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Abstract In this paper, we introduce new notions of proper efficiency in the
sense of Henig for a set optimization problem by using the set criterion of
solution. The relationships between them are studied. Also, we compare these
concepts with the homologous ones given by considering the vector criterion.
Finally, a Lagrange multiplier rule for Henig proper solutions of a set optimiza-
tion problem with a cone constraint is obtained under convexity hypotheses.
Illustrative examples are also given.
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1 Introduction

When we solve a vector optimization problem, the set of efficient points is
sometimes very big and because of that it may contain anomalous or non
desirable points. The notions of proper efficiency appear in the literature with
the aim of providing a suitable selection of efficient points, that satisfy better
properties, following some criterion.

The first notion of proper efficiency was given by Kuhn and Tucker [27]
for multiobjective optimization problems and modified later by Geoffrion [7].
Several years later, Borwein [4] introduced a concept of proper efficiency for
vector optimization problems, and in the same setting Benson [3] defined a
notion of proper efficiency that extends the concept by Geoffrion and implies
the notion by Borwein.
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On the other hand, Henig [15] introduced a concept of proper efficiency for
vector optimization, more restrictive than the one given by Benson, and based
on the idea of replacing the ordering cone by a bigger one, with non empty
interior. Thus, the set of proper efficient points in the sense of Henig is easier
to obtain and satisfies better properties, since it consists, basically, in a set of
weak efficient points with respect to dilating cones.

One of the main properties of the proper efficient solutions in the sense of
Henig is that, under convexity hypotheses, they can be characterized through
linear scalarization (see [11,15]), which facilitates their calculus. Moreover,
since this notion is based on cones with non empty interior, these solutions can
be characterized through nonlinear scalarization as well, for which no convexity
conditions are required (see, for example, [12]). Because of that, Henig proper
efficiency has resulted to be a fruitful notion in vector optimization, as it is
proved by the numerous papers dealing with it (see, for instance, [6,9,11–13]).

If we extend the framework to set-valued optimization problems, we find
that there exist mainly two types of criteria to define a solution of these prob-
lems: the vector criterion and the set criterion. The first one (see [21,32])
consists in obtaining the efficient points of the image of the set-valued map,
considering the image set as a set of elements of the final space, and taking
into account the ordering given in the final space.

The second one, the set criterion ([28,29]) requires to establish a set order
relation between the sets of the final space. Then, by means of this criterion
one compares values of the set-valued map (which are sets) and chooses the
minimal ones taking into account the set order relation. Then, this criterion
seems to be more natural to handle with set-valued problems. A set-valued
optimization problem treated with this criterion is called a set optimization
problem.

Set-valued optimization problems have become interesting since several
years ago, due to their multiple applications in different fields of research, as
mathematical economics and finance, optimal control and viability theory (see,
for instance, [2,14,21]).

In the literature, one can find some references about proper efficiency for
a set-valued optimization problem with the vector criterion (see, for instance,
[30,31]), but to the best of our knowledge, proper efficiency with the set crite-
rion has not been considered. The aim of this work is to extend the concept by
Henig to the set optimization framework. Specifically, we define two notions of
proper efficiency in the sense of Henig for a set optimization problem, i.e., with
the set criterion, and compare them with their counterparts defined with the
vector criterion. Also, we provide a Lagrange multiplier rule for Henig proper
solutions of a convex set optimization problem with cone constraints, by using
the oriented distance of Hiriart-Urruty [18] as scalarizing functional.

The paper is structured as follows. In Section 2 we state the framework,
the basic results and previous notions that we need along the paper. In Sec-
tion 3 we introduce two notions of proper efficiency in the sense of Henig for
a set optimization problem with the set criterion, we study some properties
and compare these concepts with the analogous notions by using the vector
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criterion. Then, in Section 4 we establish a Lagrange multiplier rule for Henig
proper solutions of a constrained set optimization problem, under convexity
conditions. As an application, we derive a multiplier rule for Henig proper
solutions when the set optimization problem reduces to a vector one. Sev-
eral illustrative examples are also provided. Finally, in Section 5 we state the
conclusions.

2 Preliminaries and basic results

Let Y be a real normed space. Given a subset A ⊂ Y , we denote the interior,
the closure, the boundary and the cone generated by A as intA, clA, bdA
and coneA, respectively. It is said that A is solid if intA 6= ∅. Let P0(Y ) be
the set of all nonempty subsets of Y .

Given y ∈ Y and A ⊂ Y , we recall that the distance of y to A is given by
d(y,A) := infx∈A ‖x− y‖, being +∞ if A = ∅. We denote by B (resp., B̄) the
open (resp., closed) unit ball in Y , and R̄ := R ∪ {±∞}.

Throughout the paper, K ⊂ Y is a proper ({0} 6= K 6= Y ) pointed (K ∩
(−K) = {0}) closed convex cone, not necessarily solid. In Y , a partial order
≤K (reflexive, transitive and antisymmetric) induced by K is defined as usual

x, y ∈ Y, x ≤K y ⇔ y − x ∈ K.

Moreover, if K is solid, it is defined x�K y if y − x ∈ intK.
It is said that a nonempty subset A of Y is K-proper if A + K 6= Y , K-

closed if A+K is closed, K-bounded if there exists t > 0 such that A ⊂ tB+K,
and K-compact if any cover of A of the form {Uα + K : α ∈ I, Uα is open}
admits a finite subcover.

Remark 2.1 Every K-compact set is K-closed and K-bounded (see [32, Chap-
ter 1, Proposition 3.3]). Every K-bounded set is also K-proper.

Let Y ∗ be the topological dual space of Y , and denote by 〈y∗, y〉 the duality
pairing between Y ∗ and Y . Recall that the positive polar cone and the strictly
positive set to K are defined, respectively, by

K+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀y ∈ K},
Ks+ := {y∗ ∈ Y ∗ : 〈y∗, y〉 > 0, ∀y ∈ K \ {0}}.

We say that a convex set Θ ⊂ Y is a base of K if K = coneΘ and 0 /∈ clΘ.
It is known that K has a base if and only if Ks+ 6= ∅ (see, for instance, Jahn
[21]).

In the sequel, we always assume that K has a base Θ. Set

δ := inf{‖y‖ : y ∈ Θ} > 0.

For each scalar η ∈ (0, δ) we associate to K a cone

Kη := cl cone(Θ + ηB̄).
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This cone, known as the Henig dilating cone [15], plays an important role in
the study of proper efficiency.

Remark 2.2 (i) By [5, Theorem 1.1(1)], we have that Kη = cone cl(Θ + ηB̄).
Also, it follows that

cl(Θ + ηB̄) = Bη := {y ∈ Y : d(y,Θ) ≤ η}, (1)

so Kη = coneBη. The proof of equality (1) can be found in [23, Lemma 2.9],
but we add it below for the convenience of the reader.

Indeed, let y ∈ Θ + ηB̄. Then, there exists θ ∈ Θ such that y ∈ θ + ηB̄,
so d(y, θ) ≤ η and then d(y,Θ) ≤ η. Hence, Θ + ηB̄ ⊂ Bη, so we deduce that
cl(Θ + ηB̄) ⊂ Bη, since Bη is closed.

Reciprocally, let y ∈ Bη and suppose by reasoning to the contrary that
y /∈ cl(Θ + ηB̄). Then, there exists α > 0 such that

d(y,Θ + ηB̄) ≥ α. (2)

Fix θ ∈ Θ. We affirm that

d(y, θ) ≥ α+ η. (3)

Otherwise, if d(y, θ) < α + η, there exists b ∈ B such that y = θ + (α + η)b.
Therefore,

d(y, θ + ηb) = d(θ + αb+ ηb, θ + ηb) = α‖b‖ < α,

and we would obtain a contradiction with (2).
Since (3) holds for all θ ∈ Θ, we deduce that d(y,Θ) = infθ∈Θ d(y, θ) ≥

α+ η, which is a contradiction, since y ∈ Bη.
As a consequence, the Henig dilating cones defined here coincide with the

Henig dilating cones defined in [10, Lemma 3.2.51].
(ii) Let us also note that in the finite dimensional case, base Θ can be

considered to be compact. Hence, in this case, Θ + ηB̄ is closed, and then
Kη = cone(Θ + ηB̄).

