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Abstract. In this work we prove that the hyperelliptic branch locus of ori-
entable Klein surfaces of genus g with one boundary component is connected and
in the case of non-orientable Klein surfaces it has g+1

2 components, if g is odd,

and g+2
2 components for even g. We notice that, for non-orientable Klein surfaces

with two boundary components, the hyperelliptic branch loci are connected for all
genera.

1 Introduction

Moduli space of Klein surfaces is the set of dianalytic structures on a given
topological compact surface (possibly non-orientable, with boundary), and
it has a natural topology given as quotient of Teichmüller space. The aim of
this work is a better understanding of some topological properties of moduli
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spaces. Connectedness is specially important for subsets of moduli spaces
because it allows the deformation of structures with given types.

F. Klein conjectured, and M. Seppälä showed, that the set of real Rie-
mann surfaces is a connected subspace of the moduli space [K, Se, CI1]. To
prove this result M. Seppälä uses the connectedness of the locus of hyperel-
liptic real Riemann surfaces.

The moduli space has an orbifold structure whose singular locus con-
sists of surfaces with non-trivial automorphism [MS]. Branch loci of moduli
spaces of Riemann surfaces are connected only for few genera [BCI] (see
also [BI]); this is in contrast to the case of moduli spaces of orientable Klein
surfaces whose branch loci are connected [CIP] (see also [BCIP] for the
branch loci of moduli spaces of Riemann surfaces considered as Klein sur-
faces). Bujalance et al. [BEM] have recently shown that the branch loci of
moduli spaces of non-orientable surfaces without boundary and low genus is
connected (compare with [BI] and [CI2] for the case of Riemann surfaces).

In this work we study the connectedness of the hyperelliptic branch lo-
cus of Klein surfaces with one boundary component. We show that the
hyperelliptic branch locus of orientable Klein surfaces with one boundary
component is connected and we prove that it is disconnected in the non-
orientable case. In this last case we characterize the connected components
of the hyperelliptic branch locus in terms of topological types of actions of
automorphisms.

Finally, we show that the hyperelliptic branch locus for non-orientable
Klein surfaces of topological genus 2 with two boundary components is an ex-
ample of connected branch loci. We observe that, with the same method, one
proves the connectedness of the hyperelliptic branch loci of non-orientable
Klein surfaces with two boundary components and topological genus ≥ 2.

2 Klein surfaces and non-euclidean crystallographic
groups

A Klein surface X is a compact surface (may be non-orientable and with
boundary) endowed with a dianalytic structure, that is to say, a class of
atlases where the transition maps are analytic or anti-analytic maps of C (see
[AG, N2, N3]). Klein surfaces are important in the study of real algebraic
curves [G, CG].

The topological type of X is given by t = (h,±, k) where h is the genus,
+ if X is orientable and − if X is non-orientable and k is the number of
connected components of the boundary. The integer εh+k−1, where ε = 2
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if there is a + sing in t and ε = 1 if there is a − sign in t, is the algebraic
genus of X.

A non-Euclidean crystallographic group or NEC group Γ is a discrete
subgroup of the group Aut±D of conformal and anticonformal automor-
phisms of the unit disc D of C and in this paper we shall assume that the
orbit space D/Γ is compact. When the NEC group Γ does not contain any
orientation-reversing automorphism of D, we say that Γ is a Fuchsian group.

The algebraic structure of Γ and the geometric and topological structures
of the quotient orbifold D/Γ are given by the signature:

s(Γ) = (h;±; [m1, ...,mr]; {(n1,1, ..., n1,r1), ..., (nk,1, ..., nk,rk)}). (1)

See [W, M, Si]. The orbit space D/Γ is an orbifold with underlying surface
of genus h, having r ≥ 0 cone points and k boundary components, each
with ri ≥ 0 corner points, i = 1, ..., k. The signs ′′+′′ and ′′−′′ correspond
to orientable and non-orientable quotient surfaces respectively. The integers
mi are called the proper periods of Γ; they are the orders of the cone points
of D/Γ. The brackets (ni,1, ..., ni,ri) are the period cycles of Γ. The integers
ni,j are the link periods of Γ: the orders of the corner points of D/Γ. The
group Γ is isomorphic to the fundamental group of the orbifold D/Γ.

