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Abstract 

 

This paper focuses on the optimisation of electricity consumption in residential buildings. To 

deal with the increase in electricity consumption, the intermittency of renewable energy generation 

and grid contingencies, a greater effort is required towards residential management optimisation. A 

novel adaptive model predictive control algorithm is proposed to achieve this objective. The 

challenges for this research included recognising and modelling the economic and technical 

constraints of the sources and appliances and addressing the uncertainties concerning the weather 

and user behaviour. Data-driven models are developed and trained to predict the user behaviour 

and buildings. Artificial neural networks and statistical models based on the weighted moving 

average are proposed to capture the patterns of deferrable and non-deferrable appliances, battery 

storage, electric vehicles, photovoltaic modules, buildings and grid connections. A dual 

optimisation method is devised to minimise the electricity bill and achieve thermal comfort. The 

proposed optimisation solver is a two-step optimisation method based on genetic algorithm and 

mixed integer linear programming. A comprehensive simulation study was carried out to reveal 

the effectiveness of the proposed method through a set of simulation scenarios. The results of the 

quantitative analysis undertaken as part of this study show the effectiveness of the proposed 

algorithm towards reducing electricity charges and improving grid elasticity. 
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Nomenclature 

AI  Artificial Intelligence 

AMPC   Adaptive Model Predictive Control 

ANN  Artificial Neural Network 

BESS  Battery Energy Storage Systems 

DER  Distributed Energy Resources 

DR  Demand Response 

EV  Electric Vehicle 

GA  Genetic Algorithm 

GHG  Green House Gas 

HEMS   Home Energy Management System 

HVAC  Heating, Ventilating and Air Conditioning 

IoT  Internet of Things 

LP  Linear Programming 

MAE  Mean Absolute Error 

MILP   Mixed-Integer Linear Programming 

MPC  Model Predictive Control 

PID  Proportional Integral Derivative 

PLC  Power-line Communication 

PV  Photovoltaic 

RES  Renewable Energy Sources 

RTP-DA Real-Time Pricing – Day-Ahead 

SoC  State of Charge 

ToU   Time of Use 

V2G  Vehicle to Grid 

WMA  Weighted Moving Average 

  



3 

 

1. Introduction 

Energy sector reform is an essential input towards attaining the goal of GHG reduction. The 

European Union (EU) has undertaken a thorough reform of its energy model for realising a low-

carbon society [1]. The changes that are underway in the energy sector together with the 

integration of more variable renewable energy sources (RES) will increase the need for demand 

flexibility [2]. Some key components that can support the intermittency and the non-dispatchable 

nature of wind and solar energy production are demand-side resources and storage technologies 

that can transfer flexibility from generation to consumption. Electricity demand in residential 

markets will undergo a transformation due to the demand response (DR) programmes, distributed 

energy resources (DER) and new battery storage capacities. DR programmes concern the changes 

in electricity usage by the end users of their normal consumption patterns in response to changes in 

the price of electricity or incentive payments by improving grid elasticity. Distributed energy is the 

generation and storage of energy performed by a variety of small, grid-connected devices referred 

to as DER. They are located within the electricity distribution system at or near the end user, and 

they can provide services to fill the flexibility gaps at the local and transmission levels. DER, DR 

and electric vehicles (EVs) play an important role for a gradual transition to a green economy. 

 

According to Eurostat [3], in 2018, energy consumption in households represented 26% of the 

total energy consumption. In the EU-28, the consumption of electricity by the household sector 

increased by 12.6% from 2000 to 2017, and because of fossil fuel depletion, it is more than 

probable that there would be an increase in electricity demand in the subsequent decades. The 

major potential in the household sector’s demand flexibility remains untapped. Smart home 

services is a key part of smart grid development [4]. EVs, battery energy storage systems (BESS) 

and roof-top photovoltaic (PV) systems combined with time-varying prices can accomplish 

positive results for the environment and consumers [5]. The introduction of BESS is an effective 

solution to use energy on demand [6], and deferrable appliances and EVs are suitable for DR [7]. 

Smart appliances include white goods, heating, ventilation and air conditioning (HVAC) systems, 

and storage systems.  

 

In a smart home, domestic appliances are intelligent and networked together. The 

communication infrastructure of the grid and smart homes can comprise wireless or wired 

connections. The internet of things (IoT) technology has the potential for connecting devices 

through the Internet and providing a robust information infrastructure [8]. A multitude of 

protocols, standards and configurations are possible for communication; therefore, an open 

interface communication system to ensure interoperability is a key factor in IoT appliances. 

Wireless technologies such as ZigBee, WLAN, 4G/5G, WiMAX are suitable for the deployment 

of smart homes. The power-line communication (PLC) technology uses power transmission 

conductors to simultaneously transmit data and AC electric. The products based on the PLC 

technology are also suitable for home automation, energy monitoring and energy storage systems’ 

management. 

 

The present paper proposes a novel adaptive model predictive control (AMPC) for modelling 

electricity consumption and creating control strategies to optimise the household sector using 

learning-based approaches. The AMPC is suitable for deploying the home energy management 

system (HEMS) in residential buildings. The proposed algorithms take into account vehicle to 

grid-electric vehicle (V2G-EV), PV arrays combined with BESS, smart appliances and heat pump-
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based HVAC systems. This novel approach addresses energy optimisation for the calculation of 

economic dispatch based on the price of electricity. About 50 publications were reviewed for the 

purpose of this study. These articles despite being substantial in number and a representative 

sample of the literature available on state-of-the-art technology, is not the total number of articles 

on the subject. 
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1.1. Background and literature review 

In this section, a bibliographic review of previous works related to the subject of this 

study has been presented. First, the model predictive control (MPC) approach for buildings has 

been reviewed followed by an analysis of the models and management of HVAC and household 

electrical devices. 

1.1.1. MPC 

 

MPC is, in essence, an advanced method of process control in which a model is used to predict 

the performance of the controlled plants over a finite time horizon. The models predict the change 

in the dependent variables caused by changes in the independent variables. The main advantage of 

this method is that it allows the current timeslot to be optimised, simultaneously taking into 

account future timeslots, while only implementing the current timeslot and then optimising it 

repeatedly. MPC requires an energy flow model to perform forecasts, a cost function ‘J’ and an 

optimisation algorithm to minimise the cost function.  

 

The state-of-the-art technology in forecasting models for HEMS are physics-based 

mathematical models, autoregressive models like AR, ARX, ARIMA, artificial neural networks 

(ANNs), deep learning networks, fuzzy models, support vector machines and hybrid structures. 

These are some of the most representative methods that have been reviewed. Previous works about 

HEMS’s optimisation developed rule-based energy-scheduling methods, but the lack of a logical 

design methodology in these methods caused other optimal energy management strategies, such as 

linear programming (LP), mixed integer linear programming (MILP), stochastic optimisation, GA 

and self-scheduling, to gain more attention.  

 

Driven by the objective of price reduction in electricity storage and the improvements in 

communication and computing devices, several strategies that stimulate an efficient use of energy 

have been studied. In [9], a comparison was made between an MPC, the ON/OFF and proportional 

integral derivative (PID) controls of an air conditioning unit (AC system) controlling the 

temperature inside a room. A strategy for battery use in households with grid-connected PV 

systems via MPC for peak shaving was studied in [10]. An occupancy prediction method was 

presented in [11]. Several papers assessed energy management systems for buildings [12]–[20], 

and two of them dealt with the integration of a plug-in EV, PV array and heat pump [21], [22]. 

