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1 Introduction

The Ekeland variational principle (briefly, EVP) [9] is a cornerstone and one of the
most important results of optimization and variational analysis and many other areas
in the last decades. There have been many variants extending this seminal principle to
various contexts, see for instance few references from different development periods,
[3,25,27,33,37,39,40]. The EVP has an amazingly countless of applications in an
impressively wide range of areas, see, for instance, [8,30,31,35,46,50]. In particular,
we mention the following contributions, which are closely related to the topic of
this paper. The first work on the EVP for bifunctions is [42]. Such results are in
fact mathematically equivalent to variants with unifunctions i.e., functions of one
component, see [2], but they are significant for various applications, see, e.g., [5,26,
44]. In this paper, we develop variants of the EVP for vector equilibrium problems
and a type of approximate proper efficiency notion.

Regarding notions of solutions, for vector equilibrium problems, the basic solu-
tion concept is the efficient solution. But sets of efficient solutions are usually too
big, including anomalous ones. This fact makes necessary to define a more restric-
tive notion of efficiency. Due to this, the concepts of proper efficiency arise in the
literature (see, for instance, [4,11,14,15,29,34]). These notions provide a selected
collection of solutions that satisfy better properties. For instance, in [14], Gong intro-
duced a type of proper efficient solutions in the sense of Henig (see [29]) for vector
equilibrium problems that can be characterized through a linear scalarization, under
generalized convexity assumptions, and also through a nonlinear scalarization with
no convexity hypotheses (see [16]).

However, in practice, mathematical models only approximate practical problems
and so their exact solutions, which are often difficult to be computed, may be not more
useful than approximate ones. Thus, approximate efficiency is natural and inevitable
in applied mathematics.

Due to the above, we are interested in working with an appropriate notion of
approximate proper efficiency for vector equilibrium problems, that provides a col-
lection of approximate solutions which represents suitably the set of exact solutions.
This notion, which was introduced by Ródenas-Pedregosa in [47], is based on the
concept of approximate proper efficiency in the sense of Henig given in [21] for vec-
tor optimization problems, and is defined by means of a nonempty set which repre-
sents an approximation of the ordering cone, and a nonnegative scalar, that measures
the size of the error.

In this paper, we will see that for specific approximation sets of the ordering
cone, a sequence of approximate proper solutions tends to an exact efficient/weak
efficient/proper efficient solution of the vector equilibrium problem, when the error
goes to zero. Thus, depending on the choice of the approximation set, we can reach
different types of exact solutions.

The study of the limit behaviour of approximate solutions when the error tends to
zero is relevant. For instance, there are simple problems for which the approximate
efficiency notion introduced by Kutateladze [38], which is probably the most known,
provides an unbounded set of approximate solutions, while the exact efficient set is
bounded (see, for instance [19, Example 3.10]). A more complete study of the limit
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behaviour of approximate solutions can be found in [23] for the particular case of
vector optimization problems.

In this work, we deal with two variants of the EVP for the aforementioned type
of approximate proper solutions of a vector equilibrium problem, whose associated
bifunction has finite dimensional images. For this aim, we consider that the ordering
cone is polyhedral, which lets us express the approximate proper solutions in terms of
a family of dilating cones introduced by Kaliszewski [32], that are defined by means
of perturbations of the matrix that defines the ordering cone.

We study the case of an unconstrained vector equilibrium problem, and the case
when the decision set is given by a cone constraint. In both situations, the variants of
the EVP are obtained through a nonlinear scalarization. This fact makes the results
presented in this paper interesting, not only because we convert a vector problem to a
scalar one, which is easier to handle, but also because they are expressed in terms of
the matrix that defines the ordering cone, which is interesting from a computational
point of view.

Furthermore, as an application, we define an approximate vector variational in-
equality problem, defined by means of an approximate strong subdifferential intro-
duced in [20]. This problem extends to the approximate case well-known exact vector
variational inequality problems related to vector optimization problems (see, for in-
stance, [7,51]).

The paper is structured as follows. In Section 2 we state the framework, nota-
tions and definitions that we need along the paper. In Section 3 we analyze the limit
behaviour of the approximate proper solutions for vector equilibrium problems. In
Section 4, we provide a variant of the EVP for unconstrained vector equilibrium
problems, while in Section 5 we obtain the corresponding result for cone-constrained
vector equilibrium problems. As an application, in Section 6, we derive an Ekeland
variational principle for a multiobjective optimization problem and we define and
study a new approximate vector variational inequality problem, from which we ob-
tain a sufficient condition for approximate proper solutions of the multiobjective op-
timization problem. Finally, in Section 7 we state some conclusions.

2 Preliminaries

In this paper, we use the standard notation. Indeed,N is the set of the positive integers
and Rn

+ is the nonnegative orthant of an n-dimensional space Rn. For a subset E on a
topological vector space, intE, clE, bdE, coE and coneE stand for the interior, the
closure, the boundary, the convex hull of E, and the cone generated by E, respectively.
Also, it is said that E is coradiant if E =

⋃
α≥1 αE.

In what follows if not specified differently, we consider a nontrivial complete
metric space (X ,d) and a vector bifunction (also called a bimap) F : X×X → Rn. In
Rn, we establish an order given by an ordering cone {0} 6= D 6= Rn in the usual way,
i.e.,

y1,y2 ∈ Rn, y1 ≤D y2⇐⇒ y2− y1 ∈ D.

Along the work, we suppose that D is polyhedral, that is

D := {y ∈ Rn : Ayt ∈ Rp
+},
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where yt denotes the transpose of y, A ∈Mp×n (i.e., A has p rows and n columns),
p ≥ n and rank(A) = n. This last condition is equivalent to the pointedness of D.
Thus, D is convex, closed and pointed, so it induces a partial order in Rn.

The polar cone and the strict polar cone of D are denoted, respectively, by D+

and Ds+, i.e.,

D+ := {µ ∈ Rn : 〈µ,d〉 ≥ 0, ∀d ∈ D},
Ds+ := {µ ∈ Rn : 〈µ,d〉> 0, ∀d ∈ D\{0}}.

In this paper, we focus on the classical vector equilibrium problem (briefly, VEP)
defined as follows

Find x0 ∈ X such that F(x0,X)∩ (−D\{0}) = /0. (V E P)

The efficient set, that is, the set of points x0 ∈ X that are solutions of (V E P) is
denoted by E(F,X ,D).

If we suppose that D is solid, i.e., intD 6= /0, then it is said that x0 ∈ X is a weak
efficient solution of (V E P) if x0 ∈ E(F,X , intD∪{0}). The set of weak efficient
solutions will be denoted by WE(F,X ,D). In the literature for (V E P), bimap F is
said to satisfy the diagonal null property if F(x,x) = 0 for all x ∈ X .

The following notion of proper efficiency for (V E P) was defined by Gong [14]
and it is based on the concept of proper efficiency given by Henig [29] for vector
optimization problems. Let

G :=
{

D′ (Rn : D′ is a solid convex cone, D\{0} ⊂ intD′
}
.

Definition 1 It is said that x0 ∈ X is a Henig proper efficient solution of (V E P), and
it is denoted by x0 ∈ He(F,X ,D), if there exists D′ ∈ G such that x0 ∈WE(F,X ,D′).

It is clear that He(F,X ,D) ⊂ E(F,X ,D) ⊂ WE(F,X ,D), where for the last in-
clusion D is considered to be solid. In this paper, we deal with the next definition
of approximate proper efficiency for vector equilibrium problems, which was intro-
duced in [47], and is based on the notion of approximate proper efficiency in the sense
of Henig defined in [21] for vector optimization problems.

First of all, for a nonempty set C ⊂ Rn\{0}, we define the set-valued mapping
C : R+ ⇒ Rn by

C(ε) :=
{

εC if ε > 0,
(coneC)\{0} if ε = 0,

and also the following sets

H := { /0 6=C ⊂ Rn\{0} : clconeC∩ (−D) = {0}},
G (C) :=

{
D′ ⊂ Rn : D′ is a solid convex cone, D\{0} ⊂ intD′,C∩ (− intD′) = /0

}
.

