
(

yj, yji
)

.

Hence, (see Eq. (4.4)) we can construct induced coordinates over
J1 (FM),

J1 (FU, FV ) :
((

xi, xij
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

.

So, we can consider its associated Lie algebroid AJ1 (FM) as a re-
duced subalgebroid of the 1−jets algebroid AΠ1 (FM,FM) and, hence,
its induced coordinates will be

AJ1 (FU) :
((

xi, xij
)

,
(

vj, vji
)

, vj,i, 0, v
j
i,k, v

j
i,kl

)

∼= (6.5)

∼=
((

xi, xij
)

,
(

vj, vji
)

, vj,i, v
j
i,k

)

,

where,

vji,kl =

(

∑

m

vjm
(

x−1
)m

k

)

δil .

In this way, we can restrict the isomorphism given in the Theorem
6.5 to get another isomophism between Lie algebroids, AJ1 (FM) →
D1 (FM) where D1 (FM) is the resulting Lie algebroid from the re-
striction of the isomorphism.
Let Λ be a section of AJ1 (FM) such that (locally)

Λ
(

xi, xij
)

=
((

xi, xij
)

,
(

Λj,Λji
)

,Λj,i,Λ
j
i,k

)

(6.6)

Then, the associated derivation is characterized by the following iden-
tities
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(i) DΛ ∂

∂xi
=
∑

j Λ
j
,i

∂

∂xj
+
∑

j,k Λ
j
k,i

∂

∂xjk
.

(ii) DΛ ∂

∂xij
=
∑

k,m

(

Λkm (x−1)
m

i

) ∂

∂xkj
.

So, conditions (i) and (ii) characterize the sections of Lie algebroid
D1 (FM). This space will be denoted by Der1 (FM).

Remark 6.7. We can characterize Der1 (FM) in the following way.
Let {(Φt, ψt)} be the flow of DΛ. Then,

DΛX =
∂Φ∗

tX

∂t|0
, ∀X ∈ X (FM) .

Hence, by uniqueness,

ExptΛ
∗ (X) = Φ∗

tX,

i.e.,

ExptΛ (x) = Φ−t.

Thus, we can say that DΛ ∈ Der1 (FM) if, and only if, its flow is the
tangent map of an automorphism of frame bundles (over the identity
map) at each fibre.

Finally, we will work with the second-order non-holonomic alge-
broid AJ̃1 (FM) (see Example 5.24). As we know (see Example 5.21),

AJ̃1 (FM) can be seen as the quotient Lie algebroid by the induced
action of Φ over AJ1 (FM).
In this way we can consider a relation in D1 (FM) given by the restric-
tion of the isomorphism defined in the before section D : AJ1 (FM) →
D1 (FM) and the relation in AJ1 (FM), i.e.,

D (a) ∼ D (b) ⇔ a ∼ b, ∀a, b ∈ AJ1 (FM) .

The new quotience space is denoted by D̃1 (FM) and it is obvious that

this space inherit the Lie algebroid structure from AJ̃1 (FM). In fact,

considering D̃ : AJ̃1 (FM) → D̃1 (FM) the map which commutes with

the projections, the Lie algebroid structure over D̃1 (FM) is the unique

Lie algebroid structure such that D̃ is a Lie algebroid isomorphism over
the identity map on M . This Lie algebroid will be called second-order
non-holonomic algebroid of derivations on TM .
Let (xi) be a local coordinate system on an open set U ⊆ M . Using

Eq. (5.11) we can construct induced local coordinates over AJ̃1 (FM)
as follows:

AJ̃1 (FU) ∼=
(

xi, vi, vij, v
i
,j, v

i
j,k

)

.

Thus, the non-holonomic second-order derivation algebroid is charac-
terized by the following equalities:
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(i) D
∂

∂xi
=
∑

j f
j
,i

∂

∂xj
+
∑

j,k f
j
k,i

∂

∂xjk

(ii) D
∂

∂xij
=
∑

k f
k
i

∂

∂xkj

where the local fuctions f j,i, f
j
k,i and f

k
i do not depend on xij .

Observe that, we could restrict D to Aj1 (FM) and we obtain a Lie
subalgebroid of D1 (FM) which is denoted by d1 (FM). Proceeding in

the same way as in the case of J̃1 (FM), we obtain a reduced Lie sub-

algebroid of D̃1 (FM). This Lie algebroid is denoted by d̃1 (FM) and
it is called second-order holonomic algebroid of derivations on TM .
Obviously, this subalgebroid is isomorphic to holonomic algebroid of
second order Aj̃1 (FM) by restricting D̃.

The second-order holonomic algebroid of derivations on TM is char-
acterized by the above equalities satisfying additionally that

f ji = f j,i ; f ji,k = f jk,i.

Remark 6.8. Denote by Γ (AJ1 (FM))
G
the set of (AΦ, R)−invariant

sections of AJ1 (FM), i.e., for all Λ ∈ Γ (AJ1 (FM))
G
and g ∈ Gl (n,R),

the diagram

FM
Λ

✲ AJ1 (FM)

Rg

❄

AΦg

❄

FM
Λ

✲ AJ1 (FM)

is commutative, namely

Λ (X · g) = Tǫ(X)Φ
X
g (Λ (X)) , ∀X ∈ FM, ∀g ∈ Gl (n,R) ,

where ΦXg : β−1 (X) → β−1 (X · g) is the restriction of Φg to β
−1 (X).

As we have seen in Example 5.7, the space of (AΦ, R)-invariant sec-

tions of AJ1 (FM) is isomorphic to Γ
(

AJ̃1 (FM)
)

.

Next, take Λ ∈ Γ (AJ1 (FM))
G
. Then, ExptΛ satisfies

ExptΛ ◦Rg = Φg ◦ ExptΛ, ∀g ∈ Gl (n,R) . (6.7)

Thus, let ExptΛ
∗ : X (FM) → X (FM) be the induced linear map over

X (FM). Let be X ∈ X (FM) then, we have

{ExptΛ
∗ ◦ TR∗

g

(

X
)

} (X)

= ExptΛ (X)
((

T(α◦ExptΛ)(X)·g−1Rg

(

X
(

(α ◦ ExptΛ) (X) · g−1
))))
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= TX·g−1Rg

(

ExptΛ
(

X · g−1
) (

X
(

(α ◦ ExptΛ)
(

X · g−1
))))

= {TR∗
g ◦ ExptΛ

∗
(

X
)

} (X) ,

for all g ∈ Gl (n,R).
Conversely, suppose that Λ ∈ Γ (AJ1 (FM)) satisfies the above equal-
ity. Then, in a similar way, we can prove that Λ is (AΦ, R)−invariant.
Deriving this equality, we have that it is equivalent to

DΛ ◦ TR∗
g = TR∗

g ◦D
Λ. (6.8)

So, we have proved that the space D̃1 (FM) can be seen as the deriva-
tions in D1 (FM) which commute with TR∗

g for all g ∈ Gl (n,R).
Analogously, the second-order holonomic algebroid of derivations
d̃1 (FM) can be seen as the derivations in d1 (FM) which commute
with TR∗

g for all g ∈ Gl (n,R).

Observe that, if DΛ satisfies Eq. (6.8) then, its base vector field
Λ♯ ∈ X (FM) is right-invariant, .i.e.,

TR∗
gΛ

♯ = Λ♯, ∀g ∈ Gl (n,R) ,

or, equivalently,

TZRg

(

Λ♯ (Z)
)

= Λ♯ (Z · g) ,

for all Z ∈ FM . Thus, Λ♯ is πM−related with a (unique) vector field
over M .
Let (xi) be local coordinates on M and Λ̃ be a section of AJ̃1 (FM)
which satisfies that

Λ̃
(

xi
)

=
(

xi,Λi,Λij,Λ
i
,j,Λ

i
j,k

)

.

Then, its associated (AΦ, R)-invariant section Λ of AJ1 (FM) is given
by

Λ
(

xi, xij
)

=
(

xi, xij ,Λ
i,Λilx

l
j ,Λ

i
,j,Λ

i
j,k

)

.

Hence,

Λ♯
(

xi, xij
)

=
(

xi, xij,Λ
i,Λilx

l
j

)

,

and its πM−related vector field on M is

Λ̃♯
(

xi
)

=
(

xi,Λi
)

.

Finally, suppose that Λ̃ is a linear section of ♯. Then, we can con-

sider the map Λ : X (M) → Γ (AJ1 (FM))
G
such that for each vector

field X ∈ X (M), Λ (X) is the associated (AΦ, R)-invariant section of
AJ1 (FM) to Λ̃ (X).
Then, for all f ∈ C∞ (M) and X ∈ X (M),

Λ (fX) = (f ◦ πM ) Λ (X) .