The properties of the Henig dilating cone are collected in the following
result from Göpfert et al. [10, Lemma 3.2.51] (see also Gong [8, Lemma 2.1]).

Lemma 2.1 (i) The Henig dilating cone Kη is a solid pointed closed convex
cone for every η ∈ (0, δ).

(ii) If 0 < η1 < η2 < δ, then K \ {0} ⊂ Kη1 \ {0} ⊂ intKη2 .

We denote

K∆(Θ) := {y∗ ∈ Ks+ : ∃t > 0 such that 〈y∗, y〉 ≥ t ∀y ∈ Θ}.

By a separation theorem of convex sets, we know K∆(Θ) 6= ∅. The set K∆(Θ)
was introduced by Zheng in [36]. It is clear that K∆(Θ) ∪ {0} is a pointed
convex cone, and K+ + K∆(Θ) ⊂ K∆(Θ) ⊂ Ks+. It is known that K∆(Θ)
is in general strictly contained in Ks+ (see [9]). In the following lemma we
collect some properties about the positive polar cone to Kη (see [33, Lemma
5.1]).
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Lemma 2.2 The following properties hold.
(i) (

⋃
0<η<δK

+
η ) \ {0} = K∆(Θ).

(ii) int(K+) ⊂ K∆(Θ); and when Θ is bounded, then int(K+) = K∆(Θ).

Hiriart-Urruty [18] introduced the next nonlinear scalarization function.
Let A ⊂ Y . The oriented distance D(·, A) : Y → R̄ is defined as follows:

D(y,A) := d(y,A)− d(y, Y \A).

If A,B ∈ P0(Y ), we define the following function from P0(Y )×P0(Y ) into
R̄:

DsiK(A,B) := sup
b∈B

inf
a∈A

D(a− b,−K).

This scalarization function has been studied, for example, in [24,25].

2.1 Efficiency and proper efficiency notions for sets

Let A be a nonempty proper subset of Y . In this paper we consider the fol-
lowing concepts of efficiency [12,13,15,34,35].

We denote

HK := {K ′ ⊂ Y : K ′ is a pointed solid convex cone and K \ {0} ⊂ intK ′} .

Definition 2.1 Let a0 ∈ A. It is said that a0 is
(i) an efficient point of A with respect to (wrt) K (a0 ∈ Min(A,K)) if

(A− a0) ∩ (−K \ {0}) = ∅,
(ii) a weak efficient point of A wrt K (a0 ∈ wMin(A,K)) if (A − a0) ∩

(− intK) = ∅,
(iii) a Henig proper efficient point of A wrt K (a0 ∈ He(A,K)) if there

exists K ′ ∈ HK such that a0 ∈ Min(A,K ′),
(iv) a Henig proper efficient point of A wrt Θ (a0 ∈ He(A,Θ)) if there

exists η ∈ (0, δ) such that a0 ∈ Min(A,Kη).

From now on, to simplify, we will just write Henig proper efficient points
instead of Henig proper efficient points wrt to a base Θ. Also, we will assume
that intK 6= ∅ whenever we deal with weak efficient points.

From the definition, one has

He(A,Θ) ⊂ He(A,K) ⊂ Min(A,K) ⊂ wMin(A,K) (4)

(the first inclusion follows from the fact that Kη ∈ HK for all η ∈ (0, δ) by
Lemma 2.1).

Remark 2.3 (i) One has

He(A,K) =
⋃

K′∈HK

Min(A,K ′) =
⋃

K′∈HK

wMin(A,K ′).
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Indeed, the first equality is by the definition. As Min(A,K ′) ⊂ wMin(A,K ′),
we only have to prove that

⋃
K′∈HK wMin(A,K ′) ⊂

⋃
K′∈HK Min(A,K ′). But

this is clear since wMin(A,K ′) = Min(A,K1), where K1 := (intK ′) ∪ {0} ∈
HK whenever K ′ ∈ HK .

(ii) To define HK we have considered that K ′ is pointed (as in [26, Defi-
nition 2.4.4(f)]), but in some papers (see, f.e., [15,35]) the pointedness of K ′

is not required. Let us see that He(A,K) does not change if we remove the
pointedness condition on K ′ and we ask for the properness of K ′. Indeed, let

H̃K :=
{
K̃ ⊂ Y : K̃ is a proper solid convex cone and K \ {0} ⊂ int K̃

}
,

and let us prove that⋃
K′∈HK

Min(A,K ′) =
⋃

K̃∈H̃K

Min(A, K̃).

The inclusion “⊂” is obvious as HK ⊂ H̃K . To prove the converse inclu-
sion, let a0 ∈

⋃
K̃∈H̃K Min(A, K̃). Then there exists K̃ ∈ H̃K such that

a0 ∈ Min(A, K̃) ⊂ wMin(A, K̃). Let K1 := int K̃ ∪ {0}. It follows that
a0 ∈ Min(A,K1) and, moreover, K1 is pointed and K \ {0} ⊂ int K̃ ⊂ intK1.
Therefore, K1 ∈ HK and consequently a0 ∈

⋃
K′∈HK Min(A,K ′).

The following result plays a crucial role to obtain properties of Henig proper
efficient points. It allows us to describe, equivalently, a Henig proper efficient
point as a weak efficient point wrt some Henig dilating cone.

Proposition 2.1 One has

He(A,Θ) =
⋃

η∈(0,δ)

Min(A,Kη) =
⋃

η∈(0,δ)

wMin(A,Kη).

Proof The first equality is by definition. As Min(A,Kη) ⊂ wMin(A,Kη), we
only have to prove

⋃
η∈(0,δ) wMin(A,Kη) ⊂

⋃
η∈(0,δ) Min(A,Kη). Let a0 ∈

wMin(A,Kη) for some η ∈ (0, δ), then (A− a0)∩ (− intKη) = ∅. By applying
Lemma 2.1(ii), and choosing η̄ ∈ (0, η), one has Kη̄ \ {0} ⊂ intKη, and so
(A− a0) ∩ (−Kη̄ \ {0}) = ∅, which means that a0 ∈ Min(A,Kη̄).

2.2 Efficiency and proper efficiency notions for set-valued maps

Let X be a linear space. Given a set-valued map F : X ⇒ Y , its graph is
grF := {(x, y) ∈ X×Y : y ∈ F (x)}, its epigraph is epiF := {(x, y) ∈ X×Y :
y ∈ F (x) + K}, and its profile (or epigraphical) map is the set-valued map
FK : X ⇒ Y defined by FK(x) := F (x) +K, which is also denoted by F +K.
It is clear that grFK = epiF .

Whenever ‘N’ denotes some property of sets in Y , it is said that F is
‘N’-valued if F (x) has the property ‘N’ for every x ∈ X.
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Let us recall some concepts of minimizers of a set-valued map F : X ⇒ Y
with the vector criterion. Note that the concepts of efficient points of a set
in Definition 2.1 naturally induce the following concepts of minimizers of F .
Given ∅ 6= S ⊂ X, we set F (S) := ∪x∈SF (x).

Definition 2.2 Let x ∈ S. We say that x is a
(i) minimizer of F wrt K, denoted x ∈ Min(F, S,K), if there exists y ∈

F (x) such that y ∈ Min(F (S),K),
(ii) weak minimizer of F wrt K, denoted x ∈ wMin(F, S,K), if there exists

y ∈ F (x) such that y ∈ wMin(F (S),K),
(iii) Henig proper minimizer of F wrt K, denoted x ∈ He(F, S,K), if there

exists y ∈ F (x) such that y ∈ He(F (S),K),
(iv) Henig proper minimizer of F wrt Θ, denoted x ∈ He(F, S,Θ), if there

exists y ∈ F (x) such that y ∈ He(F (S), Θ).

It is easy to see that

He(F, S,Θ) ⊂ He(F, S,K) ⊂ Min(F, S,K) ⊂ wMin(F, S,K).

Remark 2.4 One has

He(F, S,K) =
⋃
K′∈HK Min(F, S,K ′) =

⋃
K′∈HK wMin(F, S,K ′), (5)

He(F, S,Θ) =
⋃
η∈(0,δ) Min(F, S,Kη) =

⋃
η∈(0,δ) wMin(F, S,Kη). (6)

Indeed, (5) is a consequence of the definition and Remark 2.3(i), and (6) follows
from Proposition 2.1.