Definition 2 Let ε ≥ 0 and C ∈H . It is said that a point x0 ∈ X is a Henig (C,ε)-
proper efficient solution of (V E P), and it is denoted by x0 ∈ He(F,X ,C,ε), if there
exists D′ ∈ G (C) such that

F(x0,X)∩ (−C(ε)− intD′) = /0. (1)
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Remark 1 (a) Conditions C ∈H and D′ ∈ G (C) are required in order to give a con-
sistent definition of approximate proper efficiency. Indeed, for instance, if F satisfies
the diagonal null property, then statement (1) implies clconeC∩ (− intD′) = /0.

(b) Let C′ := C + intD′. Observe that C′(ε) = C(ε) + intD′, for all ε ≥ 0 and
He(F,X ,C,ε) = He(F,X ,C+D,ε). The set C+D may be understood as an approx-
imation of D, and C′ as a dilating approximation of D. Moreover, if C = D\{0} in
the above definition, then we recover the notion of exact Henig proper efficiency for
(V E P).

(c) The Henig (C,ε)-proper efficient solutions of (V E P) have been character-
ized through linear scalarization, under generalized convexity hypotheses (see [47,
Theorems 2.18 and 2.19]).

(d) Let f : X → Rn and consider the vector optimization problem that consists in
minimizing f on X , with respect to the order given by the cone D. This problem is
equivalent to (V E P) for F(x,y) = f (y)− f (x). In this particular case, the concept of
(C,ε)-proper efficiency for (V E P) reduces to the notion of approximate proper ef-
ficiency due to Gutiérrez, Huerga, Jiménez and Novo [21] for the vector optimization
problem.

In the following example we show the applicability of the Henig (C,ε)-proper
solutions, for a suitable set C.

Example 1 Let X = R2, Y = R2, D = R2
+, f : R2 → R2 be the function defined as

f (x1,x2) = (x1,x2) if (x1,x2) ∈ R2
+, f (x1,x2) = (1,1), otherwise; and let

F((x1,x2),(y1,y2)) = f (y1,y2)− f (x1,x2).

It is clear that E(F,X ,D) = {(0,0)} and WE(F,X ,D) = bdR2
+. Let us note that the

weak efficient set is unbounded, whereas the efficient set is just formed by point
(0,0).

However, if we consider C = co{(1,0),(0,1)}+D, and 0 < ε < 2, then one can
easily see that He(F,X ,C,ε) = {(x1,x2)∈R2

+ : x2 ≤ ε−x1}. It is clear that this set of
approximate proper solutions is bounded and represents a good approximation of the
efficient set, for ε small enough. In the next section, we will study the limit behaviour
of the approximate proper solutions when ε goes to zero, for specific sets C.

Given ρ ≥ 0, the following dilating cone was introduced by Kaliszewski (see
[32])

Dρ := {y ∈ Rn : Ayt +ρutuAyt ∈ Rp
+},

where u denotes the p-dimensional row vector (1,1, . . . ,1). Note that Dρ is convex,
closed and pointed, and D\{0} ⊂ intDρ for all ρ > 0. Also, observe that D0 = D.

Let ξ := uA. It follows that ξ ∈ Ds+
ρ , for all ρ ≥ 0 and

Bρ := {y ∈ Dρ : 〈ξ ,y〉= 1}

is a compact base of Dρ , for all ρ ≥ 0. If ρ = 0, we denote B := B0.
The following lemma was stated in [32, Lemma 3.7].

Lemma 1 For any closed cone D′ ⊂Rn such that D\{0} ⊂ intD′, there exists ρ > 0
such that Dρ\{0} ⊂ intD′.
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Remark 2 Let us note that by Lemma 1 we have

He(F,X ,C,ε) = He(F,X ,C+D,ε) =
⋃
ρ>0

Dρ∈G (C)

He(F,X ,C+Dρ ,ε),

He(F,X ,D) =
⋃

ρ>0

He(F,X ,Dρ).

3 Limit behaviour of (C,ε)-proper efficient solutions of VEP

In this section, we study the limit behaviour of the (C,ε)-proper solutions of (V E P)
when ε tends to zero for some specific and fixed sets C ∈H . For this aim, along the
section, we suppose that for each y ∈ X the map fy(x) := F(x,y) is continuous on X .

We have the following result, when C = qρ +Dρ , qρ ∈ Dρ\{0}, and ρ ≥ 0.

Theorem 1 Let ρ ≥ 0, qρ ∈Dρ\{0}, x0 ∈X, and sequences (xk)⊂X, (εk)⊂R+\{0}
such that xk ∈ He(F,X ,qρ +Dρ ,εk), for all k ∈ N, εk→ 0 and xk→ x0.

(a) If ρ > 0, then x0 ∈ He(F,X ,D),
(b) If D is solid, then x0 ∈WE(F,X ,D).

Proof (a) For each k ∈N, since xk ∈He(F,X ,qρ +Dρ ,εk), by definition and Remark
2 we deduce that there exists ρ̄k > 0 such that

F(xk,x) /∈ −εkqρ −Dρ − intDρ̄k =−εkqρ − intDmax{ρ,ρ̄k}, ∀x ∈ X ,

which implies
F(xk,x) /∈ −εkqρ − intDρ , ∀x ∈ X . (2)

Let C := qρ +Dρ and C̃ := intC. It is clear that C̃ is an open coradiant set and C̃(0) =
intDρ . It follows that x0 ∈WE(F,X ,Dρ). Indeed, reasoning by contradiction suppose
that there exists x̄ ∈ X such that F(x0, x̄) ∈ − intDρ . Then, there exists α > 0 such
that F(x0, x̄) ∈ −C̃(α) and since C̃(α) is open and F(·, x̄) is continuous on X , there
exists k0 ∈ N such that

F(xk, x̄) ∈ −C̃(α), ∀k ≥ k0. (3)

Moreover, as εk→ 0, there exists k1 ∈ N such that εk ≤ α , for all k ≥ k1, and since C̃
is coradiant, by [24, Lemma 3.1(ii)] we have that C̃(εk)⊃ C̃(α), for all k ≥ k1, so by
(3) we obtain that

F(xk, x̄) ∈ −C̃(εk), ∀k ≥max{k0,k1},

which contradicts (2). Hence, x0 ∈WE(F,X ,Dρ), which implies that x0 ∈He(F,X ,D).
(b) If ρ > 0, the assertion is trivial, since He(F,X ,D)⊂WE(F,X ,D). For ρ = 0, it

is clear that in particular F(xk,X)∩(−q0− intD) = /0. Let C := q0+D and C̃ := intC.
This set is open, coradiant and C̃(0) = intD, so by reasoning in analogous way as in
part (a) for this set C̃, we conclude that x0 ∈WE(F,X ,D).

In the next result, we study the limit behaviour when ε → 0 for the sets C =
Bρ +Dρ̄ with ρ, ρ̄ ≥ 0. For this aim, we need the following lemma, which is based
on [23, Lemma 3].
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Lemma 2 Consider two sequences (εk)⊂R+\{0} and (yk)⊂Rn be such that εk→
0, yk→ y ∈ Rn, and

yk ∈ D∩ (Rn\(εkB+(D\{0}))) , ∀k ∈ N.

Then, y = 0.

Proof Under the given hypotheses, it follows that 〈ξ ,yk〉 ≤ εk, for all k ∈ N. Indeed,
if there exists k ∈ N such that 〈ξ ,yk〉 > εk then by considering zk := εk

〈ξ ,yk〉
yk ∈ εkB,

we have that

yk = zk +

(
1− εk

〈ξ ,yk〉

)
yk ∈ εkB+D\{0},

which is a contradiction. Thus, 0 ≤ 〈ξ ,yk〉 ≤ εk, for all k ∈ N, and since εk → 0,
we deduce that 〈ξ ,yk〉 → 〈ξ ,y〉 = 0. As D is closed, we have that y ∈ D, and since
ξ ∈ Ds+, we finally conclude that y = 0.

Remark 3 Note that assumption yk+1≤D yk, for all k in [23, Lemma 3] is not required
in Lemma 2.

In what follows for (V E P), we usually impose one of the following hypotheses
on the relation between the two components of F . For any x,y,z ∈ X ,

(AD) If F(x,z) ∈ −D and F(z,y) ∈ −D, and (F(x,z),F(y,z)) 6= (0,0), then

F(x,y)≤D F(x,z)+F(z,y);

(BD) If F(x,z) ∈ −DandF(z,y) ∈ −D, and (F(x,z),F(y,z)) 6= (0,0), then

F(x,y) ∈ −D.

