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Abstract  11 

Conduction heat transfer through building construction elements is one of the main components of space 12 

heating and cooling loads, and, thus, one of the key aspects when planning sustainable energy designs in 13 

the building sector. The Response Factors (RF) method sets the base for related dynamic calculations 14 

implemented by most well-known Building Energy Simulation (BES) software, and it represents a 15 

research topic of present interest. In this regard, this work introduces a new method for calculating 16 

conduction Response Factors in building multilayer constructions, based on the definition of an 17 

approximated wall model through Frequency–Domain Spline Interpolation (FDSI) and asymptotic 18 

analysis. Its conceptual development as well as first validations comparing with existing methods from 19 

previous literature are presented. Finally, as a result of applying a table-lookup approach and the 20 

possibility of pre-calculating most of the involved operations, an accurate, fast and easy-to-code algorithm 21 

is obtained, which constitutes a promising alternative to improve the current state-of-art calculation 22 

procedures. 23 

Keywords: Building transient heat transfer, Thermal Response Factors, spline interpolation, frequency-24 

domain, asymptotic analysis. 25 

Nomenclature 26 

General 27 

a, b, c, d  coefficients of the piecewise polynomial approximation 28 

Ak, Bk, Ck, Dk  transmission matrix elements of the kth construction layer 29 



AT, BT, CT, DT  transmission matrix elements of the total multilayer construction 30 

cp   specific heat capacity [J·kg-1·K-1] 31 

E   Error estimate (%) 32 

fk   cubic spline approximation functions [W·m-2·K-1] 33 

F[…]   Fourier transform 34 

F-1[…]   inverse Fourier transform 35 

G   transfer function 36 

hk   amplitude of the intervals between frequency evaluation points (ωk) [rad·s-1] 37 

L   layer thickness [m] 38 

j   complex variable 39 

MFF   Modified Frequency Function [W·m-2·K-1] 40 

q   heat flux [W·m-2] 41 

R   thermal resistance [m2·K·W-1] 42 

rk   slope of the MFFs at selected frequency evaluation points (ωk) 43 

s   independent variable in the Laplace domain 44 

t   time [s] 45 

T   temperature [C] 46 

Ṫ   first derivative of the temperature variable [C·s-1] 47 

TΔ   shaping function [-] 48 

Δt   timestep [s] 49 

U   wall’s thermal transmittance [W·m-2·K-1] 50 

XRF, YRF, ZRF  internal, cross and external terms for the Response Factor method [W·m-2·K-1] 51 

XCTF, YCTF, ZCTF  internal, cross and external terms for the CTF method [W·m-2·K-1] 52 

yk   Value of the MFFs at selected frequency evaluation points (ωk) [W·m-2·K-1] 53 

Greek symbols 54 

α  thermal diffusivity [m2·s-1] 55 

βk  roots of the transfer function BT(s) 56 

λ  thermal conductivity [W·m-1·K-1] 57 

ψ  amplitude of the frequency characteristic 58 

Γk, φk  auxiliary terms for the recursive calculation of the spline coefficients 59 



Φ  weighting coefficients of the previous heat fluxes in the CTF method [-] 60 

ρ  material density [kg·m-3] 61 

σk  second derivative of the MFFs at selected frequency evaluation points 62 

ω  frequency [rad·s-1] 63 

Subscripts 64 

a, b, c, d relative to the corresponding coefficients of the piecewise polynomial approximation 65 

i, k  integer counts 66 

A / P  asymptotic / polynomial 67 

C / S  cosine / sine 68 

H / T  head / tail 69 

int / ext  internal / external 70 

m  number of timesteps 71 

n total number of elements of a given vector or identifier of a given element into a 72 

Response Factor series (X, Y or Z) 73 

N  total number of frequency points 74 

X, Y, Z  relative to the corresponding term of the Response Factor method 75 

Acronyms 76 

BES  Building Energy Simulation 77 

CTF   Conductive Transfer Functions 78 

DRF  Direct Root Finding 79 

FDR  Frequency-Domain Regression 80 

FDM  Finite Difference Method 81 

FDSI  Frequency-Domain Spline Interpolation 82 

FEM   Finite Element Method 83 

HVAC   Heating, Ventilating and Air Conditioning 84 

RF   Response Factors 85 

SSM  State-Space Method 86 

Specific notation for FDSI method constants and integration factors 87 

AF  Asymptotic function 88 

k  constant (construction-dependent) 89 



K  integration factor (construction non-dependent) (1,2) 90 

(1) KAHC, KAHS, KATC, KATS, KPCa, KPCb, KPCc, KPCd, KPSa, KPSb, KPSc, KPSd are those 91 

‘integration factors’ which can be interpreted according to the following criteria: 92 

A/P: asymptotic/polynomial 93 

H/T: head/tail  94 

C/S: cosine/sine 95 

a/b/c/d: associated to the corresponding spline coefficient  96 

(2) KATC0, KATC(+), KATS(+), KATC (-), KATS(-) are particular definitions of the integration factors 97 

to determine the tail asymptotic equivalents 98 

1. Introduction  99 

As energy and environmental sustainability in the building sector have become increasingly important in 100 

these days, Building Energy Simulation (BES) software has attained a fundamental role in the design of 101 

new constructions and the planning of energy retrofitting actions [1,2]. This software can estimate the 102 

amount of energy required to assure indoor thermal comfort conditions throughout the year (that is to say, 103 

space heating and cooling loads), which allows architects and engineers to better benefit from passive 104 

energy techniques and design more efficient HVAC systems and strategies. In this sense, among other 105 

capabilities, BES software involves methods to evaluate short-wave and long-wave radiative heat 106 

transfer, convective heat flows, one-dimensional heat conduction through multi-layered walls, as well as 107 

the dynamics of the energy facilities within the built environment.  108 

In particular, the conduction heat transfer through building construction elements is one of the key 109 

components of space loads. Wang and Chen [3] present an exhaustive review of those methods available 110 

to determine its contribution. Despite the existence of numerical methods [4,5] and the so-called harmonic 111 

or periodic approaches [6,7], currently, the most widely used techniques are the Response Factors (RF) 112 

method and the Conductive Transfer Function (CTF) method, which set the base for the calculations 113 

implemented by well-known BES programs such as Energy-Plus [8] or TRNSYS [9]. These methods are 114 

generally considered to derive from the research conducted by Mitalas and Stephenson [10-12]  115 

The Response Factors method calculates the heat flux at discrete times as a function of the previous 116 

temperatures on both sides of the construction (Eqs.1).  117 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 · ∆𝑡𝑡) = �𝑋𝑋𝑅𝑅𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
∞

𝑘𝑘=0

−�𝑌𝑌𝑅𝑅𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
∞

𝑘𝑘=0
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𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒(𝑖𝑖 · ∆𝑡𝑡) = �𝑌𝑌𝑅𝑅𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
∞

𝑘𝑘=0

−�𝑍𝑍𝑅𝑅𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
∞

𝑘𝑘=0

     𝐸𝐸𝑞𝑞. 1𝑏𝑏 119 

Tint and Text strictly are the internal and external surface temperatures. However, for general validation 120 

purposes, numerous case studies from literature often consider them to represent ambient temperatures 121 

including massless inner and outer layers with a thermal resistance value equivalent to that derived from 122 

the corresponding convective heat transfer coefficient (see Tables 5 and 7). The terms X[k], Y[k] and Z[k] 123 

for k ranging from zero to infinity are called response factors (RF). These factors tend to zero when k tend 124 

to infinity so, in practice, a finite number of them is accurate enough to describe the construction 125 

dynamics. However, the simulation of HVAC systems integrated in BES programs sometimes requires 126 

time-steps shorter than 1 hour to reproduce realistic control strategies and equipment time responses. In 127 

such situations, the required amount of RF to get good accuracy often becomes inconveniently large for 128 

computer implementation [3, 13].    129 

The Conductive Transfer Function method (CTF) [12] reduces the number of terms needed to describe 130 

the construction dynamics. This method expresses the internal and external heat flux values at a given 131 

time in a more convenient form as a function of a finite number of previous temperatures and previous 132 

heat fluxes (see Eqs.2). 133 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑖𝑖 · ∆𝑡𝑡) = �𝑋𝑋𝐶𝐶𝐶𝐶𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
𝑁𝑁

𝑘𝑘=0

−�𝑌𝑌𝐶𝐶𝐶𝐶𝑅𝑅[𝑘𝑘] · 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
𝑁𝑁

𝑘𝑘=0

+ �𝛷𝛷[𝑘𝑘] · 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒[(𝑖𝑖 − 𝑘𝑘) · ∆𝑡𝑡]
𝑀𝑀

𝑘𝑘=1
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𝑀𝑀
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The series of terms XRF[k], YRF[k] and ZRF[k] for the Response Factor Method (RF) as well as XCTF[k], 136 