Another study [23] proposed an MPC method which allows EVs to participate in the grid voltage 

regulation and keeps EVs charged to the desired state. This research deals with linear appliances’ 

objective function and non-linear devices such as HVAC or PV [24]. Hence, this approach 

implements an AMPC with hybrid non-linear programming and LP methods that are suitable for 

cost-effective HEMS based on the energy-pricing scheme that can have uncertainties, non-linear 

models and constraints. 

 

1.1.2. HVAC modelling and optimisation 

 

The power consumption by HVAC systems to obtain the suitable conditions for thermal 

comfort in buildings is almost half of the building’s total energy consumption. Modelling and 

optimising energy consumption for HVAC is being widely studied. White-box models employ a 
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method derived by using the laws of physics, thermodynamic principles and technical features of 

the HVAC system. Analytical models are highly developed to simulate and optimise the energy 

consumption profile of the building. Physics-based models provide reliable results for the 

management of HVAC systems. However, it is not easy to obtain parameters such as thermal 

coefficients, irradiance or occupancy, which makes it difficult for these models to be implemented 

in real-time applications [25] as the problem of uncertainty remains.  

 

Nowadays, artificial intelligence (AI) methods are attracting an increasing interest due to the 

complexity and non-linearity of HVAC systems. Numerous black box data-driven approaches 

have been proposed to capture the thermal behaviour. AI includes several techniques such as 

regression algorithms, ANNs, fuzzy logic, support vector machine, genetic programming or their 

combinations. These are well-known hybrid systems [26]. ANNs can be used to predict energy 

consumption more consistently than traditional simulation models and regression techniques. 

Several studies have established the superiority of ANN models over linear and physical models in 

modelling the non-linear HVAC systems. However, to build models using ANN, a significant 

amount of controlling parameters are required, and above all, ANN suffers from generalisation 

capability [27] . 

 

An extensive analysis of the modelling techniques used in building HVAC systems was 

performed in [27] and [28]. This analysis provides a state-of-the-art review of ANN based on the 

MPC and the optimisation of residential HVAC systems. Most researchers have focused on 

predicting the electric load profile of an HVAC system to be used as an ANN model for building 

energy control schemes [25], [26], [37], [29]–[36]. The objective of these studies was to exploit 

the operational flexibility of HVAC systems for the energy optimisation concerning price-based 

DR, while ensuring grids’ voltage stability and occupants’ thermal comfort. Other research 

approaches use the combination of ANNs and genetic algorithm (GA) to optimise the operating 

point of an HVAC system for minimising power consumption under the constraints of indoor 

temperatures [38] [39] or to introduce a heating setpoint scheduler that aims to minimise the 

energy consumption for heating [40]. Some papers suggest ANNs for control purposes. A fuzzy 

neural PID controller with self-tuning parameters for temperature and humidity control in HVAC 

systems is proposed in [41] and [42]. This controller focuses on the prevention of overheating in 

buildings, taking into consideration future weather conditions. A data-driven approach to 

intelligently learn an effective strategy for operating HVAC systems in buildings was developed in 

[43]. A demand management system to improve the performance in changing (weather or 

occupancy) conditions was suggested in [44]. In this approach, ANN modelling was performed to 

predict HVAC systems’ thermal behaviour, which was then combined with GA to optimise the 

cost function. 

1.1.3. Household electric devices’ modelling and optimisation 

 

An analysis of the electricity consumption pattern in the household sector is one of the most 

important steps for instituting energy management systems in buildings. Load forecasting is a vital 

component for smart grid energy optimisation. Towards enabling energy optimization processes, 

several papers have addressed methods for estimating the electricity consumption patterns of 

buildings. The deployment of smart meter has promoted studies like [45], which combine 

consumption data with weather and temporal variables and [46] that uses data mining to discover 

households’ different energy use patterns over a month from their daily-electricity-consumption 
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data. A mathematical estimation approach was proposed in [47] and [48]. A model including 

energy behaviours, personality traits, demographic information, building features and weather 

indicators of an individual household and accurately predicting the electricity consumption was 

studied in [49]. For the present research, mathematical models based on the weighted moving 

average (WMA) were developed to capture the patterns of deferrable and nondeferrable 

appliances, after which an MILP optimised the cost function. 

1.2. Contribution of this research 

Different approaches can improve elasticity to ensure a greener household sector in Europe. 

Several studies deal with HEMS; however, more efforts are needed to harness the potential of 

households’ demand flexibility. This paper expands the knowledge concerning smart grid with a 

general-purpose HEMS based on AMPC.  

 

In this context, the contribution of this paper can be summarised as follows:  

• It proposes a novel AMPC methodology to find a quasi-optimal solution for the elasticity 

of electricity consumption in the residential sector, taking into account the cooling, heating 

and electricity demand. (Very few of the papers reviewed in the course of this research 

address this issue.)  

• It develops a hybrid model methodology based on ANNs for determining buildings’ 

thermal behaviour and electricity consumption statistics. 

• It implements a two-step optimisation solver based on GA and MILP, which has been 

formulated as a dual optimisation method. 

• It tests the proposed AMPC methodology using actual data obtained from residential 

buildings. 

1.3. Organisation of this paper 

This paper is organised as follows: Section 1 introduces the objective to harness the potential of 

household demand flexibility to deal with future challenges in energy, and considers AMPC for 

HEMS in dealing with DER and DR. Some approaches have been revised to provide a theoretical 

background. Section 2 describes the general framework of the proposed approach and presents the 

modelling techniques that can be used for predictions. The formulation of energy optimisation is 

explained in detail in Section 3. Section 4 addresses AMPC validation, training the algorithm with 

real data to capture the building’s operational patterns and simulating energy management 

strategy. A discussion about the impact of management control on comfort and electricity bill is 

mentioned in Section 5. Finally, Section 6 presents the main conclusions of this research vis-à-vis 

the proposed approach. 
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2. Modelling methodology 

This section details the methodology used to model the energy flow for electric devices in a 

residential building. The system under study consists of a household with an EV, a PV array 

combined with battery storage, smart appliances and a heat pump HVAC system, as depicted in 

Figure 1. 

 

 

 

 

This approach incorporates a set of data-driven models based on the analysis of the data on the 

specified system. The data-driven models find relationships between variables without explicit 

knowledge about the physical behaviour of the system, facilitating its application to buildings with 

different characteristics. 

 

2.1 AMPC framework 

 

A model of the household’s energy flow captures how system behaviour is affected over a 

horizon time by controlled inputs and disturbances. Therefore, the model can predict the future 

energy flow response in the building as a function of a set of control decisions. The adaptive 

feature is implemented via model recalculation using data feedback. In this approach, a hybrid GA 

and MILP solver is employed. The developed custom optimisation solver uses these predictions to 

find an optimised control sequence in accordance with the cost function and system constraints. 

The energy flow is calculated at the beginning of each timeslot ‘k’ for the 48h prediction horizon. 

The real energy flow is updated hourly at the end of each timeslot and then repeatedly optimised. 