Note that in the studies of problems involving a bimap F in general and of the
EVP for bifunctions/bimaps in particular, the following triangle inequality property
is usually assumed:

F(x,y)≤D F(x,z)+F(z,y), ∀x,y,z ∈ X .

The implications [the triangle inequality property]⇒ (AD)⇒ (BD) are evident.
The following simple examples show that the reverse implications do not hold.

Example 2 Let D = R2
+ and F : R2→ R2 be defined by

F(x,y) =

{
(1,1) if x > y,
(x− y,0) if x≤ y.

Then, F satisfies the diagonal null property. Moreover, F(x,z) ∈ −D, F(z,y) ∈ −D,
and not both (0,0) imply that F(x,z) = (x− z,0), F(z,y) = (z− y,0) and x ≤ z ≤ y.
Hence, hypothesis (AD) is satisfied as

F(x,z)+F(z,y)−F(x,y) = (x− z,0)+(z− y,0)− (x− y,0) = (0,0) ∈ R2
+.

On the other hand, the triangle inequality property is violated because, for (x,y,z) =
(2,1,5), one has

F(x,z)+F(z,y)−F(x,y) = (−3,0)+(1,1)− (1,1) = (−3,0) 6∈ R2
+.
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Example 3 Let D = R2
+ and F : R2→ R2 be defined by

F(x,y) =

{
(1,1) if x > y,
(−1,−1) if x≤ y.

It is not difficult to check that (BD) is fulfilled, but (AD) is not.

Theorem 2 Let ρ, ρ̄ ≥ 0, x0 ∈ X, and sequences (xk)⊂ X, (εk)⊂ R+\{0} such that
xk ∈ He(F,X ,Bρ +Dρ̄ ,εk) for all k ∈ N, εk→ 0, and xk→ x0.

(a) If ρ̄ > 0, then x0 ∈ He(F,X ,D),
(b) If F satisfies the hypothesis (BD) and F(xk,x0)≤D 0 for all k ∈ N, then x0 ∈

E(F,X ,D).
(c) If D is solid, then x0 ∈WE(F,X ,D).

Proof Let q ∈ B. Since q ∈ B⊂ Bρ̂ for all ρ̂ ≥ 0, it follows that

He(F,X ,Bρ +Dρ̄ ,εk)⊂ He(F,X ,q+Dρ̄ ,εk), ∀k ∈ N.

Thus, part (a) follows by Theorem 1(a) and, analogously, part (c) follows by Theorem
1(b).

To prove part (b), observe first that, from part (a), if ρ̄ > 0 then x0 ∈He(F,X ,D)⊂
E(F,X ,D). So we just need to prove the case when ρ̄ = 0. As xk ∈ He(F,X ,Bρ +
D,εk) for all k ∈ N, we have in particular that

F(xk,X)∩ (−εkBρ −D\{0}) = /0, ∀k ∈ N. (4)

Suppose by reasoning to the contrary that there exists x̄ ∈ X such that F(x0, x̄) ∈
−D\{0}. By (4) we have

F(xk, x̄) ∈ Rn\(−εkBρ −D\{0})⊂ Rn\(−εkB−D\{0}). (5)

Moreover, since F satisfies hypothesis (BD),

F(xk, x̄) ∈ −D.

Thus, taking into account this and statement (5), we deduce by Lemma 2 that

lim
k→∞

F(xk, x̄) = F(x0, x̄) = 0,

which is a contradiction. The proof is complete.

Remark 4 (i) Note that in this section, it is not necessary to suppose that (X ,d) is
complete.

(ii) Theorems 1 and 2 extend [23, Corollaries 4 and 5] from a vector optimization
problem to a vector equilibrium problem.
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4 An EVP for unconstrained vector equilibrium problems

In this section, we present a variant of the EVP for (C,ε)-proper efficient solutions
of (V E P). The result is obtained through scalarization by using the version of the
classical scalar EVP (see [9]) given in Lemma 3 below. Here, the classical lower semi-
continuity of a function ψ : X → R∪{∞} is replaced by the strict-decreasing lower
semicontinuity defined as follows: ψ is called strictly-decreasingly lower semicontin-
uous if for x∈X and xm→ x such that ψ(xm+1)<ψ(xm) for all m, then ψ(x)≤ψ(xm)
for all m.

Lemma 3 (Theorem 6, [1]) Let ε > 0, x ∈ X, and ψ : X → R∪{∞} be a proper,
strictly-decreasingly lower semicontinuous and bounded from below mapping such
that

ψ(x)≤ inf
X

ψ + ε.

Then, for any λ > 0, there exists z ∈ X such that

(i) d(z,x)≤ λ ;

(ii) ψ(z)≤ ψ(x)− ε

λ
d(z,x);

(iii) ψ(u)+
ε

λ
d(z,u)> ψ(z) for all u 6= z.

Let /0 6= H ⊂ Rn and y0 ∈ Rn\{0}. The nonlinear functional ϕH,y0 : Rn → R∪
{±∞} is defined by Gerstewitz/Tammer and Iwanov in [12] as

ϕH,y0(y) := inf{t ∈ R : y ∈ ty0−H}, ∀y ∈ Rn,

where it is understood that ϕH,y0(y) = ∞ if {t ∈ R : y ∈ ty0−H} = /0. This func-
tional is usually called “the smallest strictly monotonic functional” and it has been
frequently used, overall in scalarization techniques to solve non convex vector opti-
mization problems (see, for instance, [48,41,12,43]).

In what follows, we denote by ei the i-th canonical row vector of Rp. In the next
lemma, proved in [22, Lemma 2.3], we provide the explicit expression of ϕDρ ,y0 .

Lemma 4 Let ρ > 0 and y0 ∈ D\{0}. Then,

ϕDρ ,y0(y) = max
i∈{1,2,...,p}

{
αi · y
αi · y0

}
, ∀y ∈ Rn, (6)

where αi := (ρu+ ei)A, for all i ∈ {1,2, . . . , p}.

Remark 5 By formula (6) or by applying [18, Theorem 2.3.1] it is easy to see that
ϕDρ ,y0 , for ρ > 0 and y0 ∈ D\{0}, is finite-valued, convex, positively homogeneous,
Dρ -monotone (i.e., y2−y1 ∈Dρ =⇒ ϕDρ ,y0(y1)≤ ϕDρ ,y0(y2)) and subadditive in Rn.
Moreover, for all r ∈ R,

{y ∈ Rn : ϕDρ ,y0(y)< r}= ry0− intDρ , (7)

{y ∈ Rn : ϕDρ ,y0(y) = r}= ry0−bdDρ , (8)

ϕDρ ,y0(y+ ry0) = ϕDρ ,y0(y)+ r, ∀y ∈ Rn. (9)



10 EVP for Approximate Proper solutions of Vector Equilibrium Problems

Let y0 ∈ D\{0}. Given ρ,r > 0, we define

Aρ,r := {C ∈H : C∩ (ry0− intDρ) = /0},

A :=
⋃

ρ,r>0

Aρ,r.

Remark 6 (a) By statement (7), we deduce that C∈Aρ,r if and only if inf
c∈C

ϕDρ ,y0(c)≥
r.

(b) Let C ∈H . If there exists ρ > 0 such that 0 /∈ cl(C+Dρ), then C ∈
⋃
r>0

Aρ,r.

Indeed, if C /∈
⋃
r>0

Aρ,r, then there exist (rn)⊂R+\{0}, rn→ 0, (cn)⊂C and (dn)⊂

intDρ such that cn + dn = rny0 for all n. Thus, by taking the limit, we deduce that
cn +dn→ 0, so 0 ∈ cl(C+Dρ), and we reach a contradiction.

(c) For instance, the set C = H +Dρ̄ , where ρ̄ ≥ 0 and H ⊂ Dρ̄\{0} is compact,
belongs to A . Indeed, C+Dρ is closed for all ρ > 0 and 0 /∈C+Dρ , so by part (b)
we conclude that C ∈A .

To obtain our variants of the EVP for problem (V E P), a lower semicontinuity
hypothesis is needed. Now we propose the following concept of lower semicontinuity.

Definition 3 Let /0 6= H ⊂Rn be a closed convex cone, b ∈Rn\{0}, and f : X →Rn.
f is called (b,H)-quasi lower semicontinuous from above ((b,H)-qlsca) at x ∈ X
if for each r ∈ R and xm → x, from f (xm)+ rb ≤H 0 and f (xm) �H f (xm+1) (i.e.,
f (xm)− f (xm+1) 6∈ −H) for all m ∈ N, it follows that f (x)+ rb≤H 0.

