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Abstract. Given a Lie algebroid A → M , it is obtained the relation be-
tween covariant derivatives and sprays on A. Moreover, it is introduced the
notion of an (infinitesimal) automorphism preserving the covariant deriva-
tive and its relation with the corresponding spray.
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1. Introduction

The theory of (affine) connections is a classical topic in differential geometry
(see, for instance, [8]). Its importance comes from the fact that connections
are an essential tool in the study of geometric structures on manifolds. Indeed,
a connection allows to compare the local geometry around different points of
a manifold: if one wants to study a geometric object in the neighborhood of
a point, it is necessary to transport it along a curve, and this is done using a
connection.

Given a connection on a manifold M (or more precisely its covariant deriva-
tive), in a natural way can be associated a vector field in the tangent bundle
TM , the so-called spray associated to the connection. This spray is interesting
because it encodes the information related with the connection: for instance,
the integral curves of the spray are just the tangent lifts of the geodesics. On
the other hand, since we have an extra structure on the manifold, it is natural
to study the transformations which preserve the connection, the well-known
infinitesimal affine transformations. The relation between the connection and
the corresponding spray can be extended to the infinitesimal affine transfor-
mations, which can be characterized in terms of the spray and the Lie bracket.

From the point of view of applications, connections and sprays play an impor-
tant role in the geometric formulation of Lagrangian mechanics [13]. For in-
stance, in [15] time-dependent mechanics can be geometrically described using
time-dependent semi-sprays. On the other hand, in control theory, connec-
tions provide a valuable tool for studying controllability of simple mechanical
control systems (see [2] and references therein).
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A natural extension of the notion of the tangent bundle of a manifold as well
as the concept of Lie algebra is that of Lie algebroids [10]. They provide the
natural framework to develop the geometry of singular geometric structures: a
natural example is a Poisson manifold (M,Π), where exists a (generally singu-
lar) foliation, which induces a Lie algebroid structure on the cotangent bundle
T ∗M . On the other hand, Lie algebroids are interesting from the point of view
of mechanics, since they are the adequate framework to study lagrangian and
hamiltonian systems, in particular under the presence of symmetries. This
idea was introduced by A. Weinstein in [17], and developed in [12], where the
notion of prolongation of Lie algebroid is used in order to give a formalism
which is parallel to the one for Lagrangian Mechanics on the tangent bundle
of a manifold.

Connection theory is very limited when used to study objects which presents
a singular behaviour. The reason is that if a structure admits a compatible
connection then parallel transport will preserve any invariant of the structure,
which will not allow any singular behaviour. An example of this restriction
appears when dealing with connections compatible with Poisson structures,
which force the rank of the Poisson bivector to be constant. However, very
interesting Poisson structures have singularities, such as linear ones.

In order to surpass these problems, it has been introduced in [5] the notion
of Lie algebroid connection (for the Poisson case, see [16]), in such a way
that if the Lie algebroid is the tangent bundle of a manifold, it is recovered
the usual notion of a connection. Although there are differences with the
classical case, using connections on Lie algebroids, global properties of Lie
algebroids has been studied: holonomy, stability of compact leaves... The
relation between Lie algebroid connections and sprays was first obtained in [3]
in the study of mechanical control systems on Lie algebroids. Moreover, Lie
algebroid sprays have been used in [4] to give a new proof of the existence of
symplectic realizations of a Poisson manifold and further developed in [1] in
order to present a direct construction of a local Lie groupoid integrating a given
Lie algebroid. From the point of view of mechanics, in [14] connections are
used to give a coordinate-free characterization of the solutions for the Euler-
Lagrange equations on Lie algebroids. Furthermore, connections are useful
tools in the side of the constitutive theory of materials. In fact, uniformity
and homogeneity are characterized by the existence of some kind of (local)
connections covering the body B (see for instance [6, 7]).