Given an NEC group Γ, the subgroup Γ+ consisting of the orientation-
preserving elements of Γ is called the canonical Fuchsian subgroup of Γ.

A group Γ with signature (1) has a canonical presentation with genera-
tors :

1. Hyperbolic generators: a1, b1, ..., ah, bh if D/Γ is orientable; or glide
reflection generators: d1, ..., dh if D/Γ is non-orientable,

2. Elliptic generators: x1, ..., xr,
3. Connecting generators (hyperbolic or elliptic transformations): e1, . . . , ek
4. Reflection generators: ci,j , 1 ≤ i ≤ k, 1 ≤ j ≤ ri + 1.
And relators:
1. xmi

i , i = 1, ..., r,
2. c2i,j ,
3. (ci,j−1ci,j)ni,j , j = 1, ..., ri,
4. e−1i ci,rie

−1
i ci,0, i = 1, ..., k,

5. The long relation, either
x1...xre1...eka1b1a

−1
1 b−11 ...ahbha

−1
h b−1h or x1...xre1...ekd21...d

2
h,

according to whether D/Γ is orientable or not.
The hyperbolic area of the orbifold D/Γ coincides with the hyperbolic

area of an arbitrary fundamental region of Γ and it equals:

µ(Γ) = 2π(εh− 2 + k +

r∑
i=1

(1− 1

mi
) +

1

2

k∑
i=1

ri∑
j=1

(1− 1

ni,j
)), (2)
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where ε = 2 if there is a ′′+′′ sign and ε = 1 otherwise. If Γ′ is a subgroup of Γ
of finite index then Γ′ is an NEC group and the following Riemann-Hurwitz
formula holds:

[Γ : Γ′] = µ(Γ′)/µ(Γ). (3)

An NEC (Fuchsian) group Γ without elliptic elements is called a surface
NEC (Fuchsian) group and it has signature (h;±; [−], {(−), k. . ., (−)}). Any
Klein surface X with algebraic genus ≥ 2 can be represented as the orbit
space X = D/Γ, with Γ a surface NEC group. If a finite group G is isomor-
phic to a group of automorphisms of X then there exists an NEC group ∆
and an epimorphism θ : ∆→ G with ker(θ) = Γ. The NEC group ∆ is the
lifting of G to the universal covering D→ D/Γ.

3 Topological classification of automorphisms of
Klein surfaces

Two automorphisms f and g of a Klein surface X are topologically equiva-
lent if f and g are conjugated by a homeomorphism of X. The topological
types of automorphisms are the topological equivalence classes. The topo-
logical types of automorphisms are described using topological invariants
(see [BCNS], [Y] and [C]). Here we present the topological types of auto-
morphisms of Klein surfaces of primer order.

Assume that X is a Klein surface with algebraic genus ≥ 2, and let
ϕ : X → X be an order p automorphism; where p > 2 is a prime. The
topological type of ϕ is given by the rotation indices of the fixed points of
ϕ and the rotation angles of setwise invariant boundary components (note
that in case of non-orientable surfaces the rotation angles are defined up
sign). If ϕ has r fixed points and leaves setwise invariant s boundary
components, the topological type of ϕ is described by the following data
θ = (p; {n1, ..., nr}, {m1, . . . ,ms}) where 1 ≤ ni,mi ≤ p−1. Observe that in
the case of non-orientable surfaces the data ni and p−ni, and mi and p−mi

define topologically equivalent automorphisms. The number ni (respectively
mi) means that there is a fixed point of ϕ (respectively a boundary compo-
nent of X) where locally ϕ acts topologically as a rotation with angle 2πni/p
(resp. 2πmi/p). The surface X can be uniformized by a group Γ with sig-
nature (g;±; [−], {(−), k. . ., (−)}).. The fact of admitting an automorphism
of topological type

θ = (p;±; {n1, ..., nr}, {m1, ...,mb})
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implies that there is an NEC group ∆ with signature,