From now on if a property is satisfied for all x ∈ X or, furthermore for all b ∈
Rn \{0}, we omit “at x” or “b’, respectively.

We recall several concepts of lower semicontinuity in the literature, which are
close to Definition 3, and discuss relations between them.

Definition 4 Let X , H, b, and f be as in Definition 3.

(i) ([49]) f is called (b,H)-lower semicontinuous ((b,H)-lsc) if the set Mr := {x ∈
X : f (x)≤H rb} is closed for each r ∈ R.

(ii) ([36]) f is said to be (b,H)-lower semicontinuous from above ((b,H)-lsca) at
x ∈ X if, for each r ∈R and xm→ x, from f (x1)+ rb≤H 0 and f (xm+1)+ tmb≤H
f (xm), tm ≥ 0, for all m ∈ N, it follows that f (x)+ rb≤H 0.

(iii) In [17,25,28,36,45], f is termed H-sequentially lower monotone (H-slm) at x ∈
X if from xm→ x such that f (xm+1)≤H f (xm) for all m, one has f (x)≤H f (xm)
for all m.

Remark 7 (b,H)-lower semicontinuity can be restated as follows: f is called (b,H)-
lsc at x ∈ X if for all r ∈ R and xm → x such that f (xm)+ rb ≤H 0, one has f (x)+
rb≤H 0.

Proposition 1 Let X, H, b, and f be as in Definition 3.

(i) If f is H-lsc, then f is both H-slm and H-qlsca.
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(ii) If f is H-slm, then f is also (b,H)-lsca for every b ∈ H \ {0}. When n = 1, the
last two notions are equivalent.

(iii) For n = 1, f is R+-qlsca if and only if f is strictly-decreasingly lower semicon-
tinuous.

(iv) For n= 1 and b> 0, (b,R+)-lower semicontinuity from above is properly stronger
than (b,R+)-quasi lower semicontinuity from above.

Proof (i) Let f be H-lsc, i.e., Mr is closed for all r ∈ R, and let b ∈ Rn \ {0} and
x ∈ X . Assume that xm→ x and f (xm+1)≤H f (xm) for all m. Fixing m and choosing
rb = − f (xm), one has f (xm+k) + rb ≤H f (xm+1) + rb ≤H 0 for all k ≥ 1. Hence,
xm+k ∈Mr and tends to x as k→∞. Consequently, x∈Mr, i.e., f (x)≤H −rb = f (xm).
As m is arbitrary, f is H−slm at x. We prove that f is H-qlsca at x. Assume that xm→ x
and f (xm)+ rb≤H 0, f (xm)�H f (xm+1) for all m. Then, by definition, from only the
first two just assumed conditions and the closedness of Mr, one has f (x)+ rb ≤ 0,
i.e., f is H-qlsca.

(ii) Let x ∈ X and suppose that f is H-slm at x. Consider b ∈ H \{0}, r ∈ R and
xm→ x such that f (x1)+rb≤H 0 and f (xm+1)+ tmb≤H f (xm), tm ≥ 0, for all m∈N.
Then,

f (xm+1)− f (xm) ∈ −tmb−H ⊂−H−H ⊂−H,

i.e., f (xm+1) ≤H f (xm) for all m. As f is H-slm at x, one has f (x) ≤H f (xm) for all
m. Hence, f (x)+ rb≤H f (xm)+ rb≤H f (x1)+ rb≤H 0, and so f is (b,H)-lsca at x.
The assertion for the case n = 1 is easily checked directly.

(iii) Let x ∈ X . To see the “only if” part, let xm → x and f (xm+1) < f (xm) for all

m. Then, fixing b 6= 0 and m ∈ N, and taking r = − f (xm)

b
, one has f (xm+k)+ rb =

f (xm+k)− f (xm) < 0. As xm+k → x and f is (b,R+)-qlsca at x, one has f (x)+ rb =
f (x)− f (xm) ≤ 0 for all m. Hence, f is strictly-decreasingly lower semicontinuous
at x. Now we verify the “if” part. Let b 6= 0, r ∈ R be arbitrary and xm → x with
f (xm)+ rb ≤ 0 and f (xm+1) < f (xm) for all m. As f is strictly-decreasingly lower
semicontinuous at x, f (x) ≤ f (xm) for all m, so for any m ∈ N we have f (x)+ rb ≤
f (xm)+ rb≤ 0, and the proof of this part is finished.

(iv) Let b > 0, x ∈ X and suppose that f is (b,H)-lsca at x. To derive (b,R+)-quasi
lower semicontinuity from above at x, let xm → x such that f (xm) + rb ≤ 0 and
f (xm+1) < f (xm) for all m. Then, since f is (b,H)-lsca we have f (x)+ rb ≤ 0, so
f is (b,H)-qlsca. For the properness of this implication, see [1, Example 7] to see a
case that f is (b,R+)-qlsca but not (b,R+)-lsca.

For n> 1, in the next example we prove that the (b,H)-qlsca notion is not stronger
than the (b,H)-lsca concept.

Example 4 Let H = R2
+ and f : R→ R2 be defined by

f (x) =

{
(x,0) if x≥ 0,
(−1,−1) if x < 0.
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Then, for any b ∈ R2 \ {(0,0)} , f is (b,R2
+)-qlsca at 0. Indeed, assume that r ∈ R

and xm→ 0 such that f (xm)+ rb≤R2
+

0 and f (xm)�R2
+

f (xm+1) for all m. There are
the following two cases.

• Case 1: there exists m0 ∈N such that xm0 < 0. Then, if xm0+1 ≥ 0 then f (xm0)−
f (xm0+1) = (−1,−1)− (xm0+1,0) = (−1− xm0+1,−1) ∈ R2

−, which is impossi-
ble. If xm0+1 < 0 then f (xm0)− f (xm0+1) = (−1,−1)− (−1,−1) = (0,0), which
is impossible as well.
• Case 2: xm≥ 0 for all m. Then, (xm,0)−(xm+1,0) /∈−R2

+ means that xm+1 < xm.
Hence, 0 < xm+1 < xm for all m (because xm0 = 0 for some m0 implies xm+1 =
xm = 0). So, f (xm)− f (0) = (xm,0) ∈ R2

+\{(0,0)} for all m. Therefore, f (0)+
rb≤R2

+
f (xm)+ rb≤R2

+
0, i.e., f is (b,R2

+)-qlsca at 0.

However, f is not (b,R2
+)-lsca at 0. Indeed, taking xm =−1/m, one finds r ∈ R such

that {
f (x1)+ rb = (−1,−1)+ rb≤R2

+
0,

f (0)+ rb = rb ∈ R2
+ \{(0,0)}.

Moreover, choosing tm = 0, one has f (xm+1)+ tmb = (−1,−1)≤R2
+

f (xm). Observe

that if f is (b,R2
+)-lsca at 0, then by definition, f (0)+ rb = rb ≤R2

+
0, which is a

contradiction.

From now on, we apply Definition 3 only for special cases of b ∈ H \ {0}, not
generally b ∈ Rn \{0}. In the following theorem, we provide a vector variant of the
EVP for Henig (C,ε)-proper efficient solutions of (V E P) through scalarization, by
using the functional ϕDρ ,y0 , with ρ > 0, y0 ∈ D\{0}, and C ∈ A , and by assuming
that F(x0, ·) is (y0,Dρ)-qlsca for all ρ > 0.

Theorem 3 Let C ∈ A , ε > 0, x0 ∈ X, and y0 ∈ D\{0}. Suppose that F satis-
fies the diagonal null property, and F(x0, ·) is (y0,Dρ)-qlsca for all ρ > 0. If x0 ∈
He(F,X ,C,ε), then there exists ρ̄ > 0 such that for each λ > 0 there exists xλ ∈ X
satisfying

(i) d(xλ ,x0)≤ λ ;

(ii) max
i∈{1,2,...,p}

{
αi ·F(x0,xλ )

αi · y0

}
≤−kλ d(xλ ,x0);

(iii) max
i∈{1,2,...,p}

{
αi ·F(x0,xλ )

αi · y0

}
< max

i∈{1,2,...,p}

{
αi ·F(x0,x)

αi · y0

}
+ kλ d(x,xλ ), ∀x 6= xλ .