Hence, considering the associated derivation to Λ (X) we obtain the
following map
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∇Λ : X (M)× X (FM) → X (FM) , (6.9)

which satisfies

(i) For all f ∈ C∞ (M), X ∈ X (M) and Ỹ ∈ X (FM) we have

∇Λ
fX Ỹ = (f ◦ πM)∇Λ

X Ỹ .

(ii) For all F ∈ C∞ (FM), X ∈ X (M) and Ỹ ∈ X (FM) we have

∇Λ
XF Ỹ = F∇Λ

X Ỹ + Λ (X)♯ (F ) Ỹ .

(iii) For all X ∈ X (M) the base vector field of ∇Λ
X is Λ (X)♯ which

is πM−related to X .
(iv) For all g ∈ Gl (n,R) and X ∈ X (M),

∇Λ
X ◦ TR∗

g = TR∗
g ◦ ∇

Λ
X .

(v) For all X ∈ X (M) the flow of ∇Λ
X is the tangent map of an

automorphism of frame bundles (over the identity map) at each
fibre.

These kind of objects will be called second-order non-holonomic co-
variant derivatives on M .
Roughly speaking, the isomorphism D̃ gives us a way to interpret a
linear section of ♯ as a map which turn a vector field X ∈ X (M) into
a TR∗

g−invariant derivation over TFM with a base vector field which
projects over X . Note that, in this case, this map is not exactly a
covariant derivative but it has a similar shape.

7. Cosserat Media: Uniformity and Homogeneity

A body B is a three-dimensional differentiable manifold which can
be covered with just one chart. An embedding φ : B → R

3 is called a
configuration of B and its 1−jet j1x,φ(x)φ at x ∈ B is called an infini-
tesimal configuration at x. We usually identify the body with any one
of its configurations, say φ0, called reference configuration. Given any
arbitrary configuration φ, the change of configurations κ = φ ◦ φ−1

0 is
called a deformation, and its 1−jet j1φ0(x),φ(x)κ is called an infinitesimal

configuration at φ0 (x).
For elastic bodies, the material is completely characterized by one func-
tion W which depends, at each point x ∈ B, on the gradient of the
deformation evaluated at the point. Thus, W is defined (see [23]) as a
differentiable map

W : Gl (3,R)×B → V,

where V is a real vector space. Another equivalent way of considering
W is as a differentiable map

W : Π1 (B,B) → V,
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which does not depend on the final point, i.e., for all x, y, z ∈ B

W
(

j1x,yφ
)

= W
(

j1x,z (τz−y ◦ φ)
)

, ∀j1x,yφ ∈ Π1 (B,B) ,

where τv is the translation map on R
3 by the vector v. The picture

describing a Cosserat medium is a little bit more difficult of describing.
A Cosserat medium is the linear frame bundle FB of a body B. B is
usually called the macromedium or underlying body. With some abuse
of notation, we shall call B the Cosserat continuum.
A configuration of a Cosserat medium FB is an embedding Ψ : FB →
FR3 of principal bundles such that the induced Lie group morphism
ψ̃ : Gl (3,R) → Gl (3,R) is the identity map. Hence Ψ satisfies

Ψ
(

X̃ · g
)

= Ψ
(

X̃
)

· g, ∀X̃ ∈ FB, ∀g ∈ Gl (3,R) .

Also, Ψ induces an embedding ψ : B → R
3 verifying

πR3 ◦Ψ = ψ ◦ πB.

In particular, ψ is a configuration of the macromedium B.
Notice that the subbundle Ψ (FB) of FR3 is just the frame bundle of
ψ (B), i.e.,

Ψ (FB) = Fψ (B) .

Since we are dealing with equivariants embedding, we can consider
equivalence classes of the 1−jets j1

X̃,Ψ(X̃)
Ψ according to the action (4.6).

So, the equivalence class of an 1−jet j1
X̃,Ψ(X̃)

Ψ, which is denoted by

j1x,ψ(x)Ψ like in the non-holonomic groupoid of second order, is called in-
finitesimal configuration at x. We usually identify the Cosserat medium
with any one on its cofigurations, say Ψ0 : FB → FR3 and we denote
by ψ0 the induced map of Ψ0. Ψ0 is called reference configuration.
Given any configuration Ψ, the change of configuration κ̃ = Ψ ◦ Ψ−1

0

is called a deformation, and its class of 1−jets j1ψ0(x),ψ(x)
κ̃ is called an

infinitesimal deformation at ψ0 (x). Notice that the induced map of κ̃,
κ = ψ ◦ ψ−1

0 , is a deformation on the body B.
From now on we make the following identification: FB ∼= Fψ0 (B).
Our assumption is that the material is completely characterized by one
differentiable function W : J̃1 (FB) → V which does not depend on
the end point. In this case, this condition can be translated by the
following equality

W
(

j1x,yΨ
)

= W
(

j1x,z (Fτz−y ◦Ψ)
)

, ∀j1x,yΨ ∈ J̃1 (FB) . (7.1)

This function measures, for instance, the stored energy per unit mass
and, again, we will call this function response functional or mechanical
response.
Notice that, using that W does not depend on the final point, we can
define W over J̃1 (FB, FR3), which is the open subset of J̃1 (FR3)



COSSERAT MEDIA 41

given by
(

α, β
)−1

(B× R
3).

Now, suppose that an infinitesimal neighbourhood of the material
around the point Y can be turned into a neighbourhood of X such that
the transformation cannot be detected by any mechanical experiment.
If this condition is satisfied with every point X of FB, the body is said
uniform. We can express this physical property in a geometric way as
follows.

Definition 7.1. A Cosserat continuum B is said to be uniform if for
each two points x, y ∈ B there exists a local principal bundle isomor-
phism over the identity map on Gl (3,R), Ψ, from an open neighbour-
hood FU ⊆ FB over x to an open neighbourhood FV ⊆ FB over y
such that ψ (x) = y and

W
(

j1y,κ(y)κ̃ ◦ j
1
x,yΨ

)

= W
(

j1y,κ(y)κ̃
)

, (7.2)

for all infinitesimal deformation j1y,κ(y)κ̃.

This kind of maps are relevant for the sequel and we will endow these
maps with a groupoid structure. For each two points we will denote by
G (x, y) the collection of all 1−jets j1x,yΨ which satisfy Eq. (7.2). So,

the set Ω (B) = ∪x,y∈BG (x, y) can be considered as a groupoid over
B which is, indeed, a subgroupoid of the second-order non-holonomic

groupoid J̃1 (FB). We will denote α−1 (x) (resp. β
−1

(x)) by Ωx (B)
(resp. Ω

x
(B)).

Definition 7.2. Given a material point x ∈ B a material simmetry at
x is a class of 1−jets j1x,xΨ, where Ψ is a local automorphism at x over
the identity map on Gl (3,R), which satisfies Eq. (7.2).

We denote by G (x) the set of all material simmetries which is, in-
deed, the isotropy group of Ω (B) at x. So, the following result is
obvious.

Proposition 7.3. Let B be a Cosserat contiuum. B is uniform if, and
only if, Ω (B) is a reduced subgroupoid of J̃1 (FB).

Notice that, at general, we cannot ensure that Ω (B) ⊆ J̃1 (FB)
is a Lie subgroupoid. Our assumption is that Ω (B) is in fact a Lie
subgroupoid and, in this case, Ω (B) is said to be the second-order
non-holonomic material groupoid of B.

As we have seen, a Cosserat medium is uniform if the function W
does not depend on the point x. In addition, a body is said to be
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homogeneous if we can choose a global section of the second-order non-
holonomic material groupoid which is constant on the body, more pre-
cisely:

Definition 7.4. A Cosserat medium B is said to be homogeneous if it
admits a global deformation κ̃ which induces a global section of

(

α, β
)

in Ω (B), P, i.e., for each x, y ∈ B

P (x, y) = j1x,y
(

κ̃−1 ◦ Fτκ(y)−κ(x) ◦ κ̃
)

,

where τκ(y)−κ(x) : R
3 → R

3 denotes the translation on R
3 by the vector

κ (y) − κ (x). B is said to be locally homogeneous if there exists a
covering of B by homogeneous open sets.

Now, suppose that B is homogeneous. Then, if we take the global co-
ordinates (xi) on B given by the induced diffeomorphism κ, we deduce
that P is expressed by

P
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

, (7.3)

If B is locally homogeneous we can cover B by local coordinate sys-
tems (xi) which generate (local) sections of

(

α, β
)

in Ω (B) satisfying
Eq. (7.3).

Next, we want to give some equivalent definitions and relate this
definition with the usual one, which is given for second-order non-
holonomic G−structures (see [24]).