(h;±; [p, r..., p]{(−), b..., (−), (−),
k−b
p... , (−)})

an epimorphism ωθ : ∆→ Cp = 〈α〉 such that Γ = kerωθ. If xj , cl, el are in
a set of canonical generators of ∆ , must be:

ωθ(xj) = αnj , ωθ(ej) = αmj , ωθ(ew) = 1, for w > b, ωθ(cl) = 1

Note that for Riemann-Hurwitz formula p divides k − b.
Let X be a Klein surface and let ι : X → X be an involution. The

topological invariants for ι, see [BCNS], are mainly related with the set
Fix(ι) of fixed points of ι. The set Fix(ι) consists of:

(a) a finite number of r isolated points,
(b) a finite number of simple closed curves that we shall call ovals. Ovals

will be called twisted or untwisted accordingly to whether they have Möbius
band or annular neighbourhoods respectively. Let q+ be the number of
untwisted ovals and q− be the number of twisted ones.

(c) a finite number of chains, which we define now. A chain of length
si (we shall consider si always to be even) is a set C of si/2 disjoint arcs
properly embedded in X (i. e. the ends of each component of C are in
the boundary of X) such that for each boundary component B of X, either
C ∩ B = ∅ or C ∩ B consists of two distinct points. Chains may also be
twisted or untwisted. The natural definition of the to types of chains is
obtained by filling the holes of X with discs, see page 462 of [BCNS]. Let
t+ and t− be the number of untwisted and twisted chains respectively.

The extra information that we shall need to determine ι up topological
equivalence is

(d) the number rb of setwise fixed boundary components which contain
no points of Fix(ι)

(e) the orientability of X/ 〈ι〉, where 〈ι〉 is the cyclic group of order two
generated by ι,

(f) two homological invariants in the case when Fix(ι) = ∅ and that will
not be necessary in our work; therefore we will omit them.

All the above information can be presented in a symbol:

θ = (2;±; r, rb; q
+, q−; {s1, ..., st+}, {s1, ..., st−})

the sign + is used if X/ 〈ι〉 is orientable and the − sign is used if X/ 〈ι〉 is
non-orientable (see [BCNS], [N1]).
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By using NEC groups X can be uniformized by a group Γ with sig-
nature (g;±; [−], {(−), k. . ., (−)}) and the fact of admitting an involution
with topological invariants (2;±; r, rb; q

+, q−; {s1, ..., st+}, {s1, ..., st−}) im-
plies that Γ = kerωθ where ωθ : ∆→ C2 = 〈ι〉, ∆ has signature

(h;±; [2, r..., 2]{(−), l+rb... , (−), (−), q
++q−... , (−), (2, s1..., 2), t

++t−... , (2, st..., 2)}),

and if, either ai, bi, xi, ej , ci, ci,j or di, xi, ej , ci, ci,j , is a set of canonical gen-
erators of ∆, we must have:

ωθ(xi) = ι

ωθ(ej) = 1 j = 1, ..., l and ωθ(ej) = ι j = l, ..., l + rb

ωθ(ci) = 1, 1 ≤ i ≤ l + rb

ωθ(ej) = 1 j = l + rb + 1, ..., l + rb + q+ and

ωθ(ej) = ι j = l + rb + q+ + 1, ..., l + rb + q+ + q−

ωθ(ci) = ι, l + rb + 1 ≤ i ≤ l + rb + q+ + q−;

ωθ(ej) = 1 j = l + rb + q+ + q− + 1, ..., l + rb + q+ + q− + t+ and

ωθ(ej) = ι j = l + rb + q+ + q− + t+ + 1, ..., l + rb + q+ + q− + t+ + t−

ωθ(ci,j) = 1, ωθ(ci,j+1) = ι.

