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ABSTRACT 

A good deal of experimental research is characterized by the presence of random effects on 

subjects and items. A standard modeling approach that includes such sources of variability is 

the mixed-effects models (MEMs) with crossed random effects. However, under-

parameterizing or over-parameterizing the random structure of MEMs bias the estimations of 

the Standard Errors (SEs) of fixed effects. In this simulation study, we examined two 

different but complementary perspectives: model selection with likelihood-ratio tests, AIC, 

and BIC; and model averaging with Akaike weights. Results showed that true model selection 

was constant across the different strategies examined (including ML and REML estimators). 

However, sample size and variance of random slopes were found to explain true model 

selection and SE bias of fixed effects. No relevant differences in SE bias were found for 

model selection and model averaging. Sample size and variance of random slopes interacted 

with the estimator to explain SE bias. Only the within-subjects effect showed significant 

underestimation of SEs with smaller number of items and larger item random slopes. SE bias 

was higher for ML than REML, but the variability of SE bias was the opposite. Such 

variability can be translated into high rates of unacceptable bias in many replications. 

Keywords: mixed-effects models; crossed random effects; random slopes; model selection; 

model averaging; ML; REML. 
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INTRODUCTION 

Hierarchical data can have complex random structures when, for example, sampled 

students are nested within neighborhoods and schools, but schools can have students from 

different neighborhoods and students from the same neighborhood can go to different schools. 

Both neighborhoods and schools could reflect part of the variability of the responses of 

sampled students. Usually, these complex random structures require crossed random effects 

models to properly analyze data (e.g., Raudenbush, 1993). A good deal of experimental 

research in the social sciences involves collecting measures that results in such random 

structures. As an example, consider a hypothetical experiment on reaction time where some 

individuals make decisions about the semantic similarity of different word pairs. In this 

experiment, differences across people could be modeled using subject random effects (e.g., 

individuals could systematically differ in their response to the same experimental items). 

Similarly, differences across items could be modeled using random effects because each 

stimulus has its own idiosyncrasy (e.g., an item could elicit systematically faster responses 

than another item). As such, much experimental research can be characterized by the presence 

of random effects on both subjects and items.  

This fact has been embraced by psycholinguistic researchers for decades (see Baayen, 

Davidson, & Bates, 2008). Both psycholinguistics and other experimental researchers are 

usually interested in specific task effects, and model random components of both subjects and 

items to avoid potential bias in the fixed effects when their variances are ignored (see a 

detailed explanation below; see also Hoffman, 2015; Hox, Moerbeek, & Van de Schoot, 

2018; Meyers & Beretvas, 2006). They are often times interested in estimating such random 

components as informative parameters of the psychological processes of interest (e.g., testing 

if experimental effects present variability between subjects or items; see also Barr, 2013 for a 

similar rationale on the use of random effects as a confirmatory hypothesis testing approach). 
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A standard modeling approach to capture random effects in the data are the mixed-

effects models (MEMs). Here, fixed effects identify the systematic relations between 

independent and dependent variables, whereas random effects quantify the heterogeneity or 

variability in intercepts or slopes of different clusters1 (e.g., Raudenbush & Bryk, 2002; 

Hoffman, 2015; Pardo & Ruiz, 2012). In psycholinguistics and experimental research, 

different strategies have been proposed to analyze subjects/items variances using Analysis of 

Variance (ANOVA; see for example the F1 X F2 criterion, Clark, 1973, Raaijmakers, 

Schrijnemakers, & Gremmen, 1999), but these techniques are not able to properly analyze 

subjects and items random slope variances simultaneously in the presence of incomplete or 

unbalanced data (see Hoffman, 2015 for a complete rationale on the difference between least 

squares and likelihood-based estimations). For this reason, MEMs with crossed random 

effects have become a standard method to analyze experimental data that include random 

slopes for subjects and items simultaneously using likelihood-based estimations (e.g., Baayen 

et al., 2008; Hoffman & Rovine, 2007; Quené & van den Bergh, 2004; Bates, Kliegl, 

Vasishth, & Baayen, 2015). 

Despite the flexibility and wide use of MEMs, a model specification is needed that is 

optimal for the data in order to avoid errors of statistical inference (McNeish & Kelley, 2019; 

McNeish, Stapleton, & Silverman, 2017). For example, an important consequence of under-

estimating or over-estimating the random structure of MEMs is biasing the estimation of the 

Standard Errors (SEs) and p-values of the fixed effects. Estimated fixed effects in MEMs are 

similar across different random structures, but the SEs and the p-values of those fixed effects 

are a function of which random effect variances are estimated (see, for example, Hoffman, 

2015; Hox et al., 2018; Meyers & Beretvas, 2006). Because of this, improving the estimation 

 
1 In some contexts, fixed and random effects of MEMs are called models for the mean and variance, 

respectively. 
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of the SEs and p-values of fixed effects is critical for making correct decisions about analyses 

of experimental data. Corrections for SEs of fixed effects have been proposed, for example, 

for situations when one crossed random effect is ignored (Lai, 2019). However, the true 

model is unknown and, thus, it is unclear which are the correct SEs estimations. 

In the present study we focus on true model selection and estimation of SEs of fixed 

effects in situations in which random effects are assumed to exist but the need to include 

crossed random effects (e.g., random effects for subjects and items) is not known. This is a 

common situation, for example, in experimental research such as psycholinguistics where 

variation across items and subjects is key to understand the psychological processes 

underlying the data. In particular, we study true model selection and the bias of SEs of fixed 

effects in MEMs with crossed random effects in conditions when the true variance 

components are not known. For this, we use two different but complementary perspectives: 

model selection based on likelihood-ratio tests and model averaging based on Akaike weights. 

Model selection strategies try to find the model that best fits the data. Model averaging 

approaches combine information from the competing models to provide an optimal set of 

estimates (see for example: Burnham & Anderson, 2002, 2004; Kaplan & Lee, 2018; Konishi 

& Kitagawa, 2008).  

Model Selection: Bottom-Up vs. Top-Down 

Although, in theory, random effects should be included as justified by the 

experimental design2 (Barr, Levy, Scheepers, & Tily, 2013), the true population model is 

almost never known. Thus, selecting the right model can be difficult when facing with various 

 
2 Note that random effects are relevant for different reasons. One of them is their relevance to estimate SEs and 

p-values of fixed effects. Other more common reason is they provide information about variance in the data. Not 

only the presence of relevant random effects can be useful, but can be the focus of hypothesis testing. This aspect 

is particularly relevant because the parameterization of random effects should be considered a confirmatory 

hypothesis testing itself (Barr, 2013). 
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competing models. One of the most common criterion for model selection is the likelihood-

ratio test. Using this test, two standard strategies for model selection typically used are the 

bottom-up and the top-down model selection scheme. The bottom-up strategy starts with the 

simplest model, and likelihood-ratio tests are used to decide if adding a random effect 

improves the model fit. The top-down strategy starts with the more complex model, and 

likelihood-ratio tests are used to decide if deleting a random effect worsens the model fit. 

Both the bottom-up and the top-down strategies are based on the deviance (−2LL) and the 

likelihood-ratio test as a goodness-of-fit measure for model selection. However, they have 

different starting points. Top-down consists in reducing the complexity of random effects 

(Barr et al., 2013), whereas bottom-up consists in increasing the complexity of random effects 

(Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). Each model selection strategy requires 

the same number of model comparisons, but they have different starting points, which make 

the order of comparisons different. Although, intuitively it may appear as if both strategies 

would converge on a similar model, it is not clear if each strategy favors simpler or more 

complex models due to their different starting points. See the Data analysis section as an 

example of how we applied model selection with both bottom-up and top-down strategies in 

this study. 