YCTF[k] and ZCTF[k] for the Conductive Transfer Function Method (CTF), can be calculated by several 137 

procedures. 138 

The use of Laplace transform methods is probably the most extended one. Briefly, these methods obtain 139 

the heat flux response of the construction to a temperature shaping function (typically a triangle of height 140 

one) in the frequency domain, and then apply the inverse Laplace transform to get the corresponding 141 

solution in the time domain. Eqs.3 show the expressions for the Response Factors, where AT(s), BT(s), 142 

CT(s) and DT(s) are the terms of the characteristic matrix of the construction (see section 2), while βk are 143 

the poles of the transfer function BT(s). 144 
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This approach was first developed by Stephenson and Mitalas [10-12] and later improved by other 148 

authors [13, 14] in order to avoid pole skipping and enhance calculation efficiency. These methods are 149 

often referred as Direct Root-Finding (DRF) methods, as the inversion process (based on the residue 150 

theorem) involves iterative root finding, which is computationally expensive. In addition, the number of 151 

poles is infinite, so one must settle for a limited number of them. Varela et al. [15] proposed the Direct 152 

Numerical Integration (DNI) of the inversion formula as a viable option. 153 

Moreover, other alternatives not based on the Laplace transform have been developed to obtain the RF 154 

or CTF coefficients. Davies [16] evaluated them using elementary time domain solutions for wall heat 155 

flow. Similarly, State-Space Methods (SSM) [17] are also based on a time-domain formulation. As shown 156 

in Figure 1, a temperature node is set for each construction layer. Then, a numeric algorithm (Finite 157 

Element Method - FEM, or Finite Differences Method - FDM) is applied to obtain the terms of the matrices 158 

A, B, C and D of the equivalent space-state model. Once the terms of these matrices are calculated, the 159 

coefficients of the conduction transfer function (CTF) can be deduced by Leverrier’s algorithm [18]. 160 

⎣
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⋮
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⎥
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 163 

Figure 1. General approach of the space-state methods 164 

Seem et al. [19] demonstrated that this approach can also be used to calculate transfer functions for walls 165 

that require two-dimensional models, which could be applied to overcome the limitations of the one-166 

dimensional approach when dealing with hollow blocks or relevant thermal bridge effects into wall 167 

constructions. In this sense, Kossecka et al. [20] also described a method to derive conduction z-transfer 168 

function coefficients from response factors for 3D wall assemblies. Moreover, Kosny et al. [21] contributed 169 

to the accuracy improvement in whole building thermal modeling tools, through the definition of an 170 

‘equivalent wall’ concept and the proposal of additional thermal structure factors to account for building 171 

envelope components containing high thermal mass and/or 2D and 3D heat transfer effects. 172 

𝑇𝑇1      𝑇𝑇2       ⋯⋯      𝑇𝑇𝑖𝑖−1     𝑇𝑇𝑖𝑖 



However, state-space formulations for multi-dimensional heat conduction problems often rely on linear 173 

models with high-order matrices involving important computation times. Gao et al. [22] proposed a 174 

solution based on the application of model reduction techniques to decrease computation costs with no 175 

significant accuracy losses. 176 

Returning to the Response Factor method for 1D transient heat transfer, another more recent 177 

methodology consists of the Frequency-Domain Regression (FDR) methods developed by Wang et al. [3, 178 

23-26]. They set out a general transfer function whose parameters are estimated by a regression 179 

algorithm (Eq. 5). Starting from several frequency evaluations of the construction dynamics, these 180 

methods find the set of coefficients that minimize the quadratic error between those evaluations and the 181 

ones given by the approximate model. 182 

𝐺𝐺(𝑠𝑠) =
𝛽𝛽0 + 𝛽𝛽1 · 𝑠𝑠 + 𝛽𝛽2 · 𝑠𝑠2 + ⋯+ 𝛽𝛽𝑟𝑟−1 · 𝑠𝑠𝑟𝑟−1 + 𝛽𝛽𝑟𝑟 · 𝑠𝑠𝑟𝑟

1 + 𝛼𝛼1 · 𝑠𝑠 + 𝛼𝛼2 · 𝑠𝑠2 + ⋯+ 𝛼𝛼𝑚𝑚−1 · 𝑠𝑠𝑚𝑚−1 + 𝛼𝛼𝑚𝑚 · 𝑠𝑠𝑚𝑚      𝐸𝐸𝑞𝑞. 5 183 

It is a fast and accurate method. In addition, it allows a direct calculation of the coefficients for the CTF 184 

method instead of the sequence of response factors (RF). 185 

Finally, it should be remarked that research on this field is of present interest, what can be supported by 186 

additional improved or innovative approaches contributed in recent years [27-34].  187 

Along these lines, this work introduces a new method for calculating conduction response factors (RF) of 188 

building multilayer constructions. It is based on the definition of an approximated wall model through 189 

Frequency–Domain Spline Interpolation (FDSI) and asymptotic analysis. First, temperature evolutions are 190 

expressed as sums of harmonics by means of Fourier transform methods. Then, the FDSI model is 191 

applied to obtain the heat flux solution in the frequency domain. Nevertheless, the particular definition of 192 

such wall model enables to rearrange the Fourier transform inversion integrals so that each response 193 

factor is obtained as the sum of several simple terms. In addition, those terms depending on the 194 

construction thermo-physical properties can be separated and pre-calculated, making it possible to use 195 

an efficient table-lookup approach. Therefore, the FDSI method provides an accurate, fast and easy-to-196 

code alternative to the current RF calculation methodologies. 197 

2. Frequency response in multilayer constructions  198 

Given the Laplace model of a construction, it is easy to evaluate the gain and the phase shift associated 199 

to each frequency. For a particular layer (k), its mathematical expression is the following [3]: 200 
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𝜆𝜆𝑘𝑘 · �
𝑗𝑗𝑗𝑗
𝛼𝛼𝑘𝑘

· 𝑠𝑠𝑖𝑖𝑠𝑠ℎ�𝐿𝐿𝑘𝑘 · �
𝑗𝑗𝑗𝑗
𝛼𝛼𝑘𝑘
� 𝑐𝑐𝑐𝑐𝑠𝑠ℎ �𝐿𝐿𝑘𝑘 · �

𝑗𝑗𝑗𝑗
𝛼𝛼𝑘𝑘
�
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Numeric evaluation of the matrix above for each frequency yields four complex numbers that describe the 203 

gain and phase shift of the layer thermal response associated to these frequencies. Besides, the 204 

characteristic matrix of the whole construction can be expressed as the product of the matrices for each 205 

individual layer: 206 

�𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗) 𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐶𝐶𝐶𝐶(𝑗𝑗𝑗𝑗) 𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)� = �𝐴𝐴1

(𝑗𝑗𝑗𝑗) 𝐵𝐵1(𝑗𝑗𝑗𝑗)
𝐶𝐶1(𝑗𝑗𝑗𝑗) 𝐷𝐷1(𝑗𝑗𝑗𝑗)� · �𝐴𝐴2

(𝑗𝑗𝑗𝑗) 𝐵𝐵2(𝑗𝑗𝑗𝑗)
𝐶𝐶2(𝑗𝑗𝑗𝑗) 𝐷𝐷2(𝑗𝑗𝑗𝑗)�⋯ �𝐴𝐴𝑖𝑖−1

(𝑗𝑗𝑗𝑗) 𝐵𝐵𝑖𝑖−1(𝑗𝑗𝑗𝑗)
𝐶𝐶𝑖𝑖−1(𝑗𝑗𝑗𝑗) 𝐷𝐷𝑖𝑖−1(𝑗𝑗𝑗𝑗)� · �𝐴𝐴𝑖𝑖

(𝑗𝑗𝑗𝑗) 𝐵𝐵𝑖𝑖(𝑗𝑗𝑗𝑗)
𝐶𝐶𝑖𝑖(𝑗𝑗𝑗𝑗) 𝐷𝐷𝑖𝑖(𝑗𝑗𝑗𝑗)�      𝐸𝐸𝑞𝑞. 8 207 

If heat fluxes are written down as a function of temperatures, the following formulation (Eq.9) is obtained. 208 

�
𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒
𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒� =

⎣
⎢
⎢
⎢
⎡
𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗) −

1
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)

1
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗) −

𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)⎦

⎥
⎥
⎥
⎤

· �𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒
� = �𝑋𝑋(𝑗𝑗) −𝑌𝑌(𝑗𝑗)

𝑌𝑌(𝑗𝑗) −𝑍𝑍(𝑗𝑗)� · �𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒
�       𝐸𝐸𝑞𝑞. 9 209 