8. Integrability

Now, we will introduce the notion of integrability of reduced Lie
subgroupoids of the second-order non-holonomic groupoid.

In order to do that, we will proceed in a similar way to F
2
M . Thus,

there exists a canonical Lie groupoid isomorphism over the identity on

R
n, L : J̃1 (FRn) ∼= R

n × R
n ×G

2
(n), where R

n × R
n × G

2
(n) is the

trivial Lie groupoid of G
2
(n) over Rn defined by

L
(

j1x,yΨ
)

=
(

x, y, j10,0 (Fτ−y ◦Ψ ◦ Fτx)
)

, ∀x, y ∈ R
n,

where τ−y and τx denote the translations on R
n by the vectors −y and

x respectively. Thus, if G is a Lie subgroup of G
2
(n), we can transport

R
n×R

n×G by this isomorphism to obtain a reduced Lie subgroupoid
of J̃1 (FRn). This reduced Lie subgroupoid of J̃1 (FRn) will be called

standard flat subgroupoid of J̃1 (FRn) over G.

Let U, V ⊆M be two open subsets ofM . We denote by J̃1 (FU, FV )

the open subset of J̃1 (FM) defined by
(

α, β
)−1

(U × V ). Note that
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if U = V , J̃1 (FU, FU) is in fact the second-order non-holonomic

groupoid over U , i.e., J̃1 (FU, FU) = J̃1 (FU). Furthermore, we will
think about J̃1 (FU, FV ) as the restriction of the Lie groupoid J̃1 (FM)
equipped with the restriction of the structure maps (this could not be
a Lie groupoid). We will also use this notation for subgroupoids of

J̃1 (FM).

Next, we will introduce the notion of integrability of a reduced Lie
subgroupoid.

Definition 8.1. Let J̃1
G
(FM) be a reduced Lie subgroupoid of J̃1 (FM).

J̃1
G
(FM) is integrable if it is locally isomorphic to the trivial Lie groupoid

R
n × R

n ×G for some Lie subgroup G of G
2
(n).

Note that J̃1
G
(FM) is ”locally isomorphic” to R

n ×R
n ×G⇒ R

n if
for all x ∈ M there exist an open set U ⊆ M with x ∈ U and a local
chart, ψU : U → U , which induces a Lie groupoid isomorphism,

ΨU : J̃1
G
(FU) → U × U ×G, (8.1)

such that ΨU =
(

ψU ◦ α, ψU ◦ β,ΨU

)

, where for each j1x,yΨ ∈ J̃1
G
(FU)

ΨU

(

j1x,yΨ
)

= j10,0
(

F
(

τ−ψU (y) ◦ ψU
)

◦Ψ ◦ F
(

ψ−1
U ◦ τψU (x)

))

.

So, we can claim that J̃1
G
(FM) is locally isomorphic to R

n×R
n×G if

we can cover M by local charts (ψU , U) such that induce Lie groupoid
isomorphisms from J̃1

G
(FU) to the restrictions of the standard flat over

G to U .

Remark 8.2. Let J̃1
G
(FM) be an integrable subgroupoid of J̃1 (FM),

i.e., locally isomorphic to R
n×R

n×G with G a Lie subgroup of G
1
(n).

Suppose that there exists another Lie subgroup of G
2
(n), G̃, such that

J̃1
G
(FM) is locally isomorphic to R

n ×R
n × G̃. Then, it is easy to see

that G and G̃ are conjugated subgroups of G
2
(n), i.e., there exists a

frame at 0, g ∈ G
2
(n), such that

G̃ = g−1 ·G · g.

However, in this case the converse is not true.

Now, there is a special kind of reduced subgroupoids of J̃1 (FM)
which will play an important role in the following. A trivial reduced
subgroupoid of J̃1 (FM) or parallelism of J̃1 (FM) is a reduced sub-

groupoid of J̃1 (FM), J̃1
e (FM), such that for each x, y ∈ M there

exists a unique 1−jet j1x,yΨ ∈ J̃1
e (FM), or equivalently, the restriction
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of
(

α, β
)

to J̃1
e (FM) is a Lie groupoid isomorphism.

So, having a trivial reduced subgroupoid J̃1
e (FM) of J̃1 (FM) we can

consider a global section of
(

α, β
)

, P : M × M → J̃1 (FM), such

that P (x, y) is the unique 1−jet from x to y which is in J̃1
e (FM), i.e.,

P =
(

α, β
)−1

|J̃1

e
(FM)

. Conversely, every global section of
(

α, β
)

can be

seen as a parallelism of J̃1 (FM) (we are understanding ”section” as
section in the category of Lie groupoids, i.e., Lie groupoid morphism
from the pair groupoid M ×M to J̃1 (FM) which is a section of the
morphism

(

α, β
)

). Using this, we can also speak about integrable sec-

tions of
(

α, β
)

.

Next, we will express a necessary result to interpret the integrability
in another equivalent way. The proof is very technical and is omitted.

Proposition 8.3. Let J̃1
G
(FM) be a reduced Lie subgroupoid of J̃1 (FM).

J̃1
G
(FM) is integrable if, and only if, for all x, y ∈ M there exist two

open sets U, V ⊆ M with x ∈ U and y ∈ V and two local charts
ψU : U → U and ψV : V → V which induce a diffeomorphism

ΨU,V : J̃1
G
(FU, FV ) → U × V ×G

j1x,yΨ 7→
(

ψU (x) , ψV (y) ,ΨU,V

(

j1x,yΨ
))

.
(8.2)

where,

ΨU,V

(

j1x,yΨ
)

= j10,0
(

F
(

τ−ψV (y) ◦ ψV
)

◦Ψ ◦ F
(

ψ−1
U ◦ τψU (x)

))

.

Let P :M ×M → J̃1 (FM) be a section of
(

α, β
)

. Using this result

we can claim that P is integrable if, and only if, for each x, y ∈M

P (x, y) = j1x,y
(

F
(

ψ−1
V ◦ τψV (y)−ψU (x) ◦ ψU

))

, (8.3)

for some two local charts (ψU , U) , (ψV , V ) on M through x and y re-
spectively.
Equivalently, using the local coordinates given in Eq. (4.7), P can be
written locally as follows,

P
(

xi, yj
)

=
((

xi, yj, δji
)

, δji , 0
)

, (8.4)

Let J̃1
G
(FM) be a reduced subgroupoid of J̃1 (FM) and Z0 ∈ F

2
M

be a second-order non-holonomic frame at z0 ∈M . Then, we define

G := {Z
−1

0 · g · Z0 / g ∈ J̃1
G
(z0)} = Z

−1

0 · J̃1
G
(z0) · Z0, (8.5)

where J̃1
G
(z0) is the isotropy group of J̃1

G
(FM) at z0. Therefore, G is

a Lie subgroup of G
2
(n). This Lie group will be called associated Lie
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group to J̃1
G
(FM).

Note that, contrary to the case of non-holonomic G−structures of sec-
ond order, we do not have a unique Lie group G. In fact, let Z̃0 be a
non-holonomic frame of second order at z̃0 and G̃ be the associated Lie
group; then, if we take Lz0,z̃0 ∈ J̃1

G
(z0, z̃0) we have

G = [Z̃−1
0 · Lz0,z̃0 · Z0]

−1 · G̃ · [Z̃−1
0 · Lz0,z̃0 · Z0],

i.e., G and G̃ are conjugated subgroups of G
2
(n). Notice that, by

construction, if J̃1
G
(FM) is integrable by G (i.e. locally isomorphic to

the Lie trivial Lie groupoid of G over Rn), G can be constructed using
Eq. (8.5).

Proposition 8.4. A reduced subgroupoid J̃1
G
(FM) of J̃1 (FM) is in-

tegrable if, and only if, for each point x ∈ M there exists a (local)
coordinate system (xi) on an open set U ⊆M with x ∈ U such that the
local section,

P
(

xi, yj
)

=
((

xi, yj, δji
)

, δji , 0
)

, (8.6)

takes values into J̃1
G
(FM).

Proof. The proof is similar to the proof of Proposition 2.10. Let us
consider an (local) integrable section P : U × U → J̃1

G
(FU) of

(

α, β
)

given by
P (x, y) = j1x,y

(

F
(

ψ−1
U ◦ τψU (y)−ψU (x) ◦ ψU

))

,

where ψU : U → U is a local chart. Now, Let z0 ∈ U be a point at

U , we choose Z0 , j10,z0
(

F
(

ψ−1
U ◦ τψU (z0)

))

∈ F
2
U be a non-holonomic

second-order frame at z0 and G be the Lie subgroup of G
2
(n) satisfying

Eq. (8.5). Then, the rest of the proof is easy. �

Now, we want to define the notion of second-order non-holonomic
prolongation in J̃1 (FM). In order to do this, we will define the pro-

jections Π
2

1 and Π̃2
1 which will be closely related with the maps π̃2

1 and
π2
1 (see section 2) by the Equalities given in Remark 10.4. Thus, we

define

Π
2

1 : J̃1 (FM) → Π1 (M,M)
j1x,yΨ 7→ Ψ (X) [X−1]

where X ∈ FM is a frame at x. It is easy to show that Π
2

1 is well-
defined and, locally,

Π
2

1

((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

=
(

xi, yj, yji
)

.