If additionally the hypothesis (ADρ̄
) holds, then

(iv) 0≤ max
i∈{1,2,...,p}

{
αi ·F(xλ ,x)

αi · y0

}
+ kλ d(xλ ,x) for all x ∈ X,

0 < max
i∈{1,2,...,p}

{
αi ·F(xλ ,x)

αi · y0

}
+ kλ d(xλ ,x) for all x ∈ X such that F(xλ ,x) +

kλ d(xλ ,x)y0 6= 0,

where kλ :=
ε

λ
inf
c∈C

ϕDρ̄ ,y0(c) and αi := (ρ̄u+ ei)A for all i ∈ {1,2, . . . , p}.
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Proof Since C ∈ A , there exists ρ̂,r > 0 such that C ∈ Aρ̂,r. Moreover, as x0 ∈
He(F,X ,C,ε), by Remark 2 we know that there exists ρ̄ > 0 (that we can assume to
be lower than or equal to ρ̂) such that

(F(x0,X)+C(ε))∩
(
− intDρ̄

)
= /0. (10)

By statements (7) and (10) we deduce that ϕDρ̄ ,y0(F(x0,x)+ c) ≥ 0, for all x ∈ X ,
c ∈C(ε). Since ϕDρ̄ ,y0 is subadditive, it follows that

0≤ ϕDρ̄ ,y0(F(x0,x)+ c)≤ ϕDρ̄ ,y0(F(x0,x))+ϕDρ̄ ,y0(c), ∀x ∈ X , ∀c ∈C(ε). (11)

By Remark 6(a), we know that inf
c∈C

ϕDρ̄ ,y0(c)≥ r > 0 for all c ∈C, and since ϕDρ̄ ,y0 is

positively homogeneous, it follows that

inf
c∈C(ε)

ϕDρ̄ ,y0(c) = ε inf
c∈C

ϕDρ̄ ,y0(c)> 0.

Thus, from (11) we have that

0≤ ϕDρ̄ ,y0(F(x0,x))+ ε inf
c∈C

ϕDρ̄ ,y0(c), ∀x ∈ X . (12)

We define h(x) := ϕDρ̄ ,y0(F(x0,x)) and claim that h is strictly-decreasingly lower
semicontinuous. Let xm → x̂ be such that h(xm+1) < h(xm) for all m ∈ N. Then,
F(x0,xm) �Dρ̄

F(x0,xm+1). For fixed m ≥ 1, the sequences (zk) := (xm+k)k satisfies
the conditions {

F(x0,zk)�Dρ̄
F(x0,zk+1),

lim
k→∞

zk = lim
m→∞

xm = x̂.

For r = −h(xm), F(x0,zk) + ry0 ≤Dρ̄
0 for all k. Indeed, supposing the contrary

and using (9), we have h(xm+k)-h(xm) = ϕDρ̄,y0
(F(x0,zk)− h(xm)y0) > 0, and so

h(xm+k)> h(xm), which is impossible.
As F(x0, ·) is (y0,Dρ̄)-qlsca, F(x0, x̂)− h(xm)y0 ≤Dρ̄

0 and hence h(x̂) ≤ h(xm)
for m ∈ N, i.e., h is strictly-decreasingly lower semicontinuous. Furthermore, from
(12) it follows that −ε inf

c∈C
ϕDρ̄ ,y0(c) ≤ h(x) for all x ∈ X , and so h is bounded from

below. Actually, since F verifies the diagonal null property, we have that h(x0) = 0
and then

h(x0)≤ h(x)+ ε inf
c∈C

ϕDρ̄ ,y0(c), ∀x ∈ X .

Thus, function h satisfies the hypotheses of Lemma 3, from which we know that for
each λ ∈ R there exists xλ ∈ X verifying

(a) d(xλ ,x0)≤ λ ;
(b) h(xλ )≤ h(x0)− kλ d(xλ ,x0);
(c) h(x)+ kλ d(x,xλ )> h(xλ ), ∀x 6= xλ .
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So (i) is satisfied. By Lemma 4, statement (b) is equivalent to

max
i∈{1,2,...,p}

{
αi ·F(x0,xλ )

αi · y0

}
≤ 0− kλ d(xλ ,x0),

and hence (ii) also holds.
Property (iii) is proved directly by applying Lemma 4 to statement (c).
Finally, assume that F verifies the hypothesis (ADρ̄

) and suppose that for some
λ > 0 there exists x̄ ∈ X such that

F(xλ , x̄)+ kλ d(x̄,xλ )y0 ∈ −Dρ̄\{0}.

Clearly, x̄ 6= xλ . By statement (b), we deduce that F(x0,xλ )∈−Dρ̄ and then, by virtue
of the hypothesis (ADρ̄

),

F(x0, x̄) ∈ F(x0,xλ )+F(xλ , x̄)−Dρ̄ .

Thus,
F(x0, x̄)+ kλ d(x̄,xλ )y0 ∈ F(x0,xλ )−Dρ̄\{0}.

By the Dρ̄ -monotonicity of ϕDρ̄ ,y0 and statement (9), it follows that

h(x̄)+ kλ d(x̄,xλ ) = ϕDρ̄ ,y0(F(x0, x̄)+ kλ d(x̄,xλ )y0)≤ ϕDρ̄ ,y0(F(x0,xλ )) = h(xλ ),

which contradicts (c). Therefore,

F(xλ ,x)+ kλ d(x,xλ )y0 /∈ −Dρ̄\{0}, ∀x ∈ X .

Applying Lemma 4 and properties (7)-(9) to the statement above, we conclude that
(iv) is also verified. The proof is complete.

Remark 8 If we define Fλ (x,y) := F(x,y)+ kλ d(x,y)y0, then statement (iv) of The-
orem 3 means that Fλ (xλ ,x)∩ (− intDρ̄) = /0, so xλ ∈ He(Fλ ,X ,D).

5 An EVP for cone-constrained vector equilibrium problems

In this section, we pay our attention to the following constrained VEP

Find x0 ∈ S such that F(x0,S)∩ (−D\{0}) = /0, (C V E P)

where S := {x ∈ X : g(x) ∈ −K}, g : X → Rl and K is the polyhedral cone {z ∈ Rl :
Bzt ∈ Rq

+} with B ∈Mq×l . We suppose that K is solid.
We aim to provide a version of the EVP for Henig (C,ε)-proper solutions of

(C V E P). Let G : X×X → Rl be defined as G(x,y) = g(y)−g(x).

Lemma 5 Let ε ≥ 0, C ∈H , x0 ∈ S, and ρ > 0. If F(x0,S)∩ (−C(ε)− intDρ) = /0,
then

[(F,G)(x0,X)+(C(ε),g(x0))]∩ [− int(Dρ ×K)] = /0. (13)
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Proof Suppose by reasoning to the contrary that (13) does not hold. Then, there exist
x̄ ∈ X and c ∈C(ε) such that

(F,G)(x0, x̄)+(c,g(x0)) ∈ (− intDρ)× (− intK).

Thus,
F(x0, x̄) ∈ −c− intDρ ⊂−C(ε)− intDρ ,

G(x0, x̄)+g(x0) ∈ − intK.

The last inclusion means that g(x̄)∈− intK. So, x̄∈ S and F(x0, x̄)∈−C(ε)− intDρ ,
which is a contradiction.

For ρ > 0, let us denote Hρ := Dρ ×K ⊂ Rn×Rl . The next lemma was proved
in [22, Lemma 3.9].

Lemma 6 Let ρ > 0 and (y0,z0) ∈ D\{0}× intK. Then,

ϕHρ ,(y0,z0)(y,z) = max
{

max
i∈{1,2,...,p}

{
αi · y
αi · y0

}
, max

j∈{1,2,...,q}

{
β j · z
β j · z0

}}
,

for all (y,z) ∈Rn×Rl , where αi := (ρu+ei)A, i ∈ {1,2, . . . , p} and β j is the jth row
of B for j ∈ {1,2, . . . ,q}.

Remark 9 Hρ is a closed convex pointed cone in Rn×Rl . So, for (y0,z0) ∈D\{0}×
intK ⊂ intHρ , it is clear that ϕHρ ,(y0,z0) satisfies the same properties as ϕDρ ,y0 in its
domain of definition (see Remark 5). For the convenience of the reader, we remind
the following formulae for ϕHρ ,(y0,z0), which can be directly verified,

{(y,z) ∈ Rn×Rl : ϕHρ ,(y0,z0)(y,z)< r}= r(y0,z0)− intHρ , (14)

{(y,z) ∈ Rn×Rl : ϕHρ ,(y0,z0)(y,z) = r}= r(y0,z0)−bdHρ ,

ϕHρ ,(y0,z0)(y+ ry0,z+ rz0) = ϕHρ ,(y0,z0)(y,z)+ r, ∀(y,r) ∈ Rn×Rl .