Inconsistencies between the real and forecasted energy flow can be overcome through repetitive 

optimisation calculations and the updating of its control signals in every step. In our research, we 

found that AMPC manages an HVAC system, deferrable appliances, battery storage, EV, grid 

Figure 1. Household under study: an illustration 



9 

 

power and predicts fixed load and PV generation to minimise electricity costs as shown in Figure 

2. Moreover, AMPC ensures that the electric vehicle’s state of charge (SoC), thermal comfort and 

load demand requirements are taken into account while the grid’s energy flow is subjected to the 

time of use (ToU) electricity tariff with three price levels. 

 

 

 

 

 

Figure 2 shows an example of a quasi-optimal control sequence, which is obtained by an 

AMPC algorithm. At every step ‘k’, AMPC uses models to predict electric consumption and 

generation, and a cost-minimising control strategy is computed over a finite horizon. When the 

first step of the control strategy is implemented, the household state is measured again to 

overcome the disturbances in the predicted state, and the optimisations are repeated, starting from 

the new current state. 

 

 

2.2 Modelling electricity consumption 

 

Predicting the household electricity consumption and generation represents a key step for 

implementing energy management systems in buildings. This approach predicts the energy flow 

based on previous measured data and energy consumption patterns, as shown in Figure 3. 

Different types of electrical devices have different load patterns, which makes the load type an 

important factor in modelling. Loads pertaining to household electrical consumption are 

categorised according to their characteristics in terms of use or connection arrangement:  

 Deferrable load is an electrical load that requires a certain amount of energy within a 

given time period, although the exact timing is not important. Therefore, it can be 

scheduled during off-peak hours. 

 Interruptible loads are those that can be interrupted momentarily. 

Figure 2. The household’s MPC scheme 
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 Fixed loads are non-deferrable and non-interruptible. 

 

For household customers, the HVAC system uses the most power-intensive load, so heat pumps 

and air conditioners are critical in the optimisation process. An HVAC system is classified as an 

interruptible, but non-deferrable, load; however, the thermal inertia of buildings allows to carry out 

a management strategy that takes advantage of the electricity periods with low rates. Buildings’ 

thermal behaviour will be captured by a trained ANN that deploys a management strategy based 

on a GA. 

 

Washing machines, dish washers and clothes dryers are considered as deferrable loads, while 

water heaters are considered deferrable and interruptible. These household appliances can either be 

scheduled for electricity periods with low rates and periods with PV overproduction or shifted to 

reduce peak demand. The infrastructure for charging EVs provides great flexibility opportunities. 

A V2G-EV is suitable for DR, avoiding EV charging from peak demand; this also applies to 

energy storage, which increases flexibility on the consumer’s side. EV charging is deferrable as 

well as interruptible. In this research, deferrable appliances and EVs were considered smart and 

manageable. All other loads, associated with fridges, lights, ovens, stoves and multimedia devices 

are considered non-flexible. The model to estimate the availability and electrical load profile was 

based on mathematical calculations using one month’s WMA from the data collected for the 

building under analysis. The calculations were performed on an hourly basis to capture the weekly 

load patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. Building model  
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Modelling HVAC  

 

The indoor temperature data according to the HVAC energy consumed is modelled using an 

ANN. Physical models require a detailed study of the building’s characteristics, thus making it 

difficult to extrapolate the model for different buildings. Data-driven models are proposed to deal 

with the problem of parameterisation, facilitating their deployment in buildings. Another important 

reason to apply an ANN is that it performs better with non-linear data such as that generated by 

HVAC. That is due to its influential feature in handling non-linear data. The use of ANNs for 

HVAC modelling has been supported by several studies that establish the superiority of ANN 

models over linear and physical models in modelling non-linear HVAC systems [27]. ANNs are 

retrained on a weekly basis to adapt and capture the thermal behaviour of the building at different 

occupancy rates, weather conditions and energy efficiency. The training process is carried out 

using a backpropagation algorithm that searches through multiple iterations values for the neural 

network model’s weights, which results in good performance based on the training dataset. 

Backpropagation tunes the weights of a neural network based on the error rates obtained in the 

previous epoch to reduce error rates and makes the model reliable by increasing its generalisation. 

Inputs of raw datasets are normalised before the training and testing process. The whole process is 

shown in Figure 4. The measured error in the mean absolute error (MAE) is used for evaluation, 

making a comparison between the predicted and observed values in the training and testing tasks. 
1 

MAE =
1

𝑛
∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 

where 𝑦𝑖  is the predicted value and 𝑥𝑖 is the true value. 
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In this research, the key factors affecting indoor temperature and buildings’ thermal behaviour 

were identified to be fed into the ANN. Some specific requirements such as a trade-off between 

accuracy and input simplicity were considered. Weather forecast data, including irradiance, 

temperature and humidity were used in the predictions. Further, the solar altitude and azimuth 

were included to determine the effect of seasonal solar irradiance on thermal load in conjunction 

with occupancy. The influence of thermal inertia on the building is represented by the 48-hour 

outdoor air temperature average and the present and previous room temperature data. Figure 5 

illustrates the HVAC system’s neural network.  

 

 

Figure 4. Neural network operations 
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An HVAC model was implemented with four dense layers ANN, consisting of an input layer, 

128 sigmoid neurons in both the hidden layers and one sigmoid neuron in the output layer. The 

number of neurons in the input layer is determined by the identified input variables. The network 

topology’s definition has been based on the performance of a set of candidates. This topology was 

selected due to its best performance when compared with the other candidates. An ANN was 

implemented with Keras [50] based on TensorFlow and codified using Python. The solar altitude 

and azimuth data was calculated with the help the opensource library, Pysolar [51]. The weather 

forecast data was collected from the State Meteorological Agency. The data on occupancy, 

HVAC’s consumption and indoor temperature were collected by HEMS. The measured and 

collected input values were normalised to obtain a uniform one-hour sampling time in the training 

process. 

  

Figure 5. An HVAC system’s neural network model 
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2.2.1 Modelling the fixed load consumption 

 

Fixed loads are those loads for which electric consumption does not have to be deferred or 

interrupted under normal grid circumstances. Usually, there is a close relationship between fixed 

loads’ consumption patterns and hourly occupancy. A WMA is proposed to represent the fixed 

load’s pattern. Every previous value is weighted with a factor from the weighting group in the 

univariate forecast profile. The WMA assigns a greater weight to the most recent data and less 

weight to data in the distant past. It is obtained by multiplying each number in the dataset by a 

predetermined weight and then summing up the resulting values. It is for this reason that the 

prediction model is more sensitive to adapt itself to the changes in the load’s pattern. The WMA 

for the fixed load consumption is calculated using the following equation: 
2 

𝐶𝑓[𝑑,ℎ] =
∑ 𝑊𝑤 ∗ 𝐶[𝑤,𝑑,ℎ]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

In the equation, the fixed load consumption 𝐶𝑓[𝑑,ℎ] for the forecast profile model is calculated 

every day ‘d’ and for hour ‘h’, where 𝐶[𝑤,𝑑,ℎ] correspond to the last-stored-consumption data from 

every week ‘w’, day of the week ‘d’ and hour ‘h’. The constant ‘n’ is the number of weeks used in 

the calculation of the WMA. The weight 𝑊𝑤 is the number of weeks, where ‘n’ corresponds to the 

last week and value 1 to the oldest week. For the present research, the gap selected was four 

weeks. The calculations were performed weekly to adapt to the weekly consumption pattern for 

the model’s forecasting purposes. According to work and occupancy schedule, the algorithm 

adapted its forecasting to consider the days off. 