Next, we recall the so-called lower (and strict lower) set less order relation.
Given A,B ∈ P0(Y ), we consider the following set relations:
• A ≤lK B ⇔ ∀b ∈ B, ∃a ∈ A : a− b ∈ −K ⇔ B ⊂ A+K.
• A�l

K B ⇔ ∀b ∈ B, ∃a ∈ A : a− b ∈ − intK ⇔ B ⊂ A+ intK.

Remark 2.5 When A and B are singleton, A = {a} and B = {b}, we have
{a} ≤lK {b} if and only if a ≤K b, and {a} �l

K {b} if and only if a�K b.

Let S be a non-empty subset of X. We consider the following set optimiza-
tion problem

≤lK −minF (x) subject to x ∈ S. (SOP)

In the following, we recall some concepts of minimal solution using the set
criterion and the set relations stated above (see, for instance, [17,22,24,28]).

Definition 2.3 Let x0 ∈ S. It is said that x0 is a
(i) ≤lK-minimal solution of (SOP), denoted x0 ∈ Minl(F, S,K), if F (x) ≤lK

F (x0) for some x ∈ S implies F (x0) ≤lK F (x),
(ii) weak ≤lK-minimal solution of (SOP), denoted x0 ∈ wMinl(F, S,K), if

F (x)�l
K F (x0) for some x ∈ S implies F (x0)�l

K F (x).

Of course, if we deal with weak ≤lK-minimal solutions, we suppose that K
is solid.

By [17, Proposition 2.7(i)] we know that

Minl(F, S,K) ⊂ wMinl(F, S,K). (7)
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3 Henig proper solutions of (SOP)

In this section we introduce the notion of Henig proper solution of (SOP) with
the set criterion. We also study its basic properties and relationships with the
Henig proper solution defined when the vector criterion is considered. As far
as we know, the notion of Henig proper efficiency with the set criterion has
not been considered in the literature up to now.

We denote El(x0) := {x ∈ S : F (x) ≤lK F (x0) and F (x0) ≤lK F (x)}. Let
us recall that x ∈ El(x0) if and only if F (x0) +K = F (x) +K.

Definition 3.1 We say that x0 ∈ S is a
(i) ≤lK-Henig proper solution of (SOP), denoted x0 ∈ Hel(F, S,K), if there

exists K ′ ∈ HK such that x0 ∈ Minl(F, S,K
′), i.e.,

x ∈ S, F (x) ≤lK′ F (x0) ⇒ F (x0) ≤lK′ F (x),

(ii) strict ≤lK-Henig proper solution of (SOP), denoted x0 ∈ sHel(F, S,K),
if there exists K ′ ∈ HK such that there is no x ∈ S \ El(x0) with F (x) ≤lK′

F (x0), i.e.,

F (x) �lK′ F (x0), ∀x ∈ S \ El(x0), (8)

(iii) weak≤lK-Henig proper solution of (SOP) wrt Θ, denoted x0 ∈ wHel(F,
S,Θ), if there exists η ∈ (0, δ) such that x0 ∈ wMinl(F, S,Kη), i.e.,

x ∈ S, F (x)�l
Kη F (x0) ⇒ F (x0)�l

Kη F (x),

(iv) strict weak ≤lK-Henig proper solution of (SOP) wrt Θ, denoted x0 ∈
swHel(F, S,Θ), if there exists η ∈ (0, δ) such that there is no x ∈ S \ El(x0)
with F (x)�l

Kη
F (x0), i.e.,

F (x) 6�l
Kη F (x0), ∀x ∈ S \ El(x0). (9)

From the definition it is evident that

Hel(F, S,K) =
⋃
K′∈HK Minl(F, S,K

′) and
wHel(F, S,Θ) =

⋃
η∈(0,δ) wMinl(F, S,Kη).

(10)

Remark 3.1 We can define in a similar way the following sets of Henig proper
solutions:

wHel(F, S,K) :=
⋃
K′∈HK wMinl(F, S,K

′),

swHel(F, S,K) := {x0 ∈ S : ∃K ′ ∈ HK such that F (x) 6�l
K′ F (x0)

∀x ∈ S \ El(x0)},
Hel(F, S,Θ) :=

⋃
η∈(0,δ) Minl(F, S,Kη),

sHel(F, S,Θ) :=
{
x0 ∈ S : ∃η ∈ (0, δ) such that F (x) �lKη F (x0)

∀x ∈ S \ El(x0)
}
.



New notions of proper efficiency in set optimization with the set criterion 9

Let us note that none of them requires K to be solid. Taking into account that
the cones Kη ∈ HK , the following inclusions are obvious:

Hel(F, S,Θ) ⊂ Hel(F, S,K), sHel(F, S,Θ) ⊂ sHel(F, S,K),
wHel(F, S,Θ) ⊂ wHel(F, S,K), swHel(F, S,Θ) ⊂ swHel(F, S,K).

(11)

The following inclusions are also obvious (Remark 3.1 and conditions (10) and
(7) are used to prove the first and third inclusions):

Hel(F, S,K) ⊂ wHel(F, S,K), sHel(F, S,K) ⊂ swHel(F, S,K),
Hel(F, S,Θ) ⊂ wHel(F, S,Θ), sHel(F, S,Θ) ⊂ swHel(F, S,Θ).

(12)

We say that each pair of sets in the four inclusions in (11) are analogous, in
the following sense: most of the results that we will establish in this section for
a set in Definition 3.1 will be also true for the analogous set with a very similar
proof (see Remark 3.2). Specially for this reason, we will mainly consider the
sets introduced in Definition 3.1.

Next, we are going to study some relationships between the different sets of
≤lK-Henig proper solutions. First of all, we state some basic inclusions (Propo-
sition 3.1). Second, to establish other interesting inclusions (Proposition 3.2),
we need some previous results (Lemmas 3.1-3.3).

Proposition 3.1 The following inclusions are fulfilled:

sHel(F, S,K) ⊂ Hel(F, S,K) and sHel(F, S,K) ⊂ Minl(F, S,K), (13)

swHel(F, S,Θ) ⊂ wHel(F, S,Θ), (14)

and if K is solid then

swHel(F, S,Θ) ⊂ wMinl(F, S,K). (15)

Proof Let x0 ∈ sHel(F, S,K), then (8) is satisfied for some K ′ ∈ HK . Let us
prove that

x0 ∈ Minl(F, S,K1) (16)

for all convex cone K1 with K ⊂ K1 ⊂ K ′. Indeed, let x ∈ S satisfying
F (x) ≤lK1

F (x0). Then, by definition

F (x0) ⊂ F (x) +K1 ⊂ F (x) +K ′, (17)

i.e., F (x) ≤lK′ F (x0). As x ∈ S, in view of (8) it follows that x ∈ El(x0). From
here,

F (x0) +K = F (x) +K. (18)

Adding K to the first inclusion in (17) we have F (x0) +K ⊂ F (x) +K +K1.
Using (18) we derive that F (x) + K ⊂ F (x0) + K + K1 ⊂ F (x0) + K1 since
K ⊂ K1 and K1 + K1 ⊂ K1. As F (x) ⊂ F (x) + K, we deduce that F (x) ⊂
F (x0) +K1, which means that F (x0) ≤lK1

F (x), and therefore (16) is proved.
Now, the inclusions in (13) follow using (16) with K1 = K ′ and K1 = K,

respectively.
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The inclusions (14) and (15) are proved using the same ideas. Indeed, let
x0 ∈ swHel(F, S,Θ), then (9) holds for some Kη with η ∈ (0, δ). Let us prove
that

x0 ∈ wMinl(F, S,K1) (19)

for all solid convex cone K1 with K ⊂ K1 ⊂ Kη. Indeed, let x ∈ S satisfying
F (x)�l

K1
F (x0). Then, by definition

F (x0) ⊂ F (x) + intK1 ⊂ F (x) + intKη, (20)

i.e., F (x) �l
Kη

F (x0). In view of (9) it follows that x ∈ El(x0), and so, (18)

holds. Adding K to (20) we have F (x0) + K ⊂ F (x) + K + intK1. Using
(18) we derive that F (x) + K ⊂ F (x0) + K + intK1 ⊂ F (x0) + intK1. As
F (x) ⊂ F (x) + K, we get F (x) ⊂ F (x0) + intK1, i.e., F (x0) �l

K1
F (x), and

therefore (19) is proved. Now, the inclusions (14) and (15) follow using (19)
with K1 = Kη and K1 = K, respectively, this latter when K is solid.