Model Averaging: Akaike Weights 

As an alternative to selecting a model based on its fit to the data, model averaging 

proposals attempt to use all the available information in the competing models to increase the 

precision of the model estimations (e.g., Burnham & Anderson, 2002, 2004; Konishi & 

Kitagawa, 2008). In the present study, we use Akaike weights (Burnham & Anderson, 2002; 

Steele, Ferrer, & Nesselroade, 2014) for model averaging, but other approaches exist that 

account for model uncertainty using Bayesian model averaging (e.g., Kaplan & Chen, 2014; 

Kaplan & Lee, 2018). Model averaging using Akaike weights involves fitting the various 
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competing models and using information relative to the estimation of the parameters and the 

fit indices (see Burnham & Anderson, 2002). This procedure can be summarized into three 

consecutive steps: First, all relevant models are fitted. Second, Akaike weights are computed 

using the Akaike information criterion (AIC; Akaike, 1973, 1974) for each competing model 

as a relative evidence in favor of each model among all the competing models (Burnham & 

Anderson, 2002). Finally, the target parameters of the model (fixed effects, standard errors, 

variances, etc.) are estimated using Akaike weights. Different derivations of the AIC fit index 

like the AIC with correction for small sample sizes (AICc) can be used within the same 

procedure. See the Data analysis section as an example of how we applied model averaging 

based on Akaike weights in this study. 

On the difference between ML and REML estimators 

Restricted Maximum Likelihood (REML) is recommended for estimating variance and 

covariance parameters, while Maximum Likelihood (ML) is suggested for estimating fixed 

effects (West, Welch, & Galecki, 2014; see also Morrell, 1998). This is the case because ML 

and REML estimators guarantee the generation of, at least, positive semi-definite estimations 

of variance components, but they are not necessarily full rank estimations (e.g., Anderson, 

Anderson, & Olkin, 1986; Vasdekis & Vlachonikolis, 2005). This means that the rank of such 

estimations will depend on some conditions of the data, where the ML rank will always be 

less or equal than the one from REML (Vasdekis & Vlachonikolis, 2005).  

In the context of longitudinal data analysis, Vasdekis & Vlachonikolis (2005) showed 

that incorrect models of the variances generate differences in terms of efficiency in favor of 

REML, relative to ML estimators. These results reinforce the assumption that REML produce 

more accurate estimates of the random effects than ML (e.g., Thompson, 1962; Jiang, 1996). 

The consequences of these differences have also been observed in terms of better balances of 
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type I and II error rates in REML than in ML (Luke, 2017), but also in an anti-conservative 

tendency of ML when evaluating the significance of fixed effects with likelihood ratio tests 

(Pinheiro & Bates, 2000; c.f., Barr et al., 2013). Furthermore, as described in Hoffman 

(2015), REML maximizes the likelihood of the data treating the fixed effects as known, while 

ML only maximizes the residuals treating the fixed effects as unknown. Such differences in 

how the likelihood of ML and REML estimators is computed determine what aspects of the 

model would be indexed in its model fit indicators (Hoffman, 2015). Thus, as we fit different 

random structures for the same fixed effects in this study, we expect to find relevant 

differences between both estimators in true model selection and bias of standard errors of 

fixed effects (SE bias). 

The Present Study 

Given that the under-parameterization and the over-parameterization of the random 

structure of MEMs is supposed to increase SE bias, a correct specification of the random 

effects is needed when fitting MEMs with crossed random effects. Unfortunately, the true 

structure of the variance components is almost never known, leading to notable uncertainty 

about the various possible models. In the present study, we examine the SE bias of fixed 

effects in MEMs with crossed random effects using two different but complementary 

perspectives: model selection based on likelihood-ratio tests and model averaging based on 

Akaike weights. 

Specifically, we are going to compare the performance of two different model 

selection strategies based on likelihood-ratio tests that are commonly applied in empirical 

research. Both strategies have the same model comparisons, but they have different decision 

pathways (i.e., bottom-up vs. top-down). Moreover, previous research reports some 

differences between different likelihood ratio tests when selecting multilevel random 
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coefficient models (LaHuis & Ferguson, 2009). LaHuis & Ferguson (2009) found small 

differences in favor of the one-tailed likelihood ratio test balancing type I and II error rates in 

front of the two-tailed likelihood ratio test and the likelihood ratio test with a mixture chi-

square distribution (mixture likelihood ratio test). The latter one is an alternative version of 

likelihood ratio tests that assumes a mixture of different chi-square distributions with one and 

two degrees of freedom (LaHuis & Ferguson, 2009; Stoel, Garre, Dolan, & van den 

Wittenboer, 2006; Stram & Lee, 1994). Thus, we analyzed these versions of likelihood ratio 

test with different cut-off points for χ2 differences using α=0.01 and α=0.05 in all the 

conditions. 

All the MEMs of the present study are going to be estimated using ML and REML to 

analyze differences between them, as we expect to find that REML performs better in true 

model selection and SE bias because it is supposed to produce more accurate estimations of 

random effects. Furthermore, these strategies are compared with model selection of AIC and 

BIC indices. Also, we expect to find appropriate estimations of SEs of fixed effects using 

model averaging with Akaike weights because of using all the relevant information of 

competing models. To the best of our knowledge, this is the first time that model averaging 

has been applied to MEMs with crossed random effects for subjects and items in order to 

obtain appropriate estimations for SEs of fixed effects.  

METHODS 

Simulation Study 

We conducted a simulation study that emulates an experimental design in 

psycholinguistics where multiple items were answered twice in two different conditions 

(control vs. experimental) by two groups of participants (expert vs. novice) and used response 

time (milliseconds -ms-) as the outcome. While subjects and items random effects were 
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crossed (i.e., all subjects answered all items), the control vs. experimental conditions 

represent the within-subject effect and the expert vs. novice participants represent the 

between-subject effect. Let Ytsi be the outcome variable (ms) of subject s and item i where the 

t subscript indexes the within condition. The data generating model is presented in Equation 1 

based on Locker, Hoffman & Bovaird (2007) formulation: 

Ytsi = 000 + 010(Bs) + 100(Wtsi) + 110(Bs)(Wtsi) + U0s0 + U00i + U1s0(Wtsi) + 

U10i(Wtsi) + etsi  [1] 

where Bs (novice vs. expert groups) and Wtsi (control vs. experimental conditions) are the 

between and within factors, respectively. Bs and Wtsi factors were equally distributed in the 

study, that is, half of the participants were novice (Bs=0) and the other half were expert 

(Bs=1), and half of the items were for the control condition (Wtsi=0) and the other half were 

for the experimental condition (Wtsi=1). Fixed effects are represented with gamma (γ) letters 

and random effects are represented with U letters. 