 

2.2.2 Modelling the deferrable load consumption 

 

Deferrable loads are suitable for changes in the electricity usage by customers from their 

normal consumption patterns in response to demand optimisation. The control algorithm optimises 

deferrable load scheduling under the constraints of electricity supply and demand forecast. When 

deferrable appliances are activated, the MILP scheduler creates the optimal plan in a limited 

amount of time to adjust to the appliance’s deadlines. Modelling the time availability and 

consumption of deferrable load allows week-ahead predictions about deferrable appliances’ 

demand, as illustrated in Figure 6.  

 

This approach models the weekly availability pattern and consumption for the washing 

machine, dish washer and clothes dryer. A WMA is proposed to model the availability pattern and 

consumption. Equation 3 calculates the availability requirements for appliances following a four-

week gap. The model calculations are performed weekly to achieve adaptive requirements. The 

availability for the deferred state is defined by ‘1’;otherwise it is ‘0’.  
3 

𝐴𝑑[𝑑,ℎ] =
∑ 𝑊𝑤 ∗ A[𝑤,𝑑,ℎ]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

𝐴𝑑[𝑑,ℎ] corresponds to the timeslot the appliance is available, where it is supposed to be either 

of the following:  

 Active or standby appliance, if  𝐴𝑑[𝑑,ℎ] ≥ 0.5 

 Inactive appliance, if  𝐴𝑑[𝑑,ℎ] < 0.5 
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The appliance’s consumption model is estimated in Equation 4 by the WMA of 20 last active 

periods.  
4 

𝐶𝑑[ℎ] =
∑ 𝑊𝑤 ∗ 𝐶[ℎ]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

where ‘n’ corresponds to the number of four timeslots of hourly consumption data. Predictions 

for the actual availability, deadline and consumption values are replaced when the smart deferrable 

appliances are activated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The water heater can store heat at any time; therefore, the MILP scheduler optimises 

consumption mainly to periods of low electricity rates or solar overproduction. Hot water 

consumption reduces the temperature of water in the tank, so the temperature should be kept in an 

acceptable range 𝑇𝑟. A simple model represented in Figure 7 is proposed to illustrate the stored 

energy in the water heater 𝐸𝑊𝐻 , multiplying the hot water tank volume ‘V’ by the temperature 

range 𝑇𝑟 and converting de unit into Wh, considering that 1 Wh is equal to 3600 J, and the water 

specific heat is 4180J/(kg ºC) 
5 

𝐸𝑊𝐻 =
𝑇𝑟 ∗ 𝑉 ∗ 4180

3600
 

 

where the temperature range 𝑇𝑟  is the subtraction between high 𝑇ℎ  and low 𝑇𝑙   temperature 

parameters. 
6 

𝑇𝑟 = 𝑇ℎ − 𝑇𝑙  

 

The water heater’s SoC for water temperature 𝑇 is defined by next equation. 

Figure 6. Household appliances’ consumption pattern models  
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7 

𝑆𝑜𝐶𝑊𝐻 =
𝑇 − 𝑇𝑙

𝑇𝑟

 

 

Then, the energy consumption is calculated by multiplying the negative SoC variation by 

energy capacity.  
8 

𝐶𝑊𝐻 = |𝛻𝑆𝑜𝐶𝑊𝐻 ∗ 𝐸𝑊𝐻| 
 

The water heater’s consumption pattern is calculated according to the temperature variation by 

Equation 9. This equation estimates the delivered hot water and standby and distribution losses. 

The energy conversion efficiency to transform electrical energy into heat energy is assumed to be 

equal to 1. 
9 

𝐶𝑊𝐻[𝑑,ℎ] =
∑ 𝑊𝑤 ∗ 𝐶𝑊𝐻[𝑤,𝑑,ℎ]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

The SoC in the water tank is the variable for optimisation. The model used to define the SoC of 

time ‘k+1’ according to the energy consumption C𝑊𝐻  and electrical heating 𝐻𝑊𝐻  at time k is 

depicted in Equation 10. 
10 

𝑆𝑜𝐶𝑊𝐻(𝑘 + 1) = 𝑆𝑜𝐶𝑊𝐻(𝑘) − 𝐶𝑊𝐻(𝑘) + 𝐻𝑊𝐻(𝑘) 

 

The water heater’s operation must maintain a high SoC over time to ensure hot water 

availability and comfort. To overcome this constraint, it is necessary that the SoC must be equal to 

𝑆𝑜𝐶𝑊𝐻𝑚𝑎𝑥  every early morning. The 𝑆𝑜𝐶𝑊𝐻𝑚𝑖𝑛  makes sure that water heater’s SoC is over a 

threshold to deal with the uncertainty between the real and predicted values. 𝑆𝑜𝐶𝑊𝐻𝑚𝑎𝑥  is equal to 

𝐸𝑊𝐻  
11 

𝑊𝑎𝑡𝑒𝑟 𝐻𝑒𝑎𝑡𝑒𝑟 → 𝑆𝑜𝐶𝑊𝐻𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑊𝐻 ≤ 𝑆𝑜𝐶𝑊𝐻𝑚𝑎𝑥          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 7. The water heater’s energy model diagram  
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2.2.3 Modelling EVs and defining constraints 

 

EVs using V2G technology enable energy to be bought or sold to the power grid from the 

battery. With vehicle-to-grid technology, a car battery can be charged and discharged based on the 

rates, load consumption and PV generation intermittency. The SoC in the vehicle’s battery is the 

variable for optimisation. The battery model used to define the SoC of time ‘k+1’ when battery is 

charging or discharging at time ‘k’ is captured by Equation 12. 
12 

𝑆𝑜𝐶𝐸𝑉(𝑘 + 1) = 𝑆𝑜𝐶𝐸𝑉(𝑘) + 𝑒𝑓𝐸𝑉𝑐ℎ ∗ 𝑃𝐸𝑉𝑐ℎ(𝑘) ∗
1

∆𝑡
− 𝑒𝑓𝐸𝑉𝑑𝑖𝑠 ∗ 𝑃𝐸𝑉𝑑𝑖𝑠(𝑘) ∗

1

∆𝑡
 

 

where 𝑃𝐸𝑉𝑐ℎ  and 𝑃𝐸𝑉𝑑𝑖𝑠 are the energy flows when charging and discharging the battery, 𝑒𝑓𝐸𝑉𝑐ℎ 

and 𝑒𝑓𝐸𝑉𝑑𝑖𝑠 are the efficiencies of charging and discharging and ‘∆𝑡’ is the timeslot duration in 

hours. Up and low boundaries are defined for the SoC and charging and discharging power.  
13 

𝑆𝑜𝐶𝐸𝑉𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝐸𝑉 ≤ 𝑆𝑜𝐶𝐸𝑉𝑚𝑎𝑥 
14 

𝑃𝐸𝑉𝑐ℎ 𝑚𝑖𝑛 ≤ 𝑃𝐸𝑉𝑐ℎ ≤ 𝑃𝐸𝑉𝑐ℎ 𝑚𝑎𝑥 
15 

𝑃𝐸𝑉𝑑𝑖𝑠 𝑚𝑖𝑛 ≤ 𝑃𝐸𝑉𝑑𝑖𝑠 ≤ 𝑃𝐸𝑉𝑑𝑖𝑠 𝑚𝑎𝑥 

 

This paper proposes the model represented in Figure 8 to determine the weekly availability 

pattern and SOC requirements. This model is based on four EV parameters: plugged-in time, 

plugged-out time, the SoC at the plugged-in time and the SoC required at the plugged-out time. 

