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Abstract: Cognitive diagnostic models (CDMs) are increasingly being used in various assessment con-
texts to identify cognitive processes and provide tailored feedback. However, the most commonly used
estimation method for CDMs, marginal maximum likelihood estimation with Expectation–Maximization
(MMLE-EM), can present difficulties when sample sizes are small. This study compares the results
of different estimation methods for CDMs under varying sample sizes using simulated and empiri-
cal data. The methods compared include MMLE-EM, Bayes modal, Markov chain Monte Carlo, a
non-parametric method, and a parsimonious parametric model such as Restricted DINA. We varied
the sample size, and assessed the bias in the estimation of item parameters, the precision in attribute
classification, the bias in the reliability estimate, and computational cost. The findings suggest that
alternative estimation methods are preferred over MMLE-EM under low sample-size conditions,
whereas comparable results are obtained under large sample-size conditions. Practitioners should
consider using alternative estimation methods when working with small samples to obtain more
accurate estimates of CDM parameters. This study aims to maximize the potential of CDMs by
providing guidance on the estimation of the parameters.

Keywords: cognitive diagnosis modeling; estimation; sample size; MMLE-EM; Bayesian

1. Introduction

Cognitive diagnostic models (CDMs) are confirmatory latent class models with ap-
plications in educational assessment, clinical psychology, and industrial–organizational
psychology, among others (e.g., [1–4]). Specifically, by adopting an item response function
that accounts for the relationship between the assessed attributes (skills, cognitive processes,
competences) and a Q-matrix with the dimensions J items × K attributes, CDMs yield the
classification of examinees into one of the possible latent profiles denoted by αl. There are
2K latent classes in the most common case of dichotomous attributes, although there are
models that consider polytomous attributes [5]. Several introductions to these models are
available, discussing the most recent developments and their estimation in R [6,7].

1.1. The DINA Model

Recently, Sessoms and Henson (2018) [8] conducted a review of the empirical applica-
tions using CDM published to date. The authors reported that the most commonly applied
model was the deterministic input noisy output “and” gate (DINA) model [9]. One of the
reasons for preferring this model is its ease of interpretation, as opposed to more complex
models. Specifically, for a given item j, regardless of the number of attributes assessed by
that item (K∗j ), the DINA model separates examinees into two latent groups: those who
possess all the attributes required by that item (η1) and those who do not master at least one
of those attributes (η0). For example, for an item whose Q-matrix vector is qj = {1, 1, 0},
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i.e., it measures the first two attributes evaluated in a test but not the third, the η1 group
would be composed of individuals with αl = {1, 1, 0} and {1, 1, 1} and the η0 group would
be composed of all the others ({0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {1, 0, 1}, and {0, 1, 1}).
A representation of this model for one item measuring one attribute and another item
measuring two attributes is shown in Figure 1. The DINA model considers two parameters
per item, the probability of failure for η1 denoted as sj (slip parameter) and the probability
of success for η0 denoted as gj (guessing parameter). In both cases, although the items
vary in complexity (i.e., the number of attributes evaluated), only these two parameters are
estimated. It is noticeable in the figure how item 9 has higher guessing and slip parameters.
A common measure of item discrimination is 1− gj − sj, which indicates the difference in
success probability between groups η0 and η1.
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DINA model (G-DINA; [11]), because it allows us to isolate the complexity factor of the 
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According to Sessoms and Henson (2018) [8], the DINA model has been applied under 
widely varying sample-size conditions, with sample sizes as low as 109 and as high as 
71,000. In their review, they found that, in general, the sample size varied greatly from 
study to study, with the mean being 1787.77. General models such as G-DINA were 
mostly applied under conditions of larger sample sizes. Nevertheless, and this is why it is 
particularly interesting to put the focus on the DINA model, it is worth noting that CDMs 
are born in the field of education with the primary objective of providing diagnostic feed-
back to students [13]. This redounds to the idea that studying parameter recovery under 
the DINA model in low sample-size situations is particularly relevant. Some recent appli-
cations in this context have been conducted with school and university samples [14,15]. 
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It should be noted that the estimated item parameters will be used not only to classify
examinees, but also in the evaluation of the model fit or the computation of the reliability
indices, among other analyses. How difficult or easy it is to estimate these parameters is
related to the complexity of the model and Q-matrix (i.e., the number of parameters to be
estimated) and the available sample size. In this study, we focus on the DINA model as
opposed to other more general models, such as its generalized version, the generalized
DINA model (G-DINA; [11]), because it allows us to isolate the complexity factor of the
model, as the DINA model always has two parameters per item regardless of the complexity
of the item q-vector. Moreover, previous studies have already explored the topic of model
complexity (e.g., [12]). This will allow us to focus on the effect of sample size. According to
Sessoms and Henson (2018) [8], the DINA model has been applied under widely varying
sample-size conditions, with sample sizes as low as 109 and as high as 71,000. In their
review, they found that, in general, the sample size varied greatly from study to study,
with the mean being 1787.77. General models such as G-DINA were mostly applied under
conditions of larger sample sizes. Nevertheless, and this is why it is particularly interesting
to put the focus on the DINA model, it is worth noting that CDMs are born in the field
of education with the primary objective of providing diagnostic feedback to students [13].
This redounds to the idea that studying parameter recovery under the DINA model in
low sample-size situations is particularly relevant. Some recent applications in this context
have been conducted with school and university samples [14,15].