The next example shows that in general wHel(F, S,Θ) 6⊂ wMinl(F, S,K),
swHel(F, S,Θ) 6= wHel(F, S,Θ) and swHel(F, S,Θ) 6⊂ Minl(F, S,K).

Example 3.1 Let X := R, Y := R2, S := {0, 1}, K := R2
+ := {(y1, y2) ∈ R2 :

y1 ≥ 0, y2 ≥ 0}, Θ := {(y1, y2) ∈ R2
+ : y1 + y2 = 2} and so δ =

√
2.

(a) Let F (0) := {(y, y) : y > 0} and F (1) := {(0, y) : y > 0}. Then, for
each η ∈ (0, δ), we have that

F (0) + intKη = F (1) + intKη = intKη,

so F (0) �l
Kη

F (0), F (1) �l
Kη

F (0) and F (0) �l
Kη

F (1). Hence, it follows

that 0 ∈ wHel(F, S,Θ). However, 0 /∈ wMinl(F, S,K), since F (1) �l
K F (0),

but F (0) 6�l
K F (1). Note also that 0 /∈ swHel(F, S,Θ) (observe that 0 ∈ El(0),

but 1 /∈ El(0), since F (1) * F (0) +K = intR2
+, and then F (0) �K F (1)), and

so

swHel(F, S,Θ) 6= wHel(F, S,Θ).

(b) Now, let F (0) := {(y, y) : y ≥ 0} and F (1) := {(y1, y2) : y1 + y2 = 0}.
Then in this case we have that 0 ∈ swHel(F, S,Θ) \Minl(F, S,K).

This example also shows that in general Hel(F, S,Θ) is different from
wHel(F, S,Θ) since 0 ∈ wHel(F, S,Θ) \Hel(F, S,Θ), in contrast to what hap-
pens with the vector criterion (see (6)).

The same example also shows that 0 ∈ swHel(F, S,Θ) \ sHel(F, S,Θ). And
although the cones in HK are more flexible than the cones Kη, it is also true
that 0 ∈ swHel(F, S,K) \ sHel(F, S,K).

Lemma 3.1 Let A ∈ P0(Y ) and K1 ⊂ Y be a convex cone such that K ⊂ K1.
If A is K-compact, then A is K1-compact.
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Proof Let {Uα + K1 : α ∈ I, Uα is open} a cover of A. Put Vα := Uα + K1.
One has

Vα +K = Uα +K1 +K = Uα +K1 = Vα.

Hence, {Vα+K : α ∈ I} is a cover of A and Vα = ∪y∈K1
(Uα+y) is open. As A

is K-compact we can extract a finite subcover, i.e., there exist α1, . . . , αn ∈ I
such that A ⊂

⋃n
i=1(Vαi + K) =

⋃n
i=1 Vαi =

⋃n
i=1(Uαi + K1). So, we have

proved that A has a finite subcover of {Uα +K1 : α ∈ I}, and therefore, A is
K1-compact.

Observe that if A is compact then A is K ′-compact for all convex cone K ′,
since in particular every cover of A of the form {Uα + K ′ : α ∈ I, Uα open}
admits a finite subcover.

Lemma 3.2 (i) ([17, Lemma 2.6]) Assume K is solid and wMin(F (x0),K) 6=
∅. Then x0 ∈ wMinl(F, S,K) if and only if x0 ∈ S and there is not x ∈ S such
that F (x)�l

K F (x0).
(ii) Suppose that Min(F (x0),K) 6= ∅ and that F (x0) ∩ F (x) = ∅, for all

x ∈ S\{x0}. Then x0 ∈ Minl(F, S,K) if and only if x0 ∈ S and there is not
x ∈ S\{x0} such that F (x) ≤lK F (x0).

Proof (ii) Let x0 ∈ Minl(F, S,K) and suppose by reasoning to the contrary
that there is x ∈ S\{x0} such that F (x0) ⊂ F (x)+K. Then, we have F (x0) ⊂
F (x) + K\{0}. Otherwise, there would exist y0 ∈ F (x0) ∩ F (x), which is a
contradiction.

Since x0 ∈ Minl(F, S,K) we have that F (x) ⊂ F (x0) +K, so

F (x0) ⊂ F (x) +K\{0} ⊂ F (x0) +K +K\{0} = F (x0) +K\{0},

and then for any y0 ∈ F (x0) we can find z0 ∈ F (x0) such that z0 − y0 ∈
−K\{0}, that contradicts Min(F (x0),K) 6= ∅.

Reciprocally, suppose that x0 ∈ S and there is no x ∈ S\{x0} such that
F (x) ≤lK F (x0). Then, by definition, x0 ∈ Minl(F, S,K), and the proof is
complete.

Lemma 3.3 (i) Assume F (x0) is K-compact. Then x0 ∈ wHel(F, S,Θ) if and
only if x0 ∈ swHel(F, S,Θ).

(ii) Assume F (x0) is K-compact and F (x)∩F (x0) = ∅ for all x ∈ S\{x0}.
Then x0 ∈ Hel(F, S,K) if and only if x0 ∈ sHel(F, S,K).

Proof (i) Taking into account inclusion (14), we only have to prove the “only
if” part. Let x0 ∈ wHel(F, S,Θ). Then there exists η ∈ (0, δ) such that x0 ∈
wMinl(F, S,Kη). As F (x0) is K-compact, by Lemma 3.1, we have that F (x0) is
Kη-compact, and then wMin(F (x0),Kη) 6= ∅ by Luc [32, Chapter 2, Theorem
3.3 and Lemma 3.5]. By Lemma 3.2(i) it results that there exists no x ∈ S
such that F (x)�l

Kη
F (x0), and so, x0 ∈ swHel(F, S,Θ).

(ii) In view of the first inclusion in (13), we only have to prove the “only if”
part. Let x0 ∈ Hel(F, S,K), then x0 ∈ Minl(F, S,K

′) for some K ′ ∈ HK . As
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F (x0) is K-compact, by Lemma 3.1, we have that F (x0) is K ′-compact, and
then by [32, Chapter 2, Corollary 3.7], we deduce that Min(F (x0),K ′) 6= ∅.
Thus, as F (x) ∩ F (x0) = ∅ for all x ∈ S \ {x0} by assumption, in view of
Lemma 3.2(ii) there is no x ∈ S\{x0} such that F (x) ≤lK′ F (x0), and so
x0 ∈ sHel(F, S,K).

The next result is an immediate consequence of Definition 3.1 and Lemma
3.3.

Proposition 3.2 (i) Assume that F is K-compact valued. Then

wHel(F, S,Θ) =
⋃

0<η<δ

wMinl(F, S,Kη) = swHel(F, S,Θ).

(ii) If, in addition to (i), the following condition holds:

F (x1) ∩ F (x2) = ∅ ∀x1, x2 ∈ S with x1 6= x2, (21)

then

Hel(F, S,K) =
⋃

K′∈HK

Minl(F, S,K
′) = sHel(F, S,K).

Note that condition (21) is an extension of the notion of injective mapping
to set-valued maps.

Remark 3.2 Following the same ideas developed in Propositions 3.1 and 3.2,
the next inclusions can be proved if K is solid:

sHel(F, S,Θ) ⊂ Hel(F, S,Θ), sHel(F, S,Θ) ⊂ Minl(F, S,K),
swHel(F, S,K) ⊂ wHel(F, S,K), swHel(F, S,K) ⊂ wMinl(F, S,K),

and, if F is K-compact valued then

wHel(F, S,K) = swHel(F, S,K).

We summarize the inclusion relationships stated in Equations (7) and (12),
Propositions 3.1 and 3.2 and Remark 3.2 in Fig. 1.

Minl(K) → wMinl(K)
↗ ↗

sHel(K) → swHel(K) → wHel(K)
↘ ↗

Hel(K)

Minl(K) → wMinl(K)
↗ ↗

sHel(Θ) → swHel(Θ) → wHel(Θ)
↘ ↗

Hel(Θ)

Fig. 1 Inclusion relationships. The arrow ‘→’ means ‘⊂’. In this scheme we have omitted
F and S. If F is K-compact valued, then swHel(K) = wHel(K) and swHel(Θ) = wHel(Θ).