The gap selected is four weeks, and the adaptive model calculations are performed weekly. The 

cost function in the optimisation section includes the cycling ageing when the battery is discharged 

to improve the battery’s lifetime through a trade-off between the optimal performance and battery-

ageing cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A WMA is proposed in Equation 16 to calculate the EV’s availability. The EV’s plugged state 

is defined by ‘1’ and is otherwise ‘0’.  

Figure 8. EVs’ energy & params model diagram  
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16 

𝐴𝐸𝑉[𝑑,ℎ] =
∑ 𝑊𝑤 ∗ A𝐸𝑉[𝑤,𝑑,ℎ]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

𝐴𝐸𝑉[𝑑,ℎ] corresponds to the availability where the following is supposed:  

 EV plugged ‘1’ if  𝐴[𝑑,ℎ] ≥ 0.5 

 EV unplugged ‘0’ if  𝐴[𝑑,ℎ] < 0.5 

 

The WMA for predicting the SoC at the plugged-in time and the SoC required at the 

plugged-out time are calculated by Equations 17 and 18 respectively. 
17 

𝑆𝑜𝐶𝑝𝑜 =
∑ 𝑊𝑤 ∗ 𝑆𝑜𝐶𝑝𝑜[𝑤,𝑑]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1
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𝑆𝑜𝐶𝑝𝑖 =
∑ 𝑊𝑤 ∗ 𝑆𝑜𝐶𝑝𝑖[𝑤,𝑑]

𝑛
𝑤=1

∑ 𝑊𝑤
𝑛
𝑤=1

 

 

2.2.4 Modelling PV generation  

 

To forecast PV’s power output accurately, an ANN has been proposed as depicted in Figure 9. 

The ANN is trained weekly through backpropagation with previous measured data. The 

methodology for the training and testing process is explained in Figure 4. The available data is 

used to train the PV’s ANN, to forecast generation and to evaluate the performance of the trained 

ANN. The correlation data analysis in this previous study [52] identifies the global radiation, air 

temperature and humidity for the forecasting tasks with exogenous variables, whereas solar 

irradiance is considered to be the most critical parameter in solar power generation units. 

Furthermore, in [53], it was identified that the incorporation of azimuth and zenith parameters in 

the model significantly improves the performance of forecasting via ANNs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. PV neural network model 
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2.3 Defining battery storage constraints 

 

Storage technology provides flexibility to integrate renewable energy sources and improve the 

grid operation. The main physical parameter of the battery storage is its SoC. The battery model 

used to define the SoC of time ‘k+1’ when the battery is charging or discharging at time ‘k’ is 

calculated by Equation 19. 
19 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 → 𝑆𝑜𝐶𝐵(𝑘 + 1) = 𝑆𝑜𝐶𝐵(𝑘) + 𝑒𝑓𝐵𝑐ℎ ∗ 𝑃𝐵𝑐ℎ(𝑘) ∗
1

∆𝑡
− 𝑒𝑓𝐵𝑑𝑖𝑠 ∗ 𝑃𝐵𝑑𝑖𝑠(𝑘) ∗

1

∆𝑡
 

 

where 𝑃𝐵𝑐ℎ  and 𝑃𝐵𝑑𝑖𝑠  are the energy flows when charging and discharging the battery, 𝑒𝑓𝐵𝑐ℎ 

and 𝑒𝑓𝐵𝑑𝑖𝑠 are the efficiencies of charging and discharging and ‘∆𝑡’ is the timeslot duration in 

hours. The up and low boundaries are defined for the SoC, charging and discharging power, in  
20 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 → 𝑆𝑜𝐶𝐵𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝐵 ≤ 𝑆𝑜𝐶𝐵𝑚𝑎𝑥 
21 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 → 𝑃𝐵𝑐ℎ 𝑚𝑖𝑛 ≤ 𝑃𝐵𝑐ℎ ≤ 𝑃𝐵𝑐ℎ 𝑚𝑎𝑥  
22 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 → 𝑃𝐵𝑑𝑖𝑠 𝑚𝑖𝑛 ≤ 𝑃𝐵𝑑𝑖𝑠 ≤ 𝑃𝐵𝑑𝑖𝑠 𝑚𝑎𝑥  

 

The 𝑆𝑜𝐶𝑚𝑖𝑛  sets the battery’s SoC over a threshold to deal with the uncertainty between the real 

and predicted values and to prevent deep discharge. The cost function in the optimisation section 

includes cycling ageing when the battery is charged or discharged to improve the battery’s lifetime 

through a trade-off between the optimal performance and the battery-ageing cost. 

 

2.4 Defining the grid and power balance constraints 

 

A grid’s power constraints are defined by Equation 23. 
23 

𝑃𝐺𝑟𝑖𝑑 𝑚𝑖𝑛 ≤ 𝑃𝐺𝑟𝑖𝑑 ≤ 𝑃𝐺𝑟𝑖𝑑 𝑚𝑎𝑥 

 

where, 𝑃𝐺𝑟𝑖𝑑 𝑚𝑖𝑛 can be a negative value when selling electricity and 𝑃𝐺𝑟𝑖𝑑 𝑚𝑎𝑥 corresponds to 

the electrical capacity hired. The power balance in the building under study, shown in Figure 1, is 

described by Equation 24. 
24 

𝑃𝐺𝑟𝑖𝑑 + 𝑃𝑃𝑉 + 𝑃𝐵𝑎𝑡 + 𝑃𝐸𝑉 − 𝑃𝐿𝑜𝑎𝑑 = 0 

 

where 𝑃𝐺𝑟𝑖𝑑  is the power from/to the main grid, 𝑃𝑃𝑉  is the PV power generation, 𝑃𝐵𝑎𝑡  is the 

power of the battery, which can be calculated by (𝐵𝑎𝑡𝑡𝑒𝑟𝑦 → 𝑃𝑐ℎ − 𝑃𝑑𝑖𝑠), 𝑃𝐸𝑉 is the power of the 

EV, which can be calculated by (𝐸𝑉 → 𝑃𝑐ℎ − 𝑃𝑑𝑖𝑠) and 𝑃𝐿𝑜𝑎𝑑  is the sum of the HVAC systems’, 

deferrable appliances’ and fixed power’s consumption. 
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3 Optimisation methodology 

This section addresses the methodology used to carry out the control strategy to optimise the 

household’s electricity flow. A two-step optimisation algorithm has been proposed to minimise the 

household spending for electricity and improve the self-consumption ratio while ensuring thermal 

comfort. The algorithm uses two objective functions, one for the GA and the other for the MILP. 