1.2. Estimation Procedures

As in traditional item response theory, parameter estimation can take either a frequen-
tist or a Bayesian approach. The frequentist approach operationalized as the marginal
maximum likelihood estimation with Expectation–Maximization (MMLE-EM) algorithm
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is the most commonly employed estimation procedure in practice. Specifically, among
the studies collected in Sessoms and Henson (2018) [8], in 13 of the 36 articles reviewed
(36%) the DINA model is estimated. Only one of these studies reports that a different
estimation procedure from MMLE-EM was applied, and this alternative was Markov chain
Monte Carlo (MCMC) with Gibbs sampling [16]. It is interesting to note that of those
13 studies, this is the one that had the smallest sample size (109), although another of
the studies also had a small sample size of 144 [17]. This certainly makes sense consid-
ering that the MMLE-EM approach is easily accessible through two popular R packages
for CDM, such as the GDINA R package [18,19] and the CDM R package [20,21]. As of
March 2023, both packages together have accumulated almost half a million downloads on
CRAN. Other packages such as cdmTools [22,23] and cdcatR [24] offer additional analyses
taking as input the models calibrated with the first two packages. In summary, it is to be
expected that the ease of access to MMLE-EM estimation will keep it as the most popular
estimation procedure.

Due to this context, it is important to note that recently there have been articles
pointing out that in situations of low sample size, MMLE-EM can have boundary problems,
i.e., that the parameter estimate (in this case a probability of success bounded between 0
and 1) converges toward the boundary of the parameter space [25,26]. It is for this reason
that different alternatives for estimating item parameters or classifying individuals have
been proposed in the literature. In these situations, it might be more convenient to adopt a
Bayesian approach that prevents the aforementioned problems [27,28].

An approach that has started to gain popularity in the psychometrics field is a Bayesian
use of MCMC methods. The frequentist approach considers model parameters as fixed
and provides point-estimates for those parameters. On the contrary, the Bayesian approach
seek the posterior distribution of the model parameters. This posterior distribution is
typically represented in terms of posterior mean and standard deviation, which would be
the equivalent to the frequentist point-estimate and standard errors. MCMC methods are a
class of algorithms for sampling from a probability distribution. To perform this process,
it is necessary to define a complete likelihood and prior distribution for the parameters,
which will be used to calculate a combined posterior distribution. MCMC techniques are
employed to produce samples from this joint posterior distribution. Specifically, these
methods use the previous sample values to randomly generate the next sample value,
generating a Markov chain, estimating a posterior distribution. Each random sample is used
to generate the next random sample, hence the chain [29]. One particular MCMC method,
the Gibbs sampler, is very widely applicable and efficient to a broad class of Bayesian
problems. Gibbs sampling is a special case of the Metropolis–Hastings algorithm, which
is a generalized form of the Metropolis algorithm [30]. Gibbs sampling is applicable in
situations where the joint distribution is not explicitly known or it is challenging to directly
obtain samples from it, but the conditional distribution of each variable is known and can
be more easily sampled from. Thus, the basic idea of Gibbs sampling is to iteratively sample
from the conditional distribution, rather than drawing directly from the joint posterior
distribution [31]. This sampler is used by default in popular software such as Just Another
Gibbs Sampler (JAGS) [32]. Another variation of MCMC methods is the Hamiltonian
Monte Carlo (HMC), which uses the derivatives of the density function being sampled
to generate efficient transitions spanning the posterior. It employs numerical integration
to simulate Hamiltonian dynamics approximately, followed by a Metropolis acceptance
step to correct the simulation. Compared to Gibbs sampling, HMC is more efficient in
obtaining samples with lower autocorrelations. Thus, the effective sample size for HMC is
usually much higher than the other MCMC methods. One software that generates random
representative samples from a posterior distribution implementing HMC is Stan [33]. Stan
operates with compiled C++ and allows greater programming flexibility, which is useful
for complex models, providing solutions that JAGS sometimes cannot [31].