On the other hand we consider

Π̃2
1 : J̃1 (FM) → Π1 (M,M)

j1x,yΨ 7→ j1x,yψ



46 V. M. JIMÉNEZ, M. DE LEÓN, AND M. EPSTEIN

where ψ is the induced map of Ψ over M . Then, locally

Π̃2
1

((

xi
)

,
(

yj, yji
)

, yj,i, y
j
i,k

)

=
(

xi, yj, yj,i
)

.

Notice that Π
2

1 and Π̃2
1 are, indeed, Lie groupoid morphims over the

identity map on M . Then, let P : M ×M → J̃1 (FM) be a section

of
(

α, β
)

in J̃1 (FM) the projections P = Π
2

1 ◦ P and Q = Π̃2
1 ◦ P are

sections of (α, β) in Π1 (M,M).

Next, we will invert this process and, to do this, we will get inspired
from Remark 3.2. Let P,Q : M ×M → Π1 (M,M) be two sections of
(α, β) in Π1 (M,M) such that

Q (x, y) = j1x,yψxy, ∀x, y ∈M.

Thus, we constuct the following map

P ◦ ψxy : FU → FV
j10,f(0)f 7→ P (f (0) , ψxy (f (0))) · j

1
0,f(0)f

where ψxy : U → V . Analogously to Remark 3.2, P ◦ ψxy is a local
principal bundle isomorphism with ψxy : U → V as its induced map
over M . In fact, the inverse is given by

j10,g(0)g 7→ [P
(

ψ−1
xy (g (0)) , g (0)

)

]−1 · j10,g(0)g.

Furthermore, let (xi) be a local coordinate system on an open set U ⊆
M and

(

xi, xij
)

its induced coordinates over FU , we have

P ◦ ψxy
(

xi, xij
)

=
(

ψxy
(

xi
)

, P j
l

(

xi, ψxy
(

xi
))

xli
)

,

where for each another local coordinate system (yj) on an open set
V ⊆M

P
(

xi, yj
)

=
(

xi, yj, P j
i

(

xi, yj
))

.

Thus, we define

P1 (Q) : M ×M → J̃1 (FM)
(x, y) 7→ j1x,y

(

P ◦ ψxy
) (8.7)

where we are considering the equivalence class in J̃1 (FM). Notice that
P1 (Q) does not depend on ψxy because of Q does not depend on ψxy.
P1 (Q) will be called second-order non-holonomic prolongation of P and
Q and satisfies that

(i) For all x, y ∈M and j10,xf ∈ FM ,

Π
2

1 ◦ P
1 (Q) (x, y) = [P (x, ψxy (x)) · j

1
0,xf ] ·

(

j10,xf
)−1

= P (x, y) .

(ii) For all x, y ∈M ,

Π̃2
1 ◦ P

1 (Q) (x, y) = j1x,yψxy = Q (x, y) .
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In fact, let be (xi) and (yj) local coordinate systems on open sets
U, V ⊆ M and

(

xi, xij
)

and
(

yj, yji
)

its induced coordinates over FU
and FV respectively, then we have

P1 (Q)
(

xi, yj
)

=
((

xi, yj, P j
i

)

, Qj
i , R

j
i,k

)

,

where

P
(

xi, yj
)

=
(

xi, yj, P j
i

)

, Q
(

xi, yj
)

=
(

xi, yj, Qj
i

)

.

Furthermore, for each k = 1, · · · , n

∂
(

P j
i ◦ (IdU , ψxy)

)

∂xk|x
= dP j

i |(x,y) ◦
∂ (IdU , ψxy)

∂xk|x

= dP j
i |(x,y)

(

xk,
(

Q1
k (x, y) , · · · , Q

n
k (x, y)

))

= d
(

P j
i

)

y |x

(

xk
)

+ d
(

P j
i

)

x|y

(

Q1
k (x, y) , · · · , Q

n
k (x, y)

)

=
∂
(

P j
i

)

y

∂xk|x
+ d
(

P j
i

)

x|y

(

Q1
k (x, y) , · · · , Q

n
k (x, y)

)

,

where we are fixing the first (resp. the second) coordinate when we

write
(

P j
i

)

x
(resp.

(

P j
i

)

y
). Then, by definition of induced coordinates,

Rj
i,k is given by

Rj
i,k (x, y) =

∂
(

P j
i

)

y

∂xk|x
+
∑

l

Ql
k (x, y)

∂
(

P j
i

)

x

∂yl|y
.

We will denote this expression by

Rj
i,k =

∂P j
i

∂xk
+
∑

l

Ql
k

∂P j
i

∂yl
.

Then, any section P (xi, yj) =
((

xi, yj, P j
i

)

, Qj
i , R

j
i,k

)

of
(

α, β
)

in

J̃1 (FM) which projects onto P (xi, yj) =
(

xi, yj, P j
i

)

and Q (xi, yj) =
(

xi, yj, Qj
i

)

via Π
2

1 and Π̃2
1 respectively is a prolongation if, and only if,

Rj
i,k =

∂P j
i

∂xk
+
∑

l

Ql
k

∂P j
i

∂yl
. (8.8)

Thus, we have established the notion of prolongation in the second-
order non-holonomic groupoid. Then, we can give the following defini-
tion.

Definition 8.5. Let P1 (Q) be a non-holonomic prolongation of second
order in J̃1 (FM). P1 (Q) is said to be integrable in J̃1 (FM) if Q is an
integrable section of Π1 (M,M).
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Notice that, using the introduced coordinates, an integrable prolon-
gation can be seen locally as follows

P1 (Q)
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

Thus, as in the case of second-order non-holonomic frame bundle,
we have two remarkable sections: integrable sections and integrable
prolongations. So, it is easy to give the following result (similar to
Proposition 3.3) which will help us to understand why the integrable
prolongation are not necessarily integrable as sections.

Proposition 8.6. Let P be a section of
(

α, β
)

in J̃1 (FM). P is in-

tegrable if, and only if, P = P1 (Q) is a second-order non-holonomic
integrable prolongation and P = Q. In particular, a second-order non-
holonomic integrable prolongation P1 (Q) is integrable if, and only if,
P1 (Q) takes values in j̃1 (FM).

Thus, second-order non-holonomic integrable prolongations can be
seen as a natural generalization of integrable sections of

(

α, β
)

(see
Proposition 8.7).

Notice that, analogously to Eq. (3.3), we can prove the following
result.

Proposition 8.7. Let P be a section of
(

α, β
)

in J̃1 (FM). P is a
second-order non-holonomic integrable prolongation if, and only if, for
all x0, y0 ∈ M there exist two open sets U, V ⊆ M with x0 ∈ U and
y0 ∈ V and two local principal bundle isomorphisms Ψ : FV → FV
and Φ : FU → FU such that

P (x, y) = j1x,y
(

Ψ−1 ◦ Fτψ(y)−φ(x) ◦ Φ
)

, ∀ (x, y) ∈ U × V. (8.9)

Now, we will extend this concept to reduced subgroupoids.

Definition 8.8. Let J̃1
G
(FM) be a reduced subgroupoid of J̃1 (FM).

J̃1
G
(FM) is an integrable prolongation if can be covered M with local

integrable prolongations which take values in J̃1
G
(FM).

Proposition 8.9. Let J̃1
G
(FM) be an integrable prolongation. J̃1

G
(FM)

is integrable if, and only if, J̃1
G
(FM) is contained in j̃1 (FM).

Notice that, Definition 8.8 can be expressed as follows: For any
point x ∈ M there exists a local coordinate system (xi) over an open
set U ⊆M which contains x such that there is a local section

P1 (Q)
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

, (8.10)
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which takes values in J̃1
G
(FM).