In our simulation study, we used similar fixed and random effects population 

parameters as those in previous related work (Matuschek et al., 2017). Table 1 presents the 

simulation parameters. The main effects were set to 0 in all simulation conditions, so the 

interaction effect γ110 can be interpreted as the difference in control vs. experimental 

conditions between expert and novice groups. Three effect sizes were simulated (00, 25 and 

50 ms). The cluster-specific random effects for subjects and items intercepts are represented 

by U0s0 and U00i, respectively, and their variances (τ0s0 and τ00i, respectively) were set to 

10,000 ms in all conditions. The subject cluster-specific random slopes are represented by 

U1s0 and the item cluster-specific random slopes by U10i. Three variances (τ1s0 and τ10i, 

respectively) were simulated for random slopes (0, 3,600 and 14,400 ms). An intercept-slope 

covariance (𝜏𝑈0𝑠0 ,𝑈1𝑠0
 and 𝜏𝑈00𝑖,𝑈10𝑖

 for subjects and items, respectively) –equivalent to an 
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intercept-slope correlation = 0.60– was imposed for all simulated conditions, which means 

that random slopes are positively correlated with random intercepts. This value was used for 

both subjects and items when random slopes were simulated. Given that the residual level-1 

variance (σ2
e) was 90,000 ms, the effect sizes can be standardized in terms of Cohen’s criteria 

as d=0.00 (γ110=0.00), d=0.083 (γ110=25) and d=0.167 (γ110=50), in the conditions where no 

random variance was imposed for the slopes3. Although the effect sizes appear small in terms 

of Cohen’s criteria, all fixed and random effects parameters were generated based on prior 

empirical studies (similar simulation parameters can be found in Baayen et al., 2008; Barr et 

al., 2013; or Matuschek et al., 2017). The random effects and the error term were normally 

distributed. Furthermore, different sample sizes were considered for subjects and items given 

that the number of available observations is supposed to influence MEMs (Baayen et al., 

2008; Bell et al., 2010, July; Maas & Hox, 2005; Vasishth & Nicenboim, 2016). Specifically, 

different number of subjects (sample size for subjects: 30, 50, 100, 200, and 500 subjects) and 

items (sample size for items: 12, 24, 48, and 96 items) were simulated. A total of 540 

simulation conditions were considered in the present study, and 1,000 replications were 

generated for each simulation condition using MATLAB 2017b software. 

TABLE 1 HERE 

Data analysis 

In the present study, we consider that every MEM with crossed random effects will 

naturally have random intercepts for both subjects and items (i.e., minimal MEM4). Also, we 

 
3 Given that the effect size can be influenced by random slopes variances, two different versions of the effect size 

were tested in the present study. The first one was the simulated effect size (Table 1). The second one was an 

effect size that was corrected by the sampling variance considering the error term and the size of the random 

slopes of subjects and items. Willett (1989) presents two different illustrations for longitudinal modeling, and 

Judd, Westfall, & Kenny (2017) present a similar approach for experimental research. In the present study, no 

relevant differences were found between these two approaches when evaluating the influence of effect size in 

true model selection and SE bias. Thus, we report the results of the original effect size from Table 1. 
4 We called it minimal model following Matuschek et al. (2017). 
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consider that the most complex MEM will be one with crossed random effects with random 

intercepts and random slopes for both subjects and items (i.e., maximal MEM5). Then, the 

same fixed effects can be analyzed with four different statistical models depending on their 

random structure: a minimal MEM, a MEM with random intercepts for both subjects and 

items and random slopes for subjects (subject random slopes), a MEM with random intercepts 

for both subjects and items and random slopes for items (item random slopes), and a maximal 

MEM. Each of these models adds different random effects relative to the minimal model, as 

all of them share random intercepts for both subjects and items. Then, each of the replications 

of the simulation study was analyzed using these four MEMs with crossed random effects, 

and both ML and REML estimators, for a total of 4,320,000 analyses (540,000 replications x 

4 MEMs x 2 estimators). All MEMs were fitted with the lme4 package (Bates, Mächler, 

Bolker, & Walker, 2014) in R software (R Development Core Team, 2019). Approximately, 

99.92% and 99.81% of the estimated models converged for ML and REML, respectively. 

To recap, we fitted the four different MEMs with crossed random effects. We then 

implemented model selection with the two (bottom-up and top-down) strategies, using the 

different likelihood-ratio tests based on the deviance or −2LL as the criterion. Each 

likelihood-ratio test had two degrees of freedom for model comparisons because each 

additional random slope entails the random slope itself and its intercept-slope covariance. For 

each model selection strategy, we made four comparisons (explained in detail below) and 

examined the convergence between strategies using different fit indices. We used different 

likelihood ratio tests (one-tailed, two-tailed, and mixture likelihood ratio tests) with different 

cut-off points for χ2 differences of deviance comparisons using α=0.01 and α=0.05.  

 
5 We called it maximal model following Barr et al. (2013). 
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In the bottom-up strategy, we used a likelihood-ratio test to compare the −2LL of the 

minimal MEM against a model with subject random slopes and a model with item random 

slopes. If none of the comparisons were statistically significant, the minimal MEM was 

selected. If only one of those comparison was statistically significant, either the subject or the 

item random slopes MEM was selected. If both comparisons were significant, the −2LLs of 

the intermediate models were compared against a model with all random effects, the so-called 

maximal MEM. If these two new comparisons were statistically significant, the maximal 

MEM was selected. In the cases where one or both of those last comparisons were not 

statistically significant but both intermediate models (MEMs with crossed random slopes for 

subjects or items) obtained a better fit than the minimal MEM, the maximal MEM was 

selected. The latter scenario was very unlikely (less than 1% of the analyzed cases). 

Whereas the bottom-up strategy was based on improvement of model fit, the top-down 

strategy was based worsening of model fit. Here, the likelihood-ratio test was used to compare 

the −2LL of the maximal MEM against that of subject random slopes and item random slopes. 

If both comparisons were statistically significant, the maximal MEM was selected. If only one 

comparison was non-statistically significant, either the subject random slopes or the item 

random slopes was selected. Then, the −2LL of the selected model was compared against the 

−2LL of the minimal MEM. If this new comparison was statistically significant, the 

intermediate MEM was selected. Otherwise, the minimal MEM was selected. When both the 

subject or the item random slopes MEMs provided a better fit than the minimal and the 

maximal MEMs, the maximal MEM was selected. The latter scenario was very unlikely (less 

than 1% of the analyzed cases). 

For model averaging, we used Akaike weights (Burnham & Anderson, 2002) on the 

estimations of SEs of the fixed effects. Specifically, we computed the SEs of fixed effects 

weighting the estimations of each competing model using its corresponding Akaike weight 
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(ωi). In this case, no model was selected. Instead, a weighted estimation was computed using 

the information of all the competing models. In this study, we fit four models to the simulated 

data (i.e., minimal MEM, subject random slopes, item random slopes, and maximal MEM). 

For all R competing models (i = 1, …, R), the AIC (Akaike, 1973, 1974) of each i competing 

model is obtained. Then, the fits of all R models are ranked as following: 

∆i = AICi - AICmin   [2] 

where ∆i represents the difference between the AIC of each i competing model and that of the 

best fitting model (AICmin). Akaike weights are then calculated as: 

𝜔𝑖 =  
exp (−∆i/2)

∑ 𝑒𝑥𝑝(−∆r/2)𝑅
𝑟=1

   [3] 

where ωi is the resulting Akaike weight for each competing model based on ∆i of all R 

competing models. In this way, ωi is considered as relative evidence in favor of model i 

among the R competing models (Burnham & Anderson, 2002). Next, a weighted estimation of 

the parameters of interest (in this study, the SEs of fixed effects) is obtained weighting the 

estimations of each model i using its corresponding ωi. 

To examine the results of the simulation, we considered two dependent variables. 

First, we looked at the performance of model selection strategies for true model selection. We 

computed this as the proportion of times the data generating model was correctly selected. 

This was determined by the presence of random slopes for subjects and items in the 

population model: the minimal MEM was considered the true model in conditions without 

random slopes and the maximal MEM was considered the true model in conditions with both 

random slopes, while the intermediate models were considered the true model when only one 

of the random slopes were different from zero. We also considered the performance of AIC 
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and BIC fit indices6, and their agreement with the bottom-up and top-down model selection 

strategies. Second, we considered the bias of SEs of the fixed effects. SE bias was computed 

using the following formula: 𝑆𝐸 𝑏𝑖𝑎𝑠 =  100 ∗ (𝑆𝐸(Ѳ̂𝑖) − 𝑆𝐷(Ѳ̂𝑖)) / 𝑆𝐷(Ѳ̂𝑖), where 𝑆𝐸(Ѳ̂𝑖) 

is the estimation of the SE of fixed effects of each approach (the estimation of the selected 

model, or the averaged estimation of model averaging), and 𝑆𝐷(Ѳ̂𝑖) is the standard deviation 

of the distribution of the estimated fixed effects in the 1,000 replications (the estimations of 

the selected model, or the averaged estimation of model averaging). Then, SE bias is the 

percentage of difference between the estimated SEs of each approach (i.e., model selection or 

model averaging) and the standard deviation of the distribution of the estimated fixed effects 

in the 1,000 replications. 