Apart from MMLE-EM and MCMC estimation, several alternatives have been pro-
posed in recent years to implement CDM in low sample-size situations. A very recent
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one is the proposal by Ma and Jiang (2021) [34], who developed a Bayes modal estimation
(BM) based on the MMLE-EM estimation but incorporating prior distributions for the
items parameters. Another route is to renounce estimating item parameters in low-sample
situations, adopting a nonparametric procedure such as that proposed by Chiu and Dou-
glas (2013) [35], which compares observed responses to ideal response patterns. A recent
proposal is to reduce the model as much as possible, estimating a single parameter that
accounts for the differences between observed and ideal response patterns [36].

While these all turn out to be plausible alternatives, it is important to note that there is
no study to date that has captured the gain with respect to MMLE-EM. Although there are
some previous studies exploring this topic [34,37], they have compared some alternatives
but not all of them. The goal of the current study is to address this topic through a
simulation study and an empirical illustration. Therefore, this study redounds to the line
of work on the use of CDM in small samples [38] with the aim of concluding the best way
to estimate item parameters, so as to serve as a guide for future empirical applications
seeking to maximize the potential of CDM. We hypothesized a better performance of the
different alternatives against MMLE-EM in situations of low sample size and no differences
in situations of large sample size.

2. Materials and Methods
2.1. Item Parameter Estimation Methods and Attribute Profile Classification

We implemented different estimation methods to estimate the DINA model item
parameters in R [39]:

- For the MMLE-EM method we used the GDINA package. Sen and Terzi (2020) [40]
compared different software (CDM R package, flexMIRT, Latent GOLD, mdltm, Mplus,
and OxEdit) to estimate the DINA model using this estimation procedure. The dif-
ferences between estimated item parameters were always marginal. The same holds
true for Rupp and van Rijn’s (2018) [41] comparison of the R packages GDINA and
CDM, whereby the results reported here for the GDINA R package should be largely
generalizable to any other software. Details on MMLE-EM estimation can be found in
de la Torre (2009) [42]. This procedure uses the marginalized likelihood of the data:

L(X) =
I

∏
i=1

L

∑
l=1

L(Xi|αl)p(αl), (1)

where L(Xi|αl) = ∏J
j=1 Pj(αi)

Xij
[
1− Pj(αi)

]1−Xij is the marginalized likelihood of the
response vector for examinee i and p(αl) is the prior probability of the attribute vector
αl . In the same paper, the author provides the ML estimators of the guessing and
slip parameters. Specifically, ĝML

j = R0
l j/I0

l j and ŝML
j =

(
I1
l j − R1

l j

)
/I1

l j, where I0
l j (I1

l j)

indicates the number of people in η0 (η1) and R0
l j (R1

l j) indicates how many of those
people get item j right. As specified by default in the package, three sets of starting
values have been generated and the best set according to the observed log-likelihood
is used. This is performed to avoid the problem of local optima using MMLE.

- For the BM estimation, we applied the R code provided by Ma and Jiang (2021) [34].
The BM or posterior model estimation incorporates prior information about model
parameters into the EM algorithm. In a way, it can be seen as a computationally
efficient version of MCMC estimation. Specifically, the BM estimation of the guessing
parameter adopts ĝBM

j = (R0
l j + (β1 − 1))/(I0

l j + (β1 + β2 − 2 ), where β1 and β2 are
the parameters for a beta distribution β(β1, β2). The same consideration is taken for the
slip parameter. The interested reader is referred to the appendix of the original article
for more technical details. For BM and MCMC (described below), initial values were
drawn from a uniform distribution between 0.10 and 0.30. A β(5, 25) distribution was
used for the item parameters. This is a distribution centered at 0.166 (i.e., examinees
are expected to produce guessing and slip 1/6 (=5/(5 + 25)) of the times. We refer to
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this procedure as BM-info. On the other hand, in all cases the maximum a posteriori
estimator was adopted as the estimator of the attribute profile of the examinees using
a uniform distribution as the prior distribution.

- For the MCMC estimation, we used the Gibbs sampling estimator using the JAGS
code via the R package R2jags [43] provided by Zhan et al. (2019) [44]. The algorithm
was set to 2500 iterations and 500 burn-in in two chains as performed by Culpepper
(2015) [27]. We considered both a non-informative, flat prior [MCMC-unif; β(1, 1)] and
an informative prior [MCMC-info; β(5, 25)]. We tested that this estimator provided
almost identical results as the ones that could be obtained using Stan via the R code
provided by Lee (2016) [45] and the rstan package [46]. The computation times with
Stan were considerably slower than those of JAGS. For example, in the simulation
study, for a replication with 100 examinees, JAGS required 1.108 min and Stan 11.252.
Since the results were basically identical, we conducted the complete study using
JAGS. Another reason to prefer this software is that Zhan et al. (2019) [44] provide in
their article the codes for other models besides DINA, so the researcher interested in
applying other models can take advantage of this.