Theorem 4 Let C ∈A , ε > 0, x0 ∈ S, and (y0,z0) ∈ D\{0}× intK. Suppose that F
satisfies the diagonal null property on S, F(x0, ·) is (y0,Dρ)-qlsca for all ρ > 0, and
g is (z0,K)-qlsca. If x0 ∈ He(F,S,C,ε), then there exists ρ̄ > 0 such that for each
λ > 0, there exists xλ ∈ S verifying

(i) d(xλ ,x0)≤ λ ;

(ii) max
{

max
i∈{1,2,...,p}

{
αi ·F(x0,xλ )

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(xλ )

β j · z0

}}
≤−kλ d(xλ ,x0);

(iii) max
{

max
i∈{1,2,...,p}

{
αi ·F(x0,xλ )

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(xλ )

β j · z0

}}
< max

{
max

i∈{1,2,...,p}

{
αi ·F(x0,x)

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(x)
β j · z0

}}
+ kλ d(x,xλ ),

∀x 6= xλ .
If additionally the hypothesis (ADρ̄

) holds, then for all x ∈ X
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(iv) 0≤max
{

max
i∈{1,2,...,p}

{
αi ·F(xλ ,x)

αi · y0

}
, max

j∈{1,2,...,q}

{
β j · (g(x)−g(xλ ))

β j · z0

}}
+kλ d(xλ ,x),

being the inequality strict whenever (F,G)(xλ ,x)+ kλ d(xλ ,x)(y0,z0) 6= (0,0),

where kλ :=
ε

λ
inf
c∈C

ϕDρ̄ ,y0(c), αi := (ρ̄u+ ei)A, for all i ∈ {1,2, . . . , p} and β j is the

jth row of B for j ∈ {1,2, . . . ,q}.

Proof Since C ∈ A , there exist ρ̂,r > 0 such that C ∈ Aρ̂,r. Moreover, as x0 ∈
He(F,S,C,ε), by the definition and Lemma 5 there exists ρ̄ > 0 (that can be con-
sidered less than or equal to ρ̂) such that

[(F,G)(x0,X)+(C(ε),g(x0))]∩ (− intHρ̄) = /0.

Thus, by statement (14) we deduce that

ϕHρ̄ ,(y0,z0)((F,G)(x0,x)+(c,g(x0)))≥ 0, ∀x ∈ X , ∀c ∈C(ε).

By the subadditivity of ϕHρ̄ ,(y0,z0) we have, for all x ∈ X and c ∈C(ε),

0≤ ϕHρ̄ ,(y0,z0)((F,G)(x0,x)+(0,g(x0))+(c,0))

≤ ϕHρ̄ ,(y0,z0)((F,G)(x0,x)+(0,g(x0)))+ϕHρ̄ ,(y0,z0)(c,0).

Since C ∈A , by Lemma 6 it is clear that ϕHρ̄ ,(y0,z0)(c,0) = ϕDρ̄ ,y0(c) for all c∈C(ε).
and then

0≤ ϕHρ̄ ,(y0,z0)((F,G)(x0,x)+(0,g(x0)))+ ε inf
c∈C

ϕDρ̄ ,y0(c), ∀x ∈ X .

Define

h(x) := ϕHρ̄ ,(y0,z0)((F,G)(x0,x)+(0,g(x0))) = ϕHρ̄ ,(y0,z0)(F(x0,x),g(x)).

Then, following a reasoning similar to the proof of Theorem 3 but for this new func-
tion h depending on the couple (F,G), we conclude that h is strictly-decreasingly
lower semicontinuous. Also, since F satisfies the diagonal null property on S and
g(x0) ∈ −K, by Lemma 6 we have

h(x0) = ϕHρ̄ ,(y0,z0)(F(x0,x0),g(x0)) = ϕHρ̄ ,(y0,z0)(0,g(x0))

= max
{

0,ϕK,z0(g(x0))
}
= 0.

Thus, h(x0) ≤ h(x)+ ε infc∈C ϕDρ̄ ,y0(c), ∀x ∈ X , and by Lemma 3 we know that for
each λ > 0, there exists xλ ∈ X such that conditions (a)-(c) in the proof of Theorem
3 are satisfied for this new function h. Then, (i) holds. Also by Lemma 6, statement
(b) is equivalent to

ϕHρ̄ ,(y0,z0)((F,G)(x0,xλ )+(0,g(x0))) = ϕHρ̄ ,(y0,z0)(F(x0,xλ ),g(xλ ))

= max
{

ϕDρ̄ ,y0(F(x0,xλ )),ϕK,z0(g(xλ ))
}

≤−kλ d(xλ ,x0).
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Hence, (ii) holds. Moreover, from the last inequality above we deduce in particular
that ϕK,z0(g(xλ )) ≤ 0, from which we have g(xλ ) ∈ −K, which means that xλ ∈ S.
Statement (iii) follows directly by applying Lemma 6 to statement (c).

Finally, assume that F verifies the hypothesis (ADρ̄
) and suppose that for λ > 0

there exists x̄ ∈ X such that

(F,G)(xλ , x̄)+ kλ d(x̄,xλ )(y0,z0) ∈ −Hρ̄\{(0,0)}.

This means that

F(xλ , x̄)+ kλ d(x̄,xλ )y0 ∈ −Dρ̄ ,

G(xλ , x̄)+ kλ d(x̄,xλ )z0 ∈ −K,

and either F(xλ , x̄)+kλ d(x̄,xλ )y0 6= 0 or G(xλ , x̄)+kλ d(x̄,xλ )z0 6= 0. Then, with the
same reasoning as in the proof of Theorem 3, the above implies that x̄ 6= xλ and

F(x0, x̄)+ kλ d(x̄,xλ )y0 ∈ F(x0,xλ )−Dρ̄ . (15)

Also,

G(x0, x̄)+ kλ d(x̄,xλ )z0 = g(x̄)−g(xλ )+g(xλ )−g(x0)+ kλ d(x̄,xλ )z0

= G(xλ , x̄)+G(x0,xλ )+ kλ d(x̄,xλ )z0

∈ G(x0,xλ )−K. (16)

Hence, by (15) and (16), we derive that

(F,G)(x0, x̄)+(0,g(x0))+ kλ d(x̄,xλ )(y0,z0) ∈
(F,G)(x0,xλ )+(0,g(x0))−Hρ̄ .

Consequently, by the properties of functional ϕHρ̄ ,(y0,z0),

h(x̄)+ kλ d(x̄,xλ )≤ h(xλ ),

which contradicts property (c) of h. Hence,

(F,G)(xλ ,x)+ kλ d(x,xλ )(y0,z0) /∈ −Hρ̄\{(0,0)}, ∀x ∈ X ,

and so ϕHρ̄ ,(y0,z0)(F(xλ ,x),G(xλ ,x)) + kλ d(x,xλ ) ≥ 0 for all x ∈ X , where the in-
equality is strict whenever (F,G)(xλ ,x)+ kλ d(x,xλ )(y0,z0) 6= (0,0). Thus, part (iv)
follows directly by Lemma 6, and the proof is complete.
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6 Applications to multiobjective optimization and variational inequalities

In this section, we are going to apply the results stated in Sections 4 and 5, through
the solutions of a related vector variational inequality problem, to the special case of
a general multiobjective optimization problem.

Consider a function f : X → Rn and the following multiobjective optimization
problem

Minimize f (x) subject to x ∈M, (MOP)

where /0 6= M ⊂ X is the feasible set.
We focus on the study of (C,ε)-proper efficient solutions of (MOP), which are

defined in the following way (see [21]).

Definition 5 Let ε ≥ 0 and C ∈H . A point x0 ∈M is a Henig (C,ε)-proper efficient
solution of (MOP), and we denote it by x0 ∈ HeMOP( f ,M,C,ε), if there exists
D′ ∈ G (C) such that

( f (M)− f (x0))∩ (−C(ε)− intD′) = /0.

If C = D\{0}, then we obtain the notion of an exact Henig proper efficient solu-
tion.