Here, we give an alternative (but similar) proof of the relation between Lie
algebroid connections and sprays and extend this relation. More precisely,
we introduce the notion of ∇ infinitesimal automorphisms for a Lie algebroid
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connection ∇, which generalize infinitesimal affine transformations, and char-
acterize them in terms of the associated spray. The paper is organized as
follows. In Section 2, we recall the notion of Lie algebroid and linear vector
fields on them, describing some characterizations first obtained in [11]. After
doing this, the definition of covariant derivative is introduced, describing some
important associated notions, such as geodesics. In Section 3, we introduce
the notion of a spray for a Lie algebroid and relate them with connections on
Lie algebroids showing, as a consequence, that the integral curves of the spray
corresponding with a connection are just the geodesics. Finally, in Section
4, we define, for a Lie algebroid connection, ∇ infinitesimal automorphisms
(being ∇ the covariant derivative of the connection), and characterize them in
terms of the associated spray.

2. Lie algebroids, linear vector fields and covariant
derivatives

This section is devoted to introduce some basic definitions such as Lie alge-
broids and linear vector fields and some useful constructions which are going
to be necessary for the results in this paper.

2.1. Lie algebroids. As a first step, we are going to introduce the well known
notion of Lie algebroid [10].

Definition 2.1. A Lie algebroid over M is a triple (A→M, ], [·, ·]), where
π : A→M is a vector bundle together with a vector bundle morphism ] : A→
TM , called the anchor, and a Lie bracket [·, ·] on the space of sections Γ(A),
such that the Leibniz rule holds

(2.1) [α, fβ] = f [α, β] + ](α)(f)β, α, β ∈ Γ(A), f ∈ C∞(M).

Seeing ] as a C∞(M)-module morphism from Γ(A) to X(M), for each section
α ∈ Γ(A) we are going to denote ](α) by α]. Thus, we have the following
fundamental property:

(2.2) [α, β]] = [α], β]], α, β ∈ Γ(A).

Example 2.2. i) Let M be an arbitrary manifold. Then, the tangent bundle
A = TM →M is naturally a Lie algebroid, with ] = IdTM and the Lie bracket
on Γ(A) = X(A) is just the Lie bracket of vector fields.

ii) Any finite dimensional Lie algebra g can be seen as Lie algebroid over a
singleton.

iii) Given a Poisson manifold (M,Π), the cotangent bundle T ∗M → M is
endowed with a Lie algebroid structure: the anchor is the bundle map Π] :
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T ∗M → TM asociated to the bivector Π and the Lie bracket on 1-forms is
given by

[α, β] = LΠ](α)β − LΠ](β)α− d(Π(α, β)), α, β ∈ Ω1(M).

Let α be a section of a Lie algebroid. If U ⊂ M is an open subset such that
π−1(U) ∼= U × F , where F is the fiber of A, α can be written locally as a
differentiable map

αU : U → F.

Furthermore, ] will be locally expressed as

]U : U × F → U × Rn

(p, v) 7→ (p, ]U(p, v))

Given a Lie algebroid structure (], [·, ·]) on π : A → M , a vector bundle
isomorphism Φ : A → A over φ : M → M is said to be a Lie algebroid
isomorphism if

(2.3) ] ◦ Φ = Tφ ◦ ],

(2.4) Φ∗[α, β] = [Φ∗α,Φ∗β], α, β ∈ Γ(A),

where Φ∗α = Φ−1 ◦ α ◦ φ.

Remark 2.3. Note that if f : M → M is a diffeomorphism and x ∈ X(M) ∼=
Γ(TM) then (Tf)∗(x) = Tf−1◦x◦f is the so-called push-forward of the vector
field x by f−1 (see, for instance, [8]).

To finish this section, we introduce the suitable notion of path in the Lie
algebroid setting.

Definition 2.4. Let a ∈ C∞(I, A) be a curve. It is said to be an A−path if it
satisfies

(2.5) ](a(t)) =
d

dt
γ,

where γ = π ◦ a is the base path. P (A) will denote the space of A-paths.

2.2. Linear vector fields and derivations. Next, we are going to introduce
some preliminaries concerning linear vector fields on vector bundles, whose
details may be found in [11]. In what follows we will consider a fixed vector
bundle π : A→M .

Definition 2.5. A linear vector field on A is a pair (ξ, x), where ξ is a
vector field on A and x is a vector field on M , such that
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A

π
��

ξ // TA

Tπ
��

M x
// TM

is a morphism of vector bundles. The vector space of linear vector fields on A
is denoted by XLIN(A).