These four procedures (MMLE-EM, BM-info, MCMC-unif, and MCMC-info) provide
estimates of the guessing and slip parameters and use those estimates to classify examinees.
On the other hand, as a baseline for assessing the performance of the different estimation
procedures in classifying examines, two other procedures specifically designed to classify
examinees under low sample-size conditions were included:

- The nonparametric classification (NPC) method [35] was implemented using the
NPCD package [47]. No parameter estimation is conducted in the NPC method;
instead, ideal response patterns (ηl) are formulated for each possible attribute pro-
file based on a conjunctive, ηc

ll = ∑K
k=1 α

ql j
lk , or disjunctive, ηd

l j = 1− ∑K
k=1(1− α

ql j
lk ),

condensation rule. Here, we adopted the conjunctive condensation rule that accom-
modates non-compensatory processes such as the DINA model. Then, examinees’
observed response patterns (yi) are compared with the attribute profiles’ ideal re-

sponse patterns with the so-called Hamming distances, dh(yi − ηl) = ∑J
j=1

∣∣∣yij − ηl j

∣∣∣,
so that the attribute profile assigned to examinee i is the one that minimizes such dis-
tances. Note that ties can be found for two or more attribute profiles; in this case, the
assigned attribute profile would be randomly selected among those with the lowest
Hamming distance.

- The Restricted DINA model (R-DINA) [36] was estimated with the cdmTools pack-
age [23]. In the R-DINA model, a single parameter ϕ is estimated for the whole
model, which is defined as the proportion of observed responses that depart from
the ideal responses. Making a comparison with the more traditional DINA model,
ϕ = sj = gj ∀ j. The estimation procedure used in the package provides equivalent
results to the MMLE-EM estimation. The R-DINA model has been shown to provide
the same attribute profile classifications as the NPC method when no prior informa-
tion on the attribute joint distribution is incorporated. Small differences can be found
between both methods due to the randomness implied in the selection of the attribute
profile when there are ties between two or more attribute profiles (i.e., same, lowest
Hamming distance or, equivalently, same, largest likelihood).

Finally, Kreitchmann et al. (2022) [25] proposed a multiple imputation procedure
(MMLE-EM with MI) to account for the item parameter estimates uncertainty in computing
the classification accuracy estimates. Since this procedure is available in the cdmTools
package, we implemented it in order to have a baseline for comparison of the classification
accuracy estimates, which is one of the dependent variables described in the following sections.
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2.2. Data
2.2.1. Simulation Study

The simulation study consisted of simulating two cases of samples of 100 and 2000 ob-
servations with a uniform distribution for the attribute joint distribution. A total of 100
replicas per condition were implemented to assure the consistency of the results. The
Q-matrix used in the data generation and model estimation was the sim30DINA$simQ
Q-matrix included in the GDINA R package. In this Q-matrix, there are 30 items measuring
5 attributes. Each attribute is measured by 12 items, and there are 10 one-attribute items,
10 two-attribute items, and 10 three-attribute items. This Q-matrix includes two identity
matrices and satisfies the requirements for model identification [48]; it has been used in
multiple previous simulation studies [34,42,49]. The item quality was set to a medium
level by setting gj = sj = 0.20. Thus, the generating model coincides with the R-DINA
since DINA reduces to R-DINA when ϕ = sj = gj ∀ j [36], with ϕ = 0.20 in this case. It
is common to generate item parameters in this way in simulation studies as it will allow
the recovery of item parameters to be studied in a simple way [2,42]. Note that the prior
distributions for item parameters used for Bayesian methods are not centered at 0.20. This
was executed intentionally to facilitate a fair comparison with MMLE-EM. In a real situa-
tion, prior distributions should be established by the researcher considering the available
evidence (e.g., behavior of similar items, the expected quality of the items). In addition,
note that in small sample sizes, the established prior distribution can have important effects
on the posterior. As a final note regarding the prior distribution, it is important to clarify
that although both BM and MCMC require establishing a prior distribution, the effect of
this choice may be greater for BM. This is because BM regularizes the ML estimation using
that prior distribution, while MCMC will only take the prior distribution as a starting point
but will generate a posterior distribution through sampling. These factors (test length,
number of attributes evaluated, and item quality) were kept fixed at an intermediate level,
since the goal of the study is simply to illustrate the effect of sample size on parameter
estimation for a given condition. The levels chosen are representative of the empirical or
usually simulated conditions encountered: the mode in number of attributes assessed is
4 and the median 6.5 [8] and 30 items and gj = sj = 0.20 are frequently considered as
intermediate levels of these factors (e.g., [34,49]).