RESULTS 

In the first set of analyses, we examined the proportion of accurate decisions (true 

model selection) and the agreements between bottom-up and top-down likelihood ratio tests 

and different fit indices (AIC and BIC). We also compared the performance of the likelihood-

ratio tests with AIC and BIC model selection, and explored which models were incorrectly 

selected in each strategy. Second, we investigated factors of the simulation study that affected 

true model selection. Third, we analyzed the bias of SEs of the estimated fixed effects using 

model selection and model averaging. 

Performance of model selection strategies 

Table 2 includes the overall proportion of true model selection (correct model 

selection) in all scenarios and the proportions for the different simulated scenarios (when the 

correct model is the minimal MEM, the maximal MEM, or the subject or the item random 

 
6 We also analyzed the performance of AICc correcting for the sample size (number of subjects) and the number 

of observations (number of subjects multiplied by number of items), but no relevant differences in true model 

selection were obtained with AIC index. For the sake of brevity, we decided to focus on AIC and BIC indices. 
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slopes). The proportions are shown as a function of the strategy (bottom-up and top-down) 

comparing the estimators (ML and REML) and their AIC and BIC fit indices. Table 2 also 

includes the three likelihood ratio tests (one-tailed vs. two-tailed vs. mixture) for two 

significance levels (α=0.01 vs. α=0.05). As it can be seen, the proportion of true model 

selection was virtually the same in all simulation conditions for bottom-up and top-down 

strategies and, as well, for both ML and REML estimators. True model selection, however, 

was generally medium (approximately, 0.80), indicating that the true model was correctly 

selected in only 80% of the replications. 

A first ANOVA was conducted to test the effects of the estimator (ML vs. REML), the 

likelihood ratio tests (one-tailed vs. two-tailed vs. mixture), the significance levels (α=0.01 vs. 

α=0.05), and the strategy (bottom-up vs. top-down). No interaction effect was relevant to 

explain model selection performance, but a main effect of significance level was found (η𝑝
2 =

0.027), favoring the correct selection of models with α=0.05 versus α=0.01. In addition, a 

main effect of likelihood ratio test was found (η𝑝
2 = 0.018), favoring the one-tailed and the 

mixture likelihood ratio tests in front of the two-tailed one by a small proportion difference of 

0.015. 

A second ANOVA was conducted to test potential differences between the 

performance of likelihood ratio tests comparing AIC and BIC, considering the ML and REML 

estimators (in this case, we fixed the likelihood ratio test to the one-tailed with α=0.05). 

Results showed no relevant interaction effect between the estimator and the approach, but a 

relevant main effect of the approach was observed with an η𝑝
2 = 0.090 where a mean 

proportion difference of, approximately, 0.12 was found in favor of the one-tailed likelihood 

ratio test and AIC in front of BIC. 

TABLE 2 HERE 
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Table 3 shows the agreements in selected models between the different likelihood ratio 

tests, combined with the strategy (bottom-up and top-down), and its derived fit indices (AIC 

and BIC) for both ML and REML estimators. Overall, the agreement between the likelihood 

tests and AIC (approximately 0.80) was higher than the one with BIC (approximately 0.70), 

and no differences were found between REML and ML estimators. In addition, an analysis on 

the agreements in incorrectly selected models revealed that bottom-up and top-down 

strategies select the same incorrect model in 95% of the replications (regardless of the 

likelihood ratio tests). Seldom one strategy selected the right model and the other did not (this 

occurred only in 4.1% of all replications analyzed). Again, no relevant differences were 

observed between REML and ML estimators (the incorrect decisions were very similar). In 

conclusion, the correct and incorrect decisions were very similar for the conditions examined 

and thus it is useful to know which models tend to be incorrectly selected. 

TABLE 3 HERE 

Table 4 presents the relative proportion of incorrect model selections of each strategy. 

Specifically, the relative proportion of incorrect selections of each strategy in each simulated 

scenario (true model) was analyzed. As it can be seen, all the strategies tend to favor the 

simpler models (i.e., the minimal MEM). In fact, a strong association was found between the 

incorrect model selection of the bottom-up and the top-down strategies with both ML and 

REML estimators (e.g., the one-tailed likelihood ratio test with α=0.05 obtained a Cramer’s V 

test = 0.813 between ML and REML in bottom-up strategy which means that they coincide in 

86.2% in the incorrect model selections). These results mean that both strategies and both 

estimators usually select the same incorrect model (this occurs regardless of the likelihood 

ratio test). However, their small differences can be explained due to the top-down strategy 

slightly tends to incorrectly select the maximal MEM more frequently than the bottom-up 

strategy (consequently, bottom-up tends to incorrectly select the minimal MEM on more 



17 
 

occasions). Regarding AIC and BIC indices, AIC showed a similar pattern than likelihood 

ratio tests, but BIC tends to select the simpler model more frequently (approximately, 

minimal MEM was selected in the 0.60 of the replications whose model selection was 

incorrect). 

TABLE 4 HERE 

Up to this point, it can be noted that the strategy (bottom-up and top-down), the 

estimator (ML and REML) and the AIC index derived from these estimators reach a very 

similar success rates of true model selection. The likelihood ratio test that favors more the true 

model selection is the one-tailed at a significance level of 0.05. BIC performance was 

markedly worse than the one of the likelihood ratio tests and the AIC index. 

Factors affecting true model selection 

In the next analyses, we examined the simulation conditions that most affected the true 

model selection using the partial η2 of ANOVAs. We analyzed the performance for true 

model selection of bottom-up strategy with one-tailed likelihood ratio test and α=0.05, and 

AIC from both ML and REML estimators (this within-factor was called strategy). This 

decision was made following an additional univariate ANOVA that showed no relevant effect 

sizes (partial η2) about the moderation of the differences among previous findings by means 

of the simulation conditions. The simulation conditions (between-factors) were the sample 

size for subjects and items, the size of random slope variances for subjects and items, and the 

effect size for the fixed interaction effect. The BIC index was discarded from these analyses 

because its performance was much worse than the likelihood ratio tests and the AIC in both 

ML and REML estimators.  

As expected from previous analysis, no substantive differences were found for the 

within-factor strategy (i.e., the one that compares the performance between likelihood ratio 
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test and AIC using both ML and REML): η𝑝
2=0.001 was found for the main within-factor 

effect and none of the partial η2 involving the interactions of this within factor with the rest 

exceeded η𝑝
2=0.014. Instead, four η𝑝

2>0.06 were found for the (between-factors) simulation 

conditions. The highest value was for the main effect of the number or items (η𝑝
2=0.191), 

followed by the main effect of the number of subjects (η𝑝
2=0.099), the interaction effect 

between number of items and size of random slope variance for subjects (η𝑝
2=0.080), and the 

main effect for the random slope variance for subjects (η𝑝
2=0.062). The random slope variance 

for items was less important (a main effect with η𝑝
2=0.024, and an interaction effect with 

number of subjects of η𝑝
2=0.025, were found). The effect size for the interaction fixed effect 

handled in this study was irrelevant (all η𝑝
2  involving this factor were less than 0.001). Figure 

1 presents a graphical summary of the results. 