4 Moduli spaces

Let s be a signature of NEC groups (1) and let G be an abstract group
isomorphic to the NEC groups with signature s. We denote by R(s) the set
of monomorphisms r : G → Aut±(D) such that r(G) is an NEC group with
signature s. The set R(s) has a natural topology given by the topology of
Aut±(D). Two elements r1 and r2 ∈ R(s) are said to be equivalent, r1 ∼ r2,
if there exists g ∈ Aut±(D) such that for each γ ∈ G, r1(γ) = gr2(γ)g−1.
The space of classes T(s) = R(s)/ ∼ is called the Teichmüller space of
NEC groups with signature s (see [MS]). The Teichmüller space T(s) is
homeomorphic to Rd(s) where

d(s) = 3(εh− 1 + k)− 3 + (2

r∑
i=1

mi +

k∑
i=1

si∑
j=1

nij).

The modular group Mod(G) of G is the quotient Mod(G) = Aut(G)/Inn(G),
where Inn(G) denotes the inner automorphisms of G. The moduli space for
NEC groups with signature s is the quotientMs = T(s)/Mod(G) endowed
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with the quotient topology and we shall denote πs : T(s)→Ms. HenceMs

is an orbifold with orbifold fundamental group Mod(G).
If s is the signature of a surface group uniformizing surfaces of topological

type t, then we denote T(s) by Tt, andMs byMt, the Teichmüller and the
moduli space of Klein surfaces of topological type t.

Let G and G′ be groups isomorphic to NEC groups with signatures s and
s′ respectively. The inclusion mapping α : G → G′ induces an embedding
T(α) : T(s′)→ T(s) defined by [r] 7→ [r ◦ α]. See [MS].

If a finite group G is isomorphic to a group of automorphisms of Klein
surfaces with topological type t = (g,±, k), then the action of G is de-
termined by an epimorphism θ : D → G, where D is an abstract group
isomorphic to NEC groups with a given signature s and ker(θ) is isomorphic
to an abstract surface group G of signature (g;±; [−]; {(−), k..., (−)}). Then
there is an inclusion α : G → D and an embedding T(α) : T(s) → Tt.
The continuous map T(α) induces a continuous mapMs →Mt. Therefore
the set BG,θt of points in Mt corresponding to surfaces having a group of
automorphisms isomorphic to G and with a fixed action θ is connected.

5 Non-orientable Klein surfaces with one bound-
ary component

A Klein surface X of genus g is said to be hyperelliptic if there is an invo-
lution ϕ of X such that X/ 〈ϕ〉 has algebraic genus 0.

The hyperelliptic branch locus BHyp,G,θ(g,−,1) is the set BK,Hyp(g,−,1) = ∪G,θBHyp,G,θ(g,−,1)
of points inM(g,−,1) corresponding to hyperelliptic surfaces having automor-
phisms different from the hyperelliptic involution and the identity.

We are interested in the connectedness of BK,Hyp(g,−,1).

By the last section, the set BHyp,G,θ(g,−,1) of points inM(g,−,1) corresponding
to hyperelliptic surfaces with a fixed action θ of a group of automorphisms
isomorphic to G ) 〈ϕ〉, where ϕ is the hyperelliptic involution, is connected.

Theorem 1 BK,Hyp(g,−,1) is disconnected and has
g
2 + 1 connected components

for g even and g+1
2 connected components for g odd.

Proof. A Klein surface X of genus g is said to be hyperelliptic if there
is an involution ϕ of X such that X/ 〈ϕ〉 has algebraic genus 0. When X
is non-orientable and with one boundary component the involution ϕ has
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g isolated interior fixed points and an arc of fixed points with ends on the
boundary (a chain following [BCNS]).

In terms of uniformization groups, there is an NEC group ∆ with signa-
ture (0; [2g]; {(2, 2)}) and an index two surface subgroup Γ of ∆ uniformizing
X.

We have:

BK,Hyp(g,−,1) = ∪BHyp,G,θ(g,−,1) =πt(∪s≺(0;[2g ];{(2,2)}),θi∗(Ts)),

where s ≺ (0; [2g]; {(2, 2)}) means signatures of NEC groups containing
groups with signature (0; [2g]; {(2, 2)}) and θ : D → G are epimorphisms
such that ker θ is isomorphic to the groups with signature (g;−; [−]; {(−)})
and D is an abstract group isomorphic to NEC groups with signature s.

By Theorem 6.3.3 in [BEGG], a group G of automorphisms of a hyper-
elliptic non-orientable Klein surface X with one boundary component and
automorphisms different from the hyperelliptic involution is C2 × C2.