2.2.2. Empirical Study

The empirical study used the dataset and Q-matrix of the Fraction–Subtraction data [10]
available in the GDINA R package. This test consisted of 20 items measuring 8 attributes
related to fraction addition and subtraction and was responded to by 536 middle school
students. The attributes being measured were (1) convert a whole number to fraction,
(2) separate a whole number from fraction, (3) simplify before subtraction, (4) find a com-
mon denominator, (5) borrow from the whole number part, (6) column borrow to subtract
the second numerator from the first, (7) subtract numerators, and (8) reduce answers to
simplest form. This database was chosen because it has been used in multiple previous
CDM studies and an acceptable fit to the DINA model has been reported [50,51].

To illustrate the effect of sample size on the estimation of item parameters and the
robustness of each estimation procedure, we considered the estimates made with the total
sample as a baseline and sampled 20 replicas of 100 random examinees as an example
of a small database. On this small database, we ran all the estimation procedures and
compared the results (item parameters, attribute profile, and classification accuracy esti-
mates) obtained with those estimated with the total sample considering the values obtained
with the complete sample as the “true” values. The item parameters obtained with each
of the estimation methods are reported in Table 1. Taking as a reference the estimates for
MMLE-EM, it can be observed how in general guessing and slip differ for the same item
as is the case of item 13, with a guessing close to zero (0.013) but a high slip (0.335), and
guessing and slip also differ across items, with items such as item 2 where guessing and slip
are low (0.016 and 0.041, respectively) and others such as item 8 where guessing and slip
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are high (0.444 and 0.182, respectively). That is, contrary to what occurs in the simulation
study, these estimates would match the DINA model, which allows estimating different
guessing and slip for each item and a loss of fit would be expected with the R-DINA, which
estimates a single parameter common to all items. Consistent with this, the relative fit
statistics led to retain the DINA model. (AICDINA = 9394.606 vs. AICR-DINA = 11,686.39 y
BICDINA = 10,658.430 vs. BICR-DINA = 12,783.130).

Table 1. Estimated DINA item parameters for the fraction–subtraction dataset.

Guessing Parameter Slip Parameter
Item MMLE-EM BM-Info MCMC-Unif MCMC-Info MMLE-EM BM-Info MCMC-Unif MCMC-Info

1 0.030 0.049 0.045 0.065 0.089 0.094 0.078 0.085
2 0.016 0.041 0.025 0.048 0.041 0.045 0.040 0.045
3 0.000 0.021 0.008 0.026 0.134 0.127 0.132 0.124
4 0.224 0.218 0.236 0.228 0.110 0.110 0.111 0.112
5 0.301 0.287 0.310 0.292 0.172 0.167 0.153 0.152
6 0.095 0.116 0.198 0.176 0.044 0.047 0.038 0.045
7 0.025 0.041 0.035 0.049 0.197 0.182 0.201 0.184
8 0.444 0.376 0.434 0.370 0.182 0.176 0.164 0.163
9 0.288 0.212 0.237 0.182 0.247 0.238 0.248 0.237

10 0.029 0.041 0.035 0.047 0.214 0.203 0.193 0.187
11 0.066 0.074 0.067 0.076 0.082 0.083 0.084 0.086
12 0.127 0.140 0.265 0.233 0.041 0.050 0.038 0.048
13 0.013 0.026 0.017 0.030 0.335 0.312 0.336 0.313
14 0.062 0.087 0.162 0.146 0.061 0.066 0.045 0.056
15 0.031 0.053 0.032 0.055 0.105 0.103 0.113 0.112
16 0.109 0.118 0.184 0.163 0.111 0.110 0.092 0.098
17 0.038 0.051 0.044 0.054 0.138 0.136 0.142 0.139
18 0.119 0.124 0.130 0.133 0.138 0.136 0.135 0.133
19 0.022 0.034 0.026 0.037 0.240 0.221 0.235 0.214
20 0.013 0.027 0.020 0.031 0.157 0.154 0.144 0.144

2.3. Dependent Variables

The dependent variables we computed were the mean absolute bias (MAB) of the
guessing and slip parameters (Equation (2)), the proportion of correctly classified attribute
vectors (PCV; Equation (3)), and the reliability bias (Equation (4)).