FIGURE 1 HERE 

As it can be seen in Figure 1, when the number of items is small (especially for 12 and 

24 items) the model selection has a very low performance, unless there is no variance of 

slopes neither in subjects nor in items (upper left graph). With 24 or more items, the model 

selection performance exceeds 0.90 as long as there are more than 200 subjects. On the other 

hand, when the random slope variances (both for the subjects and items) is medium (i.e., 

3,600) the model selection is invariably bad unless there are 96 items (regardless of the 

number of subjects) or with 48 items together with 100 or more subjects. Otherwise, that is, 

with fewer items or few subjects, the incorrect selection of the minimal model is being 

favored, presumably because the variances of the slopes are not detected. Considering partial 

η2 in our simulated design, the performance is more affected by the random slope variance for 

subjects than by the random slope variance for the items. 

Bias in Standard Errors (SEs) of fixed effects in model selection and model averaging 
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In the next analyses, we examined the bias in SEs of the estimated fixed effects using 

model selection and model averaging. In the light of the previous results, the following 

analyses were conducted with the one-tailed likelihood ratio test with α=0.05 using the 

bottom-up model selection strategy. The standard deviation of the estimated fixed effects of 

all the replications of each condition was considered the true (population) values per 

condition. Then, the percentage of SE bias was computed as the difference of each SE 

estimation with that standard deviation of fixed effects per condition divided by that standard 

deviation of fixed effects per condition. Table 5 presents different descriptive analysis (mean 

and standard deviation of SE bias) for some representative conditions of the simulation study. 

We analyzed the influence of simulation conditions on the SE bias using the partial η2 of 

ANOVA (reporting η𝑝
2 ≥ 0.06 effects, medium effect sizes according to Cohen, 1988) for 

within-subject, between-subject and interaction fixed effects to test the influence of the 

estimator (ML vs. REML), the approach (model selection vs. model averaging), and the 

simulation conditions (number of subjects and items, effect size, and size of subjects and 

items random slopes). 

TABLE 5 HERE 

First, we analyzed the influence of simulation conditions on the bias of SEs of the 

within-subjects main effect (control vs. experimental conditions for items that was set to 0 in 

all simulation conditions). An interaction effect was found between the estimator, the number 

of items and the size of the item random slopes (η𝑝
2=0.152). Similarly, two different 

interaction effects were found between the estimator and the number of items (η𝑝
2=0.252) and 

between the estimator and the size of the item random slopes (η𝑝
2=0.173). A principal effect of 

the estimator was also found (η𝑝
2=0.565). Different minor interaction effects were found, but 

no interaction effect was found for the approach (model selection vs. model averaging). 
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Second, we considered the influence of simulation conditions on the bias of SEs of the 

between-subjects main effect (expert vs. novice, also set to 0 in all simulation conditions). A 

general interaction effect was found for all the variables included in the analysis -except the 

estimator- (η𝑝
2=0.144). Also, an interaction effect between the estimator and the number of 

subjects was found (η𝑝
2=0.225), and a principal effect of the estimator (η𝑝

2=0.286). Medium 

effect sizes were found in different interaction effects concerning the influence of the size of 

the subject random slopes in SE bias. 

Third, we examined the influence of simulation conditions on the bias of SEs for the 

interaction effect. Similarly, a general interaction effect was found for all the variables 

included in the analysis -except the estimator- (η𝑝
2=0.131). Also, an interaction effect between 

the estimator and the number of subjects was found (η𝑝
2=0.110), and a principal effect of the 

estimator (η𝑝
2=0.158). Medium effect sizes were found in different interaction effects 

concerning the influence of the size of the subject random slopes in SE bias. 

Table 5 also reports the standard deviation of SE bias as a measure of the variability of 

the SE bias of the estimations. As it can be observed, there is a direct relation between the 

number of subjects and items and the variability of SE bias. While this result was expected, 

the standard deviation of many conditions shows that, although the SE bias does not present 

directionality (i.e., its mean tends to zero), many replications would present important SE 

bias. These results are problematic as some conditions present standard deviations >20% of 

SE bias. In this way, model averaging with Akaike weights seems to be a less risky option 

considering the central tendency and the variability of the SE bias. 

In light of the results regarding SE bias, we examined the main interaction effects in 

Figure 2. This figure presents a graphical summary of the results using bottom-up model 

selection with one-tailed likelihood ratio test (α=0.05) and model averaging (Akaike weights) 
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for ML and REML (please note that results were very similar for both model selection and 

model averaging approaches). Figure 2 shows that SE bias was higher for the within-subject 

effects, relative to the between-subjects or the interaction effects, when there were fewer 

items. It also shows that SEs of fixed effects are underestimated in the presence of random 

slopes, and that ML tends to be more biased than REML. A decay of SE bias that depends on 

sample sizes can also be observed when there are random slopes (although the influence of 

sample size is significantly higher for the within-subject effect, relative to the between-

subjects or the interaction effects). This means that larger sample sizes and larger random 

slope variances are both related to lower levels of SE bias. SE bias was acceptable for 

between-subjects and interaction effects. In sum, complex interactions in the patterns of SE 

bias were apparent, but the general trend was that the lack of items/subjects increased SE bias 

when there are larger variances in their respective random slopes. This tendency affected ML 

estimator more negatively than REML. A similar pattern of results was observed for top-

down model selection, AIC index, and model averaging strategies. 

FIGURE 2 HERE 

DISCUSSION 

Summary of findings 

The aim of the present study was to examine model selection strategies as well as SE 

bias of fixed effects when using MEMs with crossed random effects for subjects and items. 

Specifically, we tested two different model selection strategies based on likelihood-ratio tests 

and model averaging using Akaike weights. Top-down had been hypothesized in prior 

research as reducing the complexity of random effects (Barr et al., 2013), whereas bottom-up 

had been proposed as increasing the complexity of random effects (Matuschek et al., 2017). 

In our results, true model selection was very similar for all the strategies considered (bottom-
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up and top-down likelihood ratio tests, and AIC model selection), except for the BIC fit index 

whose performance was lower. True model selection was approximately 0.80. This 

unexpected performance can be related to the high demands of the model selection task that 

was conducted in this simulation study. Such model selection task (where we evaluated if 

random slopes should be added or deleted to an already complex crossed random effects 

model with a partial random structure) is more demanding than evaluating the presence of a 

full crossed random effect such as subjects or items. In light of these results, these model 

selection tasks leave room for important improvements. 

One of the most relevant conditions for true model selection was the significance 

levels of the likelihood ratio tests. Using α=0.05 lead to better performances than α=0.01. 

Moreover, the sample sizes and the sizes of random slopes were a strong determinant for true 

model selection. True model selection was considerably low for conditions with smaller 

random slopes, so larger sample sizes are required to obtain adequate proportions of true 

model selection. On the contrary, true model selection was better for conditions with null or 

large random slopes, although higher sample sizes also favored true model selection. These 

results reinforce the differences between previous findings about the likelihood ratio tests 

being anti-conservative when testing the statistical significance of fixed effects (Pinheiro & 

Bates, 2000; Luke, 2017), and other papers that did not find them so anti-conservative for 

typical experimental conditions (e.g., Barr et al., 2013). Also, our results support the 

conclusions of LaHuis & Ferguson (2009) because we also found a slight difference in favor 

of the one-tailed in front of the two-tailed and the mixture likelihood ratio tests (although the 

differences with the later were negligible). No relevant differences were found between the 

bottom-up and the top-down model selection strategies in their true model selection 

performance. 
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The analysis of the incorrect model selections revealed that all the strategies tend to 

under-parameterize the random structure of the models (approximately, the minimal MEM 

was incorrectly selected in the 0.40 of the replications). This under-parameterization of the 

model was considerably higher for BIC (approximately, the minimal MEM was selected in 

the 0.60 of the replications whose models were incorrectly selected). These results can 

explain why true model selection was significantly higher for minimal MEMs, relative to the 

rest of the simulation conditions (those with random slopes for one or two crossed random 

effects). In this way, although the bottom-up and the top-down strategies presented 

considerable agreements (approximately, 0.95) and their correct and incorrect model 

selections were very similar, it can be seen than the bottom-up tend to favor the election of the 

minimal MEM more frequently than the top-down one that tends to favor the maximal MEM. 