Therefore: 210 

𝑋𝑋(𝑗𝑗) =
𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗) ;     𝑌𝑌(𝑗𝑗) =

1
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗) ;      𝑍𝑍(𝑗𝑗) =

𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)       𝐸𝐸𝑞𝑞𝑠𝑠. 10 211 

3. Description of the Frequency-Domain Spline Interpolation (FDSI) algorithm  212 

The basic idea of the FDSI method is to split the temperature evolution into a sum of harmonics using the 213 

Fourier transform. Then, by means of an approximated model for the construction, the gain and phase 214 

shift for each frequency are calculated. Finally, this method gets the heat fluxes in time domain using the 215 

inverse Fourier transform. 216 

 217 

Figure 2. Block diagram for the FDSI fundamental conception 218 

In order to simplify this method, the temperature evolution between sampling points is often considered 219 

as linear. This is a reasonable assumption when such evolution is sufficiently slow compared to the time 220 

interval between these points, but not when there are abrupt temperature changes.  221 

Frequency-domain 
temperature evolution 

Interpolated time-domain 
temperature evolution 

Heat flux solution in 
time domain 

Approximated FDSI construction model 
• Low and high frequencies are described by 

asymptotic equivalent functions 
• Middle frequencies are described by spline 

interpolation 

Fourier 
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Inverse Fourier 
transform 

Heat flux solution in 
frequency domain 



Considering this hypothesis, the interpolated time-domain function can be split into a set of triangular 222 

pulses, as it is represented in Figure 3. 223 

 224 

Figure 3. Breakdown of a linearly interpolated temperature evolution into unitary triangles 225 

Therefore, the temperature function (for both the external or the internal temperature variables) can be 226 

expressed as the sum of a set of scaled and shifted unitary triangles (𝑇𝑇∆) which constitute the so-called 227 

‘shaping function’. Figure 4 describes in detail the characteristics of such function. 228 

𝑇𝑇(𝑡𝑡) = � 𝑇𝑇(𝑘𝑘 · ∆𝑡𝑡) · 𝑇𝑇∆(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

      𝑤𝑤𝑖𝑖𝑡𝑡ℎ      𝑚𝑚 · ∆𝑡𝑡 ≥ 𝑡𝑡       𝐸𝐸𝑞𝑞. 11 229 

 230 

𝑇𝑇∆(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

0                    𝑖𝑖𝑖𝑖 𝑡𝑡 < −∆𝑡𝑡
𝑡𝑡 + ∆𝑡𝑡
∆𝑡𝑡           𝑖𝑖𝑖𝑖 𝑡𝑡 ∈ [−∆𝑡𝑡, 0]

−𝑡𝑡 + ∆𝑡𝑡
∆𝑡𝑡

              𝑖𝑖𝑖𝑖 𝑡𝑡 ∈ [0,∆𝑡𝑡]

0                       𝑖𝑖𝑖𝑖 𝑡𝑡 > ∆𝑡𝑡

       𝐸𝐸𝑞𝑞. 12 231 

 232 

Figure 4. Description of a triangular shaping function 233 

Shaping functions might also adopt expressions other than triangular, thus describing different types of 234 

interpolation [34]. In this case, starting from the temperature as a linear combination of shaping functions, 235 

the Fourier transforms yields an equivalent sum of harmonics. For the external temperature evolution this 236 

can be expressed through the equation Eq.13a. 237 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) = 𝐹𝐹[𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡)] = 𝐹𝐹 � � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑇𝑇∆(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

� = � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

238 

=  � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

        𝑤𝑤𝑖𝑖𝑡𝑡ℎ      𝑚𝑚 · ∆𝑡𝑡 ≥ 𝑡𝑡         𝐸𝐸𝑞𝑞. 13𝑎𝑎 239 

Similarly, Eq.13b can be derived for the internal temperature evolution: 240 



𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑗𝑗) = 𝐹𝐹[𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑡𝑡)] = � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

        𝑤𝑤𝑖𝑖𝑡𝑡ℎ      𝑚𝑚 · ∆𝑡𝑡 ≥ 𝑡𝑡         𝐸𝐸𝑞𝑞. 13𝑏𝑏 241 

According to this formulation, the heat flux solutions in the frequency domain are obtained as follows:  242 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) = 𝑋𝑋(𝑗𝑗) · 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) − 𝑌𝑌(𝑗𝑗) · 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑗𝑗) =243 

= 𝑋𝑋(𝑗𝑗) · � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

− 𝑌𝑌(𝑗𝑗) · � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

   𝐸𝐸𝑞𝑞. 14𝑎𝑎 244 

𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒(𝑗𝑗) = 𝑌𝑌(𝑗𝑗) · 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗) − 𝑍𝑍(𝑗𝑗) · 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑗𝑗) =245 

= 𝑌𝑌(𝑗𝑗) · � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

− 𝑍𝑍(𝑗𝑗) · � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
𝑚𝑚

𝑘𝑘=−∞

   𝐸𝐸𝑞𝑞. 14𝑏𝑏 246 

At this point, heat fluxes in time domain can be calculated via the inverse Fourier transform. 247 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = 𝐹𝐹−1[𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗)];     𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒(𝑡𝑡) = 𝐹𝐹−1[𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒(𝑗𝑗)]      𝐸𝐸𝑞𝑞. 15 248 

𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) = � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1 �𝑋𝑋(𝑗𝑗) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�
𝑚𝑚

𝑘𝑘=−∞

− � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1 �𝑌𝑌(𝑗𝑗) · 𝑒𝑒−𝑘𝑘·∆𝑒𝑒·𝑗𝑗𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�
𝑚𝑚

𝑘𝑘=−∞

= 249 

= � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1�𝑋𝑋(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

− � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1�𝑌𝑌(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

    𝐸𝐸𝑞𝑞. 16𝑎𝑎 250 

𝑞𝑞𝑖𝑖𝑖𝑖𝑒𝑒(𝑡𝑡) = � 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1�𝑌𝑌(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

− � 𝑇𝑇𝑖𝑖𝑖𝑖𝑒𝑒(𝑘𝑘 · ∆𝑡𝑡) · 𝐹𝐹−1�𝑍𝑍(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]�(𝑡𝑡 − 𝑘𝑘 · ∆𝑡𝑡)
𝑚𝑚

𝑘𝑘=−∞

 𝐸𝐸𝑞𝑞. 16𝑏𝑏 251 

In the formulation above, the following expression yields the response factors by conveniently substituting 252 

in Eq.17 the term RF (Response Factor) by each corresponding series of factors (X, Y or Z). 253 

𝑅𝑅𝐹𝐹(𝑡𝑡) = 𝐹𝐹−1�𝑅𝑅𝐹𝐹(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]� = 254 

=
1

√2𝜋𝜋
� |𝑅𝑅𝐹𝐹(𝑗𝑗)| · 𝑒𝑒𝑗𝑗·𝑎𝑎𝑟𝑟𝑎𝑎[𝑅𝑅𝑅𝑅(𝑗𝑗)] · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑒𝑒𝑗𝑗𝑗𝑗𝑒𝑒
∞

−∞

𝑑𝑑𝑗𝑗 =
1

√2𝜋𝜋
� |𝑅𝑅𝐹𝐹(𝑗𝑗)| · 𝑒𝑒(𝑗𝑗𝑒𝑒+𝑎𝑎𝑟𝑟𝑎𝑎[𝑅𝑅𝑅𝑅(𝑗𝑗)])·𝑗𝑗 · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]
∞

−∞

𝑑𝑑𝑗𝑗        𝐸𝐸𝑞𝑞. 17 255 

If the shaping function is even (as it happens to be when linear interpolation is applied to the temperature 256 

evolution) the above integral can be rewritten in a much simpler way. 257 

𝑅𝑅𝐹𝐹(𝑡𝑡) = 𝐹𝐹−1�𝑅𝑅𝐹𝐹(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]� = �2
𝜋𝜋 � |𝑅𝑅𝐹𝐹(𝑗𝑗)| · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗𝑡𝑡 + 𝑎𝑎𝑎𝑎𝑎𝑎[𝑅𝑅𝐹𝐹(𝑗𝑗)]) · 𝑑𝑑𝑗𝑗

∞

−∞

       𝐸𝐸𝑞𝑞. 18 258 

𝑅𝑅𝐹𝐹(𝑡𝑡) = 𝐹𝐹−1�𝑅𝑅𝐹𝐹(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)]� =259 

= �2
𝜋𝜋 � |𝑅𝑅𝐹𝐹(𝑗𝑗)| · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · [𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗𝑡𝑡) · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎[𝑅𝑅𝐹𝐹(𝑗𝑗)]) − 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗𝑡𝑡) · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎[𝑅𝑅𝐹𝐹(𝑗𝑗)])] · 𝑑𝑑𝑗𝑗