MABg =
∑J

j=1|ĝ− g|
J

and MABs =
∑J

j=1|ŝ− s|
J

(2)

PCV =
∑N

i=1 I(α̂i = αi)

N
(3)

Bias = τ̂ − PCV (4)

where I(·) is the indicator function and τ̂ is the estimated test-level classification accuracy
which is computed from the average of the posterior probability of the attribute profiles [19,52].

In the empirical study, we computed the difference or agreement between the item
parameters of each sample size, attribute classifications, and reliability estimate. The mean
of the 20 replicas is presented as the value of each variable. In both studies, we also stored
the time required to complete the estimation for each of the item parameter estimation
procedures. The simulation was conducted in a desktop PC 11th Gen Intel(R) Core(TM)
i9-11900 @ 2.50GHz 2.50 GH with 32GB of RAM.

3. Results
3.1. Simulation Study

The results of the simulation study are summarized in Table 2. Note that to evaluate the
guessing and slip parameters only MMLE-EM, BM-info, MCMC-unif, and MCMC-info are
considered because NPC and R-DINA do not estimate guessing and slip parameters. Table 2
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also specifies the PCV and reliability bias of the true, generating model where guessing and
slip parameters are exactly the generating values (i.e., 0.20). Values in each replica were
averaged and those are the results presented in Table 2, together with standard deviations.

Table 2. Average values across conditions for mean absolute bias of the item parameters, proportion
of correctly classified attribute vectors, and reliability bias of the simulated data.

Method MAB (g/s) PCV Reliability Bias

n = 100 n = 2000 n = 100 n = 2000 n = 100 n = 2000

MMLE-EM 0.048/0.089 0.010/0.018 0.622 0.692 0.191 0.011
MMLE-EM with MI - - - - 0.000 −0.003

BM-info 0.033/0.044 0.010/0.017 0.660 0.692 0.086 0.009
MCMC-unif 0.044/0.084 0.010/0.018 0.660 0.686 0.026 0.010
MCMC-info 0.029/0.033 0.010/0.017 0.688 0.687 0.041 0.013

NPC - - 0.692 0.692 - -
R-DINA - - 0.690 0.691 0.002 0.000

True, generating model 0.692 0.692 0.001 −0.001
Notes: The SD of MAB varies between 0.001 and 0.016. The SD of PCV under the n = 100 sample condition
varies between 0.047 and 0.054 and is around 0.010 under the n = 2000 sample conditions. The SD of reliability
bias under the n = 100 sample condition varies between 0.035 and 0.056 and is around 0.010 under the n = 2000
sample conditions.

First, all procedures converged in results when the sample size is large. The MAB of
guessing and slip was very close to zero (around 0.01 and 0.02, respectively, in all cases).
The PCV was very close to that of the true, generating model (.692), indicating that 69% of
the examinees were correctly classified on their attribute profile and the bias in reliability
was also virtually 0. It is only when the sample size is small that differences among the
methods appear. The method offering the most accurate estimation of item parameters was
MCMC with informative priors, with MAB around 0.03 for both guessing and slip. The
results for BM-info were slightly worse, with the MAB for guessing at 0.033 (vs. 0.029 for
MCMC-info) and for 0.044 (vs. 0.033 for MCMC-info) for slip. The method leading to the
poorest item parameter recovery was MMLE-EM (0.048 and 0.089 for guessing and slip,
respectively), similar values to those obtained by MCMC with a uniform prior distribution.
Thus, Bayesian procedures (BM-info and MCMC) with informative priors led to better
item parameter recovery. It is worth noting how it can be consistently observed that the
error in the slip estimation was always larger than for guessing. This makes sense if we
consider that the slip parameter refers to a group (η1) that can be expected to be always less
numerous under the DINA model (with respect to η0), given its non-compensatory nature.

These differences in guessing and slip estimation translated into differences in clas-
sification accuracy. Thus, among the procedures for the estimate of the DINA model,
MCMC-info was the best method at classifying examinees (PCV = 0.688) and MMLE-EM
the worst (PCV = 0.622). The procedures specifically designed to classify examinees in
small samples also showed comparable performance to MCMC-info (PCV for NPC and
R-DINA was equal to 0.692 and 0.690, respectively).

Finally, it was also observed that the lack of precision in the item parameters translated
into a bias in the reliability estimation. Specifically, MMLE-EM obtained a very high
bias (0.191), which implies a considerable overestimation of reliability. It is worth noting
here that the multiple imputation procedure (MMLE-EM with MI) effectively managed to
eliminate that bias (0.000). R-DINA also provided unbiased estimates of reliability. Again,
MCMC-info offered slightly better results than those of BM-info (0.041 vs. 0.086), even
though both methods overestimated reliability.