In the next proposition, it is proved that two of the inclusions in (11)
become equalities under a suitable assumption.
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Proposition 3.3 If the following condition is satisfied:

∀K ′ ∈ HK , ∃η ∈ (0, δ) such that Kη ⊂ K ′, (22)

then sHel(F, S,K) = sHel(F, S,Θ) and swHel(F, S,K) = swHel(F, S,Θ).

Proof For the first equality, inclusion “⊃” is true by (11). To prove the reverse
inclusion, let x0 ∈ sHel(F, S,K). Then (8) holds for some K ′ ∈ HK , which
means that F (x0) 6⊂ F (x)+K ′ for all x ∈ S \El(x0). By assumption, Kη ⊂ K ′
for some η ∈ (0, δ), and so, F (x0) 6⊂ F (x) + Kη for all x ∈ S \ El(x0), hence
x0 ∈ sHel(F, S,Θ).

The second equality is similarly proved.

In general, Hel(F, S,K) 6= Hel(F, S,Θ), even if (22) holds, as the following
example shows.

Example 3.2 Let X := R, Y := R2, K := R2
+, Θ := {(y1, y2) ∈ R2

+ : y1 + y2 =
1}, S := [0, 1] and F : R ⇒ R2 given by F (x) := {(y1, y2) : y2 = x − y1}. If
we choose K ′ := {(y1, y2) : y1 + 2y2 ≥ 0, y1 + 4y2 ≥ 0} ∈ HK , one has F (1) ⊂
F (x) +K ′ and F (x) ⊂ F (1) +K ′ for all x ∈ S. Hence 1 ∈ Minl(F, S,K

′) and
so 1 ∈ Hel(F, S,K). However, F (1) ⊂ F (0)+Kη and F (0) 6⊂ F (1)+Kη for all
η ∈ (0, δ), and therefore 1 /∈ Minl(F, S,Kη) for all η ∈ (0, δ). In consequence,
1 /∈ Hel(F, S,Θ).

Besides, one has 1 /∈ sHel(F, S,K) since F (1) ⊂ F (0)+K ′ for all K ′ ∈ HK ,
Thus 1 ∈ Hel(F, S,K) \ sHel(F, S,K), which shows that in general the first
inclusion in (13) is strict, i.e., sHel(F, S,K) 6= Hel(F, S,K).

Remark 3.3 (i) If Θ is a compact base of K, then condition (22) holds (see
the proof of Proposition 2.4.6(iii) in [26]).

(ii) If Y is finite-dimensional, then for any pointed closed convex cone
K ⊂ Y , there exists a compact base Θ of K (see, for instance, [10, page 3]),
and consequently (22) is satisfied.

(iii) It is an open question when condition (22) is true in infinite-dimensional
spaces.

Next, we study the relationships between ≤lK-Henig and the classical Henig
notion, that is, the concepts of Henig proper efficiency with the set and the
vector criterion. First, we assume that F = f is single-valued (the function
f : X → Y is considered as a map), and then, in Proposition 3.5, we consider
a set-valued map F .

For a function f , parts (i)-(ii) and (iii)-(iv) in Definition 3.1 reduce, re-
spectively, to the corresponding notion in parts (iii) and (iv) of Definition 2.2,
according to the following proposition.

Proposition 3.4 (i) Hel(f, S,K) = sHel(f, S,K) = He(f, S,K).
(ii) swHel(f, S,Θ) = wHel(f, S,Θ) = He(f, S,Θ).
(iii) If condition (22) holds, then the six sets in parts (i) and (ii) are equal.
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Proof (i) Using (13), we have sHel(f, S,K) ⊂ Hel(f, S,K), so if we prove the
chain Hel(f, S,K) ⊂ He(f, S,K) ⊂ sHel(f, S,K), we will have finished.

Let x0 ∈ Hel(f, S,K). Then from the definition and in view of Remark 2.5,
there exists K ′ ∈ HK such that

x ∈ S, f(x) ≤K′ f(x0) ⇒ f(x0) ≤K′ f(x),

or equivalently,

x ∈ S, f(x)− f(x0) ∈ −K ′ ⇒ f(x0)− f(x) ∈ −K ′.

As K ′ is pointed, it follows that

(f(S)− f(x0)) ∩ (−K ′ \ {0}) = ∅, (23)

and consequently, x0 ∈ Min(f, S,K ′), which implies that x0 ∈ He(f, S,K).
Now, let x0 ∈ He(f, S,K). Then there exists K ′ ∈ HK such that (23)

holds. Let us observe that a point x ∈ S satisfies x ∈ El(x0) if and only if
f(x) ≤K f(x0) and f(x0) ≤K f(x), equivalently, if and only if f(x)− f(x0) ∈
(−K) ∩K = {0} since K is pointed. Therefore,

El(x0) = {x ∈ S : f(x) = f(x0)}.

Let us see that f(x) �K′ f(x0) for all x ∈ S \El(x0). By contradiction, assume
that f(x1) − f(x0) ∈ −K ′ for some x1 ∈ S \ El(x0). As x1 /∈ El(x0), one has
f(x1) 6= f(x0). So f(x1) − f(x0) ∈ −K ′ \ {0}, which contradicts (23). In
consequence, x0 ∈ sHel(f, S,K).

(ii) The following characterization is true for a function:

x0 ∈ swHel(f, S,Θ)⇔ ∃η ∈ (0, δ) : f(x) 6�Kη f(x0) ∀x ∈ S. (24)

Indeed, since f is K-compact valued, by Proposition 3.2(i) we have that
x0 ∈ swHel(f, S,Θ) if and only if there exists η ∈ (0, δ) such that x0 ∈
wMinl(f, S,Kη). By Lemma 3.2(i), this last condition is equivalent to f(x) 6�Kη

f(x0) for all x ∈ S, and consequently (24) is proved.
Now, condition (24) is equivalent to say that (f(S)−f(x0))∩(− intKη) = ∅,

which is equivalent by definition to say that f(x0) ∈ wMin(f(S),Kη). This
implies by Proposition 2.1 that f(x0) ∈ He(f(S), Θ), and therefore, by def-
inition, x0 ∈ He(f, S,Θ). Finally, the implication “x0 ∈ He(f, S,Θ) ⇒ x0 ∈
swHel(f, S,Θ)” follows easily from the above argument. It follows from Propo-
sition 3.2(i) that swHel(f, S,Θ) = wHel(f, S,Θ).

(iii) It suffices to prove that He(f, S,Θ) = He(f, S,K), and this is equiva-
lent to prove that He(A,Θ) = He(A,K) with A = f(S). In view of (4) we only
need to check that He(A,K) ⊂ He(A,Θ). But this is immediate, since if a0 ∈
He(A,K) then there exists K ′ ∈ HK such that (A−a0)∩(−K ′\{0}) = ∅. From
(22), we have Kη ⊂ K ′ for some η ∈ (0, δ), and so (A− a0)∩ (−Kη \ {0}) = ∅.
Therefore a0 ∈ He(A,Θ).
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Proposition 3.5 Let x0 ∈ S.
(i) If there exists a point y0 ∈ F (x0) \ F (x) for all x ∈ S \ El(x0) and

y0 ∈ He(F (S),K), then x0 ∈ sHel(F, S,K).
(ii) If x0 ∈ He(F, S,Θ), then x0 ∈ swHel(F, S,Θ).

Proof (i) By hypothesis there exists K ′ ∈ HK such that (F (S)− y0)∩ (−K ′ \
{0}) = ∅, i.e.,

y − y0 /∈ −K ′ \ {0}, ∀y ∈ F (x), ∀x ∈ S. (25)

Let us prove F (x) �lK′ F (x0) for all x ∈ S \El(x0). By contradiction, assume
that there exists x1 ∈ S \ El(x0) satisfying F (x1) ≤lK′ F (x0), so F (x0) ⊂
F (x1) + K ′. As y0 ∈ F (x0) \ F (x1) by assumption, one has y0 = y1 + k′ for
some y1 ∈ F (x1) and k′ ∈ K ′ \ {0}, which contradicts (25).