First, the objective function defined by Equation 26 was formulated as a dual optimisation level, 

considering the minimisation of electricity costs for the HVAC system and the minimisation of the 

deviation from the comfort temperature. The MILP’s cost function defined by Equation 27 focuses 

on minimising electricity costs for the rest of electricity consumers. The model’s constraints were 

defined for each one in the previous section. The constraints were defined to determine the discrete 

nature of some decisions such as storage capacity, technical limits of the grid, appliances and EVs 

and the time sequence of the appliances. AMPC solves at each hourly control step an optimisation 

problem to determine which actions should be taken over a 48-hour prediction horizon that are 

subject to consumption and PV generation’s predictions. At each timeslot, the optimisation 

calculates a sequence of optimised actions after taking into account the household’s behaviour 

over the time horizon. The calculations are repeated in every timeslot with new measurements and 

updated predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 10. The optimisation solver’s approach 



21 

 

 

The proposed framework in Figure 10 introduces two optimisation levels to achieve thermal 

comfort and cost minimisation. An HVAC control sequence set is first generated using a GA and 

then evaluated to fit with the comfort objectives and electric costs. Strategies that accomplish the 

pre-selected objectives are evaluated with regard to the electric home appliances and EV using a 

MILP algorithm. The PV generation and charging operation of the storage and EV battery are also 

considered. The AMPC strategy is proposed to control the electric devices accounting for the 

operational constraints to achieve comfort and cost reduction for the consumer. The prediction 

horizon is divided into slots. The timeslot duration is defined as ∆t = 60 minutes each, in 

accordance with the weather forecast, where one day is partitioned into 24 numerated slots. The 

electricity tariff used is a dynamic electricity tariff with different electricity costs during specific 

time intervals (on-peak, mid-peak and off-peak) denoted by ToU. 

 

3.1  GA’s optimisation 

 

A GA is a metaheuristic search and optimisation technique that has been inspired by natural 

evolution. Every timeslot, crossover and mutation functions generate a set of potential offsprings 

for the HVAC control of the previous population. Fitness proportionate selection, also known as 

roulette wheel selection, is used for selecting potentially useful solutions for recombination. So, 

evolution will find a suboptimal solution by selecting the best control strategies after several 

successive generations. A GA is used to find a thermal setting that fits with the comfort directives. 

Every individual in a population of ‘n’ elements defines a set of HVAC strategies for a 48-hour 

prediction horizon and each is restricted to integer values between 0 and 10.  

 

𝐻𝑉𝐴𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙
𝑛 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} 

 

where 

𝑥𝑛 = {0,1,2,3,4,5,6,7,8,9,10} 

 

HVAC systems’ consumption is calculated by: 
25 

𝐻𝑉𝐴𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑛 = 𝐻𝑉𝐴𝐶𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝑛 ∗
𝐻𝑉𝐴𝐶𝑝𝑜𝑤𝑒𝑟

10
 

 

Then HVAC set of strategies are evaluated in the economic and thermal cost optimisation using 

Equation 26 to calculate a set of 𝐽𝐻𝑉𝐴𝐶 . This optimisation process involves variables with opposed 

objectives, because generally more comfort means more cost and vice versa; therefore, a trade-off 

between the power consumption and thermal comfort is required. This is formulated as a dual 

optimisation level to find the optimal strategy adding the electricity cost and the temperature error 

cost. The hybrid optimisation problem is formulated as follows:  
26 

𝐽𝐻𝑉𝐴𝐶 = 𝑚𝑖𝑛 { ∑ 𝐻𝑉𝐴𝐶𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
𝑛 ∗ 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑐𝑜𝑠𝑡𝑛

ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑛=1

+ ∑ (𝑇𝑖𝑛
𝑛 − 𝑇𝑑

𝑛)2

ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑛=1

} 

 

where 𝑇𝑖𝑛
𝑛 is the predicted temperature of the household, and 𝑇𝑑

𝑛  is the desired setpoint. The 

strategy with the lowest overall cost from the evaluated set is implemented. The thermal deviation 
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is evaluated in ‘n’ timeslot with defined setpoints, and the electricity cost is determined 

considering the ToU, PV generation and fixed load. 

 

In the first initialisation of the algorithm, a random population of HVAC control strategy is 

performed. A roll sequence control function was developed to deal with the progress of the 

timeline. Elements that roll beyond the first position are re-introduced in the end to be fed into the 

GA every new timestep as shown in Figure 11. This technique allows the best-fitted population to 

be reused and reduces computational effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GA is combined with the HVAC neural network to predict household temperature. This feature 

makes it possible to store thermal energy during low price hours or PV overproduction. 

 

3.2  Mixed integer programming’s optimisation 

 

The objective of optimising the mixed integer programming is to minimise operation costs 

depending on the price for importing electricity, the price at which electricity could be sold, and 

the battery-ageing cost in a discrete time model over a finite time horizon. Self-consumption takes 

priority over the sale of PV electricity. The power balance of energy flow in the building under 

study is described in Equation 24; then, the cost function at the time horizon n was defined by the 

difference between the power bought and sold to the grid and the battery-ageing cost when 

discharging. The objective function to minimise it, as depicted in Equation 27.  
27 

𝐽𝐸 = 𝑚𝑖𝑛 ∑ (𝑃𝐺𝑟𝑖𝑑 𝑏𝑢𝑦
𝑛 ∗ 𝐶𝑇𝑂𝑈

𝑛 + 𝑃𝐺𝑟𝑖𝑑 𝑠𝑒𝑙𝑙
𝑛 ∗ 𝐶𝑠𝑒𝑙𝑙

𝑛 + 𝑃𝐵𝑑𝑖𝑠
𝑛 ∗ 𝐶𝐵𝑐𝑖𝑐𝑙𝑒

𝑛 + 𝑃𝐸𝑉𝑑𝑖𝑠
𝑛 ∗ 𝐶𝐸𝑉𝑐𝑖𝑐𝑙𝑒

𝑛 ) ∗
1

∆𝑡

ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑛=1

 

 

where the cost of energy 𝐽𝐸  is calculated for every control step with a predictive horizon n; 

𝑃𝐺𝑟𝑖𝑑 𝑏𝑢𝑦 is the grid energy demand; 𝐶𝑇𝑂𝑈 is the ToU electric tariff which either can be TOU or 

real-time-pricing–day-ahead (RTP-DA); 𝑃𝐵𝑑𝑖𝑠and 𝑃𝐸𝑉𝑑𝑖𝑠 are the battery and EV discharge energy 

respectively; 𝐶𝐵𝑐𝑖𝑐𝑙𝑒  and 𝐶𝐸𝑉𝑐𝑖𝑐𝑙𝑒  are the estimated battery and EV cycle ageing cost; ∆𝑡  is 

timeslot duration in hours. The PVs’ cost was excluded in the cost function to prioritise generation 

for self-consumption. Renewable power should always be consumed, stored or sold, according to 

electric price and constraints.  

 

Figure 11. GA population roll function  
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The household operational constraints defined in the models are considered during the 

operation. Deferrable appliances as well as charge/discharge battery storage are scheduled based 

on a MILP approach. The purpose of optimising the scheduling is to shift the usage of appliances 

to off-peak periods. When an EV is also available in a household, its charging is scheduled to 

achieve the desired SoC by its departure time. The EV’s battery is also considered as energy 

storage. Water heater, storage battery and EV are described and solved as a LP optimisation 

problem.  

 

A mixed-integer programming is performed to capture the discrete nature of the washing 

machine, dish washer and clothes dryer. The running of these appliances is defined by a binary-

integer LP, ensuring the development of the sequence in the proper order. The optimiser can turn 

on the smart appliances, so the phases of the power loads are executed sequentially based on its 

operation duration. Every deferrable appliance ‘d’ is characterised by its power consumption array  

𝐶𝑑[𝑑,𝑝]  that operates over ‘h’ time slots. The scheduling is divided into a sequence of ‘p’ 

uninterruptible phases that is correlated with consumption array. Let the binary variables array 

𝑂𝑁[𝑑,𝑝]
𝑛  be the decision variable; then, every array for phase ‘p’ of the deferrable appliance ‘d’ 

defines the state of the appliance for the timeslot prediction horizon ‘n’, where each element is 

restricted to integer values between 0 and 1.  