Observe that this condition implies that for all λ ∈ R,

ξ(λ · vp) = Tpλ(ξ(vp)),

where λ : A → A is the map given by λ(vp) = λvp. Locally, ξ can be written
in the following way,

ξU : U × F → Rn × F
(p, v) 7→ (xU(p), ξ1

U(p, v)),

where, fixing p, the map ξ1
U(p, ·) : F → F is a linear map.

Proposition 2.6. [11] Let ξ be a vector field on A and x be a vector field on
M . The following claims are equivalent:

i) (ξ, x) is a linear vector field on A.
ii) ξ : C∞(A) → C∞(A) sends fiber-wise linear functions into fiber-wise

linear functions and sends basic functions into basic functions.
iii) ξ has flow {Φt} which are (local) vector bundle morphism over a flow
{φt} on M .

A first result that can be proved is the following one.

Proposition 2.7. Let (ξ, x) and (ν, y) be linear vector field. Then, ([ξ, ν], [x, y])
is a linear vector field.

Given a linear vector field (ξ∗, x) on A∗, condition ii) above shows that ξ∗

induces a map
Dξ∗ : Γ(A) → Γ(A)

α 7→ Dξ∗α

characterized by,

(2.6) LDξ∗α = ξ∗(Lα),

where we are considering the correspondence between sections of A and fiber-
wise linear functions of A∗, L : Γ(A)→ C∞LIN(A∗), α 7→ Lα,

Lα(fp) = fp(α(p)), fp ∈ A∗p.
It is easy to check that for all f ∈ C∞(M) and α ∈ Γ(A),

Dξ∗(fα) = fDξ∗α + x(f)α.
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Definition 2.8. A derivation on A is a R−linear map D : Γ(A) → Γ(A)
with x ∈ X(M) such that,

D(fα) = fD(α) + x(f)α, α ∈ Γ(A), f ∈ C∞(M).

The vector space of these objects is denoted by Der(A).

The map ξ∗ → Dξ∗ is an isomorhism of vector spaces. On the other hand,
there is an isomorphism Der(A)→ Der(A∗), D 7→ D∗, given by

(2.7) D∗(X)(α) = x(X(α))−X(D(α)), X ∈ Γ(A∗), α ∈ Γ(A).

Let (ξ∗, x) be a linear vector field on A∗ and Dξ∗ its associated derivation on
A. If D∗ξ∗ is the derivation on A∗ given by Eq. (2.7) then (ξ, x) will denote the
linear vector field on A such that

(2.8) Dξ = D∗ξ∗ .

Remark 2.9. If {(Φt, φt)} denotes the flow of (ξ, x) and If {(Ψt, φt)} denotes
the flow of (ξ∗, x) then Ψt = ΦT

−t, where ΦT
s is the transpose of Φs for each s,

i.e.,

(2.9) gφt(p)(Φt(ap)) = {Ψ−t(gφt(p))}(ap).
for all gφt(p) ∈ A∗φt(p) and ap ∈ Ap.

Proposition 2.10. For all α ∈ Γ(A),

d

dt |t=0

(
Φt∗α

)
= Dξ∗α.

Proof. Let fp ∈ A∗p. Using Eq. (2.6),

fp(Dξ∗α(p)) = ξ∗(fp)(Lα) =
d

dt |t=0

(
Lα ◦Ψt(fp)

)
=

=
d

dt |t=0

(
Ψt(fp)(α(φt(p)))

)
=

d

dt |t=0

(
fp((Φt∗α)(p))

)
= fp

( d
dt |t=0

(Φt∗α)(p)
)

�

As a consequence of Proposition 2.10, we have two results that will be useful
in the sequel.

Corollary 2.11. For all s,

d

dt |t=s
(Φt∗β) = Φs∗Dξ∗β,

Φs∗Dξ∗β = Dξ∗Φs∗β.
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Now, taking into account that for all X ∈ Γ(A∗) and α ∈ Γ(A), X(α) = Lα◦X,
and, from Eq. (2.6) and Eq. (2.8),

(2.10) Dξ(X)(α) = x(X(α))− ξ∗(Lα) ◦X.

This identity can be written locally as

(2.11) (DξX)U(p) = d(XU)|p(xU(p))− ξ∗1U(p,XU(p)).

Now, using this identity for Dξ∗ and Eq. (2.6),

(2.12) f(ξ1
U(p, v)) = −{ξ∗1U(p, f)}(v), p ∈ U, v ∈ F, f ∈ F ∗.