∞

−∞

       𝐸𝐸𝑞𝑞. 19 260 

These expressions could be solved analytically if the exact phase shift and the amplitude gain functions 261 

were used for each frequency. However, this becomes exceedingly complex, so X(ω), Y(ω) and Z(ω) will 262 

be substituted by an approximate description inferred from a limited number of frequency evaluations. 263 



With this idea in perspective, it results useful to group all the terms that depend on the construction into 264 

separate functions which, from now on, will be called “Modified Frequency Functions” or MFFs. Eqs.20 265 

develop this approach for each response factor. 266 
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       𝐸𝐸𝑞𝑞. 20𝑎𝑎 267 

𝑌𝑌𝑅𝑅𝑅𝑅(𝑡𝑡) = �2
𝜋𝜋 � 𝑀𝑀𝐹𝐹𝐹𝐹𝑌𝑌𝐶𝐶(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗𝑡𝑡) · 𝑑𝑑𝑗𝑗
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∞

−∞

       𝐸𝐸𝑞𝑞. 20𝑏𝑏 268 

𝑍𝑍𝑅𝑅𝑅𝑅(𝑡𝑡) = �2
𝜋𝜋 � 𝑀𝑀𝐹𝐹𝐹𝐹𝑍𝑍𝐶𝐶(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗𝑡𝑡) · 𝑑𝑑𝑗𝑗
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𝜋𝜋 � 𝑀𝑀𝐹𝐹𝐹𝐹𝑍𝑍𝑋𝑋(𝑗𝑗) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗𝑡𝑡) · 𝑑𝑑𝑗𝑗

∞
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       𝐸𝐸𝑞𝑞. 20𝑐𝑐 269 

where: 270 

𝑀𝑀𝐹𝐹𝐹𝐹𝑋𝑋𝐶𝐶(𝑗𝑗) = |𝑋𝑋(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑋𝑋(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑎𝑎 271 

𝑀𝑀𝐹𝐹𝐹𝐹𝑋𝑋𝑋𝑋(𝑗𝑗) = |𝑋𝑋(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑋𝑋(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑏𝑏 272 

𝑀𝑀𝐹𝐹𝐹𝐹𝑌𝑌𝐶𝐶(𝑗𝑗) = |𝑌𝑌(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑌𝑌(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑐𝑐 273 

𝑀𝑀𝐹𝐹𝐹𝐹𝑌𝑌𝑋𝑋(𝑗𝑗) = |𝑌𝑌(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑌𝑌(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑑𝑑 274 

𝑀𝑀𝐹𝐹𝐹𝐹𝑍𝑍𝐶𝐶(𝑗𝑗) = |𝑍𝑍(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑍𝑍(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑒𝑒 275 

𝑀𝑀𝐹𝐹𝐹𝐹𝑍𝑍𝑋𝑋(𝑗𝑗) = |𝑍𝑍(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎[𝑍𝑍(𝑗𝑗)]�     𝐸𝐸𝑞𝑞. 21𝑖𝑖 276 

If MFFs are replaced by third order piecewise polynomials inside a given frequency range [ω1, ω2] and by 277 

asymptotic functions outside this range, the following general expression (Eq.22) for the X response 278 

factor is obtained. 279 

𝑋𝑋𝑅𝑅𝑅𝑅(𝑠𝑠 · ∆𝑡𝑡) = �
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𝑗𝑗1

0

· 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 +
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𝑗𝑗𝑖𝑖
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+
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 𝐸𝐸𝑞𝑞. 22 280 

Eq.22 can be adapted in the same way for Y and Z response factors, but they are not presented here for 281 

the sake of simplicity. 282 

It should be noted that the asymptotic approximations of the MFFs out of the selected frequency range 283 

have been defined through the following general expression: 284 



𝑀𝑀𝐹𝐹𝐹𝐹(𝑗𝑗) ≈ 𝑘𝑘1 · 𝐴𝐴𝐹𝐹1(𝑗𝑗) + 𝑘𝑘2 · 𝐴𝐴𝐹𝐹2(𝑗𝑗)      𝐸𝐸𝑞𝑞. 23 285 

where k1 and k2 are constants, and AF1(ω) and AF2(ω) are functions that describe the asymptotic 286 

behavior of the MFFs along the ‘head’ [0, ω1]  and ‘tail’ [ω2, ∞)  frequency intervals. Sections 4 and 6 287 

describe in detail the particular expressions of these constants and functions that should be applied on 288 

the calculation of each response factor (X, Y, or Z) along the head or tail intervals.  289 

Finally, Eq.22 can be rearranged so that each response factor is simply obtained as the sum of several 290 

terms. Each addend will be the product of a factor that depends on the construction characteristics 291 

(lowercase constants) by another factor that can be pre-calculated (uppercase constants). Next, Eq.24 292 

shows the expression of the X response factor as an example, but, again, similar expressions can be 293 

derived in the same way for Y and Z factors. 294 

𝑋𝑋𝑅𝑅𝑅𝑅(𝑠𝑠 · ∆𝑡𝑡) =295 
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𝑁𝑁−1
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 𝐸𝐸𝑞𝑞. 24 296 

The uppercase constants (which from now on will be named as “integration factors”) do not depend on 297 

the construction and can be obtained analytically. Therefore, they need to be calculated only once and 298 

then can be embedded as part of the FDSI main algorithm developed to obtain the response factors. 299 

Section 4 presents the detailed expressions of these integration factors.  300 

On the other hand, the constants that depend on the construction characteristics are the spline 301 

coefficients for each frequency interval and the constants associated to the definition of the asymptotic 302 

equivalents. All of them can be easily calculated by evaluating the MFFs at several frequency points, as it 303 

is described in sections 5 and 6. 304 

In conclusion, once all the integrals are pre-calculated and stored inside a large table, the operations to 305 

be performed by the FDSI method are reduced to the following:  306 

• Evaluation of the Modified Frequency Functions (MFFs) at several frequency points, logarithmically 307 

spaced.  308 

• Spline interpolation of the MFFs.  309 

• Calculation of the coefficients associated to the asymptotic equivalents.  310 

• Sum of the products of the spline coefficients by the integration terms to calculate each response 311 

factor. 312 



 313 

4. Generation of the integration factors  314 

In order to generate the table of terms to be embedded within the method as pre-calculated factors, it is 315 

necessary to solve a certain number of definite integrals. As it has been previously mentioned, there are 316 

two types of integration factors, which can be referred as polynomial and asymptotic integration factors. 317 

The polynomial factors are those derived from the piecewise polynomial interpolation that approximate 318 

MFFs at middle frequencies. The asymptotic factors derive from the definition of equivalent asymptotic 319 

functions that approximate MFFs at high and low frequencies.  320 

4.1. Integration factors for the spline coefficients that approximate MFFs at middle frequencies.  321 

Table 1 gathers the integration factors that multiply the spline coefficients at each frequency interval (see 322 

Eq.24). There are 8·(k-1) terms of this kind for each response factor, being k the number of frequency 323 

points where the MFFs are evaluated.  324 

Table 1: Integration factors for the spline interpolation 325 

Cosine factors Sine factors 

𝐾𝐾𝐾𝐾𝐶𝐶𝑎𝑎𝑖𝑖,𝑘𝑘 = � 𝑗𝑗3 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 𝐾𝐾𝐾𝐾𝐾𝐾𝑎𝑎𝑖𝑖,𝑘𝑘 = � 𝑗𝑗3 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

𝐾𝐾𝐾𝐾𝐶𝐶𝑏𝑏𝑖𝑖,𝑘𝑘 = � 𝑗𝑗2 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 𝐾𝐾𝐾𝐾𝐾𝐾𝑏𝑏𝑖𝑖,𝑘𝑘 = � 𝑗𝑗2 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

𝐾𝐾𝐾𝐾𝐶𝐶𝑐𝑐𝑖𝑖,𝑘𝑘 = � 𝑗𝑗 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 𝐾𝐾𝐾𝐾𝐾𝐾𝑐𝑐𝑖𝑖,𝑘𝑘 = � 𝑗𝑗 ·

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

𝐾𝐾𝐾𝐾𝐶𝐶𝑑𝑑𝑖𝑖,𝑘𝑘 = � 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

 𝐾𝐾𝐾𝐾𝐾𝐾𝑑𝑑𝑖𝑖,𝑘𝑘 = � 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗

𝑗𝑗(𝑘𝑘)

𝑗𝑗(𝑘𝑘−1)

 

(*)  𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] = 1−𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗·∆𝑒𝑒)
𝑗𝑗2·∆𝑒𝑒

  for linear interpolation. 326 

4.2. Integration factors for the asymptotic functions that approximate MFFs at low and high 327 

frequencies.  328 

So far, eight different terms of this kind have been proposed in a general description of the asymptotic 329 

equivalents (see Eq.24): KAHC1, KAHC2, KAHS1 and KAHS2 for the low-frequency or head interval, and 330 