Remark 8.10. Analogously to Remark 3.5, let J̃1
G
(FM) be a reduced

subgroupoid of J̃1 (FM). We can prove that J̃1
G
(FM) is an integrable

prolongation if, and only if, for each point x ∈ M , there exists a local
isomorphism of principal bundles, ΨU : FU → FU , with x ∈ U such
that induces an isomorphism of Lie groupoids given by

ΥU : J̃1
G
(FU) → U × U ×G,

where ΥU

(

j1x,yH
)

=
(

ψU (x) , ψU (y) ,ΥU

(

j1x,yH
))

and

ΥU

(

j1x,yH
)

= j10,0
(

F
(

τ−ψU (y)

)

◦ΨU ◦H ◦Ψ−1
U ◦ F

(

τψU (x)

))

,

with ψU is the induced map of ΨU over the base manifold.

So, in a similar way to Proposition 8.3, we may prove the following:

Proposition 8.11. Let J̃1
G
(FM) be a reduced Lie subgroupoid of

J̃1 (FM). J̃1
G
(FM) is an integrable prolongation if, and only if, for

all x, y ∈M there exist two open sets U, V ⊆M with x ∈ U and y ∈ V
and two local isomorphisms ΨU : FU → FU and ΨV : FV → FV
which induce the following isomorphism of Lie groupoids:

ΥU,V : J̃1
G
(FU, FV ) → U × V ×G, (8.11)

where ΥU,V

(

j1x,yH
)

=
(

ψU (x) , ψV (y) ,ΥU,V

(

j1x,yH
))

and

ΥU,V

(

j1x,yH
)

= j10,0
(

F
(

τ−ψV (y)

)

◦ΨV ◦H ◦Ψ−1
U ◦ F

(

τψU (x)

))

,

with ψU and ψV are the induced map of ΨU and ΨV over the base
manifold respectively.

Hence, we have that: J̃1
G
(FM) is an integrable prolongation if, and

only if, for any two point x, y ∈ M there exist two local coordinate
systems (xi) and (yj) over x and y respectively such that there is a
local section

P1 (Q)
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

, (8.12)

which takes values in J̃1
G
(FM).

Now, we will translate these results to the associated Lie algebroid.
Thus, we will express the notions of integrability over the second-order
non-holonomic algebroid over an n−manifold M . We will begin defin-
ing the notion of integrability of a reduced Lie subalgebroid. In order

to do that, we will denote by g2 (n) the associated Lie algebra of G
2
(n).
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Definition 8.12. Let AJ̃1
G
(FM) be a reduced Lie subalgebroid of

AJ̃1 (FM). AJ̃1
G
(FM) is integrable by G if it is locally isomorphic to

the trivial algebroid TRn ⊕ (Rn × g) where g is the Lie subalgebra of
g2 (n).

We will consider G the (unique) Lie subgroup of G
2
(n) whose asso-

ciated Lie algebra is g.
Note that AJ̃1

G
(FM) is locally isomorphic to TRn ⊕ (Rn × g) if for all

x ∈ M there exists an open set U ⊆ M with x ∈ U and a local chart,
ψU : U → U , which induces an isomorphism of Lie algebroids,

AΨU : AJ̃1
G
(FU) → TU ⊕

(

U × g
)

, (8.13)

where AΨU is the induced map of the isomophism of Lie groupoids ΨU

which is given by

ΨU : J̃1
G
(FU) → U × U ×G,

such that ΨU =
(

ψU ◦ α, ψU ◦ β,ΨU

)

, where for each j1x,yΨ ∈ J̃1
G
(FU)

ΨU

(

j1x,yΨ
)

= j10,0
(

F
(

τ−ψU (y) ◦ ψU
)

◦Ψ ◦ F
(

ψ−1
U ◦ τψU (x)

))

, (8.14)

for some Lie subgroupoid J̃1
G
(FU) of J̃1 (FU).

So, for each open U ⊆ M , AJ̃1
G
(FU) is integrable by a Lie sub-

groupoid J̃1
G
(FU) of J̃1 (FU). Using the uniqueness of integrating im-

mersed (source-connected) subgroupoids (see for example [40]),

AJ̃1
G
(FM) is integrable by a Lie subgroupoid of J̃1 (FM) which will

be denoted by J̃1
G
(FM). Obviously, AJ̃1

G
(FM) is integrable if, and

only if, J̃1
G
(FM) is integrable.

Analogously to the case of the 1−jets groupoid, a parallelism of
AJ̃1 (FM) is an associated Lie algebroid of a parallelism of J̃1 (FM).
Hence, using the Lie’s second fundamental theorem, a parallelism is a
section of ♯, where ♯ is the anchor of AJ̃1 (FM) (understanding ”sec-
tion” as section in the category of Lie algebroids, i.e., Lie algebroid
morphism from the tangent algebroid TM to AJ̃1 (FM) which is a
section of the morphism ♯), and conversely. In this way, we will also
speak about integrable sections of ♯.

Let (xi) be a local coordinate system defined on some open subset
U ⊆ M , then, we will use the local coordinate system defined in Eq.
(5.11),

AJ̃1 (FU) :
(

xi, vi, vij , v
i
,j, v

i
j,k

)

(8.15)
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which are, indeed, induced coordinates by the functor A of local coor-
dinates on J̃1 (FU).

Notice that each integrable section of
(

α, β
)

in J̃1 (FM), P, is a

Lie groupoid morphism. Hence, P induces a Lie algebroid morphism
AP : TM → AJ̃1 (FM) which is a section of ♯ and is given (see Eq.
(5.9)) by

AP (vx) = TxPx (vx) , ∀vx ∈ TxM, (8.16)

where Px :M → J̃1x (FM) satisfies that

Px (y) = P (y, x) , ∀x, y ∈M.

So, taking into account Eq. (8.4), locally,

P
(

xi, yj
)

=
((

xi, yj, δji
)

, δji , 0
)

,

we have that each integrable section can be written locally as follows

AP

(

xi,
∂

∂xi

)

=

((

xi,
∂

∂xi
, 0

)

, 0, 0

)

.

Now, using Proposition 8.4, we have the following analogous propo-
sition.

Proposition 8.13. A reduced subalgebroid AJ̃1
G
(FM) of AJ̃1 (FM) is

integrable by G if, and only if, there exist local integrable sections of ♯
covering M which takes values on AJ̃1

G
(FM).

Equivalently, for each point x ∈ M there exists a local coordinate
system (xi) over an open set U ⊆ M with x ∈ U such that the local
sections

Λ

(

xi,
∂

∂xi

)

=

((

xi,
∂

∂xi
, 0

)

, 0, 0

)

,

takes values in AJ̃1
G
(FM).

Next, we will have to introduce the notion of prolongation over the
induced Lie algebroid AJ̃1 (FM). In this way, taking into account that

Π
2

1 and Π̃2
1 are morphisms of Lie groupoids we can consider the induced

morphisms of Lie algebroids AΠ
2

1, AΠ̃
2
1 : AJ̃

1 (FM) → AΠ1 (M,M).
Thus, it is easy to induce the construction of the second-order non-
holonomic prolongation over AJ̃1 (FM). Given two section of ♯

AP, AQ : TM → AΠ1 (M,M) ,

we define the second-order non-holonomic prolongation associated to
AP and AQ as follows,

AP1 (AQ) , A
(

P1 (Q)
)

.
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Then, AP1 (AQ) projects via AΠ
2

1 (resp. AΠ̃2
1) over AP (resp. AQ).

Using that the functor A preserves integrability (see [31]), AP1 (AQ) is
said to be integrable if AQ is integrable (equivalently Q is integrable).
Therefore, if AP1 (AQ) takes values in Aj̃1 (FM), AP1 (AQ) is an inte-
grable prolongation if, and only if, it is integrable.
Finally, we can introduce the following definition.

Definition 8.14. Let AJ̃1
G
(FM) be a Lie subalgebroid of AJ̃1 (FM).

AJ̃1
G
(FM) is a non-holonomic integrable prolongation of second-order

if we can cover M by local non-holonomic integrable prolongations of
second order which take values in AJ̃1

G
(FM).

Remark 8.15. Thus, AJ̃1
G
(FM) is a non-holonomic integrable pro-

longation of second-order if, and only if, J̃1
G
(FM) is a non-holonomic

integrable prolongation of second-order. Notice that, if J̃1
G
(FM) is

a non-holonomic integrable prolongation of second-order then, we can
cover M by open sets U and second-order non-holonomic integrable
prolongations P1 (Q) : U × U → J̃1

G
(FU). However, we cannot take

AP1 (Q) because these sections do not have to be morphisms of Lie
groupoids.
To solve this, we fix z0 ∈M and define

P1 (Q)z0 (x, y) = P1 (Q) (z0, y) · [P
1 (Q) (z0, x)]

−1, ∀x, y ∈ U.

Then, these family of sections are morphisms of Lie groupoids and non-
holonomic integrable prolongations of second-order.