Remark 10 Let F(x,y) := f (y)− f (x). It is clear that x0 ∈HeMOP( f ,X ,C,ε) if and
only if x0 is a (C,ε)-proper efficient solution of (V E P) and x0 ∈HeMOP( f ,S,C,ε)
if and only if x0 is a (C,ε)-proper efficient solution of (C V E P).

The next two results provide versions of the EVP for Henig (C,ε)-proper efficient
solutions of (MOP) for the unconstrained case (i.e., when M = X) and also for M =
S. They are direct consequences of Remark 10 and Theorems 3 and 4, respectively.

Corollary 1 Let C ∈ A , ε > 0, x0 ∈ X, and y0 ∈ D\{0}. Suppose that f − f (x0) is
(y0,Dρ)-qlsca for all ρ > 0. If x0 ∈HeMOP( f ,X ,C,ε), then there exists ρ̄ > 0 such
that for each λ > 0, there exists xλ ∈ X satisfying

(i) d(xλ ,x0)≤ λ ;

(ii) max
i∈{1,2,...,p}

{
αi · ( f (xλ )− f (x0))

αi · y0

}
≤−kλ d(xλ ,x0);

(iii) max
i∈{1,2,...,p}

{
αi · ( f (xλ )− f (x0))

αi · y0

}
< max

i∈{1,2,...,p}

{
αi · ( f (x)− f (x0))

αi · y0

}
+kλ d(x,xλ ),

∀x 6= xλ .

(iv) 0≤ max
i∈{1,2,...,p}

{
αi · ( f (x)− f (xλ ))

αi · y0

}
+ kλ d(xλ ,x) for all x ∈ X,

0 < max
i∈{1,2,...,p}

{
αi · ( f (x)− f (xλ ))

αi · y0

}
+ kλ d(xλ ,x) for all x ∈ X such that f (x)−

f (xλ )+ kλ d(xλ ,x)y0 6= 0,

where kλ :=
ε

λ
inf
c∈C

ϕDρ̄ ,y0(c) and αi := (ρ̄u+ ei)A for all i ∈ {1,2, . . . , p}.
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Remark 11 (a) Let us note that if in Theorem 1 we consider C = y0 +D, then we
obtain necessary conditions for approximate proper efficient solutions in the sense of
El Maghri (see [10]), where in this case kλ = ε/λ for each λ ∈ R.

(b) Statement (iv) of Theorem 1 implies that xλ ∈ HeMOP( fλ ,X ,D), where
fλ (·) := f (·)+ kλ d(·,xλ )y0.

(c) In [25, Section 5] the authors provided necessary conditions for several types
of approximate solutions through a version of the EVP, with a motivation similar
to that of the results presented in this section. Notice that in Theorem 1, we pro-
vide an alternative improved version of the EVP for approximate proper solutions of
(MOP) and for more general sets C than in [25, Section 5].

Moreover, in the next result we also study the case in which the feasible set is
given by a cone constraint.

Corollary 2 Let C ∈ A , ε > 0, x0 ∈ S, (y0,z0) ∈ D\{0}× intK. Suppose that f −
f (x0) is (y0,Dρ)-qlsca for all ρ > 0, and g is (z0,K)-qlsca. If x0 ∈HeMOP( f ,S,C,ε),
then there exists ρ̄ > 0 such that for each λ > 0 there exists xλ ∈ S verifying

(i) d(xλ ,x0)≤ λ ;

(ii) max
{

max
i∈{1,2,...,p}

{
αi · ( f (xλ )− f (x0)

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(xλ )

β j · z0

}}
≤

− kλ d(xλ ,x0);

(iii) max
{

max
i∈{1,2,...,p}

{
αi · ( f (xλ )− f (x0))

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(xλ )

β j · z0

}}
< max

{
max

i∈{1,2,...,p}

{
αi · ( f (x)− f (x0))

αi · y0

}
, max

j∈{1,2,...,q}

{
β j ·g(x)
β j · z0

}}
+kλ d(x,xλ ),

∀x 6= xλ .

(iv) 0≤max
{

max
i∈{1,2,...,p}

{
αi · ( f (x)− f (xλ ))

αi · y0

}
, max

j∈{1,2,...,q}

{
β j · (g(x)−g(xλ ))

β j · z0

}}
+

kλ d(xλ ,x), being the inequality strict whenever

( f ,g)(x)− ( f ,g)(xλ )+ kλ d(xλ ,x)(y0,z0) 6= (0,0),

where kλ :=
ε

λ
inf
c∈C

ϕDρ̄ ,y0(c), αi := (ρ̄u+ ei)A for all i ∈ {1,2, . . . , p} and β j is the

jth row of B for j ∈ {1,2, . . . ,q}.

In the rest of the paper, we consider a nontrivial complete linear metric space (X ,d).
It is well known that vector variational inequality problems play an important role in
vector optimization since their introduction by Giannessi in [13]. Here, we are going
to study an approximate vector variational inequality problem and its relation with
Henig (C,ε)-proper efficient solutions of (MOP). For this aim, we need to use the
approximate strong subdifferential stated in the next definition. It was introduced and
studied by Gutiérrez, Huerga, Jiménez and Novo in [20].

From now on, L (X ,Rn) stands for the set of all continuous linear mappings from
X to Rn.

Definition 6 Let ε ≥ 0 and C ⊂ D\{0} be a nonempty set. The (C,ε)-strong subdif-
ferential of f at x0 is defined as

∂
s
C,ε f (x0) := {T ∈L (X ,Rn) : f (x)≥D f (x0)−q+T (x− x0), ∀q ∈C(ε), ∀x ∈ X}.
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Also, we denote ∂ s f (x0) := ∂ s
D\{0},0 f (x0) = {T ∈L (X ,Rn) : f (x) ≥D f (x0)+

T (x− x0), ∀x ∈ X}.

Remark 12 If n= 1, D= [0,∞) and C = {1}, then ∂ s
C,ε f (x0)= ∂ε f (x0), where ∂ε f (x0)

denotes the ε-subdifferential for scalar mappings given by Brøndsted-Rockafellar [6].
Also, if C = {q}, q ∈D\{0}, then the (C,ε)-strong subdifferential reduces to the

ε-subdifferential for vector mappings introduced by Kutateladze [38].

Next lemma provides an easy to handle calculus rule for the (C,ε)-strong subdif-
ferential in terms of approximate subgradients of related scalar mappings.

Given C ⊂ D\{0} and µ ∈ Rn let us denote τC(µ) := infc∈C〈µ,c〉.

Lemma 7 Let ε ≥ 0, /0 6=C⊂D\{0} and x0 ∈ X. It follows that T ∈ ∂ s
C,ε f (x0) if and

only if

ai ◦T ∈ ∂ετC(ai)(ai ◦ f )(x0), ∀i ∈ {1,2, . . . , p}, (17)

where ai denotes the ith row of A, i ∈ {1,2, . . . , p}.

Proof Let T ∈ ∂ s
C,ε f (x0). Then, by [20, Theorem 4.4] we know that

µ ◦T ∈ ∂ετC(µ)(µ ◦ f )(x0), ∀µ ∈ D+\{0}.

It is clear that ai ∈ D+\{0} for all i ∈ {1,2, . . . , p}, so in particular (17) holds. Con-
versely, let µ ∈D+\{0}. Then, it is easy to see that there exist λ1,λ2, . . . ,λp ≥ 0 such

that µ =
p

∑
i=1

λiai. Since ai ◦T ∈ ∂ετC(ai)(ai ◦ f )(x0), for all i ∈ {1,2, . . . , p} it follows

that

(ai ◦ f )(x)≥ (ai ◦ f )(x0)− ετC(ai)+(ai ◦T )(x− x0), ∀x ∈ X , ∀i ∈ {1,2, . . . , p}.
(18)

Thus, taking into account (18) we have for all x ∈ X

(µ ◦ f )(x) =
p

∑
i=1

λi(ai ◦ f )(x)

≥
p

∑
i=1

λi(ai ◦ f )(x0)− ε

p

∑
i=1

λiτC(ai)+
p

∑
i=1

λi(ai ◦T )(x− x0)

= (µ ◦ f )(x0)− ε

p

∑
i=1

τC(λiai)+(µ ◦T )(x− x0)

≥ (µ ◦ f )(x0)− ετC(µ)+(µ ◦T )(x− x0).