KATC1, KATC2, KATS1 and KATS2 for the high-frequency or tail interval.  331 

The low-frequency asymptotic behavior can be described by the same four head functions for any series 332 

of response factors (X, Y and Z) and in any particular case. However, that is not the case for the tail 333 

terms. Fortunately, it can be proved that proper combinations of only 5 different integration factors are 334 

needed to characterize this high-frequency behavior in any situation. From now on, these tail integration 335 



factors are named as KATC0, KATC(+), KATC(-), KATS(+) and KATS(-). The relation between them and 336 

the general asymptotic tail terms showed in Eq.24 depends on the response factor being calculated, as 337 

well as on the existence or inexistence of a zero-inertia outermost or innermost wall layer. 338 

The rearrangement of these integration factors is a consequence of the particular form of the MFFs. 339 

Further considerations for practical implementation of the FDSI method are given in Appendix A. 340 

Nevertheless, a complete derivation of the asymptotic analysis that leads to these terms would be too 341 

long to be presented on this paper and has been intentionally omitted here.  342 

Next, Table 2 compiles the aforementioned integration factors, which multiply the construction-dependent 343 

constants associated to the definition of the asymptotic equivalents. In conclusion, one can observe that 8 344 

integration asymptotic factors need to be calculated. 345 

Table 2: Integration factors for the approximate asymptotic functions 346 

Head asymptotic equivalents (low frequency) Tail asymptotic equivalents (high frequency) 

𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶1𝑖𝑖 = � 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗

𝑗𝑗1

0

 𝐾𝐾𝐴𝐴𝑇𝑇𝐶𝐶0𝑖𝑖 = � 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗
∞

𝑗𝑗𝑁𝑁

 

𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶2𝑖𝑖 = � 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗

𝑗𝑗1

0

 𝐾𝐾𝐴𝐴𝑇𝑇𝐶𝐶(+)𝑖𝑖 = � 𝑗𝑗0.5 ·
∞

𝑗𝑗𝑁𝑁

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

𝐾𝐾𝐴𝐴𝐾𝐾𝐾𝐾1𝑖𝑖 = � (𝑒𝑒𝑗𝑗 − 1) · 𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗

𝑗𝑗1

0

 𝐾𝐾𝐴𝐴𝑇𝑇𝐾𝐾(+)𝑖𝑖 = � 𝑗𝑗0.5 ·
∞

𝑗𝑗𝑁𝑁

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

𝐾𝐾𝐴𝐴𝐾𝐾𝐾𝐾2𝑖𝑖 = 0 𝐾𝐾𝐴𝐴𝑇𝑇𝐶𝐶(−)𝑖𝑖 = � 𝑗𝑗−0.5 ·
∞

𝑗𝑗𝑁𝑁

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑐𝑐𝑐𝑐𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

 
𝐾𝐾𝐴𝐴𝑇𝑇𝐾𝐾(−)𝑖𝑖 = � 𝑗𝑗−0.5 ·

∞

𝑗𝑗𝑁𝑁

𝐹𝐹[𝑇𝑇∆(𝑡𝑡)] · 𝑠𝑠𝑖𝑖𝑠𝑠(𝑗𝑗 · 𝑠𝑠 · ∆𝑡𝑡) · 𝑑𝑑𝑗𝑗 

 347 

Finally, it should be noted that both types of integration factors must be stored into a large table. 348 

However, this is not an issue for modern computers in order to handle the FDSI method easily. For 349 

example, if the number of intervals between frequency evaluations (k-1) is 1024 and the number of 350 

response factors is 300, the total number of terms to be handled is the following:  351 

m = 8 · (k-1) · n + 8 · n ≈ 8 · 1024 · 300 = 2457600 terms           Eq.25 352 

If each element of the table is stored as a double precision floating point number (8 bytes), the total size 353 

of the table would be 19660800 bytes, that is to say, 18.75 MB. Modern computers can easily hold tables 354 

this size and larger in RAM memory. Similar results can be obtained with less frequency evaluations and, 355 

therefore, with a smaller factor table, as it will be shown in the validation section.  356 



 357 

5. Spline interpolation of the Modified Frequency Functions (MFFs)  358 

An approximate model for the Modified Frequency Functions (MFFs) at middle frequencies can be 359 

performed by piecewise polynomials (see Figure 5). The target is to have an ensemble of simple 360 

expressions that describes the MFFs between the frequency evaluation points with sufficient accuracy. 361 

 362 

Figure 5. Piecewise polynomial interpolation approach 363 

In order to achieve this goal, the FDSI method turns to cubic splines, as they are suitable for continuous 364 

smooth functions. Starting from a set of n evaluations of the MFFs at logarithmically-spaced frequencies 365 

within the selected range [ω1, ωn], (n-1) cubic polynomials (fk) are defined, and their corresponding 366 

coefficients ak, bk, ck and dk (Eq.26) are calculated.  367 

𝑖𝑖𝑘𝑘(𝑗𝑗) = 𝑎𝑎𝑘𝑘 · 𝑗𝑗3 + 𝑏𝑏𝑘𝑘 · 𝑗𝑗2 + 𝑐𝑐𝑘𝑘 · 𝑗𝑗 + 𝑑𝑑𝑘𝑘       𝐸𝐸𝑞𝑞. 26 368 

This calculation can be performed by a linear-time complexity algorithm. Particularly, based on the 369 

application of not-a-knot boundary conditions, Appendix B presents a detailed description of the recursive 370 

calculation procedure to get the spline coefficients in global coordinates. 371 

 372 

6. Asymptotic analysis of the Modified Frequency Functions (MFFs)  373 

Spline interpolation is able to reproduce with excellent precision the so-called Modified Frequency 374 

Functions (MFFs) inside a given frequency range. However, outside this range the error becomes 375 

unacceptably large since splines are not suitable for extrapolation. Luckily, when the frequency is 376 

sufficiently low or sufficiently high, it is possible to replace the complex dynamics of the construction by 377 

simple asymptotic equivalents that can be easily integrated into the method.  378 

Given a general one-layer construction, the corresponding asymptotic equivalents can be expressed as 379 

follows in Table 3. 380 

Table 3: Expression of the asymptotic equivalents for a one-layer construction  381 

                   …                     
… 

 

 

 

 



Term Exact Modified Frequency Functions (one-layer construction) Approximated functions 

X 

|𝑋𝑋(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) = �
𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑐𝑐𝑐𝑐𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎�

𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �𝜆𝜆 · �
𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ�𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼 �

� · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎 �𝜆𝜆 · �
𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ�𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼 �

�� 

At high frequencies 

|𝑋𝑋(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈
𝜆𝜆

√2𝛼𝛼
· 𝑗𝑗0.5 

At low frequencies 

|𝑋𝑋(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈
𝜆𝜆
𝐿𝐿

+
𝜆𝜆 · 𝐿𝐿3 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1)

45 · 𝛼𝛼2
 

|𝑋𝑋(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) = �
𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �

𝐷𝐷𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �𝜆𝜆 · �
𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
�� · 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �𝜆𝜆 · �

𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
��� 

At high frequencies 
|𝑋𝑋(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈

𝜆𝜆
√2𝛼𝛼

· 𝑗𝑗0.5 

At low frequencies 

|𝑋𝑋(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈
𝜆𝜆 · 𝐿𝐿 · (𝑒𝑒𝑗𝑗 − 1)

3𝛼𝛼
 

Y 

|𝑌𝑌(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) = �
1

𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑐𝑐𝑐𝑐𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �
1

𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �
�

𝜆𝜆 · �𝑗𝑗𝑗𝑗𝛼𝛼

𝑠𝑠𝑖𝑖𝑠𝑠ℎ �𝐿𝐿 · �𝑗𝑗𝑗𝑗𝛼𝛼 �
�
� · 𝑐𝑐𝑐𝑐𝑠𝑠

⎝

⎜
⎛
𝑎𝑎𝑎𝑎𝑎𝑎

⎣
⎢
⎢
⎢
⎡ 𝜆𝜆 · �𝑗𝑗𝑗𝑗𝛼𝛼

𝑠𝑠𝑖𝑖𝑠𝑠ℎ �𝐿𝐿 · �𝑗𝑗𝑗𝑗𝛼𝛼 �⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞ 

At high frequencies 
|𝑌𝑌(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ 0 
At low frequencies 

|𝑌𝑌(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈
𝜆𝜆
𝐿𝐿

+
7𝑘𝑘 · 𝐿𝐿3 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1)