We also examined the SE bias of fixed effects using model averaging with Akaike 

weights (Burnham & Anderson, 2002). Our results indicate that the SE bias of fixed effects 

were similar between model selection and model averaging. However, we found important 

differences across the various simulated fixed effects (within-subject, between-subject, and 

interaction effects). Specifically, in some conditions involving fewer items, the 

underestimation (SE bias) of the within-subject effect was significantly higher than the one of 

the other two effects. It is worth to mention that between-subject and interaction effects did 

not present significant bias even for small sample sizes. SE bias of fixed effects was related to 

the interaction between the estimator, the number of items and the size of the item random 

slopes. In this way, within-subject SE bias was higher in those conditions with lower item 

sample sizes and higher random slope variances, especially for ML estimator. On the 

contrary, the variability of SE bias led to unacceptable SE bias for some conditions (e.g., 

presenting standard deviations >20%). The differences between the experimental effects 

(within-subject vs. between-subject and interaction effects) and estimators (ML vs. REML) 
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are probably related to the relatively small number of items that were used to simulate the 

within-subject effect as the sample size of items would be limiting the available information 

necessary to estimate the parameters comparing to the between subjects and the interaction 

effects that would have more available information. These results are in accordance with the 

properties of ML and REML estimators (e.g., Hoffman, 2015). 

Overall, these findings suggest that, in designs with interactions involving between- 

and within-subject effects, the bias of SEs of fixed effects is acceptable (small), but it is 

related to the interaction between the number of subjects and the sizes of subjects random 

slopes. A similar pattern can be observed for between-subject effects. However, the bias of 

SEs of within-subject effects, such as control and experimental conditions for items, is larger 

and is related to the interaction between the number of items and the size of random slope 

variance for items. These results are in line with those found in previous studies (Barr, 2013). 

However, in contrast to previous recommendations advocating the use of REML to estimate 

covariance parameters and using ML to estimate fixed effects (e.g., West et al., 2014), we 

found that, in our simulated conditions, ML leads to the same proportion of true model 

selection (although ML yields more SE bias than REML). ML showed less variability of SE 

bias than REML. This was expected based on past research (Hoffman, 2015). In our case, 

however, this was probably associated with the under-estimation of random effects and thus 

the SEs of fixed effects. Such differences were especially relevant for conditions with small 

sample sizes and larger random slopes, being the only simulation conditions that were 

determinant for true model selection. 

Theoretical and methodological considerations 

When selecting a correct model among nested alternatives, using a bottom-up strategy 

(Matuschek et al., 2017), a top-down strategy (Barr et al., 2013), different likelihood ratio 



25 
 

tests (LaHuis & Ferguson, 2009), or a model averaging approach like Akaike weights 

(Burnham & Anderson, 2002) lead to similar results. Not only do these strategies share a 

similar performance in selecting the true model but also they obtain similar estimations of SEs 

of fixed effects whose bias depends on sample sizes and the variance of random slopes. 

Although model selection and model averaging are two convergent and useful solutions for 

reducing bias of SEs of fixed effects, we also showed that model averaging with Akaike 

weights could be a less risky option, as its variability of SE bias was smaller than the one in 

model selection. 

A general conclusion from our analyses is that both subjects and items sample sizes 

affect bias of SEs of fixed effects despite the presence of random slopes. Given that MEMs 

with crossed random effects are complex models and, in the conditions studied here, have two 

sources of variability (i.e., subjects and items), an increase in subjects and items leads to an 

increase in true model selection and a reduction in potential bias. Our findings agree with 

previous proposals suggested to reduce the negative effects of the random effects of subjects 

and items in experimental contexts (Judd et al., 2012, 2017): (1) use homogeneous subject or 

item samples, or (2) increment sample sizes if they have high variability. Then, given that 

both random intercepts and random slopes effects can be naturally found in representative 

samples, a solution to preserve the validity of empirical studies is to increase the number of 

subjects in order to gain representativeness of the entire population. Similarly, improving the 

experimental control of the items would be a good strategy to reduce the potential negative 

effects of items random effects when few items are used. This is especially important as we 

found higher SE bias for within-subject effects that usually depend on items from different 

experimental conditions. 

These methodological considerations could have important theoretical implications for 

empirical research because they can avoid errors of statistical inference. For example, 
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previous research showed that MEMs with crossed random effects can overcome the so-called 

language-as-fixed-effect-fallacy (i.e., generalizing findings beyond the specific sample of 

chosen materials; Clark, 1973), because item random effects are conceived as a random 

sample from a larger population of those items (Quené & van den Bergh, 2008). However, as 

the true variance model is not always evident in empirical studies, deciding the extent to 

which adding random slopes for subjects and items in our experimental research is an 

important decision. Similarly, research has pointed out that all item random variation should 

be included in order to take into account all relevant dimensions in experimental conditions 

for ecological validity (Hoffman, 2015). This means that MEMs with crossed random effects 

enable to test item exchangeability, which implies to control item variation for experimental 

control and to test if there are differential experimental effects for items. As long as random 

slopes for subjects or items are available, researchers ought to clarify theoretically why the 

experimental effects can depend on idiosyncratic differences. More importantly, as suggested 

by Barr et al. (2013), even the parameterization of random effects should be considered a 

confirmatory hypothesis itself. In this vein, the importance of model selection and model 

averaging strategies to determine random effects is emphasized. 

Limitations and future directions 

The present study examined true model selection and SE bias of fixed effects in a 

simulated experimental design with two interacting effects (a between- and a within-subject 

effect) where subjects and items random effects were crossed (i.e., all subjects answered all 

items). However, experimental designs strongly vary depending on the researcher’s 

hypothesis. For example, further research should determine if these findings are generalizable 

to designs with missing data and or incomplete experimental designs where subjects only 

answer a subset of items. Given that experimental designs are closely related to the random 

structure of the statistical models (Judd et al., 2017), future studies should investigate the 
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influence of idiosyncratic experimental designs on the bias in the SEs of fixed effects. Among 

the many possibilities, one interesting experimental design to explore is the single-case 

experimental designs (e.g., Smith, 2012). 

Barr et al. (2013) advocated a superiority of maximal MEMs in front of other 

alternative models due to not ignoring specific random slopes. In this line, future research 

should explore the consequences of ignoring specific random slopes when the true model is 

the maximal MEM and it has crossed random effects. This is because the SE bias of fixed 

effects that was observed in our simulation study was the consequence of a model decision 

task and we could expect that not using a model selection or a model averaging strategy 

would lead to a worse scenario for SE bias. Moreover, our simulation study fixed the 

intercept-slope covariance in all its conditions. But it is interesting to simulate different 

scenarios that manipulate that parameter to determine if there is a better true model selection 

in conditions with smaller intercept-slope covariances than conditions with larger ones. A 

new direction for future research could study the statistical power of detecting and estimating 

such parameters and its relation with samples sizes and sizes of random intercepts and slopes. 