Let us give now a geometrical reason of the above fact. The quotient
orbifold X/ 〈ϕ〉 is a disc with g conic points of order 2, two corner points
of angle π/2 dividing the topological boundary of the disc in two arcs: one
arc consisting of points with non-trivial isotropy groups (the projection of
the chain); the other arc corresponds to the projection of the boundary
component of X. Since ϕ is central in Aut(X), then Aut(X)/ 〈ϕ〉 acts on the
orbifold X/ 〈ϕ〉; thus each arc in the topological boundary of X/ 〈ϕ〉 must be
preserved. Since the arcs admit only actions of C2, then Aut(X)/ 〈ϕ〉 ∼= C2
and Aut(X) ∼= C2 × C2.

The possible signatures of NEC groups Λ containing the group ∆ as a
subgroup of order two are:

(0; [2r]; {(2, s..., 2)}); with 2r + s = g + 3

Given a group Λ as above, there is a unique epimorphism θr : Λ→ Λ/Γ =
Aut(X) ∼= C2×C2 = 〈a, b〉 such that θ−1r (〈a〉) has signature (0; [2g]; {(2, 2)})
(i.e. the element a represents the hyperelliptic involution in X = D/Γ).

Using a canonical presentacion of Λ, the epimorphism θr is:
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θr(xi) = a, i = 1, ..., r
θr(e) = a if r ≡ 1 mod 2 and θr(e) = id if r ≡ 0 mod 2

θr(c0) = a
θr(c1) = id
θr(c2) = b
θr(c3) = ab
θr(c4) = b
θr(c5) = ab

...
θr(cs−1) = b, if s ≡ 1 mod 2 and θr(cs−1) = ab, if s ≡ 0 mod 2

θr(cs) = a

For each signature we have an action of C2 × C2. Since there are no
bigger groups of automorphisms each epimorphism or action is maximal
and defines a connected component of BK,Hyp(g,−,1).

In the next result we describe the topological type of the automorphisms
of Klein surfaces in each component of the hyperelliptic branch locus BK,Hyp(g,−,1).

Proposition 2 Let π(g,−,1) ◦ i∗(T(0;[2r];{(2, s...,2)})) be a connected component
of BK,Hyp(g,−,1). Given X ∈ π(g,−,1) ◦ i∗(T(0;[2r];{(2, s...,2)})), Aut(X) contains:

• the hyperelliptic involution ϕ with g isolated fixed points and one chain,
the chain is twisted if g is odd and untwisted if g is even. Following the
notation in Section 3, the topological type of the hyperelliptic involution
is (2; +; g, 0; 0, 0; {2}, {0}) if g is even and (2; +; g, 0; 0, 0; {0}, {2}) if
g is odd.

• an involution α with the following topological type: (2;±; 1, 0; g−12 −
r, 0; {0}, {2}) for g odd and (2;±; 0, 0; g2 − r−1, 1; {0}, {2}) for g even;
that is, the involution α has g−1

2 − r untwisted ovals, an isolated fixed
point and one twisted chain, for g odd; g2 − r ovals, only one of them
twisted (if there are ovals), and one twisted chain, for g even. Finally
X/ 〈α〉 is non-orientable if r > 0 and X/ 〈α〉 is orientable if r = 0,

• finally, an involution αϕ with topological type: (2;−; 0, 0; g+12 − r −
2, 2; {0}, {0}) for g odd and (2;−; 1, 0; g2 −r−1, 1; {0}, {0}) for g even;
that is, the involution αϕ has g+12 −r ovals, exactly two of them twisted
(if there are ovals), for g odd; but g2 − r ovals, one of them twisted (if
there are ovals) and one isolated fixed point, for g even. The quotient
X/ 〈αϕ〉 is always non-orientable.
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Proof. Let X ∈ π(g,−,1) ◦ i∗(T(0;[2r];{(2, s...,2)})). Consider the monodromy
θr : Λ→ Λ/Γ = Aut(X) ∼= C2×C2 = 〈a, b〉 defined in the proof of Theorem
1. Where a represents the hyperelliptic involution ϕ and b represents the
involution α. Appying [BEGG] and [BCNS], we have that:

θ−1r (〈a〉) has signature (0; [2g]; {(2, 2)}). Now:

• for g odd:

θ−1r (〈b〉) has signature (r;−; [2]; {(−)
g−1
2
−r
... (−)(2, 2)}) with r > 0 and

(0; +; [2]; {(−)
g−1
2... (−)(2, 2)}) with r = 0,

θ−1r (〈ab〉) has signature (r + 1;−; [−]; {(−)
g+1
2
−r
... (−)}).

• for g even:

θ−1r (〈b〉) has signature (r;−; [−]; {(−)
g
2
−r
... (−)(2, 2)}) with r > 0 and

(0; +; [2]; {(−)
g−1
2... (−)(2, 2)}) with r = 0,

θ−1r (〈ab〉) has signature (r + 1;−; [2]; {(−)
g
2
−r
... (−)}).

The twisted property for chains and ovals is determined by the image of
the connecting generator of the NEC groups. For instance, for the case g
odd, the twisted chain of the involution α is produced by

θr(c0) = a, θr(c1) = id,θr(c2) = b, θr(c3) = ab

Remark 3 For genus g = 2 the disconnectedness of the hyperelliptic branch
locus of non-orientable Klein surfaces follows from [Ci].

6 The branch locus for the moduli of hyperellip-
tic orientable Klein surfaces with one boundary
component

Now, we shall study the connectedness of the set BK,Hyp(g,+,1) that consists of the
points in M(g,+,1) that are hyperelliptic and with automorphisms different
from the hyperelliptic involution and the identity.

Proposition 4 The hyperelliptic branch locus BK,Hyp(g,+,1) is connected.
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Proof. Consider a surface X in the hyperelliptic branch locus with the
hyperelliptic involution ϕ. The quotient X/ 〈ϕ〉 is a disc with 2g + 1 conic
points of order 2 (see [BEGG]). Let G be the automorphism group of X,
the quotient group G/ 〈ϕ〉 is cyclic or dihedral, see [BEGG] (observe that
G/ 〈ϕ〉 acts on a disc).

Let BHyp,G,θ(g,+,1) be the connected subset of BK,Hyp(g,+,1) given by the surfaces
with automorphism group containing the group G (where G contains the
hyperelliptic involution) acting in a fixed way given by θ.
We have: BK,Hyp(g,+,1) = ∪BHyp,G,θ(g,+,1) =π(g,+,1)(∪s≺(0;[22g+1];{(−)}),θi∗(Ts)), where
s ≺ (0; [22g+1]; {(−)}) means signatures of NEC groups containing groups
with signature (0; [22g+1]; {(−)}) and θ : D → G are epimorphisms such
that ker θ is isomorphic to the groups with signature (g; +; [−]; {(−)}) and
D is an abstract group isomorphic to NEC groups with signature s. Let
B(s) = π(g,+,1)(∪θi∗(Ts)), where s ≺ (0; [22g+1]; {(−)}) and θ runs over all
epimorphism from groups with signature s.

Thus

BHyp,G,θ(g,+,1) =(∪p|2gB(0; +; [2p, 2,
2g
p..., 2], {(−)})∪

∪ (∪p|2g+1B(0; +; [p, 2,
2g+1
p... , 2], {(−)})∪

(∪2r+s=2g+3B(0; +; [2, r..., 2]{(2, s..., 2)}).