Example 2.12. Given a Lie algebroid on A→M and α ∈ Γ(A), the Leibniz
rule (2.1) implies that [α, ·] ∈ Der(A). In this case, the corresponding linear
vector field on A, denoted by (αc, α]) is the so-called complete lift of α and
its flow is (local) flow of the section α, which is, indeed, a (local) Lie
algebroid isomorphism. Moreover, it can be shown that the linear vector field
on A∗ is the Hamiltonian vector field of the function Lα associated with the
linear Poisson structure on A∗, which will be denoted by HLα .

Example 2.13. If V is a vector space then, any linear automorphism D : V →
V is a derivation on V . Note that in this case the linear vector fields are just
vector fields whose flow is made of linear automorphisms.

Example 2.14. Let M be a manifold and T ∗M →M be the cotangent bundle
of M . If x ∈ X(M) then the Lie derivative Lx : Ω1(M)→ Ω1(M) is a derivation
on T ∗M . The linear vector field on T ∗M is just the Hamiltonian vector field
of the linear function Lx ∈ C∞(T ∗M) with respect to the canonical symplectic
structure on T ∗M .

2.3. Covariant derivatives. To finish this section, it is recalled the notion
of covariant derivative (for more details, see [5]).

Definition 2.15. A covariant derivative on a Lie algebroid (A→M, ], [·, ·])
is a R−bilinear map

∇ : Γ(A)× Γ(A) → Γ(A)
(α, β) 7→ ∇αβ

such that,

i) It is C∞(M)-linear in the first variable.
ii)

(2.13) ∇αfβ = f∇αβ + α](f)β, f ∈ C∞(M), α, β ∈ Γ(A).

Remark 2.16. Note that ii) in Definition 2.15 is equivalent to ∇α ∈ Der(A),
for all α ∈ Γ(A).
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Using Eq. (2.11) for each α ∈ Γ(A), we can see ∇αβ locally as follows,

(2.14) (∇αβ)U = dβU |p(]U(p, αU(p)))−DU(p;αU(p), βU(p)),

where DU : U → L(F × F, F ) is a differentiable map.
Given a covariant derivative ∇ on A, the torsion T∇ and the curvature R∇
is the (1, 2)-tensor field (respectively, (1, 3)-tensor field).

T∇(α, β) = ∇αβ −∇βα− [α, β],

R∇(α, β), γ) = ∇α∇βγ −∇β∇αγ −∇[α,β]γ,

for α, β, γ ∈ Γ(A). ∇ is said to be torsionless if T∇ ≡ 0 and flat if R∇ = 0.

Let γ : I → M be a C∞ curve. By a lift a of γ to A we mean a C∞ curve
a : I → A such that

π ◦ a = γ.

The space of these curves is denoted by Lift(γ). Now, let a : I → A be an
A−path and γ = π ◦ a the base path. Then, there is a parallel transport

∇a : Lift(γ)→ Lift(γ),

such that, for each Λ ∈ Lift(γ)

∇aΛ = ∇αaαΛ ◦ γ,

where αa, αΛ ∈ Γ(A) satisfy that

αa ◦ γ = a ; αΛ ◦ γ = Λ.

Writing ∇αaαΛ locally we have:

(2.15) (∇aΛ)U(t) =
∂

∂t
ΛU −DU(γU(t); aU(t),ΛU(t)).

Finally, an important concept associated with a covariant derivative is that of
geodesic.

Definition 2.17. Let a : I → A be an A−path. Then, a is a geodesic if

∇aa = 0.

Using Eq. (2.15), an A−path a : I → A is a geodesic if and only if locally

(2.16)
d

dt
aU = DU(γU(t); aU(t), aU(t)).
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3. Spray and covariant derivative

In this section, the notion of Lie algebroid spray will be introduced and its
relation with covariant derivatives will be studied.

Definition 3.1. F ∈ X(A) is said to be a second-order differential equa-
tion (SODE) on A if

(3.17) Tπ ◦ F = ].

Note that, we can express F locally as the following map:

(3.18)
FU : U × F → Rn × F

(p, v) 7→ (g1
U(p, v), f 1

U(p, v))

So, Eq. (3.17) is equivalent to g1
U(p, v) = ]U(p, v) for all (p, v) ∈ U × F .

A SODE can be characterized in terms of its integral curves.