 

𝑂𝑁[𝑑,𝑝]
𝑛 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} 

where 

𝑥𝑛 = {0,1} 

 

Next, the constraints are defined. If the deferrable appliance ‘d’ must be turned on for a 48-hour 

prediction horizon, an 𝑥𝑛 on every phase p will be active once and 0 otherwise.  
28 

∑ 𝑂𝑁[𝑑,𝑝]
𝑛

ℎ𝑜𝑟𝑖𝑧𝑜𝑛

𝑛=1

= 1;     for every phase p in appliance d 

 

The first appliance phase is turned on within the availability time window. 
29 

𝑂𝑁[𝑑,1]
𝑛 ≤ 𝐴𝑑[𝑑]

𝑛 ;     for every n time slot 

 

The next set of constraints define the sequence will run in the proper order. 
30 

𝑂𝑁[𝑑,2]
𝑛 (𝑛 + 1) = 𝑂𝑁[𝑑,1]

𝑛 (𝑛);     for every n time slot 

… 
𝑂𝑁[𝑑,𝑝]

𝑛 (𝑛 + 1) = 𝑂𝑁[𝑑,𝑝−1]
𝑛 (𝑛);     for every n time slot 

 
Deferrable appliances’ consumption for power balance is calculated using the next equation. 

 
31 

𝐷𝑒𝑓𝑒𝑟𝑟𝑎𝑏𝑙𝑒 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = ∑ ∑ (𝑂𝑁[𝑑,𝑝]
𝑛 ∗ 𝐶𝑑[𝑑,𝑝] ∗

1

∆𝑡
)

𝑁𝑝ℎ𝑎𝑠𝑒𝑠

𝑝=1

𝑁𝑎𝑝𝑝

𝑑=1
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3.3 Household AMPC 

 

A two-level optimisation approach is adopted to deal with thermal comfort and economic 

optimisation.  The overall process of the algorithm implemented is illustrated in the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The GA and MILP algorithm minimise at each timestep ‘k’ the cost functions using the control 

variables over the receding horizon without violating constraints. At each ‘k’, the algorithm uses 

model predictions for making its control decision. GA combined with an ANN model deal with the 

non-linear HVAC system. The MILP problem involves real and binary variables; therefore, it is 

classified as linear. The AMPC algorithm calculates the next control inputs for each prediction 

step, which is iterative until converging to a sub-optimal solution. Nonetheless, only the first 

control output step is sent to the system. The minimisation process is repeated for every timeslot. 

A mixed integer linear programme was codified in Python using Gurobi mathematical 

optimisation solver [54]. 

 

  

Figure 12. AMPC algorithm  
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4 Simulation  

In this section, the proposed methodology is tested in a study case. Figure 13 shows the 

residential building’s scenario. Device parameters and constraints for the study scenario are 

presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Parameter Value Description 

PmaxGrid 5.5 [kW] max. power input/output on grid connection 

BatPmaxChg 3.5 [kW] BESS max. charge power  

BatPmaxDis 3.5 [kW] BESS max. discharge power 

BatSoCmax 20 [kWh] BESS capacity 

BatSoCmin 5 [kWh] BESS min. SOC to overcome power disturbances 

BatCost 360 [€] BESS amortisation cost 

BatLife 3600 [cycles] BESS cycle ageing 

BatEfChg 0.95 BESS charge efficiency 

BatEfDis 0.95 BESS discharge efficiency 

EVPmaxChg 20 [kW] EV max. charge power 

EVPmaxDis 20 [kW] EV max. discharge power 

EVSoCmax 60 [kWh] EV battery capacity 

EVSoCmin 20 [kWh] EV min. SOC (V2G use threshold) 

EVBatCost 600 [€] EV amortisation cost 

EVbatLife 4000 [cycles] EV cycle ageing 

EVEfChg 0.95 EV charge efficiency 

EVEfDis 0.95 EV discharge efficiency 

WHCapacity 100 [litre] Weather heater capacity 

WHTmax 80 [ºC] Water heater max. Tª 

WHTmin 40 [ºC] Water heater min. Tª  

WHSoCmin 20 [%] SoC min. to overcome disturbances 

WHHeatP 1 [kWh] Water heater heating power 

EfInvPV 0.95 PV inverter efficiency 

HVACPmax 3 [kW] HVAC max power in electricity consumption 

latitude  41.682533  

longitude -0.872732  

Table 1. Simulation plant’s parameters 

Figure 13. Simulation plant’s diagram 
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The AMPC approach requires data-driven models that can learn and make predictions from the 

data. First, the data-driven models were trained with a set of actual data from some single-family 

households in Spain. Data was collected in the summer of 2020. Historical weather data was 

obtained from the State Meteorology Agency, AEMET. The datasets were normalised on an 

hourly basis, according to the weather data layout. 

 

4.1 Training PV generation model 

 

The PV data was collected from a residential 5.6 kW PV array, which was installed on the 

building’s rooftop. It had paralleled subarrays that consisted of 17 PV series panels. The ANN 

model for PV generation described in section 182.2.4 was trained and tested with the collected 

data. A 48-h horizon forecast test was then performed, as show in Figure 14, with a MAE 91 and 

105.8 each one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some deviations in electricity generation were observed. This was because of the solar 

irradiance error, due to the distance between the state weather station and the location of the 

building. 

 

4.2 Training HVAC model 

 

The data-driven model for the HVAC system, described in Section 0, based on an ANN was 

trained to capture the building’s thermal behaviour. Indoor temperature, house occupancy and the 

HVAC system’s operational and consumption data was collected from a single-family household. 

The weather dataset (air temperature, relative humidity and solar irradiance) was obtained from the 

State Meteorology Agency. The sun azimuth and altitude were calculated according to the altitude 

and longitude parameters for every date and time. The ANN model was trained with 30.000 

epochs. Figure 15 shows the ANN test plot with a high correlation between the predicted and 

actual values. Test data was assessed with a MAE 0.2062. 

 

 

Figure 14. PV ANN  
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4.3 Training the fixed consumption model 

 

Fixed loads’ consumption model, described in Section 2.2.1, was trained with the data obtained 

from the electricity consumption in a single-family household in summer. A close relationship was 

observed between fixed loads’ consumption for each week. A WMA captured the household fixed 

loads’ consumption pattern.  
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Figure 15. HVAC ANN  



28   

 

4.4 The AMPC’ scenario 

 

A 48h-time horizon simulation scenario of the inputs for the AMPC algorithm was defined. The 

inputs set (Figure 17) included weather and solar irradiance forecast, calculations pertaining to the 

sun, model predictions and electricity rates. The initial simulation parameters, deferrable 

appliances’ and EV’s availability and consumption were also defined. 

 
Parameter Value Description 

BatSoCini 5 [kWh] BESS SoC 

WHSoCini 40 [%] Water heater SoC  

Year 2020  

Month 8  

Day 6  

Hour 0  

Table 2. Initial parameters simulation scenario 

 
 

Figure 17. Weather forecast, predictions and electricity rates in the simulation scenario 



29 

 

5 Result and discussion 

In this section, the simulation results are provided to evaluate the performance of the proposed 

AMPC algorithm for deferrable loads’ scheduling under the constraint of electricity supply in the 

power systems. The assessment has been developed by developing a simulated household. The 

horizon time of the predictive control is from twelve o'clock at night for 48 hours; however, the 

previous population of GA is set beforehand. The simulated household is considered connected to 

the grid and equipped with fix loads, (lights, TV, PC, refrigerator, stove and oven) deferrable 

smart appliances, (washing machine, dish washer, clothes dryer and electric water heater), heat 

pump-based HVAC system, EV, storage battery and PV array. The household’s behaviour and 

consumption pattern is considered to schedule the appliances usage, and a given ToU and battery 

cost is assumed, as defined in previous section. 