The following unique monodromy θp : ∆→ Dp×C2 = 〈s, t〉×〈a〉, where

∆ has signature (0; +; [2,
2g+1−p

2p... , 2], {(p, 2, 2, 2)}) and θp is defined by:

xi → a
e→ a or id (according to the parity of g/p)
c0 → s, c1 → t, c2 → ta, c3 → id, c4 → s

yields that

B(0; +; [2,
2g+1−p

2p... , 2], {(p, 2, 2, 2)}) = BHyp,,Dp×C2,θp(g,+,1) ⊂

B(0; +; [p, 2,
2g+1
p... , 2], {(−)}) ∩ B(0; +; [2, g..., 2], {(2, 2, 2)}) 6= ∅

(the hyperelliptic involution of D/ ker θp is represented by a). Similarly:

B(0; +; [2,
g
p..., 2], {(2p, 2, 2)}) = BHyp,D2p,θ

′
p

(g,+,1) ⊂

B(0; +; [2p, 2,
2g
p..., 2], {(−)}) ∩ B(0; +; [2, g..., 2], {(2, 2, 2)}) 6= ∅.
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Now, for the points in BK,Hyp(g,+,1) having anticonformal involutions we con-
sider the following monodromies:

1. The monodromy θ−3 : ∆ → D4 = 〈s, t〉 , where ∆ has signature
(0; +; [2, k..., 2], {(4, 2, g+2−2k... , 2)}), defined by,

xi → (st)2

e→ (st)2 or id (according to the parity of k)
c0 → s
c1 → t

c2 → t(st)2

c3 → t
c4 → t(st)2

c5 → t
...

cg+1−2k → t or t(st)2

cg+2−2k → id
cg+3−2k → s

(the hyperelliptic involution ϕ of D/ ker θ−3 is represented by (st)2).
This yields:

BHyp,D4,θ−3(g,+,1) ⊂ B(0; +; [2, 2k..., 2], {(2, 2g+3−4k... , 2)})∩B(0; +; [2, g..., 2], {(2, 2, 2)}) 6= ∅

2. The monodromy θ−5 : ∆ → D4 = 〈s, t〉 , where ∆ has signature
(0; +; [2, k..., 2], {(4, 2, g+2−2k... , 2)}), defined by

xi → (st)2

e→ (st)2 or id (according to the parity of k)
c0 → s
c1 → t

c2 → t(st)2

c3 → t
c4 → t(st)2

c5 → t
...

cg−1−2k → t or t(st)2

cg−2k → id
cg+1−2k → s
cg+2−2k → t
cg+3−2k → s
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yields:

BHyp,D4,θ−5(g,+,1) ⊂ B(0; +; [2, 2k..., 2], {(2, 2g+1−4k... , 2)})∩ (4)

∩B(0; +; [2, g−1... , 2], {(2, 2, 2, 2, 2)}) 6= ∅

3. Finally the monodromy θ−3,−5 : ∆→ D4g = 〈s, t〉 where ∆ has signa-
ture (0; +; [−], {(4g, 2, 2, 2)}) defined by:

c0 → s, c1 → t, c2 → id, c3 → s(st)2g

(ϕ is now represented by (st)2g) produces:

BHyp,D4g ,θ−3,−5(g,+,1) =B(0; +; [−], {(4g, 2, 2, 2)}) ⊂

B(0; +; [2, g..., 2], {(2, 2, 2)}) ∩ B(0; +; [2, g−1... , 2], {(2, 2, 2, 2, 2)}) 6= ∅

Hence BKH(g,+,k) is connected.

7 Non-orientable Klein surfaces with two bound-
ary components

In this section we show, as an example, that the hyperelliptic branch locus of
non-orientable Klein surfaces with two boundary components is connected.
At the end we shall remark that this situation is general for non-orientable
Klein surfaces with two boundary components.

Proposition 5 BK,Hyp(2,−,2) is connected

Proof. Let X be a Klein surface in the hyperelliptic branch locus with the
hyperelliptic involution ϕ.The signature of the NEC groups uniformizing the
quotient orbifold X/ 〈ϕ〉 is: (0; [2, 2]; {(2, 2, 2, 2)}). The topological type of
ϕ is given by:

(2; +; 2, 0; 0, 0; {4}, {−})

that is to say: ϕ has two fixed points and an untwisted chain of length 4.
The automorphisms of X necessarily have order two, since such a auto-

morphism will induce an automorphism of a disc whose boundary is divided
by four corner points in four arcs alternately bicoloured (this bicoloration is
given by the projection of the boundary components and points in the chain
ϕ).