Proposition 3.2. Let F be a vector field on A. F is a SODE on A if and
only if every integral curve a : I → A of F is an A−path.

Proof. If a : I → A is integral curve of F , F(a(t)) = d
dt

(a(t)). Using Eq. (3.17),

d

dt
(π ◦ a) = Tπ

( d
dt

(a(t))
)

= (Tπ ◦ F)(a(t)) = ](a(t)).

The other implication can be proved similarly. �

We are interested in a special kind of second-order differential equations.

Definition 3.3. Let F ∈ X(A) be a SODE on A. F is said to be a spray if
for all s ∈ R
(3.19) F(s · v) = Ts(s · F(v)), ∀v ∈ A.
Remark 3.4. Let (M,Π) be a Poisson manifold and T ∗M →M the associated
Lie algebroid. Then, a spray of T ∗M is just a Poisson spray [4]. In that
paper, the authors give a simple proof of the existence of symplectic realiza-
tions using Poisson sprays. This result have been generalized in [1], where Lie
algebroid sprays have been used to obtain an explicit and direct construction of
a local Lie groupoid integrating a given Lie algebroid.

Using the expression (3.18), F is a spray iff for all s ∈ R,

f 1
U(p, s · v) = s2 · f 1

U(p, v), ∀(p, v) ∈ U × F.
Thus condition (3.19) (in addition to being a second-order vector field) simply
means that f 1

U is homogeneous of degree 2 in the second variable. Hence, it
follows that f 1

U is a quadratic map in its second variable, and specifically, this
quadratic map is given by

f 1
U(p, v) =

1

2
d2f 1

U,p|0(v, v),
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where, f 1
U,p(v) = f 1

U(p, v), for any (p, v) ∈ U × F.
Therefore, the spray is induced by a symmetric bilinear map given at each
point p in a chart by

BU(p) =
1

2
d2f 1

U,p|0.

Conversely, every differential map

BU : U → LSYM(F × F, F ),

defines a spray over U . We call BU the symmetric bilinear map associated
with the spray. Now, motivated by Eq. (2.14), we introduce the following
definition.

Definition 3.5. Given a spray F and a covariant derivative ∇ over the same
Lie algebroid A. We say that F is the spray associated with ∇ if ∇ can be
written locally as follows:

(∇γβ)U(p) = dβU |p(]U(p, γU(p)))−DU(p; γU(p), βU(p)),

where, for all (p, v) ∈ U × F ,

FU(p, v) = (]U(p, v), DU(p; v, v)).

Observe that, if F is associated with ∇, F is unique.
Let ∇ be a covariant derivative on A and γ ∈ Γ(A). Then ∇γ ∈ Der(A) and
we can take the associated linear vector field on A∗, (ξ∗∇γ , γ

]), i.e.,

i) For each β ∈ Γ(A),

ξ∗∇γ (Lβ) = L∇γβ.

ii) For all f ∈ C∞(M),

ξ∗∇γ (f ◦ π
∗) = γ](f) ◦ π∗.

So, using Eq (2.11)

(3.20) (∇γβ)U(p) = d(βU)|p(γ
]
U(p))− ξ∇γ 1

U
(p, βU(p)).

Hence, we can define F ∈ X(A) such that

(3.21) F(γ(p)) = ξ∇γ (γ(p))

Where (ξ∇γ , γ
]) is the linear vector field on A associated with (ξ∗∇γ , γ

]).

Note that ∇γ(p) depends only on the value of γ(p) so we can define the differ-
entiable map BU : U → LSYM(F × F, F ) given by

BU(p; v, w) =
1

2
(ξ∇γv (γw(p)) + ξ∇γw (γv(p))),

where γv(p) = v and γw(p) = w. Let us see it is well-defined, i.e., for all
v, w ∈ F ,

BU(p; v, w) ∈ LSYM(F × F, F ).
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Indeed, taking γv, γw ∈ Γ(A) as above we only have to use that ∇ is R−linear
in the first variable, that ξ∇γ is a linear vector field and the following equality:

ξλ∇γ+ν∇γ′ = λξ∇γ + νξ∇γ′ .

Finally, it is obvious that BU(p) is a symmetric map and f 1
U(p, v) = BU(p; v, v).