(ii) Let x0 ∈ He(F, S,Θ), then by using (6), there exist y0 ∈ F (x0) and
η ∈ (0, δ) such that y0 ∈ wMin(F (S),Kη), i.e.,

(F (x)− y0) ∩ (− intKη) = ∅, ∀x ∈ S. (26)

Let us see that

F (x) 6�l
Kη F (x0), ∀x ∈ S,

which implies that (9) holds and so part (ii) is proved. By contradiction,
assume that there is x1 ∈ S such that F (x1) �l

Kη
F (x0). Then F (x0) ⊂

F (x1) + intKη. As y0 ∈ F (x0), there exists y1 ∈ F (x1) satisfying y0 ∈ y1 +
intKη, which contradicts (26).

Part (ii) shows that the notion of strict weak ≤lK-Henig proper solution is
weaker than the notion of vector Henig proper solution.

The previous proposition is very useful to find ≤lK-Henig proper solutions.
We illustrate it with an example.

Example 3.3 Let X := R, Y := R2, K := R2
+, S := R and F : R ⇒ R2 be

defined by F (t) := f(t) + B, where f(t) := (t, t2) and B := {(y1, y2) ∈ R2 :
y2

1 + y2
2 ≤ 1}. To visualize this example, see Fig. 2.

For each t ∈ R, the tangent line to the parabola y2 = y2
1 (image of f) at the

point f(t) is 2ty1 − y2 − t2 = 0, and the unit normal vector is 1√
4t2+1

(2t,−1).

So the point yt = f(t) + 1√
4t2+1

(2t,−1) ∈ F (t). Moreover, yt /∈ F (x) for all

x 6= t since ‖yt − f(x)‖ > 1. Note that El(t) = {t}.
For each t < 0 we have yt ∈ He(F (S),K). Indeed, the slope of the tangent

line to the curve t 7→ yt is 2t. So, choosing K ′t := {(y1, y2) : y2 ≥ 4ty1, y2 ≥
y1/(4t)} ∈ HK one has (F (S) − yt) ∩ (−K ′t \ {0}) = ∅, which means that
yt ∈ Min(F (S),K ′t), and therefore, yt ∈ He(F (S),K). Now, by Proposition
3.5(i) it follows that t ∈ sHel(F, S,K) for all t < 0.

The following example shows that the reciprocal implication of Proposition
3.5(ii) is not true in general.
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Fig. 2 Illustration of Example 3.3

Example 3.4 Let X := R, S := {0, 1, 2}, Y := R2, K := R2
+, Θ := {(y1, y2) ∈

R2
+ : y1 + y2 = 1}, F : S ⇒ R2 given by F (0) := {(3, 0), (0, 3)}, F (1) :=
{(1,−1)} and F (2) := {(−1, 1)}. It is easy to check that 0 ∈ swHel(F, S,Θ)
but 0 /∈ He(F, S,Θ). This example also shows that Proposition 3.4(ii) is not
true for a set-valued map F instead of f .

This example also shows that Proposition 3.4(ii) is not true for a set-valued
map F instead of f .

Remark 3.4 After studying the main relations between the different notions
of ≤lK-Henig proper solutions and minimality, we have seen that strict ≤lK-
Henig proper solutions are minimal solutions and strict weak ≤lK-Henig proper
solutions are weak minimal solutions (Proposition 3.1). This latter is also
valid for ≤lK-Henig (and weak ≤lK-Henig) proper solutions when F is K-
compact valued (see Proposition 3.2 and Fig. 1). We have also stated the
≤lK-Henig proper solution generalizes well the vector notion of Henig proper
solution when we consider a function (Proposition 3.4). However, in general,
the inclusion He(F, S,K) ⊂ Minl(F, S,K) is not true. If we want to get this
inclusion we have the possibility to give more restrictive notions of ≤lK-Henig
proper solutions:

(i) The first one follows the idea of other proper notions as f.e., Geoffrion
proper notion, which requires minimality and a specific property. In conse-
quence, we can define

He2l(F, S,K) := Hel(F, S,K) ∩Minl(F, S,K).

(ii) The second would be given as follows: x0 ∈ He3l(F, S,K) if and only
if there exists K ′ ∈ HK such that x ∈ S, F (x) ≤lK′ F (x0) implies F (x0) ≤lK
F (x).

In this paper we do not study these notions because they are very similar
to the study done for the notions in Definition 3.1 and Remark 3.1.
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To finish this section, we are going to state a characterization of weak ≤lK-
Henig proper solutions of (SOP) through scalarization, which will be used in
the next section. Previously, we show a necessary result to achieve our purpose,
which can be seen in [24, Theorem 5.7]. Given a scalar function φ : X → R,
we denote argminx∈S φ(x) := {x0 ∈ S : φ(x) ≥ φ(x0) ∀x ∈ S}.

Theorem 3.1 Suppose that K is solid, x0 ∈ S and F (x0) is K-compact. Then
x0 ∈ wMinl(F, S,K) if and only if x0 ∈ argminx∈S DsiK(F (x), F (x0)).

In the following result we state a characterization for weak ≤lK-Henig
proper solutions wrt a base.

Theorem 3.2 Assume that x0 ∈ S and F (x0) is K-compact. Then the fol-
lowing statements are equivalent:

(i) x0 ∈ wHel(F, S,Θ).
(ii) There exists η ∈ (0, δ) such that x0 ∈ argminx∈S DsiKη (F (x), F (x0)).

Proof By Definition 3.1(iii), x0 ∈ wHel(F, S,Θ) if and only if there exists
η ∈ (0, δ) such that x0 ∈ wMinl(F, S,Kη). By Lemma 3.1 we have that F (x0)
is Kη-compact. Moreover, Kη is solid by Lemma 2.1. Now, the equivalence
between (i) and (ii) is obtained by applying Theorem 3.1.

Let us note that this theorem does not require the cone K to be solid.

4 Lagrange multipliers for Henig proper solutions of (SOP)

In this section, from a Lagrange multiplier rule for weak ≤lK-minimal solutions
of a set optimization problem and the results of the previous section, we obtain
a characterization for Henig proper solutions with the set criterion of a convex
set optimization problem with constraints when the decision space is finite
dimensional.

First, we recall some necessary notions and properties.

Definition 4.1 A set-valued map F : X ⇒ Y is said to be K-convex (resp.,
convex) if, for all x1, x2 ∈ X and for all λ ∈ [0, 1], one has

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) +K

(resp., λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) ).

Remark 4.1 (i) F is convex (resp., K-convex) if and only if grF (resp., epiF )
is convex ([16, Proposition 2.3]).

(ii) It is clear that if F is convex, then F is K-convex, but the converse is
not true. Indeed, the map F : R⇒ R defined as F (x) = {x2} is K-convex, for
K = R+, since epiF = {(x, y) : x ∈ R, y ≥ x2} is a convex set, but F is not
convex, since grF = {(x, x2) : x ∈ R} is not a convex set.

(iii) F is K-convex if and only if FK is convex.
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Definition 4.2 ([10, Definition 2.5.16)]) Suppose that X is a normed space. A
set-valued map F : X ⇒ Y is said to be K-Hausdorff upper continuous (K-H-
u.c.) at x0 if for any neighbourhood U of 0 ∈ Y , there exists a neighbourhood
V of x0 such that F (x) ⊂ F (x0) + U +K for all x ∈ V .

We say that F is K-H-u.c. if F is K-H-u.c. at each point in X.

For a single-valued map F = f , it is said that f : X → Y is K-continuous
at x0 ([32, Chapter 1, Definition 5.1]) if f is K-H-u.c. at x0.

Let X, Y and Z be normed spaces, F : X ⇒ Y and G : X ⇒ Z be two
set-valued maps, K ⊂ Y and C ⊂ Z be closed convex cones.

We deal with the following set optimization problem

Minimize F (x) subject to x ∈ SG ∩Q, (CSOP)

where Q is a nonempty convex subset of X and

SG := {x ∈ X : G(x) ∩ (−C) 6= ∅}.

Let A ⊂ X be a nonempty convex set and a ∈ A. The normal cone to A
at a is given by N(A, a) := {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0, ∀x ∈ A}.

Let ϕ : X → R ∪ {+∞} and x0 ∈ domϕ := {x ∈ X : ϕ(x) < +∞}. We
remind that the subdifferential of ϕ at x0 in the sense of Convex Analysis is
given by

∂ϕ(x0) := {x∗ ∈ X∗ : ϕ(x) ≥ ϕ(x0) + 〈x∗, x− x0〉, ∀x ∈ X}.