360 · 𝛼𝛼2
 

|𝑌𝑌(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) = �
1

𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �
1

𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �
�

𝜆𝜆 · �𝑗𝑗𝑗𝑗𝛼𝛼

𝑠𝑠𝑖𝑖𝑠𝑠ℎ �𝐿𝐿 · �𝑗𝑗𝑗𝑗𝛼𝛼 �
�
� · 𝑠𝑠𝑖𝑖𝑠𝑠

⎝

⎜
⎛
𝑎𝑎𝑎𝑎𝑎𝑎

⎣
⎢
⎢
⎢
⎡ 𝜆𝜆 · �𝑗𝑗𝑗𝑗𝛼𝛼

𝑠𝑠𝑖𝑖𝑠𝑠ℎ �𝐿𝐿 · �𝑗𝑗𝑗𝑗𝛼𝛼 �⎦
⎥
⎥
⎥
⎤

⎠

⎟
⎞

 

At high frequencies 
|𝑌𝑌(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ 0 
At low frequencies 

|𝑌𝑌(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈
𝜆𝜆 · 𝐿𝐿 · (𝑒𝑒𝑗𝑗 − 1)

6𝛼𝛼
 

Z 

|𝑍𝑍(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) = �−
𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑐𝑐𝑐𝑐𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �−

𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �−𝜆𝜆 · �
𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
�� · 𝑐𝑐𝑐𝑐𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �−𝜆𝜆 · �

𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
��� 

At high frequencies 
|𝑍𝑍(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ −

𝜆𝜆
√2𝛼𝛼

· 𝑗𝑗0.5 

At low frequencies 

|𝑍𝑍(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ −
𝜆𝜆
𝐿𝐿
−
𝜆𝜆 · 𝐿𝐿3 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1)

45 · 𝛼𝛼2
 

|𝑍𝑍(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) = �−
𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)� · 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �−

𝐴𝐴𝐶𝐶(𝑗𝑗𝑗𝑗)
𝐵𝐵𝐶𝐶(𝑗𝑗𝑗𝑗)�� = 

= �−𝜆𝜆 · �
𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
�� · 𝑠𝑠𝑖𝑖𝑠𝑠 �𝑎𝑎𝑎𝑎𝑎𝑎 �−𝜆𝜆 · �

𝑗𝑗𝑗𝑗
𝛼𝛼

· 𝑐𝑐𝑐𝑐𝑡𝑡ℎ �𝐿𝐿 · �
𝑗𝑗𝑗𝑗
𝛼𝛼
��� 

At high frequencies 
|𝑍𝑍(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ −

𝜆𝜆
√2𝛼𝛼

· 𝑗𝑗0.5 

At low frequencies 
|𝑍𝑍(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐(𝑗𝑗) ≈ −

𝜆𝜆 · 𝐿𝐿 · (𝑒𝑒𝑗𝑗 − 1)
3𝛼𝛼

 

 382 

When the construction is made from more than one layer, approximate functions are similar to the ones 383 

already shown in Table 3. They can be expressed, as well, in terms of several constants that depend on 384 

the properties of the layers. However, it is more practical to estimate these constants by evaluating the 385 

Modified Frequency Functions at the ends of the frequency vector used for spline interpolation; that is to 386 

say, at ω1 for the asymptotic heads and ω2 for the asymptotic tails.  387 

A particular case arises again when the innermost or the outermost layer in the construction has zero 388 

density or zero thermal capacity, which is a reasonable approximation when thermal diffusivity is high 389 

enough. This assumption implies a change in the asymptotic functions, as shown in Table 4. 390 

Table 4: Expression of the asymptotic equivalents for a multilayer construction considering zero-inertia cases 391 

Functions for response Approximate functions 



factor calculation High frequency 

Low frequency Outermost 
layer without 

thermal inertia 

Innermost layer 
without thermal 

inertia 
All layers have 
thermal inertia 

X 
|𝑋𝑋(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑋𝑋(𝑗𝑗)|)� 

𝜆𝜆1
𝐿𝐿1
− 𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶2 ·𝑗𝑗−0.5 

�𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶1 =
𝜆𝜆1
𝐿𝐿1
� 

𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶2 · 𝑗𝑗0.5 
(𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶1 = 0) 

𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶2 · 𝑗𝑗0.5 
(𝑘𝑘𝑋𝑋𝐶𝐶𝐶𝐶1 = 0) 

1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

+ 𝜆𝜆𝑋𝑋𝑋𝑋𝐶𝐶2 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1) 

�𝑘𝑘𝑋𝑋𝑋𝑋𝐶𝐶1 =
1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

� 

|𝑋𝑋(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑋𝑋(𝑗𝑗)|)� 
𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋2 · 𝑗𝑗−0.5 
(𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋2 · 𝑗𝑗0.5 
(𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋2 · 𝑗𝑗0.5 
(𝑘𝑘𝑋𝑋𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋2 · (𝑒𝑒𝑗𝑗 − 1) 
(𝑘𝑘𝑋𝑋𝑋𝑋𝑋𝑋1 = 0) 

Y 
|𝑌𝑌(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑌𝑌(𝑗𝑗)|)� 0 0 0 

1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

+ 𝑘𝑘𝑌𝑌𝑋𝑋𝐶𝐶2 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1) 

�𝑘𝑘𝑌𝑌𝑋𝑋𝐶𝐶1 =
1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

� 

|𝑌𝑌(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑌𝑌(𝑗𝑗)|)� 0 0 0 𝑘𝑘𝑌𝑌𝑋𝑋𝑋𝑋2 · (𝑒𝑒𝑗𝑗 − 1) 
(𝑘𝑘𝑌𝑌𝑋𝑋𝑋𝑋1 = 0) 

Z 
|𝑍𝑍(𝑗𝑗)| · 𝑐𝑐𝑐𝑐𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑍𝑍(𝑗𝑗)|)� 

𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶2 · 𝑗𝑗0.5 
(𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶1 = 0) 

𝜆𝜆𝑁𝑁
𝐿𝐿𝑁𝑁

− 𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶2 · 𝑗𝑗−0.5 

�𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶1 =
𝜆𝜆𝑁𝑁
𝐿𝐿𝑁𝑁
� 

𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶2 · 𝑗𝑗0.5 
(𝑘𝑘𝑍𝑍𝐶𝐶𝐶𝐶1 = 0) 

−
1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

+ 𝑘𝑘𝑍𝑍𝑋𝑋𝐶𝐶2 · 𝑗𝑗 · (𝑒𝑒𝑗𝑗 − 1) 

�𝑘𝑘𝑍𝑍𝑋𝑋𝐶𝐶1 = −
1

∑ 𝐿𝐿𝑖𝑖
𝜆𝜆𝑖𝑖

𝑖𝑖
𝑖𝑖=1

� 

|𝑍𝑍(𝑗𝑗)| · 𝑠𝑠𝑖𝑖𝑠𝑠�𝑎𝑎𝑎𝑎𝑎𝑎(|𝑍𝑍(𝑗𝑗)|)� 
𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋2 · 𝑗𝑗0.5 
(𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋2 · 𝑗𝑗−0.5 
(𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋2 · 𝑗𝑗0.5 
(𝑘𝑘𝑍𝑍𝐶𝐶𝑋𝑋1 = 0) 

𝑘𝑘𝑍𝑍𝑋𝑋𝑋𝑋2 · (𝑒𝑒𝑗𝑗 − 1) 
(𝑘𝑘𝑧𝑧𝑋𝑋𝑋𝑋1 = 0) 

 392 

Once the constants  kXTC1, kXTC2, kXTS2, kXHC1, kXHC2, kXHS2, kYHC1, kYHC2, kYHS2, kZTC1, kZTC2, kZTS2, kZHC1, 393 

kZHC2 and kZHS2 are calculated, an accurate mathematical characterization of the MFFs for both low and 394 

high frequencies is completed, which combined with the spline model for intermediate frequencies yields 395 

a good approximation for the dynamics of the construction. 396 

 397 

7. Complexity considerations and validation analyses  398 

7.1. Algorithm complexity 399 

The FDSI algorithm has a linear-time complexity. This means that increasing the number of response 400 

factors to be calculated (for instance in order to get accurate results with improved time resolution), 401 

multiplies the number of operations by the same scale factor. 402 

This particular feature makes the FDSI method extremely fast compared to most of the previous 403 

alternatives. There is no need to solve systems of linear equations, to apply iterative pole finding or to use 404 

finite element algorithms, what would involve quadratic-time or even greater complexity and make the 405 

method much slower. 406 



7.2. Validations 407 

For the purpose of validation, the present FDSI method was tested in two different case studies, and the 408 

obtained results were compared with published data derived from previous existing methods. These case 409 

studies consist of two multilayered walls of different thermal inertia that have already served as test cases 410 

for other authors. Both are described in detail below.  411 

Moreover, it should be noted that different criteria have been used for the comparison of the obtained 412 

results. In first place stationary thermal trasmittance (U-value) can be used as a checking parameter in 413 

the calculation of thermal response factors, as the sum of the infinite series of response factors for a 414 

given construction has to be equal to its U-value. Therefore, an error estimate can be expressed through 415 