Now, using Eq (3.21),

Tγ(p)π(F(γ(p))) = Tγ(p)π(ξ∇γ (γ(p))) = γ](p).

Therefore, F is a spray.
Now, let F be a spray on A and T : Γ(A)×Γ(A)→ Γ(A) a (1, 2)−tensor field
on A. Construct a covariant derivative ∇ such that

i) For each α ∈ Γ(A)

ξ∇α ◦ α = F ◦ α,
where ξ∇α is the linear vector field on A associated with ∇α.

ii) For all α, β ∈ Γ(A),

T (α, β) = T∇(α, β) = ∇αβ −∇βα− [α, β].

Hence

(3.22) ∇αβ =
1

2
{∇α+β(α + β)−∇αα−∇ββ + T (α, β) + [α, β]}.

So, using Eq (3.20), locally

(∇αβ)U(p) =
1

2

{
dβU |p(α

]
U(p)) + dαU |p(β

]
U(p)) + f 1

U(p, βU(p) + αU(p))

−f 1
U(p, βU(p))− f 1

U(p, αU(p)) + T (α, β)U(p) + [α, β]U(p)
}
.

Thus, it has been proved the uniqueness and the smoothness of ∇αβ, for all
α, β ∈ Γ(A). Finally, using this expression, we can prove that ∇ is, indeed, a
covariant derivative on A.
The previous discussion can be summarized in the following theorem.

Theorem 3.6. Every covariant derivative on A has an unique associated spray
on A. Furthermore, given a spray on A, F , and a (1, 2)−tensor field on A,
T , there exists a unique covariant derivative ∇ such that F is the associated
spray with ∇ and

T∇ = T.

Taking F the spray associated with ∇, a is a geodesic iff

d

dt
a = F(a(t)),

i.e., a is an integral curve of F . Since every integral curve of F is an A−path
(Proposition 3.2),
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Proposition 3.7. Let a : I → A be a C∞ curve. a is geodesic iff is integral
curve of F .

Example 3.8. Let A→M be a Lie algebroid and assume that g is a fibered
metric on A, that is, for each p ∈M g(p) is a nondegenerate symmetric bilinear
form on Ap. It is clear that g can be seen as a C∞(M)-linear map

g : Γ(A)× Γ(A)→ C∞(M).

This map allows to define a C∞(M)−isomorphism bg : Γ(A) → Γ(A∗), such
that, for all α, β ∈ Γ(A)

{bg(α)}(β) = g(α, β).

There exists a unique torsionless covariant derivative ∇ on A such that for all
sections α, β, γ we have

α](g(β, γ)) = g(∇αβ, γ) + g(β,∇αγ).

This covariant derivative is called the Levi-Civita derivative of g and is
denoted by ∇g. The Levi-Civita derivative is characterized by the Koszul
formula

(3.23)
g(∇g

βα, γ) =
1

2
{α](g(β, γ)) + β](g(γ, α))− γ](g(α, β))−
−g([α, β], γ)− g([α, γ], β)− g([β, γ], α)},

The spray associated with ∇g will be called metric spray.

4. ∇ infinitesimal automorphisms

Throughout this section, we fix a covariant derivative ∇ on a Lie algebroid
(A→M, ], [·, ·]), with F ∈ X(A) as the spray associated with ∇.

Definition 4.1. Let π : A → M be a Lie algebroid with anchor ] : A → M .
Given a covariant derivative ∇ on A, a vector bundle isomorphism (Φ, φ) on
A is a ∇−automorphism if

(4.24) Φ∗(∇αβ) = ∇Φ∗αΦ∗β, α, β ∈ Γ(A).

Let (Φ, φ) be a ∇-automorphism. Then, as a first consequence, we have that

(4.25) ] ◦ Φ = Tφ ◦ ].

Indeed, if α, β ∈ Γ(A) and f ∈ C∞(M)

Φ∗

(
∇α(fβ)

)
= ∇Φ∗αΦ∗(fβ).

Using Eq. (2.13), it is deduced that γ](f) ◦ φ = (Φ∗γ)](f ◦ φ) or, equivalently,
(4.25) holds.
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Proposition 4.2. Let (Φ, φ) be a vector bundle automorphism. Then, (Φ, φ)
is a ∇−automorphism if and only if for each α ∈ Γ(A),

(4.26) ξ∇Φ∗α
= (TΦ)∗(ξ∇α),

where ξ∇α is the linear vector field on A associated with ∇α.