When F : X ⇒ Y is convex, the coderivative of F at (x, y) ∈ grF (see [1])
is the set-valued map D∗F : Y ∗ ⇒ X∗ given by

D∗F (x, y)(y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(grF, (x, y))}.

In this part, as an application of the previous parts, we will state a charac-
terization for weak ≤lK-Henig proper solutions wrt a base with the set criterion
of solution. For this aim, we will use the following characterization for weak
minimal solutions of (CSOP), which has been proved in [19].

Theorem 4.1 [19, Theorem 6] Let x0 ∈ SG ∩ Q. Assume that X = Rn,
Q ⊂ X is a convex set and K and C are solid. Suppose the following:

(i) F (x0) is compact and F is K-H-u.c., K-convex, K-proper valued and
K-closed valued,

(ii) G(x0) is compact and G is C-compact valued, C-H-u.c. and C-convex,
(iii) the Slater constraint qualification holds, i.e.,

there exists x1 ∈ Q such that G(x1) ∩ (− intC) 6= ∅. (27)

Then x0 is a weak ≤lK-minimal solution of (CSOP) if and only if there exist
µ ≥ 0, r ≤ n + 1, bi ∈ wMin(F (x0),K), y∗i ∈ K+ \ {0}, i = 1, . . . , r, z0 ∈
G(x0) ∩ (−C) and z∗ ∈ C+ such that 〈z∗, z0〉 = 0,

0 ∈
r∑
i=1

D∗(F +K)(x0, bi)(y
∗
i ) + µD∗(G+ C)(x0, z0)(z∗) +N(Q, x0),

and µ = 0 whenever G(x0) ∩ (− intC) 6= ∅.
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Remark 4.2 Actually, [19, Theorem 6] is proved for F H-u.c. instead of K-
H-u.c., and G H-u.c. instead of C-H-u.c. But Theorem 6 can be proved with
the weaker hypotheses. Indeed, in the proof of Theorem 6 the hypotheses F
is H-u.c. and G is H-u.c. are only used when it is applied [19, Lemma 6] to
prove that F + K and G + C are closed, but now, when F is K-H-u.c. and
G is C-H-u.c., we can use [20, Lemma 5] and we obtain the same conclusion:
F +K and G+ C are closed.

Lemma 4.1 Let F : X ⇒ Y be K-convex and let K̃ be a closed convex cone
with K ⊂ K̃. Then

(i) F is K̃-convex.
(ii) If, in addition, y0 ∈ F (x0) and y∗ ∈ K̃+, then

D∗(F +K)(x0, y0)(y∗) = D∗(F + K̃)(x0, y0)(y∗).

Proof (i) As F is K-convex, we have

λF (x1) + (1− λ)F (x2) ⊂ F (λx1 + (1− λ)x2) +K ⊂ F (λx1 + (1− λ)x2) + K̃

for all x1, x2 ∈ X, λ ∈ (0, 1), which implies that F is K̃-convex.
(ii) First let us observe that F + K and F + K̃ are convex by Remark

4.1(iii) and so the coderivatives in part (ii) have sense.
Let x∗ ∈ X∗ with x∗ ∈ D∗(F+K)(x0, y0)(y∗). Then by definition (x∗,−y∗) ∈

N(gr(F +K), (x0, y0)), which means that 〈(x∗,−y∗), (x− x0, y+ k− y0)〉 ≤ 0
for all x ∈ X, y ∈ F (x), k ∈ K, which is equivalent to

〈y∗, y + k − y0〉 ≥ 〈x∗, x− x0〉, ∀x ∈ X, y ∈ F (x), k ∈ K.

In particular, taking k = 0, 〈y∗, y− y0〉 ≥ 〈x∗, x− x0〉 for all x ∈ X, y ∈ F (x).
As y∗ ∈ K̃+, we have 〈y∗, k̃〉 ≥ 0 for all k̃ ∈ K̃. Adding the last two inequalities
it results

〈y∗, y + k̃ − y0〉 ≥ 〈x∗, x− x0〉, ∀x ∈ X, y ∈ F (x), k̃ ∈ K̃,

which means that (x∗,−y∗) ∈ N(gr(F + K̃), (x0, y0)). From here we conclude
that x∗ ∈ D∗(F + K̃)(x0, y0)(y∗), and so D∗(F + K)(x0, y0)(y∗) ⊂ D∗(F +
K̃)(x0, y0)(y∗).

The reverse inclusion, D∗(F + K̃)(x0, y0)(y∗) ⊂ D∗(F + K)(x0, y0)(y∗),
follows from the fact that N(gr(F + K̃), (x0, y0)) ⊂ N(gr(F + K), (x0, y0))
since gr(F +K) ⊂ gr(F + K̃).

In the next theorem, we establish a characterization for weak ≤lK-Henig
proper solutions to the constrained problem (CSOP) with the set criterion.

Theorem 4.2 Let x0 ∈ S := SG ∩ Q, and assume that Θ is a closed base of
K and C is solid. Suppose the following:

(i) X = Rn,
(ii) F (x0) is compact and F is K-compact valued, K-H-u.c. and K-convex,
(iii) G(x0) is compact and G is C-compact valued, C-H-u.c. and C-convex,
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(iv) Q is a convex set,
(v) the Slater constraint qualification (27) holds.
Then x0 ∈ wHel(F, S,Θ) if and only if there exist r ≤ n + 1, µ ≥ 0,

z0 ∈ G(x0) ∩ (−C) and z∗ ∈ C+, and for each i = 1, . . . , r, there exist

bi ∈ He(F (x0), Θ) (28)

and y∗i ∈ K∆(Θ) such that 〈z∗, z0〉 = 0,

0 ∈
r∑
i=1

D∗(F +K)(x0, bi)(y
∗
i ) + µD∗(G+ C)(x0, z0)(z∗) +N(Q, x0), (29)

and µ = 0 whenever G(x0) ∩ (− intC) 6= ∅.

Proof (⇒) First, by Definition 3.1(iii), x0 ∈ wHel(F, S,Θ) if and only if there
exists η ∈ (0, δ) such that x0 ∈ wMinl(F, S,Kη).

Second, we are going to apply Theorem 4.1 to the pair (F,Kη). Let us check
all its assumptions: 1) Kη is a solid, pointed, closed convex cone by Lemma
2.1(i). 2) F is Kη-compact valued because by hypothesis F (x) is K-compact
for all x ∈ X and so, by Lemma 3.1, F (x) is Kη-compact. Therefore, F (x)
is Kη-closed and Kη-bounded, and so it is also Kη-proper (see Remark 2.1).
In consequence, F is Kη-closed and Kη-proper valued. 3) F is Kη-convex by
Lemma 4.1(i) since F is K-convex by hypothesis. 4) The assumption that F
is Kη-H-u.c. can be easily checked since F is K-H-u.c.

In consequence, there exist r ≤ n + 1, µ ≥ 0, z0 ∈ G(x0) ∩ (−C) and
z∗ ∈ C+, and for each i = 1, . . . , r, there exist

bi ∈ wMin(F (x0),Kη) (30)

and y∗i ∈ K+
η \ {0} such that 〈z∗, z0〉 = 0,

0 ∈
r∑
i=1

D∗(F +Kη)(x0, bi)(y
∗
i ) + µD∗(G+ C)(x0, z0)(z∗) +N(Q, x0), (31)

and µ = 0 if G(x0) ∩ (− intC) 6= ∅.
In view of (30), from Proposition 2.1 it follows that (28) holds.
As y∗i ∈ K+

η \ {0}, by Lemma 2.2(i) we have y∗i ∈ K∆(Θ).
As K ⊂ Kη, in view of Lemma 4.1 we deduce that D∗(F+Kη)(x0, b)(y

∗) =
D∗(F +K)(x0, b)(y

∗) for all y∗ ∈ K+
η and all b ∈ F (x0). In consequence, from

(31) it follows (29).
(⇐) Suppose that there exist µ ≥ 0, z0 ∈ G(x0) ∩ (−C) and z∗ ∈ C+,

r ≤ n + 1, y∗i ∈ K∆(Θ), bi, i = 1, . . . , r satisfying 〈z∗, z0〉 = 0, (28)-(29)
and µ = 0 whenever G(x0) ∩ (− intC) 6= ∅. By Proposition 2.1 it follows
that there exist ηi ∈ (0, δ), i = 1, . . . , r such that bi ∈ wMin(F (x0),Kηi).
Let η0 := mini=1,...,r ηi, then bi ∈ wMin(F (x0),Kη0) for all i = 1, . . . , r since
Kη0 ⊂ Kηi .
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As y∗i ∈ K∆(Θ), by Lemma 2.2(i) we derive that for each i = 1, . . . , r,
there exists η̄i ∈ (0, δ) with y∗i ∈ K+

η̄i\{0}. Let η̄0 := mini=1,...,r η̄i, then

y∗i ∈ K
+
η̄0\{0} for all i = 1, . . . , r.