Eq.27.  416 

𝐸𝐸𝑈𝑈(%) =  �
𝑈𝑈 − ∑ 𝑅𝑅𝐹𝐹𝑖𝑖∞

𝑖𝑖=1

𝑈𝑈
� · 100       𝐸𝐸𝑞𝑞. 27 417 

However, obtaining low values for this estimate is a necessary but not sufficient condition. That is to say, 418 

it does not guarantee itself the accuracy of the method, but having high EU values always involves lack of 419 

it. Then, this estimate is presented for the studied test cases as a first premise, but also further validations 420 

are provided.  421 

7.2.1. Case study I 422 

The physical characteristics of the first test wall are presented in Table 5. It was chosen by Ouyang and 423 

Haghighat [17] to demonstrate the application of their SSM approach and then, it has been used by other 424 

authors to compare their own results, which derive from 3 other different methods, namely, DRF [35], 425 

FDR [3] and DNI [15]. 426 

Table 5: Detailed wall description of case study I 427 

Description L (mm) λ (W·m-1K-1) ρ (kg·m-3) cp (J·kg-1K-1) R (m2·K·W-1) 

Outside surface film     0.0500 

Concrete 89 1.73 2235 1106 0.0514 

Insulation 127 0.0744 24 992 1.7070 

Concrete 89 1.73 2235 1106 0.0514 

Inside surface film     0.16 

 428 

Table 6 compiles the first 20 cross (Y) response factors obtained by those methods (these data are 429 

extracted from [15]) and adds the corresponding results from the present FDSI approach. It can be 430 

observed that the accuracy of the FDSI results is comparable to that of the methodologies used so far. 431 



Particularly, considering the reference of the FDR method as the most exact among them [15], the FDSI 432 

and the DNI alternatives clearly represent better approximations. Indeed, for this case study, it is 433 

noticeable that all the calculated response factors are identical for the FDSI and the DNI methods (at 434 

least considering the precision used in Table 6), when, however, they are based on completely different 435 

conceptual approaches. 436 

Table 6: Comparison of thermal response factors for case study I obtained with different calculation methods 437 

 FDR SSM DRF DNI FDSI 

0 0.00001521 0.00001771 0.00001549 0.00001531 0.00001531 

1 0.00163441 0.00164078 0.00164541 0.00163463 0.00163463 

2 0.00849218 0.00852682 0.00852884 0.00849216 0.00849216 

3 0.01600825 0.01606351 0.01605804 0.01600833 0.01600833 

4 0.02127237 0.02132861 0.02132482 0.02127245 0.02127245 

5 0.02453370 0.02458189 0.02458376 0.02453375 0.02453375 

6 0.02630043 0.02634117 0.02634535 0.02630044 0.02630044 

7 0.02697839 0.02701426 0.02701681 0.02697837 0.02697837 

8 0.02687682 0.02690951 0.02690827 0.02687681 0.02687681 

9 0.02622975 0.02625774 0.02625429 0.02622975 0.02622975 

10 0.02521328 0.02523350 0.02523131 0.02521329 0.02521329 

11 0.02395904 0.02397017 0.02397118 0.02395907 0.02395907 

12 0.02256462 0.02256861 0.02257155 0.02256466 0.02256466 

13 0.02110158 0.02110207 0.02110402 0.02110163 0.02110163 

14 0.01962166 0.01962103 0.01962030 0.01962172 0.01962172 

15 0.01816159 0.01815949 0.01815708 0.01816165 0.01816165 

16 0.01674674 0.01674130 0.01673967 0.01674679 0.01674679 

17 0.01539396 0.01538425 0.01538486 0.01539401 0.01539401 

18 0.01411377 0.01410104 0.01410310 0.01411382 0.01411382 

19 0.01291201 0.01289871 0.01290017 0.01291206 0.01291206 

 438 

The twenty RF from Table 6 have been shown for comparison purposes, but it can be proved that they 439 

are insufficient to provide a complete representation of the transient thermal response of the selected 440 

wall. Actually, Table 7 presents the error estimate (EU) when considering different number of thermal 441 

response factors calculated by the FDSI method. 442 

Table 7: Error estimate EU for the wall’s response factors of case studies I and II calculated by the FDSI method 443 

 Case study I 
Ouyang and Haghighat’s wall 

Case study II 
Chen’s heavyweight wall 



Number of RF (N) �𝑅𝑅𝐹𝐹𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 EU (%) �𝑅𝑅𝐹𝐹𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 EU (%) 

20 0,3681307 25,642% 0,1846084 76,380% 

50 0,4888178 1,265% 0,5783250 26,006% 

100 0,4950393 0,008% 0,7491220 4,153% 

150 0,4950788 0,000% 0,7763976 0,663% 

200   0,7807529 0,106% 

300   0,7815595 0,003% 

Actual U-value 0,4950791  0,7815806  

 444 

As expected, the error is drastically reduced when considering a higher number of response factors, 445 

proving an adequate fulfilment of the U-value premise. Particularly, for Case study I, 100 calculated 446 

factors provide an error lower than 0.01%. 447 

 7.2.2. Case study II 448 

Table 8 reports the physical properties of the second test construction selected for validation. It consists 449 

of a heavyweight wall widely used in China and proposed by Chen et al. [36] to demonstrate the 450 

application of a verification methodology for transient heat flow calculations in multilayered walls. 451 

Moreover, results derived from the DNI method [15] are also available in literature for this wall, what 452 

justifies the present choice. 453 

Table 8: Detailed wall description of case study II 454 

Description L (mm) λ (W·m-1K-1) ρ (kg·m-3) cp (J·kg-1K-1) R (m2·K·W-1) 

Outside surface film     0.0538 

Common brick 370 0.814 1800 879  

Foam concrete 100 0.209 600 837  

Wood wool board 25 0.163 400 2093  

Stucco 20 0.814 1600 837  

Inside surface film     0.1147 

 455 

In the first place, Table 7 should be referred again to check that the U-value premise is also fulfilled for 456 

Case study II. Indeed, the error estimate can be reduced to negligible values (lower than 0.005 %) when 457 

considering a properly high number of RF. However, in this case, approximately 300 factors are needed 458 

to get the aforementioned error values. This is consistent with the heavyweight characteristics of the 459 

present wall. Note that the number of response factors that are required to correctly model a given 460 



construction depends on its physical properties (which determine its time constant), as well as on the 461 

considered timestep. 462 

In the second place, results obtained through the FDSI method have been compared with literature 463 

values according to the verification procedure developed in [36]. This methodology proposes the 464 

comparison of the theoretical frequency characteristics of the wall (obtained from its transmission matrix) 465 

with the dynamic behavior data derived from the calculated RF. This can be done visually by representing 466 

a Bode diagram with the amplitude and phase lag of the wall’s thermal response. As an example, Figure 467 

6 shows the theoretical and calculated characteristics of cross heat conduction for Case study II 468 

considering 144 factors. 469 

 470 

Figure 6. Comparison between the theoretical frequency response of the heavyweight wall (case study II) and 471 

that obtained from the calculated response factors with the FDSI method 472 

It can be observed that both frequency characteristics are almost indistinguishable, what is also generally 473 

reported in literature for other test cases and calculation methods [3, 25, 36]. For this reason, the use of 474 

the following error estimate (Eq.28) was proposed and recommended [36]. 475 

𝐸𝐸𝜓𝜓 =
1
𝑈𝑈
�

1
𝑁𝑁
��𝜓𝜓(𝑗𝑗𝑘𝑘) − 𝜓𝜓�(𝑗𝑗𝑘𝑘)�2
𝑁𝑁

𝑘𝑘=1

· 100                  𝐸𝐸𝑞𝑞. 28 476 



According to this criterion, results from the FDSI, DNI and FDR methods are compared in Table 9. The 477 

first 72, 96, 120 and 144 cross (Y) factors were considered. Data from the existing methods were 478 

extracted from [15].  479 

Table 9: Compared accuracy for FDSI, DNI and FDR methods for ‘Case study II’ wall. 480 

Number of RF 72 96 120 144 

Eψ_FDSI (%) 9.15 3.76 1.55 0.64 

Eψ_DNI (%) 8.92 3.66 1.50 0.62 

Eψ_FDR (%) 9.12 3.74 1.54 0.63 

 481 

It can be seen that the obtained errors for the FDSI method, despite being slightly higher, are very close 482 

to those of the DNI and the FDR method. As pointed out in [15], the latter, by definition, minimizes the 483 

present error estimate Eψ, so the observed small differences prove a very interesting behavior of the FDSI 484 

method.   485 

7.3. Accuracy dependence on the number of frequency points 486 

Figure 7 shows an estimation of the absolute difference between the actual U-value and the sum of 300 487 

calculated X response factors as a function of the number of frequency points used by the FDSI method 488 

when applied to ‘Case study I’. Similar results can be obtained for Y and Z response factor series.  489 