Now, express this condition locally. Let P : M ×M → J̃1 (FM) be
a section of

(

α, β
)

in J̃1 (FM) and (xi) be a local coordinate system
on M such that

P
(

xi, yj
)

=
((

xi, yj, P j
i

)

, Qj
i , R

j
i,k

)

.

Then,

AP

(

xi,
∂

∂xl

)

=

((

xi,
∂

∂xl
,
∂P j

i

∂xl

)

,
∂Qj

i

∂xl
,
∂Rj

i,k

∂xl

)

,

where we are deriving fixing the first coordinate (see Eq. (8.16)).
In this way, take two section of ♯, AP and AQ, in AΠ1 (M,M) such
that

AP

(

xi,
∂

∂xl

)

=

(

xi,
∂

∂xl
,
∂P j

i

∂xl

)

; AQ

(

xi,
∂

∂xl

)

=

(

xi,
∂

∂xl
,
∂Qj

i

∂xl

)

.

Hence,

AP1 (AQ)

(

xi,
∂

∂xl

)

=

((

xi,
∂

∂xl
,
∂P j

i

∂xl

)

,
∂Qj

i

∂xl
, Rj

i,kl

)

, (8.17)
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where

Rj
i,kl =

∂2P j
i

∂xl∂xk
+
∑

m

∂Qm
k

∂xl
∂P j

i

∂ym
+Qm

k

∂2P j
i

∂xl∂ym
.

To understand why we obtain this local expression we have to take
into account that we are fixing the second coordinate to do the induced
map AP1 (AQ). Finally, using Eq. (8.17), AP1 (AQ) is integrable if, and
only if, it can be locally expressed as follows

AP1 (AQ)

(

xi,
∂

∂xl

)

=

((

xi,
∂

∂xl
,
∂P j

i

∂xl

)

, 0,
∂2P j

i

∂xl∂xk
+

∂2P j
i

∂xl∂yk

)

.

(8.18)

So, we can rewrite Definition 8.14 in the following way: Let
AJ̃1

G
(FM) be a Lie subalgebroid of AJ̃1 (FM). AJ̃1

G
(FM) is a non-

holonomic integrable prolongation of second-order if for each x ∈ M
there exists a local coordinate system (xi) over x such that the local
section of ♯,

AP1 (AQ)

(

xi,
∂

∂xl

)

=

((

xi,
∂

∂xl
,
∂P j

i

∂xl

)

, 0,
∂2P j

i

∂xl∂xk
+

∂2P j
i

∂xl∂yk

)

,

take values in AJ̃1
G
(FM).

9. Characterization of homogeneity

In this section we will use the general development made in the
previous section to interpret the (local) homogeneity of Cosserat me-
dia in many different ways. So, let FB be a Cosserat medium with
φ0 : B → R

3 as reference configuration and W : J̃1 (FB) → V as me-
chanical response. Consider Ω (B) the corresponding non-holonomic
material groupoid of second order. Then, B is locally homogeneous if,
and only if, for each point x ∈ B there exists an open subset U ⊆ B

with x ∈ U and a local deformation κ̃ over U such that the (local)

section P : U × U → J̃1 (FB) given by

P (z, y) = j1z,y
(

κ̃−1 ◦ Fτκ(y)−κ(z) ◦ κ̃
)

,

where τκ(y)−κ(z) : R
3 → R

3 denotes the translation on R
3 by the vector

κ (y)− κ (z) takes values in Ω (B) (see Definition 7.4).
So, using Proposition 8.7, we immediately have

Proposition 9.1. Let B be a Cosserat medium. If B is homogeneous
then Ω (B) is a second-order non-holonomic integrable prolongation. In
fact, Ω (B) is a second-order non-holonomic integrable prolongation if,
and only if, B is locally homogeneous.
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Considering the local coordinates (xi) given by the deformations κ̃
satistying the deformation conditions, we deduce that B is locally ho-
mogeneous if, and only if, Ω (B) can be locally covered by (local) sec-
tions of

(

α, β
)

in Ω (B) as follows:

P
(

xi, yj
)

=

(

(

xi, yj, P j
i

)

, δji ,
∂P j

i

∂xk
+
∂P j

i

∂yk

)

.

Next, let us consider the induced subalgebroid of the second-order
non-holonomic material groupoid, AΩ (B). This Lie algebroid will be
called second-order non-holonomic material algebroid of B.

Take Θ ∈ Γ
(

AΩ (B)
)

. So, the flow of the left-invariant vector field

XΘ, {ϕ
Θ
t }, can be restricted to Ω (B).

Hence, for any infinitesimal deformation g, we have

W
(

ϕΘ
t (g · ǫ (α (g)))

)

=W (g) .

Indeed, this equality is equivalent to the following one

W
(

ϕΘ
t (g)

)

= W (g) , ∀g ∈ J̃1 (FB) . (9.1)

Thus, for each g ∈ J̃1 (FB), we deduce

TW (XΘ (g)) =
∂

∂t|0

(

W
(

ϕΘ
t (g)

))

=
∂

∂t|0
(W (g)) = 0.

Therefore,

TW (XΘ) = 0. (9.2)

Conversely, suppose that Eq. (9.2) is satisfied. Then,

∂

∂t|s

(

W
(

ϕΘ
t (g)

))

= 0, ∀g ∈ J̃1 (FB) , ∀s.

Thus, taking into account that

W
(

ϕΘ
0 (g)

)

= W (g) ,

we have

W
(

ϕΘ
t (g)

)

= W (g) ,

i.e.,

Θ ∈ Γ
(

AΩ (B)
)

.

In this way, the second-order non-holonomic material algebroid can
be defined without using the non-holonomic material groupoid of sec-
ond order. Thus, we can characterize the homogeneity and uniformity
using the material Lie algebroid. Taking into account that the fact of
being an “integrable prolongation” can be equivalently defined over the
associated Lie algebroid (see Remark 8.15) we get the following result:
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Proposition 9.2. Let B be a Cosserat continuum. If B is homoge-
neous, then, AΩ (B) is an integrable non-holonomic prolongation of
second order. Conversely, AΩ (B) is an integrable non-holonomic pro-
longation of second order implies that B is locally homogeneous.

Using the local expression (8.18), this result can be expressed locally
as follows.

Proposition 9.3. Let B be a Cosserat continuum. B is locally ho-
mogeneous if, and only if, for each point x ∈ B there exists a local
coordinate system (xi) over U ⊆ B with x ∈ U such that the local
section of ♯,

AP1 (AQ)

(

xi,
∂

∂xl

)

=

((

xi,
∂

∂xl
,
∂P j

i

∂xl

)

, 0,
∂2P j

i

∂xl∂xk
+

∂2P j
i

∂xl∂yk

)

,

takes values in AΩ (B).

Finally, we will use Theorem 6.5 to give another characterization of
the homogeneity. Indeed, let be Λ̃ : TB → AJ̃1 (FB) a linear section
of ♯. Then, using Remark 6.8, Λ̃ can be seen as a map

∇Λ : X (B)× X (FB) → X (FB) ,

where, for all
(

X, Ỹ
)

∈ X (B)×X (FB), f ∈ C∞ (B) and F ∈ C∞ (FB)

satisfies that

(i) ∇Λ
fX Ỹ = (f ◦ πB)∇

Λ
X Ỹ .

(ii) ∇Λ
XF Ỹ = F∇Λ

X Ỹ + Λ (X)♯ (F ) Ỹ .

(iii) The base vector field of ∇Λ
X is Λ (X)♯ which is πB−related to

X .
(iv) For all g ∈ Gl (3,R),

∇Λ
X ◦ TR∗

g = TR∗
g ◦ ∇

Λ
X .

(v) The flow of ∇Λ
X is the tangent map of an automorphism of

frame bundles (over the identity map) at each fibre.

Let (xi) be a local coordinate system on B such that

Λ̃

(

xi,
∂

∂xl

)

=

(

xi,
∂

∂xl
,Λjil,Λ

j
,il,Λ

j
i,kl

)

.

Then, ∇Λ is locally characterized as follows

(i) ∇Λ

∂

∂xj

∂

∂xi
=
∑

k Λ
k
,ij

∂

∂xk
+
∑

k,l Λ
k
l,ij

∂

∂xkl

(ii) ∇Λ

∂

∂xk

∂

∂xij
=
∑

l Λ
l
ik

∂

∂xlj
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In this way, if Λ̃ = AP1 (AQ) is a non-holonomic prolongation of second
order we have that

(i) ∇
AP1(AQ)

∂

∂xj

∂

∂xi
=
∑

k

∂Qk
i

∂xj
∂

∂xk
+
∑

k,lR
k
l,ij

∂

∂xkl

(ii) ∇
AP1(AQ)

∂

∂xk

∂

∂xij
=
∑

l

∂P l
i

∂xk
∂

∂xlj
,

where

Rk
l,ij =

∂2P k
l

∂xj∂xi
+
∑

m

∂Qm
i

∂xj
∂P k

l

∂xm
+Qm

i

∂2P k
l

∂xj∂xm
.