Proof. First, we have that

(4.27) ξ∗∇Φ∗α
= ((TΦT )−1)∗(ξ

∗
∇α).

Indeed, given β ∈ Γ(A), from the fact that Lβ ◦ ΦT = LΦ−1
∗ β,

((TΦT )−1)∗(ξ
∗
∇α)(Lβ) = (ξ∗∇α)(Lβ ◦ (ΦT )) ◦ (ΦT )−1 = (ξ∗∇α)(LΦ−1

∗ β) ◦ (ΦT )−1

= (L∇αΦ−1
∗ β) ◦ (ΦT )−1 = LΦ∗(∇αΦ−1

∗ β) = L∇Φ∗αβ

= ξ∗∇Φ∗α
(Lβ).

Using that if ξ is linear vector field with flow {(Φt, φt)} then the flow of ξ∗ is
{ΦT
−t} (see Remark 2.9). Thus, for any (F, f) vector bundle isomorphism, the

relation ((TF )∗ξ)
∗ = ((TF−1)T )∗ξ

∗ holds. Therefore, Eq. (4.27) is equivalent
to

ξ∗∇Φ∗α
= ((TΦ)∗(ξ∇α))∗.

But this relation is equivalent to Eq. (4.26), since two linear vector fields ξ1

and ξ2 are equal if and only if ξ∗1 and ξ∗2 coincide.
Conversely, suppose that Eq. (4.26) is satisfied. Then, for all β ∈ Γ(A),

((TΦT )−1)∗(ξ
∗
∇α)(Lβ) = ξ∗∇Φ∗α

(Lβ).

Taking into account that

((TΦT )−1)∗(ξ
∗
∇α)(Lβ) = LΦ∗(∇αΦ−1

∗ β),

we have
Φ∗(∇αΦ−1

∗ β) = ∇Φ∗αβ.

�

Corollary 4.3. Let (Φ, φ) be an ∇−automorphism. Then F is (Φ, φ)−invariant,
i.e.,

(TΦ)∗F = F .
Proof. Using the previous proposition,

(4.28) (TΦ)∗(ξ∇
Φ−1
∗ α

) = ξ∇α , α ∈ Γ(A).

Then, given p ∈M ,

F(α(p)) = ξ∇α(α(p)) = TΦ−1{ξ∇
Φ−1
∗ α

(Φ(α(p)))}

= TΦ−1{ξ∇
Φ−1
∗ α

(Φ−1
∗ α(φ(p)))} = TΦ−1{F(Φ−1

∗ α(φ(p)))}

= (TΦ)∗F(α(p)).
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�

Definition 4.4. Let (ξ, x) be a linear vector field on A with (local) flow
{(Φt, φt)}. Then, (ξ, x) is said to be a ∇ infinitesimal automorphism
(∇ i.a.) if (Φt, φt) is a (local) ∇−automorphism for all t, i.e.,

(4.29) Φt∗(∇αβ) = ∇Φt∗αΦt∗β,

for all α, β ∈ Γ(A).

Now, we shall give an equivalent condition defining a ∇ infinitesimal automor-
phism in terms of the corresponding derivation.

Proposition 4.5. Let (ξ, x) be a linear vector field on A∗. The following
properties are equivalent.

i) (ξ, x) is a ∇ infinitesimal automorphism.
ii) For all α, β ∈ Γ(A),

(4.30) Dξ∗∇αβ = ∇Dξ∗αβ +∇αDξ∗β.

Proof. Taking derivatives in Eq. (4.29) and using Proposition 2.10, it is clear
that (4.30) is equivalent to

d

dt |t=0
(Φt∗(∇αβ)) =

d

dt |t=0
(∇Φt∗αΦt∗β).

From this relation, i) implies ii).
Conversely, noting that (4.29) is equivalent to

∇αβ = Φ−t∗

(
∇Φt∗αΦt∗β

)
,

we only have to prove that

d

dt |t=s
(Φ−t∗(∇Φt∗αΦt∗β)) = 0.