 

The control strategy for optimisation converges to a solution in a few minutes. The smart 

appliances schedule is distributed based on off-peak and PV peak. The optimal control algorithm 

minimises electricity cost under the constraint of electricity supply in the power systems and 

induces the pre-cooling of the HVAC system. The optimal schedule of household power 

consumption and the energy sources for every timeslot is given in Figure 18. The diagrams show 

the balance between consumption and the energy sources with the EV’s demand included.  
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The algorithm ensures electricity consumption before the on-peak price period and storage PV 

overproduction to reduce peak demand or support consumption anticipating future changes. Due to 

this fact, households can profit from the periods with lower electricity rates to lower their daily 

energy costs. The proposed method balances and economises the total electricity consumption 

according to operational constraints. The management during peak demand allows to fulfil the 

maximum grid power available (black line) and battery charge and discharge range. It also 

schedules most of the household appliances consumption in off-peak periods, as shown Figure 19, 

which allows the consumer to pay an optimal electricity cost while maintaining the requested 

services.  

 

  

  

  
 

 

 

 

5.1 Assessment of the GA 

 

To assess the GA’s performance, tree setpoint temperature scenarios were developed. The base 

scenario is shown in the next figure in the middle column where the input for setpoint room 

temperature was defined at 24ºC. The additional scenarios with the cooling mode for the HVAC 

system in summer were calculated with 23ºC and 25ºC room setpoint and are shown in left and 
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right column. The results are shown in the figure below. The cost for buying energy for the 48h 

horizon time with 23ºC, 24ºC and 25ºC were 8.05€, 6.41€ and 4.92€ respectively. 

 

 

 

 

Figure 20. HVAC optimisation 

 

The GA controls the cooling system to maintain the indoor temperature close to the comfort 

level setpoint. When the electricity price is high, the AMPC pre-cools the building to maintain the 

desired temperature and optimise cost. When the exterior temperature decreases, the free-cooling 

is activated. Thus, the GA manages the cooling system to benefit from the falling temperature and 

to support the extra cooling demand.  

 

 

5.2 The MILP algorithm’s assessment 

 

To assess the MILP algorithm’s performance, three PV generation scenarios were developed. 

The first is on the left, with 80% PV generation; the base scenario is in represented in the middle 

column, and finally on the right is the third scenario with 120% PV generation. The results are 

shown in the figure below. 

 

 

 

Figure 21. MILP’s optimisation 
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The energy exchange from/to the grid and battery for each PV generation scenario is shown in 

the following figure. In the 120% PV generation scenario, when the battery is fully charged, PV 

overproduction is sold to the grid as shown in the figure. The cost in buying energy for the 48h-

horizon time with 80%, 100% and 120% PV generation were 7.41€, 6.41€ and 5.09€ respectively. 

 

 

 

 

Figure 22. Grid energy interchange and battery storage 

 

 

5.3 The AMPC algorithm’s assessment 

 

To evaluate the AMPC optimisation algorithm, an uncontrolled scenario is performed (Figure 

23). In this context, the appliance’s load cycle is turned on and off without taking into 

consideration the time-varying prices except for the EV, which is recharged taking advantage of 

the nightly rate. The controlled and uncontrolled scenarios were developed with the same 

requirements of electrical appliances and PV generation. The energy cost for the 48h-horizon time 

in the uncontrolled scenario was 7.22€, in contrast with 6.5€ obtained with the AMPC, which is 

more than 11% of economic cost difference. On the other hand, the uncontrolled scenario reported 

higher grid consumption during peak hours. To support the uncontrolled appliances’ consumption, 

at least a 7-kW grid connection is required. In the demand flexibility case, the AMPC algorithm 

implements a valley-filling approach, as many loads are shifted to the least expensive hours, 

lowering the customers’ bills, shifting consumption away from the grid peak and flattening the 

demand profile. In the AMPC scenario, household consumption does not exceed 5.5-kW. This 

represents a 27% cut in the power hired, lowering the overall system cost. 
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5.4 AMPC’s stability analysis 

 

A crucial requirement in control theory for the design of management strategies is their ability 

to deal with the changes in system inputs and show robustness in diverse conditions. MILP 

algorithm used to solve LP problems assumes that tiny changes to the system lead to small 

changes in the solution. This condition is true for the appliances’ scheduling problem, 

guaranteeing stability and time-convergence. Gurobi [54] solver has been tested thoroughly for 

numerical stability and correctness using an internal library of over 10,000 models from industry 

and academia. The MILP algorithm is well-suited for optimising a building, but it inherently 

involves different challenges to achieving scalability. Thermal comfort’s cost function is optimised 

by a custom metaheuristic procedure based on GA. The algorithm selects the best-fitted strategy 

performed in each timeslot. The algorithm performs calculations based on the preceding strategies’ 

population, improving the optimisation performance and adapting to the disturbances. To verify 
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AMPC’s stability, it was given to compute a set of 100 diverse scenarios with different weather 

conditions, appliances and EV consumption patterns, PV generation and room temperature 

setpoints. All feasible data sets were stable.   
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6 Conclusions 

In this study, the scheduling problem of smart home energy resources was solved in several 

scenarios applying an AMPC approach. The novelty of the present paper can be summarised as 

follows:  

• The proposal of a novel AMPC methodology to find a quasi-optimal solution for the 

elasticity of residential electricity consumption, considering the cooling, heating and 

electricity demand.  

• Development of a novel hybrid model methodology based on ANNs for buildings’ thermal 

behaviour and electricity consumption statistics. 

• Implementation of a two-step optimisation solver based on GA and MILP formulated as a 

dual optimisation method. 

 

The proposed AMPC was tested using the data obtained from actual residential buildings. The 

algorithm’s stability was tested with a set of diverse parametric simulations. The numerical results 

demonstrated the capability of the proposed algorithm to support a quasi-optimal and cost-

effective power management strategy as well as increase grid elasticity. The broad steps involved 

in the optimisation approach and its results are summarised as follows: 

• Deferrable appliances’ usage was shifted to valley-filling with low TOU rates or high PV 

generation periods. 

• The comfort temperature of the room was addressed with diverse weather conditions, 

taking advantage of the building’s thermal storage. 

• BESS optimal charging and discharging was performed for peak shaving in the smart 

home. 

• Electricity consumption was flattened, minimising the requirements for the power hired. 

• DER self-consumption condition was satisfied. PV overproduction was first stored at 

BESS and sold only when the battery is full. 

 

Further research is required, particularly on the application of the proposed AMPC algorithm 

for testing its long-lasting performance in buildings. Some aspects such as the initial data 

collection and computational effort for training neural networks and optimising GA to acquire the 

HVAC solution and the consumption pattern’s prediction to the optimisation problem will be of 

special interest. Also, smart appliances and V2G charger that support smart grid communication 

with AMPC algorithm must be defined and developed. 
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