Hence, Λ is an integrable non-holonomic prolongation of second order
if an only if

(i) ∇
AP1(AQ)

∂

∂xj

∂

∂xi
=
∑

k,lR
k
l,ij

∂

∂xkl

(ii) ∇
AP1(AQ)

∂

∂xk

∂

∂xij
=
∑

l

∂P l
i

∂xk
∂

∂xlj
,

where

Rk
l,ij =

∂2P k
l

∂xj∂xi
+

∂2P k
l

∂xj∂xi
.

Using this we can give the following result:

Proposition 9.4. Let B be a Cosserat continuum. B is locally ho-
mogeneous if, and only if, for each point x ∈ B there exists a local
coordinate system (xi) over U ⊆ B with x ∈ U such that the local
non-holonomic covariant derivative of second order ∇ satisfies

(i) ∇ ∂

∂xj

∂

∂xi
=
∑

k,lR
k
l,ij

∂

∂xkl

(ii) ∇ ∂

∂xk

∂

∂xij
=
∑

l

∂P l
i

∂xk
∂

∂xlj

where

Rk
l,ij =

∂2P k
l

∂xj∂xi
+

∂2P k
l

∂xj∂xi
,

takes values in D
(

AΩ (B)
)

.

Let Λ̃ : TB → AJ̃1 (FB) be a linear section of ♯ and∇Λ̃ its associated
covariant derivative. We can construct (Λ1)

1 (Λ2) where

Λ1 , AΠ
2

1 ◦ Λ̃ ; Λ2 , AΠ̃2
1 ◦ Λ̃.
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Then, (Λ1)
1 (Λ2) has an associated map ∇(Λ1)

1(Λ2) : X (B)×X (FB) →

X (FB) which satisfies (i), (ii), (iii), (iv) and (v). So, Λ̃ is a prolonga-
tion if, and only if,

∇Λ = ∇(Λ1)
1(Λ2).

On the other hand, using that for all X ∈ X (M), ∇Λ
X is TR∗

g−invariant

we have that ∇Λ
X preserves right-invariant vector fields on FM .

Then, we can project ∇Λ onto a covariant derivative on M , ∇1, in the
following way: Let X, Y be two vector fields onM and Y c the complete
lift of Y over FM (see [5]). Then, Y c is right-invariant which implies
that ∇Λ

XY
c is right-invariant. So, ∇Λ

XY
c projects onto a unique vector

field on M . This vector field will be ∇1
XY . It is straightforward to

prove that ∇1 is a covariant derivative over M ; indeed, let (xi) be a
local coordinate system on B such that

Λ̃

(

xi,
∂

∂xl

)

=

(

xi,
∂

∂xl
,Λjil,Λ

j
,il,Λ

j
i,kl

)

.

Then, ∇1 satisfies that

∇1

∂

∂xj

∂

∂xi
=
∑

k

Λk,ij
∂

∂xk
. (9.3)

Hence, suppose that Λ̃ is a non-holonomic prolongation of second order.
Λ̃ is an integrable prolongation if, and only if, ∇1 is locally trivial, i.e.,
the Christoffel symbols are zero. There is an alternative way to con-
struct ∇1: Using Theorem 6.5, we can construct a covariant derivative
on M , ∇Λ2 , such that

∇Λ2 = ∇1.

To summarize, we have introduced a new frame (groupoids and Lie
algebroid) to study Cosserat media. In this frame, we have been able
to express the homogeneity in many different (but equivalent) ways:
Over the non-holonomic material groupoid of second order, over the
associated Lie algebroid (which can be contructed without using the
material groupoid) and over the Lie algebroid of derivations. Finally,
using the interpretation over the algebroid of derivations, we have de-
veloped a method to know if a covariant derivative is a non-holonomic
integrable prolongation without using coordinates.

10. Homogeneity with non-holonomic G−structures of
second order

Now, we will introduce the definition of homogeneity used in [24]
where the authors discuss second-order non-holonomic G−structures.
We will fix B a Cosserat continuum.
Let be Z0 = j1e1,Z0

Φ ∈ F
2
B a non-holonomic frame of second order at
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z0. Define a non-holonomic G0−structure of second order ωG0
(B) on

B (which contains Z0) as follows:

ωG0
(B) , Ωz0 (B) · Z0.

Notice that the principal bundles Ωz0 (B) and ωG0
(B) are obvi-

ously isomorphic (as principal bundles). Indeed, the structure group
of ωG0

(B) is given by

G0 , Z
−1

0 ·G (z0) · Z0,

where G (z0) is the isotropy group of Ω (B) at z0, i.e., the family of all
material symmetries at z0.
A local section of ωG0

(B) will be called local uniform reference. A
global section of ωG0

(B) will be called global uniform reference. We

call reference crystal to any frame Z0 ∈ F
2
B at z0.

Now, the canonical projection of the second-order non-holonomic
G0−structure ωG0

(B) is a G0−structure denoted by ωG0
(B).

Remark 10.1. (1) If we change the point z0 to another point z1
then we can obtain the same second-order non-holonomic
G0−structure. We only have to take a frame Z1 as the com-
position of Z0 with a j1z0,z1Ψ ∈ G (z0, z1).

(2) We have fixed a configuration Φ0. Suppose that Φ1 is another
reference configuration such that the change of configuration
(or deformation) is given by κ̃ = Φ−1

1 ◦ Φ0. Transporting the
reference crystal Z0 via F κ̃ we get another reference crystal
such that the second-order non-holonomic G0−structures are
isomorphic.

(3) Finally suppose that we have another crystal reference Z
′

0 at

z0. Hence, the new second-order non-holonomic G
′

0−structure,
ω
G

′

0

(B), is conjugated of ωG0
(B), namely,

G
′

0 = g ·G0 · g
−1, ω

G
′

0

(B) = ωG0
(B) · g,

for g = Z
−1

0 · Z
′

0.

In this way, the definition of homogeneity is the following,

Definition 10.2. A Cosserat continuum B is said to be homogeneous
with respect to the crystal reference Z0 if it admits a global deformation
κ such that κ−1 induces a uniform reference P , i.e., for each x ∈ B

P (x) = j10,x
(

κ−1 ◦ Fτκ(x)
)

,

where τκ(x) : R
3 → R

3 denotes the translation on R
3 by the vector κ (x)

and κ is the induced map of κ over B. B is said to be locally homoge-
neous if every x ∈ B has a neighbourhood which is homogeneous.
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Using Eq. (3.3) it is easy to prove the following result:

Proposition 10.3. If B is homogeneous with respect to Z0 then ωG0
(B)

is a non-holonomic integrable prolongation of second order. Conversely,
ωG0

(B) is a second-order non-holonomic integrable prolongation im-

plies that B is locally homogeneous with respect to Z0.

Notice that, this result shows us that the homogeneity does not de-
pend on the point and reference configuration but depends on the ref-
erence crystal (see Remark 10.1).
It is important to recall that our definition of homogeneity does not
depend on a crystal reference. So, these definitions cannot be equiv-
alent (as a difference with simple media). However, there are a close
relation. In fact, B is homogeneous (resp. locally homogeneous) if, and
only if, there exists a crystal reference Z0 such that B is homogeneous
(resp. locally homogeneous) with respect to Z0.
To prove this, we will begin defining the following map

G : Γ
(

F
2
M
)

→ Γ(α,β)

(

J̃1 (FM)
)

P 7→ GP,

such that

GP (x, y) = P (y) · [P (x)]−1, ∀x, y ∈M,

where we are considering the equivalence class in J̃1 (FM).

Remark 10.4. Notice that the following equalities relate Π
2

1 (resp.

Π̃2
1) with π

2
1 (resp. π̃2

1)

(i) Π
2

1 ◦ G = G ◦ π2
1

(ii) Π̃2
1 ◦ G = G ◦ π̃2

1

where G : Γ (FM) → Γ(α,β) (Π
1 (M,M)) has been defined in [31] as

follows:

GP (x, y) = P (y) · [P (x)]−1, ∀x, y ∈M.