Define η := min{η0, η̄0}. Then bi ∈ wMin(F (x0),Kη) and y∗i ∈ K+
η \{0} for

all i = 1, . . . , r. Using Lemma 4.1(ii) we derive that D∗(F +K)(x0, bi)(y
∗
i ) =

D∗(F +Kη)(x0, bi)(y
∗
i ) and then, from (29) we deduce that (31) holds. Thus

we can apply the reciprocal part of Theorem 4.1 to the pair (F,Kη) getting
that x0 ∈ wMinl(F, S,Kη). Now, by Definition 3.1(iii) the required conclusion
is obtained.

Finally, as an application of Theorem 4.2 we state a characterization of
Henig proper solutions for a vector optimization problem, i.e., when F = f
and G = g are single-valued and cone-convex.

Given f : X → Y , g : X → Z and Q ⊂ X, let Sg := {x ∈ X : g(x) ∈ −C}.
We consider the vector optimization problem

(VP) Minimize f(x) subject to x ∈ Sg ∩Q.

Corollary 4.1 Assume that X = Rn, x0 ∈ Sg ∩ Q, f : X → Y is K-convex
and K-continuous, g : X → Z is C-convex and C-continuous, Q is convex, Θ
is a closed base of K and the Slater constraint qualification holds, i.e.,

there exists x1 ∈ Q : g(x1) ∈ − intC.

Then x0 ∈ He(f, Sg ∩ Q,Θ) if and only if there exist µ ≥ 0, y∗ ∈ K∆(Θ),
z∗ ∈ C+ such that 〈z∗, g(x0)〉 = 0,

0 ∈ ∂(y∗ ◦ f)(x0) + µ∂(z∗ ◦ g)(x0) +N(Q, x0),

and µ = 0 whenever g(x0) ∈ − intC.

Proof Assume that x0 ∈ He(f, Sg∩Q,Θ). Then by Proposition 3.4(ii) it follows
that x0 ∈ wHel(f, Sg ∩Q,Θ). Now, the conclusion is obtained from Theorem
4.2 with F = f and G = g taking into account the following facts:

(i) D∗(f+K)(x0)(y∗) = ∂(y∗◦f)(x0) and D∗(g+C)(x0)(z∗) = ∂(z∗◦g)(x0)
as it can be easily checked from the definitions. Let us note that y∗ ◦ f and
z∗ ◦ g are convex functions.

(ii) If x∗i ∈ ∂(y∗i ◦ f)(x0) and y∗i ∈ K∆(Θ) for i = 1, . . . , r, then
∑r
i=1 x

∗
i ∈

∂(y∗ ◦ f)(x0), where y∗ =
∑r
i=1 y

∗
i ∈ K∆(Θ). This fact can also be easily

verified.
The reverse implication follows also from Theorem 4.2.

Remark 4.3 We may obtain the same result considering a general normed
space X instead of X = Rn. For this, we apply first Definition 2.2(iv) and
then Corollary 1 in [19] following the same ideas that in the proof of Theorem
4.2 and taking into account Remark 4.2.

We illustrate some of the main results in the paper in the following example.
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Example 4.1 With the data of Example 3.3 with Q := R and without con-
straint G, K := R2

+ and Θ := {(y1, y2) ∈ R2
+ : y1 + y2 = 1}. It is clear that

F is compact-valued and K-H-u.c.. Moreover, F is K-convex by Proposition
3.5(c) in [16] and the Slater constraint qualification is not necessary. Condition
(29) at a point t ∈ R and b ∈ F (t) with r = 1 becomes

0 ∈ D∗FK(t, b)(y∗). (32)

Let us check if it is satisfied with b ∈ He(F (t), Θ) and y∗ = (y∗1 , y
∗
2) ∈ K∆(Θ) =

{(y1, y2) ∈ R2 : y1 > 0, y2 > 0}. One has grFK = {(t, y1, y2) ∈ R3 : (y1, y2) ∈
F (t) +R2

+} and F (t) = {(y1, y2) ∈ R2 : (y1 − t)2 + (y2 − t2)2 ≤ 1}. Therefore,

F (t) + R2
+ = {(y1, y2) ∈ R2 : y2 = t2 −

√
1− (y1 − t)2, t− 1 ≤ y1 ≤ t}+ R2

+.
It is well-known that b = (b1, b2) ∈ He(F (t), Θ) if and only if b2 = t2 −√

1− (b1 − t)2 and t − 1 < b1 < t. Consider the parametric surface z =
z(t, v) = (z1, z2, z3), which is contained in bd grFK , given by

z1 = t, z2 = v, z3 = t2 −
√

1− (v − t)2 with t ∈ R, t− 1 < v < t. (33)

A normal vector to this surface at the point z(t, v) is

w(t, v) :=
∂z

∂v
× ∂z

∂t
= (0, 1, (v − t)/A)× (1, 0, 2t− (v − t)/A)

= (2tA− (v − t), v − t,−A)/A,

where A :=
√

1− (v − t)2. One has N(grFK , z(t, v)) = {αw(t, v) : α ≥ 0}.
Condition (32) is satisfied if and only if (0,−y∗1 ,−y∗2) = αw(t, v) for some
α > 0 since y∗ 6= 0. Choosing α := A, we derive

2t
√

1− (v − t)2 − (v − t) = 0, − y∗1 = v − t, − y∗2 = −
√

1− (v − t)2.

This system has no solution for t ≥ 0 because the first equation is incompatible
since v−t < 0 in view of (33). For t < 0, it has the solution v = vt := t+ 2t√

1+4t2
,

y∗1 = −2t√
1+4t2

, y∗2 = 1√
1+4t2

. For t < 0, one has that y∗ ∈ K∆(Θ), and moreover,

b = bt := (t+ 2t/
√

1 + 4t2, t2− 1/
√

1 + 4t2) ∈ He(F (t), Θ) (note that bt is the
same point considered in Example 3.3). Therefore, by Theorem 4.2 all the
points t < 0 are weak ≤lK-Henig proper solutions. The above argument does
not allow to assure that t /∈ wHel(F,R, Θ) for t ≥ 0 because we have used
r = 1.

For t > 0 it is easy to check that t /∈ wMinl(F,R,K), and as wHel(F,R, Θ) =
swHel(F,R, Θ) by Proposition 3.2(i) since F is K-compact valued, we derive
that t /∈ wHel(F,R, Θ) (see (15)). Finally, by definition we have that t = 0 /∈
wHel(F,R, Θ) since for all η ∈ (0,

√
2/2) one has that 0 /∈ wMinl(F,R,Kη) as

can be checked. Therefore, wHel(F,R, Θ) = (−∞, 0).
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5 Conclusions

In this paper, we have considered a set optimization problem for which we
have defined new concepts of proper efficiency in the sense of Henig with the
set criterion of solution, by taking into account preference relations between
sets related to the order structure in the final space. The relations between
these concepts and their counterparts defined by using the vector criterion of
solution have been studied, as well as some of the main properties of these
solutions. In Remark 3.4, we have presented other possibilities to define Henig
proper solutions with the set criterion. So, this interesting topic deserves more
attention and some research should be carried out in order to clarify which
notion is more suitable and to study new properties.

Finally, a Lagrange multiplier rule for Henig proper solutions of a set opti-
mization problem with a cone constraint has been obtained, by using the ori-
ented distance as scalarizing functional, and considering convexity hypotheses.
As an application, in the particular case when the set optimization problem
reduces to a vector one, we have characterized Henig proper solutions of a
constrained vector optimization problem.
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25. Jiménez, B., Novo, V., Vı́lchez, A.: Six set scalarizations based on the oriented distance:
properties and application to set optimization. Optimization 69, no. 3, 437–470 (2020)
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