In our study, true model selection for both ML and REML estimators showed unlikely 

rates, presenting no differences in the strategies that were tested. It should be noted here that 

we used the classic AIC index (AIC = 2k − 2LL; being k the number of parameters), but some 

corrections have been proposed for this estimator in MEMs due to AIC not being an 

asymptotically unbiased estimator (Greven & Kneib, 2010). One could expect improvements 

in true model selection and, maybe, in SE bias of model averaging with Akaike weights using 

such corrections for AIC. Similarly, although we found that REML estimator does not present 

important SE bias even for small sample sizes, the Kenward-Roger correction for degrees of 

freedom has been proposed by different authors as an appropriate correction to compute the 

SEs of fixed effects (e.g., Luke, 2017; McNeish, 2017). Thus, we could also expect some 
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improvement in SE bias of fixed effects. These aspects were not included in this study 

because they were computationally prohibitive for those conditions with larger sample sizes 

for subjects or items, but future research should try to research their performance in similar 

conditions. 

Conclusion and recommendations 

We examined model selection and model averaging strategies, and their effect on the 

SEs estimates of fixed effects in MEMs with crossed random effects. The selection of the true 

model was equivalent across the different strategies. Similarly, the SE bias of fixed effects 

was constant across the strategies. When comparing ML and REML estimators, true model 

selection using ML was very similar to REML, but the SE bias of fixed effects was lower for 

REML. True model selection of all the strategies showed approximately 0.80 of performance 

(except BIC that showed about 0.70 of performance). Model selection in this study evaluated 

if random slopes should be added or deleted to an already complex crossed random effects 

model with a partial random structure. This is a very demanding task and we believe that 

there is room for important improvements in such model selection. 

Based on our findings, we endorse the combination of using the one-tailed likelihood 

ratio test with α=0.05 for model selection, and model averaging based on Akaike weights. 

AIC index model selection was very similar to likelihood ratio tests while BIC was more 

divergent. Also, our results showed that true model selection was the same for bottom-up and 

top-down model selection strategies, and that both make almost the same incorrect decisions, 

although the top-down strategy could underestimate the random structure of the model less 

frequently than the bottom-up one. The only plausible solution against incorrect model 

selection was the reduction of subjects and items variability (which is not usually an option 

due to ecological validity), or the increase of their respective sample sizes. As expected, 
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REML tends to present less SE bias (underestimation) than ML. The variability of SE bias of 

the estimations also shows that SE bias can be unacceptable under certain conditions (such as 

lower number of subjects and items) and thus, although the central tendency is to present no 

SE bias, many empirical estimations could be considerably biased. 

In general, we endorse the combination of model selection and model averaging as 

two different but complementary perspectives that can lead to better estimations of SEs of 

fixed effects in MEMs with crossed random effects. As such, these strategies can provide 

researchers with another tool against potential errors of statistical inference. 
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TABLE 1 

Table 1. Simulation Parameters 

 Parameter Values 

Fixed 

conditions 

Intercept 000 2,000 ms 

Between-subject effect 010 0 ms 

Within-subject effect 100 0 ms 

Random intercepts for subjects τ0s0 10,000 ms 

Random intercepts for items τ00i 10,000 ms 

Residual level 1 variance σ2
e 90,000 ms 

Intercept-slope correlation for subjects and items r01 0.60 

Manipulated 

conditions 

Interaction effect 110 0 / 25 / 50 ms 

Random slopes for subjects τ1s0 0 / 3,600 / 14,400 ms 

Random slopes for items τ10i 0 / 3,600 / 14,400 ms 

Sample size for subjects N2 
30 / 50 / 100 / 200 / 500 

subjects 

Sample size for items N1 12 / 24 / 48 / 96 items 

 

Note: Random effects are presented as variances. r01 represents the standardized intercept-slope covariance 

(𝜏𝑈0𝑠0,𝑈1𝑠0
 and 𝜏𝑈00𝑖,𝑈10𝑖

 for subjects and items, respectively). 
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TABLE 2 

Table 2. Proportion of true model selection of bottom-up and top-down likelihood ratio tests, and fit indices (AIC, BIC) model selection for ML and REML. 

  True model All scenarios Minimal Subject slopes Item slopes Maximal 

  Sig. level (α) 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 

ML 

One-tailed LRT 
Bottom-up 0.783 0.819 0.985 0.816 0.797 0.823 0.830 0.854 0.701 0.774 

Top-down 0.795 0.826 0.968 0.895 0.781 0.795 0.820 0.834 0.746 0.820 

Two-tailed LRT 
Bottom-up 0.763 0.806 0.993 0.961 0.778 0.817 0.811 0.850 0.673 0.741 

Top-down 0.776 0.817 0.976 0.942 0.766 0.796 0.804 0.835 0.717 0.787 

Mixture LRT 
Bottom-up 0.776 0.815 0.988 0.937 0.791 0.822 0.824 0.855 0.692 0.760 

Top-down 0.789 0.824 0.971 0.917 0.776 0.798 0.815 0.836 0.736 0.806 

Fit indices 
AIC 0.827 0.882 0.805 0.839 0.817 

BIC 0.698 0.999 0.702 0.739 0.599 

REML 

One-tailed LRT 
Bottom-up 0.787 0.820 0.982 0.902 0.802 0.824 0.836 0.857 0.707 0.780 

Top-down 0.797 0.826 0.961 0.880 0.787 0.799 0.827 0.836 0.746 0.821 

Two-tailed LRT 
Bottom-up 0.768 0.810 0.991 0.953 0.784 0.821 0.818 0.854 0.680 0.747 

Top-down 0.779 0.818 0.971 0.931 0.772 0.802 0.812 0.840 0.717 0.787 

Mixture LRT 
Bottom-up 0.781 0.820 0.986 0.927 0.796 0.825 0.830 0.857 0.698 0.767 

Top-down 0.791 0.824 0.965 0.904 0.783 0.803 0.822 0.840 0.736 0.807 

Fit indices 
AIC 0.807 0.866 0.806 0.839 0.821 

BIC 0.701 0.999 0.707 0.746 0.600 

 

Note. α = Significance level for likelihood ratio tests in bottom-up and top-down model selection. LRT = Likelihood ratio test. Minimal = MEM with random intercepts for subjects and items. 

Maximal = MEM with random intercepts and random slopes for subjects and items. Subject and item random slopes models include random intercepts for subjects and items. NT = 540,000 

replications. 
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TABLE 3 

Table 3. Proportion of model selection agreements between bottom-up and top-down strategies using likelihood ratio tests (α=0.05) with fit indices (AIC and BIC) for both ML and REML 

estimators. 

 ML    REML 

 One-tailed LRT Two-tailed LRT Mixture LRT One-tailed LRT Two-tailed LRT Mixture LRT 

 
Bottom-

up 

Top-

down 
Bottom-up Top-down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

AIC 0.7963 0.8065 0.7728 0.7834 0.7868 0.7972 0.7980 0.8068 0.7746 0.7834 0.7886 0.7975 

BIC 0.6708 0.6673 0.6821 0.6806 0.6763 0.6738 0.6709 0.6677 0.6839 0.6824 0.6773 0.6749 

 

Note: Only likelihood ratio tests are reported using α=0.05 are reported here. LRT = Likelihood ratio test. NT = 540,000 replications. 
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TABLE 4 

Table 4. Relative proportion of incorrect model selections of each strategy divided by simulated scenario (true model). 