Before working with second-order non-holonomic prolongations, we

are interested in knowing when an element of Γ(α,β)

(

J̃1 (FM)
)

can be

inverted by G. First, we consider P ∈ Γ
(

F
2
M
)

; then for all x, y, z ∈M

GP (y, z) · GP (x, y) = GP (x, z) , (10.1)

i.e., GP is a morphism of Lie groupoids over the identity map onM from
the pair groupoid M ×M to J̃1 (FM). Therefore, not all element of

Γ(α,β)

(

J̃1 (FM)
)

can be inverted by G but we can prove the following

result:
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Proposition 10.5. Let P be a section of J̃1 (FM). There exists a

section of F
2
M such that

GP = P, (10.2)

if, and only if, P is a morphism of Lie groupoids over the identity map
from the pair groupoid M ×M to J̃1 (FM).

Proof. We have already proved that Eq. (10.2) implies that P is a
morphism of Lie groupoids over the identity map from the pair groupoid
M ×M to J̃1 (FM). Conversely, if Eq. (10.1) is satisfied we can define

P ∈ Γ
(

F
2
M
)

as follows

P (x) = P (z0, x) · Z0,

where Z0 ∈ F
2
M with π2

(

Z0

)

= z0 is fixed. Then, using Eq. (10.1),
we have

GP = P.

�

However, there is not a unique P such that GP = P. In fact, let P

and Q be sections of F
2
M such that

GP = GQ.

Then, there exists g ∈ G
2
(n) such that

P = Q · g, (10.3)

where, we are choosing representatives of the equivalence class to do
the jet composition.
Notice that the sections of

(

α, β
)

which are morphisms of Lie groupoids

over the identity map from the pair groupoid M ×M to J̃1 (FM) are,
precisely, the parallelisms.

Now, lets see that G : Γ
(

F
2
M
)

→ Γ(α,β)

(

J̃1 (FM)
)

preserves pro-

longations. In fact, let P 1 (Q) ∈ Γ
(

F
2
M
)

be a second-order non-

holonomic prolongation of P and Q, then

GP 1 (Q) = GP 1 (GQ) , (10.4)

To prove the last equality, we use that

P 1 (Q) (x) = j1e1,P (x)

(

P ◦ ψx
)

,

where Q (x) = j10,xψx (see Remark 3.2). Then,

j10,y
(

P ◦ ψy
)

· j1x,0
(

P ◦ ψx
)−1

= j1x,y

(

GP ◦ (ψy ◦ ψ−1
x )
)

,
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and, as we know

GQ (x, y) = j1x,y
(

ψy ◦ ψ
−1
x

)

.

Then, taking into account that G preserves integrability (see [31]),
we can assume that G preseves integrable sections and integrable pro-

longations of F
2
M .

Conversely, we want to study if we can invert integrable sections (resp.
non-holonomic integrable prolongations of second-order) in J̃1 (FM).
Notice that both kinds of sections can be written as second-order non-
holonomic prolongations and, in this way, we will study when we can
invert non-holonomic prolongations of second-order.
So, let P1 (Q) be a second-order non-holonomic prolongation in J̃1 (FM).
Using Eq. (10.4) and Remark 10.4, if we can invert P1 (Q) then, there
exist P,Q ∈ Γ (FM) such that

GP 1 (Q) = P1 (Q) .

Therefore, analogously to Proposition 10.5, P and Q have to be Lie
groupoid morphisms from the pair groupoid M ×M to Π1 (M,M).

Proposition 10.6. Let P1 (Q) be a second-order non-holonomic pro-

longation in J̃1 (FM). There exists a second-order non-holonomic pro-

longation in F
2
M such that

GP 1 (Q) = P1 (Q) ,

if, and only if, P and Q are morphisms of Lie groupoids from the pair
groupoid M ×M to Π1 (M,M).

Now, notice that, by construction, every integral section of Π1 (M,M)
is a morphism of Lie groupoids from the pair groupoid M × M to
Π1 (M,M). So we can state the following result:

Corollary 10.7. Let P1 (Q) be a second-order non-holonomic prolon-
gation in J̃1 (FM).

(i) If P1 (Q) is integrable then, there exists an integrable section of

F
2
M , P 1 (Q), such that

GP 1 (Q) = P1 (Q) .

(ii) If P1 (Q) is a non-holonomic integrable prolongation of sec-
ond order then, there exists a second-order non-holonomic in-

tegrable prolongation of F
2
M , P 1 (Q), such that

GP 1 (Q) = P1 (Q) ,

if, and only if, P is a morphism of Lie groupoids from the pair
groupoid M ×M to Π1 (M,M).
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This result could induce us to think that if P satisfies

GP = P1 (Q) ,

then, P is a second-order non-holonomic prolongation but this is not
true. We just have to impose the condition locally to prove it.

Finally, as for the simple media case, we can generalize the map
G to a map which takes non-holonomic G−structures of second order
on M into reduced subgroupoids of J̃1 (FM). Let ωG (M) be a non-
holonomic G−structure of second order on M , then we consider the
following set,

G (ωG (M)) = {Ly · [L
−1
x ] / Lx, Ly ∈ ωG (M)},

where we are considering the equivalence class in J̃1 (FM). We will
denote G (ωG (M)) by J̃1

G
(FM). J̃1

G
(FM) is a reduced subgroupoid of

J̃1 (FM). In fact, taking a local section of ωG (M),

PU : U → ωG (U) ,

the map given by

FU : J̃1 (FU) → F
2
U × U

L̃x,y 7→
(

L̃x,y · [PU (x)], x
)

is a diffeomorphism which satisfies that FU

(

J̃1
G
(FU)

)

= ωG (U)× U .

Analogously to parallelisms, we can prove that every reduced sub-
groupoid can be inverted by G in a non-holonomic G−structure of
second order on M .
Fix z0 ∈M and Z0 ∈ F

2
M with π2

(

Z0

)

= z0. Then, we define

G := {Z
−1

0 ·gz0 ·Z0 / gz0 ∈ J̃1
G
(z0)} = Z

−1

0 ·J̃1
G
(z0)·Z0

∼= J̃1
G
(z0) (10.5)

where J̃1
G
(z0) is the isotropy group of J̃1

G
(FM) over z0. Therefore, G

is clearly a Lie subgroup of G
2
(n).

Then, we can generate a second-order non-holonomic G−structure over
M in the following way

ωG (M) := {Lz0,x ·Z0 ·g / g ∈ G, Lz0,x ∈ J̃1
G
(FM)z0} , J̃1

G
(FM)z0 ·Z0.

Notice that J̃1
G
(FM)z0 and ωG (M) are clearly isomorphic.

Next, let ωG (M) be an integrable second-order non-holonomic (resp.
integrable prolongation) G−structure on M . Using Proposition 2.10,
Proposition 8.4 and the fact of that G preserves integrable sections
(resp. integrable prolongations) we have that J̃1

G
(FM) is integrable

(resp. an integrable prolongation).
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Conversely, let J̃1
G
(FM) be an integrable (resp. integrable prolon-

gation) Lie subroupoid of J̃1 (FM). Then, we may construct an in-
tegrable (resp. integrable prolongation) second-order non-holonomic
G−structure ωG (M) such that

G (ωG (M)) = J̃1
G
(FM) . (10.6)

To do this we just have to use Proposition 8.3 (resp. Proposition 8.11)
and define it locally. However, as you can imagine, not all second-order
non-holonomic G−structure wich satisfies Eq. (10.6) is integrable.

Now we have what we need to prove the relation which we had
mentioned. Let be B a Cosserat continuum and a crystal frame Z0 ∈

F
2
B at z0. Then, we have defined the second-order non-holonomic

G0−structure of uniform references as follows

ωG0
(B) = Ωz0 (B) · Z0,

i.e.,

G
(

ωG0
(B)
)

= Ω(B) .

Therefore, there exists g ∈ G
2
(n) such that the second-order non-

holonomic G0−structure ωG0
(B) · g is a second-order non-holonomic

integrable prolongation if, and only if, Ω (B) is a second-order non-
holonomic integrable prolongation. So, using Proposition 10.3 and
Proposition 9.1, we have the following result:

Proposition 10.8. A Cosserat continuum B is homogeneous (resp.
locally homogeneous) if, and only if, there exists a crystal reference Z0

such that B is homogeneous (resp. locally homogeneous) over Z0.

Hence, we our notion of homogeneity of a Cosserat medium B (which
does not depend on a reference crystal) is equivalent to the existence of
a configuration Φ such that B is homogeneous over the reference crystal
j1e1,Z0

Φ−1 (in terms of the non-holonomic G−structures of second order).
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[40] I. Moerdijk and J. Mrčun: On integrability of Lie subalgebroids. Adv. Math.
204 no. 1, (2006), 101115.

[41] W. Noll: Materially uniform simple bodies with inhomogeneities. Arch. Ratio-
nal Mech. Anal. 27 (1967) 1-32.

[42] W. Nowacki: Theory of Asymetric Elasticity. Pergamon, Oxford and PWW,
Warsaw, 1986.
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