13



IfX has an automorphism ψ different from ϕ the possible types of actions
of groups 〈ϕ,ψ〉 produce the following signatures of NEC groups Γ such that
X/ 〈ϕ,ψ〉 = D/Γ with some epimorphism θ : Γ→ C2×C2 and D/ ker θ = X:

1. (0; [2, 2]; {(2, 2)})
2. (0; [2]; {(2, 2, 2, 2)})
3. (0; [−]; {(2, 2, 2, 2, 2, 2)})
Let now describe the equivalence classes of epimorphisms θ : Γ → C2 ×

C2 = 〈a, b〉, the element a
1. For signature (0; [2, 2]; {(2, 2)}) there is only one class:

θ2 : x1 → a, x2 → b, e→ ab, c0 → a, c1 → id, c2 → a

2. For signature (0; [2]; {(2, 2, 2, 2)}) there are two classes θ1 and θ′1
defined by:

θ1 : x→ a, e→ a, c0 → a, c1 → id,c2 → a, c3 → b, c4 → a

θ′1 : x→ a, e→ a, c0 → a, c1 → id,c2 → b, c3 → id, c4 → a

For signature (0; [−]; {(2, 2, 2, 2, 2, 2)}) there are two classes θ0 and θ′0
defined by:

θ0 : c0 → a, c1 → id,c2 → a, c3 → b, c4 → ba, c5 → b, c6 → a

θ′0 : c0 → id, c1 → a, c2 → id, c3 → b, c4 → ab, c5 → b, c6 → id

We have: BK,Hyp(2,−,2) = ∪BHyp,G,θ(2,−,2) =π(2,−,2)(∪s≺(0;[2,2];{(2,2,2,2)}),θi∗(Ts)), where
s ≺ (0; [2, 2]; {(2, 2, 2, 2)}) means signatures 1, 2, 3 above and θ is θi, i =
0, 1, 2 or θ′j , j = 0, 1.

We shall denote the connected set π(2,−,2)(∪s≺(0;[2,2];{(2,2,2,2)}),θi∗(Ts)) by
BHyp,θ(2,−,2)(s).

Consider the monodromies θ0′,1 : ∆ → C2 × C2 × C2 = 〈b,m, a〉 (the
hyperelliptic involution ϕ is represented by a) and θ′0,1′ : ∆→ C2×C2×C2,
with ∆ of signature (0; [−]{(2, 2, 2, 2, 2)}) defined by:

θ0′,1 : c0 → m, c1 → a, c2 → id, c3 → ab, c4 → b, c5 → m

θ01′ : c0 → m, c1 → id, c2 → a, c3 → ab, c4 → b, c5 → m

We have (see [BEGG]):
BHyp,C2×C2×C2,θ0′1(2,−,2) ⊂ B(0; [2, 2]; {(2, 2)})∩BHyp,C2×C2,θ1(2,−,2) ∩BHyp,C2×C2,θ0′(2,−,2) 6= ∅

and
BHyp,C2×C2×C2,θ01′(2,−,2) ⊂ B(0; [2, 2]; {(2, 2)})∩BHyp,C2×C2,θ1′(2,−,2) ∩BHyp,C2×C2,θ0(2,−,2) 6= ∅

Then BK,Hyp(2,−,2) is connected.

14



Remark 6 Remark that the groups of automorphisms of hyperelliptic non-
orientable Klein surfaces with two boundary components and even genus are,
as for genus two: C2, C2 × C2 and C2 × C2 × C2. The subspace of BK,Hyp(g,−,2)

provided by NEC groups with signature (0; +; [2,
g
2
+1
... , 2], {(2, 2)}) is connected

and cuts all the other equisymmetric subspaces.
The groups of automorphisms of hyperelliptic non-orientable Klein sur-

faces with two boundary components of odd genus are: C2, C4, C2 × C2 and
D4. Again, the subspace of BK,Hyp(g,−,2) provided by NEC groups with signature

(0; +; [4, 2,
g−1
2... , 2], {(2, 2)}) (corresponding to surfaces with a unique topolog-

ical class of actions of C4) is connected and cuts all the other equisymmetric
subspaces.

The hyperelliptic branch loci of non-orientable Klein surfaces with two
boundary components are connected.
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