To better understand the relationship between the three dependent variables, Figure 2
illustrates the relationship between MAB of guessing and slip, the proportion of incorrectly
classified attribute vectors (1-PCV), and the reliability bias, showing the result obtained for
each of the generated databases. It is apparent how, under n = 2000, there is no difference in
performance between the methods, i.e., the points overlap, but that under n = 100 there is an
direct relationship between MAB of guessing and slip and 1-PCV and reliability bias. It can
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be observed at a descriptive level that for MCMC-info the replicate-to-replicate variability
was somewhat lower.
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Figure 2. Relationship between mean absolute bias of the item parameters and proportion of correctly
classified attribute vectors and reliability bias for simulated data.

Regarding computing times, the fastest calculations were by MMLE-EM, BM-info,
NPC, and R-DINA; despite the sample size, each was completed in less than a second.
Meanwhile, the MCMC estimations were considerably longer, taking on average about
one minute for each estimation in the small sample-size condition and 30 min in the large
sample-size condition.

3.2. Empirical Study

The same analyses were conducted on the empirical data, which are exhibited in
Table 3. This time, the values reported reflects the average difference between the estimates
in the total sample size of 536 participants and those obtained in the randomly selected
sample of 100 examinees. The mean of the 20 replicas is presented and the complete
distribution is shown in Figure 3.

Table 3. Average values across 20 replications for mean absolute bias of guessing and slip, classifica-
tion agreement, and difference in estimated classification accuracy.

Method MAB (g/s) Classification
Agreement

Difference in Estimated
Classification Accuracy

MMLE-EM 0.051/0.040 0.519 −0.019
MMLE-EM with MI - - 0.044

BM-info 0.040/0.029 0.528 0.023
MCMC-unif 0.001/0.001 0.593 0.001
MCMC-info 0.001/0.001 0.558 0.001

NPC - 0.476 -
R-DINA - 0.487 0.003

Notes: The results presented are the difference between the 536 and the 100 samples. SD were generally very low,
with 0 being the smallest and 0.064 the greatest.
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Figure 3. Representation of the mean absolute bias of guessing and slip (MAB), classification agree-
ment, and difference in estimated classification accuracy (CA) across the 20 replications of 100 cases
compared to the results complete fraction–subtraction dataset.

The MCMC procedures were the ones that offered the most similar item parameters
on average, with the average difference being practically zero. The method leading to
the greatest differences in MAB was MMLE-EM (0.051 and 0.040 for guessing and slip,
respectively), followed by BM-info (0.040 and 0.029 for guessing and slip, respectively).
Regarding the similarity between the classifications performed with calibration in both
samples, it was highest for MCMC-unif (0.593) followed by MCMC-info (0.558). MMLE-EM
was the most divergent in results (0.519), with BM-info in second place (0.528) for the DINA
model estimates. Notably, NPC and RDINA offered even more divergent rankings than
those offered by MMLE-EM (0.476 and 0.487, respectively). With respect to reliability
estimation, there were no major differences, with the estimator for samples of 100 generally
coinciding with that obtained with the full sample. The biggest difference was for MMLE-
EM with MI (0.044) which this time offered, on average, slightly higher values in the
small samples.

Overall, the estimation times were similar to the ones obtained in the simulation study.
The MMLE-EM, BM-info, NPC, and R-DINA were generally estimated in less than a second.
MCMC-info and MCMC-unif performed at 28 min for 100 and 536 individuals.

4. Discussion

In response to the growing field of the use of CDMs for smaller sample sizes, this
paper examined various estimation methods of the DINA model comparing small and
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large sample sizes with simulated and empirical data, namely MMLE-EM estimation,
MCMC estimation, and BM estimation. The NPC method and R-DINA model were also
implemented to compare with the other methods, as these procedures were specifically
designed for small sample scenarios. The results of the simulation study and the empirical
data study show that, when the sample size was small (n = 100), the DINA model based on
the MMLE-EM algorithm demonstrated a higher bias in the item parameters that translated
to worse attribute classifications and reliability estimates when the sample size was low;
meanwhile, MCMC performed better overall. BM also performed better than MMLE-EM
in all the metrics considered. There were no differences between the procedures when
the sample size was large (n = 2000). As expected, the Bayesian procedures using a prior
distribution compatible with the true parameters performed better. It should be noted
that it was predefined to assume a prior distribution [β(5, 25)] centered at 0.16 when in
reality guessing and slips of 0.20 were simulated. Better performance would be expected
by employing a prior distribution fully compatible with the generated data (i.e., with the
maximum at 0.20 and lower variance). We wanted to reflect the fact that researchers may
have some knowledge about the characteristics of their items, but with some margin of error.
Even so, we found that MCMC without prior information (i.e., using a flat distribution)
performed better than MMLE-EM. That is, if no prior knowledge is available, MCMC may
be still a better alternative to MMLE-EM.