For s = 0 it is true. Now, for a general s,

d

dt |t=s

(
Φ−t∗(∇Φt∗αΦt∗β)

)
=

d

dt |t=0

(
Φ−t−s∗(∇Φt+s∗α

Φt+s∗β)
)

= Φ−s∗

( d
dt |t=0

(Φ−t∗(∇Φt∗(Φs∗α)Φt∗(Φs∗β)))
)

= 0.

�

Corollary 4.6. Let (ξ, x) be a linear vector field on A. (ξ, x) is a ∇ infinites-
imal automorphism if and only if

(4.31) [ξ, ξ∇α ] = ξ∇Dξ∗α , ∀α ∈ Γ(A).
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Proof. Using Proposition 4.2 for the (local) flow of (ξ, x), we only have to prove
that Eq. (4.26) is equivalent to Eq. (4.31).
First, using Proposition 2.10,

[ξ, ξ∇α ] =
d

dt |t=0
((TΦt)∗ξ∇α) = ξ∇ d

dt |t=0
(Φt∗α)

= ξ∇Dξ∗α .

Conversely, Eq. (4.31) implies that

d

dt |t=0
((TΦt)∗ξ∇α) = ξ∇ d

dt |t=0
(Φt∗α)

.

Then,
d

dt |t=0
((TΦ−t)∗ξΦt∗∇α) = 0.

So, for each s

d

dt |t=s
((TΦ−t)∗ξ∇Φt∗α

) = (TΦ−s)∗
d

dt |t=0
((TΦ−t)∗ξ∇Φt∗Φs∗α

) = 0.

Hence, for all t

(TΦ−t)∗ξ∇Φt∗α
= ξ∇α ,

i.e.,

ξ∇Φt∗α
= (TΦt)∗ξ∇α .

�

From Corollary 4.3, we deduce the following result.

Theorem 4.7. If (ξ, x) is a ∇ infinitesimal automorphism then

[ξ,F ] = 0.

Remark 4.8. Note that the relation

[ξ,F ] = 0,

implies that

i) The relation ] ◦ Φ = Tφ ◦ ] holds.
ii) For all α ∈ Γ(A), ∇Φ∗αΦ∗α = Φ∗∇αα.

Thus, using Eq (3.22), we can prove the reciprocal only for special cases such
as ∇ symmetric or (Φ, φ) Lie algebroid automorphism with T∇ ≡ 0.

An important particular case of ∇ infinitesimal automorphism is the following
one.

Definition 4.9. Let α be a section of (A → M, ], [·, ·]) with flow {(Φt, φt)}.
Then, α is said to be a ∇ infinitesimal inner automorphism if the flow
(Φt, φt) is a ∇−isomorphism for all t.
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Observe that, taking into account that

[HLα ,HLβ ] = HL[α,β]
,

the space of ∇ infinitesimal inner automorphisms is a Lie subalgebra of (Γ(A),
[·, ·]). From Example 2.12, Proposition 4.5 can be written for this particular
case as follows.

Proposition 4.10. Let (A → M, ], [·, ·]) be a Lie algebroid and α ∈ Γ(A).
The following properties are equivalent.

i) α is a ∇ infinitesimal inner automorphism.
ii) For all γ, β ∈ Γ(A),

(4.32) [α,∇γβ] = ∇[α,γ]β +∇γ[α, β].

Recall that (see Example 2.12) the flow of α is just the flow of the Hamiltonian
(HLα , α

]) where
HLα(Lβ) = L[α,β], ∀β ∈ Γ(A),

i.e.

(4.33) DHLαβ = [α, β].

From this relation and taking into account that the flow of a section is a
(local) Lie algebroid isomorphism, the following theorem is a particular case
of Corollary 4.6.

Proposition 4.11. Let α be a section of (A → M, ], [·, ·]). If α is ∇ infini-
tesimal inner automorphism if and only if for all β ∈ Γ(A),

[αc, ξ∇β ] = ξ∇[α,β]
.

Thus, from Theorem 4.7, Remark 4.8 and the fact that the flow of a section is
(local) Lie algebroid automorphism, we have.

Theorem 4.12. Let (A→M, ], [·, ·]) be a Lie algebroid, ∇ a covariant deriv-
ative and α ∈ Γ(A). If α is a ∇ infinitesimal inner automorphism then

[αc,F ] = 0.

Conversely, if ∇ is torsionless or symmetric [αc,F ] = 0 implies that α is a ∇
infinitesimal inner automorphism.
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