True 

model 

ML REML 

One-tailed LRT Two-tailed LRT Mixture LRT 

AIC BIC 

One-tailed LRT Two-tailed LRT Mixture LRT 

AIC BIC 
 

Bottom-

up 

Top-

down 
Bottom-up Top-down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

Bottom-

up 

Top-

down 

Minimal 0.4128 0.3634 0.4828 0.4396 0.4443 0.3975 0.3507 0.6221 0.3909 0.3380 0.4662 0.4170 0.4243 0.3731 0.3236 0.6105 

Subject 

slopes 
0.2027 0.1860 0.1957 0.1843 0.2006 0.1857 0.2009 0.1630 0.2031 0.1917 0.1979 0.1905 0.2023 0.1924 0.2069 0.1672 

Item 

slopes 
0.3033 0.2596 0.2882 0.2599 0.2978 0.2613 0.2648 0.2097 0.3115 0.2715 0.2965 0.2730 0.3060 0.2731 0.2712 0.2167 

Maximal 0.0812 0.1910 0.0333 0.1162 0.0574 0.1555 0.1836 0.0051 0.0945 0.1988 0.0392 0.1194 0.0673 0.1614 0.1983 0.0056 

 

Note: LRT = Likelihood ratio test with α=0.05. Minimal = MEM with random intercepts for subjects and items. Maximal = MEM with random intercepts and random slopes for subjects and 

items. Subject and item random slopes models include random intercepts for subjects and items. NT = 540,000 replications. 
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TABLE 5 

Table 5. Mean (and standard deviation) percentage of bias of SEs of fixed effects in bottom-up model selection (α=0.05) and model averaging (Akaike weights). 

 Within-subject effect Between-subject effect Interaction effect 

 ML REML ML REML ML REML 

True 

Model 
Items Subjects 

Model 

Selection 

Model 

Averaging 

Model 

Selection 

Model 

Averaging 

Model 

Selection 

Model 

Averaging 

Model 

Selection 

Model 

Averaging 

Model 

Selection 

Model 

Averaging 

Model 

Selection 

Model 

Averaging 

All -3.04 (13.93) -2.65 (13.92)  -0.75 (14.70) -0.29 (14.62)  0.10 (8.80) 0.03 (8.69)  0.99 (8.96)  0.93 (8.88)  -0.71 (7.56) -0.38 (7.47)  0.01 (7.83)  0.36 (7.70)  

Minimal 

[0; 0] 

12 50 -0.19 (6.91) 1.26 (6.24)  0.57 (8.35) 2.57 (7.36)  -1.29 (8.10)  -1.08 (8.03)  -0.30 (8.31)  -0.04 (8.25)  -0.81 (5.30) -0.38 (5.05)  -0.49 (5.61) 0.09 (5.35) 

 200 1.49 (5.85) 2.73 (5.44)  2.01 (7.47)  3.67 (6.79)  -0.40 (4.33) -0.36 (4.29)  -0.21 (4.42)  -0.17 (4.35)  1.55 (3.68)  1.64 (3.67)  1.66 (3.79) 1.76 (3.78) 

96 50 2.16 (4.27) 3.16 (4.08)  2.56 (5.23)  3.67 (4.61)  -2.49 (9.61)  -2.50 (9.60)  -1.04 (9.83)  -1.07 (9.82)  1.16 (4.25)  1.81 (4.11)  1.49 (5.11) 2.21 (4.60) 

 200 4.91 (2.89) 5.53 (2.52)  5.04 (3.17)  5.75 (2.74)  -0.35 (5.86)  -0.39 (5.87)  -0.06 (5.88)  -0.09 (5.88)  3.26 (4.21)  3.54 (4.12)  3.30 (4.26) 3.65 (4.18) 

Subjects 

[14,400; 

0] 

12 50 -1.21 (12.29) -.96 (10.44)  0.23 (12.63)  1.20 (11.17)  2.64 (11.95)  2.78 (10.57)  3.66 (11.83)  3.76 (10.78)  -4.38 (11.23)  -5.26 (9.25)  -3.39 (11.25) -3.75 (9.65) 

 200 -0.24 (9.98) 0.97 (8.40)  0.16 (10.57)  2.05 (9.04)  -0.35 (8.66)  -0.97 (7.29)  0.33 (8.72)  -0.63 (7.27)  1.34 (9.47)  1.69 (7.76)  1.58 (9.54) 2.09 (7.74) 

96 50 -2.60 (10.24) -2.54 (10.23)  -0.60 (10.46)  -0.53 (10.44)  -1.83 (10.32)  -1.87 (10.31)  -0.24 (10.53)  -0.28 (10.52)  -4.13 (10.08)  -4.17 (10.07)  -2.16 (10.29) -2.20 (10.28) 

 200 -0.46 (4.95) -0.40 (4.94)  0.04 (4.97)  0.11 (4.96)  0.77 (6.07)  0.72 (6.06)  1.11 (6.09)  1.05 (6.08)  1.25 (5.13)  1.19 (5.12)  1.76 (5.16) 1.70 (5.15) 

Items 

[0; 

14,400] 

12 50 -9.59 (23.54) -9.16 (23.36)  -3.18 (26.64)  -2.88 (26.40)  -1.51 (7.49)  -0.91 (7.62)  -0.52 (7.71)  0.17 (7.85)  1.25 (4.00)  1.52 (4.11)  1.54 (4.49) 1.89 (4.45) 

 200 
-13.77 

(25.62) 
-13.52 (25.89)  -6.15 (28.33)  -5.93 (28.59)  1.94 (5.44)  0.63 (4.67)  2.19 (5.54)  0.88 (4.68)  0.16 (2.87)  0.39 (3.39)  0.30 (2.94) 0.49 (3.48) 

96 50 -1.44 (8.73) -1.29 (8.66)  -0.53 (8.86)  -0.32 (8.77)  -1.88 (9.43)  -1.15 (9.67)  -0.43 (9.65)  0.36 (9.89)  1.61 (3.73)  4.54 (4.03)  1.74 (4.12) 4.84 (4.43) 

 200 -3.54 (9.22) -3.03 (9.26)  -2.57 (9.32)  -2.05 (9.36)  0.65 (5.00)  1.70 (5.55)  0.96 (5.02)  2.02 (5.58)  1.37 (1.51)  1.28 (2.50)  1.42 (1.66) 1.33 (2.57) 

Maximal 

[14,400; 

14,400] 

12 50 
-11.24 

(20.57) 
-11.48 (19.82)  -5.59 (22.79)  -6.13 (22.02)  2.74 (10.88)  1.98 (10.63)  3.65 (11.10)  3.01 (10.93)  -2.83 (11.19)  -2.22 (9.91)  -1.36 (11.74) -0.89 (10.36) 

 200 
-11.90 

(24.64) 
-12.68 (24.92)  -4.73 (27.39)  -5.60 (27.52)  0.99 (8.86)  0.98 (7.25)  1.53 (9.01)  1.37 (7.37)  -2.39 (9.16)  -1.14 (8.08)  -2.78 (9.26) -0.90 (8.18) 

96 50 -.28 (8.12) 2.09 (8.57)  1.10 (8.23)  3.50 (8.69)  -2.47 (10.10)  -2.41 (10.18)  -0.91 (10.31)  -0.84 (10.38)  -1.57 (9.36)  -2.37 (10.06)  0.02 (10.15) -0.79 (10.27) 

 200 -1.39 (7.13) 0.27 (7.38)  -0.71 (7.21)  0.96 (7.45)  -2.79 (5.11)  -2.40 (5.91)  -2.49 (5.13)  -2.09 (5.94)  0.74 (5.10)  1.63 (5.12)  1.06 (5.12) 1.95 (5.14) 
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Figure 1. Proportion of true model selection for relevant interactions between simulation conditions in bottom-up model selection 

with one-tailed likelihood ratio test (α=0.05, ML estimator). 

 
Note: y-axis = Proportion of true model selection. x-axis = Number of subjects. Different lines and symbols are used to define number 

of items. Columns and rows define the simulation scenario by the presence of random slopes [0; 3,600; 14,400].  
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Figure 2. Percentage of SE bias of fixed effects for relevant interactions between simulation conditions in bottom-up model selection 

with one-tailed likelihood ratio test (α=0.05) and model averaging (Akaike weights). 
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Note: y-axis = SE bias [range = -15–5%]. Discontinuous lines = ML estimator. Continuous lines = REML estimator. Random slopes 

[○ = 0; ● = 14,400] for subjects or items (depends on x axis factor). 

 