In both the simulation and the real data study, R-DINA generally had a good perfor-
mance in terms of classification accuracy and reliability estimation, surpassing or equaling
many of the estimation methods for DINA. However, it should be noted that this is a very
restrictive model, operating under the constraint guessing equals slip for all items. In the
simulation, this was true, thus favoring a good performance of R-DINA. Note however
that the performance of R-DINA and NPC in terms of classification agreement in the
simulation study was worse compared to the estimation of the DINA model. As argued
in the Materials and Methods section, this is to be expected considering the variability
in the estimated guessing and slip parameters and the results of the relative fit indices,
which showed a preference for the DINA model. Exploring this prior to interpreting any
model will therefore prove crucial. Although Nájera et al. (in press) [36] have found that
R-DINA can perform better than DINA even when this constraint is violated, in low sample
conditions where the estimation of the DINA model is very noisy (i.e., very small sample
size, poor item quality), we want to emphasize that it is necessary that, before interpreting
the output of R-DINA, an evaluation of its fit to the data and the relative fit with respect to
the DINA model is carried out. As noted in the results, when appropriate to use, R-DINA
provides accurate classifications, such as nonparametric methods, and an unbiased estimate
of reliability.

It should be observed from the results that the guessing parameter estimation is more
precise than the slip parameter. This can be explained because we have more participants
from whom to estimate guessing and fewer people to estimate slip from in the DINA
model, resulting in a more precise estimation of guessing. As is also evidenced from the
results, a correct estimation of item parameters such as guessing and slip is fundamental
for retrieving precise classifications and reliability estimates.

As with any simulation study, its results are generalizable to the extent that the
simulated conditions represent reality. Although an empirical study is also presented and
the levels of the factors considered were set at values congruent with the empirical studies
available to date, some comments can be made regarding the design to motivate future
research on the topic. First, in the present study we focused on the DINA model because it
is the most used model according to the review by Sessoms and Henson (2018) [8] and it is
easier to interpret. Nonetheless, we recommend exploring the difference in performance
among the estimation procedures for more complex models such as the G-DINA model
(e.g., [53]). The estimation of the DINA model is simpler as it has a smaller number of
parameters to estimate. Under more complex models, the differences between estimation
methods can be expected to become larger. That is, the results reported here may represent
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a downward estimate of the differences between methods. This was precisely the objective
of the article: to check whether there are differences under low or intermediate conditions
of number of attributes, items, and model complexity.

Second, the differences in computation time were large. The method with the best
performance (MCMC) was also the slowest. In situations of large sample size where no
differences in performance between estimation procedures can be expected, MMLE-EM,
which is very fast, can be preferred. Nonetheless, it is worth pointing out that a total of
5000 iterations, 1000 of them being burn-in, were conducted to assure model convergence
and stability. Nonetheless, this could be achieved with a lessened number of iterations,
significantly reducing the computation time. A pilot study should be conducted to evaluate
if the parameter and estimations differ notably. Other researchers are also developing
algorithms to reduce the computational cost of MCMC (e.g., [54]). Regarding another
decision of the researcher, it should be kept in mind that Bayesian procedures allow the
selection of prior distributions that vary in degree of informativeness. It is important that
this decision is not arbitrary but based on substantive criteria or actual prior information
(e.g., how difficult a topic is, how a similar item worked in the past).

Finally, the number of samples extracted in the empirical study was relatively small
(i.e., 20). Although examination of the distribution of the results obtained (see Figure 3)
shows that the conclusions drawn will be stable, the number of replicates could be increased
for greater precision in order to interpret the averages more carefully. In relation to the
previous point, in order to achieve this, it would be convenient to examine ways to speed
up the MCMC estimation.

5. Conclusions

This study finds that in large sample sizes the differences in performance between
the estimation procedures are negligible, which leads to the conclusion that it does not
matter which one is used and lower computational cost may be preferable. In addition,
in the simulation study, it can be firmly judged that the DINA model can be recovered
with very high precision in a small sample scenario because the results were identical, or
differ in decimals, to those obtained with the true, generating model, which is the best
estimation one could possibly have. Furthermore, the alternative estimation methods are
preferred over MMLE-EM under these low sample-size conditions. Therefore, to obtain
more accurate estimates of CDM parameters, it is advisable for practitioners to explore
alternative estimation methods when dealing with small sample sizes.
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