Hence, by [20, Theorem 4.4] we conclude that T ∈ ∂ s
C,ε f (x0), and the proof is com-

plete.
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Remark 13 In [20, Theorem 4.6] a characterization of ∂ s
C,ε f (x0) was given when

D = Rn
+. Thus, Lemma 7 extends [20, Theorem 4.6] for any polyhedral ordering

cone. For the convenience of the reader, note that if D = Rn
+ then

∂
s
C,ε f (x0) =

n

∏
i=1

∂ετC(ei) fi(x0),

where fi is the ith component of f and {ei}1≤i≤n is the canonical base of Rn.

Let /0 6=C ⊂ D\{0}, ρ ≥ 0 and ε1,ε2 ≥ 0. We define now the following approxi-
mate vector variational inequality problem:

Find x0 ∈ X for which there exists T ∈ ∂
s
C,ε1

f (x0) satisfying

x0 ∈ He(FT ,X ,C+Dρ ,ε2), ∀x ∈ X , (AV V I PC,ε1,ε2,ρ )

where FT : X×X → Rn is defined as FT (x,y) := T (y− x).
In particular, if C = D\{0} and ε1 = ε2 = 0, then we obtain the next exact vector

variational inequality problem

Find x0 ∈ X for which there exists T ∈ ∂
s f (x0) satisfying

x0 ∈ He(FT ,X ,Dρ), ∀x ∈ X . (V V I Pρ )

Remark 14 By Remark 2 it is easy to see that x0 is a solution of (AV V I PC,ε1,ε2,0)
if and only if there exists ρ > 0 such that x0 is a solution of (AV V I PC,ε1,ε2,ρ ). In
the same way, x0 is a solution of (V V I P0) if and only if there exists ρ > 0 such
that x0 is a solution of (V V I Pρ ).

When D = Rn
+, ρ = 0, f : Rs→ Rn is a differentiable Rn

+-convex mapping (i.e.,
f (y)≥Rn

+
f (x)+ f ′(x)(y− x), for all y ∈ X , where f ′(x) denotes the Jacobian of f at

x), and instead of considering proper efficient solutions in (V V I Pρ ) we consider
efficient solutions, it follows that problem (V V I P0) reduces to the well-known
vector variational inequality problem studied by Yang and Goh in [51]. In this case,
∂ s f (x) = { f ′(x)}, for each x ∈ X and then T is univocally defined for each x.

Here, we are not only interested in an exact vector variational inequality problem,
but also in the approximate problem (AV V I PC,ε1,ε2,ρ ). This problem lets us derive
a sufficient condition for Henig (C,ε)-proper efficient solutions of (MOP), as it is
shown in the following result.

Theorem 5 Let /0 6=C ⊂ D\{0}, ρ ≥ 0 and ε,ε1,ε2 ≥ 0 such that ε1 + ε2 = ε . If x0
is a solution of (AV V I PC,ε1,ε2,ρ ), then x0 ∈ HeMOP( f ,X ,C+Dρ ,ε).

Proof Suppose that x0 is a solution of (AV V I PC,ε1,ε2,ρ ). Then, there exist T ∈
∂ s

C,ε1
f (x0) and ρ̄ > 0 such that

FT (x0,X)∩ (−C(ε2)− intDρ̄) = /0. (19)

If ρ > 0 we consider without loss of generality that ρ̄ = ρ . Suppose by reasoning
to the contrary that x0 /∈ HeMOP( f ,X ,C +Dρ ,ε). Then, in particular, there exists
x̄ ∈ X such that

f (x̄)− f (x0) ∈ −C(ε)− intDρ̄ . (20)
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Consider first that ε1,ε2 > 0. Then, ε > 0 and by (20) there exist c̄ ∈C and d̄ ∈ intDρ̄

such that f (x̄)− f (x0) =−ε c̄− d̄. On the other hand, since T ∈ ∂ s
C,ε1

f (x0), we have
in particular that

f (x̄)≥D f (x0)− ε1c̄+T (x̄− x0),

so

T (x̄− x0) ∈ f (x̄)− f (x0)+ ε1c̄−D

=−ε c̄− d̄ + ε1c̄−D =−ε2c̄− d̄−D⊂−C(ε2)− intDρ̄ ,

and we obtain a contradiction with (19), proving that x0 ∈ HeMOP( f ,X ,C+Dρ ,ε).
Now suppose that ε1 = ε2 = 0. Thus, ε = 0. Note that C(0)+ intDρ̄ = intDρ̄ and

then by (20) there exists d̄ ∈ intDρ̄ such that f (x̄)− f (x0) =−d̄. On the other hand,
by [20, Proposition 4.3 (b)] we have ∂ s

C,0 f (x0) = ∂ s f (x0), so

f (x̄)≥D f (x0)+T (x̄− x0).

Thus,
T (x̄− x0) ∈ f (x̄)− f (x0)−D =−d̄−D⊂− intDρ̄ ,

that again contradicts (19). Cases ε1 > 0 = ε2 and ε2 > 0 = ε1 are reasoning in anal-
ogous way as above. The proof is complete.

Remark 15 For instance, for C = q+D, q ∈ D\{0}, or C = B+D, Theorem 5 pro-
vides a sufficient condition for Henig (C+Dρ ,ε)-proper efficient solutions of (MOP),
for all ρ ≥ 0.

Then, if we take F(x,y) := f (y)− f (x), it is worth to remain that from Theorems
1 and 2 the (C+Dρ ,ε)-proper efficient solutions of (MOP) tend to an exact Henig
proper efficient solution, when ρ > 0, and to an exact weak efficient solution, when
ρ = 0.

We finish the section with an EVP for solutions of (AV V I PC,ε1,ε2,ρ ), in terms
of the EVP stated in Theorem 3. The proof is straightforward from this theorem and
Lemma 7.

Theorem 6 Let /0 6=C ⊂D\{0} such that C ∈A , ρ ≥ 0, ε1 ≥ 0,ε2 > 0, y0 ∈D\{0}
and x0 ∈X. If x0 is a solution of (AV V I PC,ε1,ε2,ρ ), then there exists T ∈L (X ,Rn)
such that

ai ◦T ∈ ∂ε1τC(ai)(ai ◦ f )(x0),∀i ∈ {1,2, . . . , p},

and ρ̄ > 0 such that for each λ > 0 there exists xλ ∈ X satisfying

(i) d(xλ ,x0)≤ λ ;

(ii) max
i∈{1,2,...,p}

{
(αi ·T )(xλ − x0)

αi · y0

}
≤−kλ d(xλ ,x0);

(iii) max
i∈{1,2,...,p}

{
(αi ·T )(xλ − x0)

αi · y0

}
< max

i∈{1,2,...,p}

{
(αi ·T )(x− x0)

αi · y0

}
+ kλ d(x,xλ ),

∀x 6= xλ .
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(iv) 0≤ max
i∈{1,2,...,p}

{
(αi ·T )(x− xλ )

αi · y0

}
+ kλ d(xλ ,x), for all x ∈ X,

0 < max
i∈{1,2,...,p}

{
(αi ·T )(x− xλ )

αi · y0

}
+ kλ d(xλ ,x), for all x ∈ X such that T (x−

xλ )+ kλ d(xλ ,x)y0 6= 0,

where kλ :=
ε2

λ
inf
c∈C

ϕ−Dρ̄ ,y0(c) and αi := (ρ̄u+ ei)A, for all i ∈ {1,2, . . . , p}.

7 Conclusions

Given a vector equilibrium problem defined on a complete metric space and whose
final space is finite dimensional, ordered by a polyhedral cone, we have obtained a
variant of the EVP for a type of approximate proper solutions in the sense of Henig.

These solutions are interesting since they have a good limit behaviour when the
error goes to zero. Indeed, depending on the approximation set used to define them,
we have obtained sufficient conditions that guarantee that a convergent sequence of
approximate proper solutions tends to an exact weak/proper/efficient solution of the
vector equilibrium problem.

The aformentioned variant of the EVP is obtained through a nonlinear scalariza-
tion and its expressions depend on the matrix that defines the ordering cone, which
makes them interesting computationally. Moreover, we obtain alternative EVPs for
both an unconstrained and a constrained vector equilibrium problem. In the con-
strained case, the feasible set is given by a cone constraint and both the objective
and the constraint mapping are involved in the statements of the EVP.

Finally, we have applied the obtained results to the particular case of a multiob-
jective optimization problem, and in this framework we have defined and studied a
related vector variational inequality problem.
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