 490 

Figure 7. Influence of the number of frequency points on the method’s accuracy 491 

As expected, Figure 7 reveals that the accuracy of the FDSI method improves as the number of 492 

frequency points becomes larger, because the MFFs are better estimated. However, once the 493 

mathematical approximation is good enough, there is no use in increasing the number of interpolation 494 



points. With 512 frequency evaluations and a sufficient number of factors, the absolute error falls easily 495 

under 10-8. Better estimates could be obtained by widening the frequency range or by calculating more 496 

response factors. Nevertheless, here the conceptual development and first validations of the FDSI 497 

method are presented, but further work needs to be done in this sense in the future. 498 

Moreover, it should be noted that data in Figure 7 come from an indirect calculation procedure that 499 

provides approximated results. Only the pre-calculated integration factors for the case with 1024 500 

frequency points were actually determined. For the other frequency sampling cases, the corresponding 501 

pre-calculated constants required by the FDSI method were estimated by a grouping routine. This aspect 502 

explains the scattering of the plot shown in Figure 7 and suggests not considering those exceptional 503 

accuracy values associated to certain singular frequencies. 504 

8. Conclusions  505 

This work has introduced a new method for the calculation of conduction response factors in multilayer 506 

constructions, based on frequency–domain spline interpolation (FDSI) and asymptotic analysis. Its 507 

conceptual development as well as first validations comparing with existing methods from previous 508 

literature have been presented.  509 

The FDSI method enables the calculation of thermal response factors with great accuracy and speed, 510 

which constitutes a promising alternative to improve those procedures implemented in Building Energy 511 

Simulation programs so far. Particularly, it can make BES tools able to efficiently calculate with small 512 

timesteps (1-5 min) which is of special interest in energy simulations combining buildings and HVAC 513 

systems that often have much shorter time responses. In order to run simulations with small timesteps 514 

(keeping the level of accuracy), the only requirement is to calculate more response factors, but thanks to 515 

the lookup table approach most of the involved calculations will be done only once and stored, so the 516 

‘small timestep’ condition will not increase a lot the computational effort and make such simulations 517 

affordable. 518 

In summary, the following features characterize the new proposed method:  519 

• Precision: As integration factors can be pre-calculated beforehand with excellent precision, error 520 

depends only on the number of frequency evaluations, the number of factors and the width of the 521 

frequency range. With 512 frequency evaluations and a sufficient number of factors, the estimate for 522 

this variable falls easily under 10-8.  523 



• Speed: This algorithm has linear-time complexity, which makes it extremely fast compared to other 524 

methods. There is no need to solve linear systems, iterative pole finding or the use of finite element 525 

algorithms. It just requires N frequency evaluations, the calculation of spline coefficients and 8·N 526 

multiplications for each response factor. 527 

• Stability: FDSI method is inherently stable. Convergence is always guaranteed because there are no 528 

iterative numeric algorithms involved.  529 

As a drawback, this method requires several megabyte of RAM to store the pre-calculated integration 530 

factors. However, since modern computers are able to handle up to several gigabytes of main memory, 531 

this is not a relevant issue. 532 
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Appendix A. Summary of coefficients for the FDSI method 625 

Table 1: Summary of different coefficients relevant for the FDSI method 626 
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(pre-calculated factors) 
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 627 

Appendix B. Calculation of the spline coefficients 628 

The coefficients of each cubic polynomial for the MFFs spline interpolation can be easily expressed in 629 

terms of the evaluated frequencies (ωk), the MFF values at those frequencies (yk) and the corresponding 630 

second derivatives (yk’’ = σk), as it is shown in Eqs. B.5. 631 



As ωk and yk are known, the proposed calculation of the spline coefficients is focused on determining the 632 

second derivatives. This can be done through the recursive procedure described in Table B.1. For the 633 

sake of clarity, the following quantities have been defined: 634 

ℎ𝑘𝑘 = 𝑗𝑗𝑘𝑘+1 − 𝑗𝑗𝑘𝑘         0 < 𝑘𝑘 < 𝑠𝑠         𝐸𝐸𝑞𝑞.𝐵𝐵. 1𝑎𝑎 635 

𝑎𝑎𝑘𝑘 =
𝑦𝑦𝑘𝑘+1 − 𝑦𝑦𝑘𝑘
𝑗𝑗𝑘𝑘+1 − 𝑗𝑗𝑘𝑘

         0 < 𝑘𝑘 < 𝑠𝑠         𝐸𝐸𝑞𝑞.𝐵𝐵. 1𝑏𝑏 636 

Then, 𝑐𝑐k and Γk auxiliary terms are obtained in intermediate steps to finally calculate the MFF second 637 

derivatives and the spline coefficients.  638 

Table B.1.: Recursive calculation procedure to get the spline coefficients in a global coordinate system 639 

1.- First, 𝑐𝑐k terms are calculated. It requires n-1 
iterations, where n is the number of frequency 
evaluations. 

Eqs. B.2. 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑐𝑐1 =

ℎ2 · (2ℎ2 − ℎ1)
(ℎ2 − ℎ1)                                                                       

𝑐𝑐𝑘𝑘 = 2 · (ℎ𝑘𝑘+1 + ℎ𝑘𝑘) −
ℎ𝑘𝑘2

𝑐𝑐𝑘𝑘−1
                       1 < 𝑘𝑘 < (𝑠𝑠 − 1)

𝑐𝑐𝑖𝑖−1 = �ℎ𝑖𝑖−2 −
ℎ𝑖𝑖−12

ℎ𝑖𝑖−2
�+

ℎ𝑖𝑖−1
𝑐𝑐𝑖𝑖−2

· �3ℎ𝑖𝑖−1 + ℎ𝑖𝑖−2 + 2
ℎ𝑖𝑖−12

ℎ𝑖𝑖−2
�

 

2.- Once φk terms are stored, we can obtain a sequence 
of Γk terms, using the recurrence formulae shown below. 
Again, it requires n-1 iterations. 

Eqs. B.3. 

⎩
⎪⎪
⎨

⎪⎪
⎧𝛤𝛤1 =

6ℎ22

(ℎ22 − ℎ12) · (𝑎𝑎2 − 𝑎𝑎1)                                                                          

𝛤𝛤𝑘𝑘 = 6 · (𝑎𝑎𝑘𝑘+1 − 𝑎𝑎𝑘𝑘)−
ℎ𝑘𝑘 · 𝛤𝛤𝑘𝑘−1
𝑐𝑐𝑘𝑘−1

                               1 < 𝑘𝑘 < (𝑠𝑠 − 1)

𝛤𝛤𝑖𝑖−1 =
−6ℎ𝑖𝑖−1
ℎ𝑖𝑖−2

· (𝑎𝑎𝑖𝑖−1 − 𝑎𝑎𝑖𝑖−2) +
𝛤𝛤𝑖𝑖−2
𝑐𝑐𝑖𝑖−2

�3ℎ𝑖𝑖−1 + ℎ𝑖𝑖−2 + 2
ℎ𝑖𝑖−12

ℎ𝑖𝑖−2
� 

 

3.- Given 𝑐𝑐k and Γk terms, we can get the second 
derivatives of the splines σk for each evaluation 
point. Then, note that n σk-terms will be needed. 

Eqs. B.4. 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝜎𝜎𝑖𝑖 =

𝛤𝛤𝑖𝑖−1
𝑐𝑐𝑖𝑖−1

                                                                                          

𝜎𝜎𝑘𝑘 =
𝛤𝛤𝑘𝑘−1 − ℎ𝑘𝑘 · 𝜎𝜎𝑘𝑘+1

𝑐𝑐𝑘𝑘−1
                                               1 < 𝑘𝑘 < 𝑠𝑠  

𝜎𝜎1 =

−6ℎ1
ℎ2

· (𝑎𝑎2 − 𝑎𝑎1) + �3ℎ1 + ℎ2 + 2ℎ1
2

ℎ2
�𝜎𝜎2

ℎ2 −
ℎ12
ℎ2

                         

 

 

4.- Finally, the coefficients of the splines can be obtained 
from the list of second derivatives using the following 
formulae. 

Eqs. B.5. 

𝑎𝑎𝑘𝑘 =
𝜎𝜎𝑘𝑘+1 − 𝜎𝜎𝑘𝑘

6ℎ𝑘𝑘
   

𝑏𝑏𝑘𝑘 =
𝜎𝜎𝑘𝑘𝑗𝑗𝑘𝑘+1 − 𝜎𝜎𝑘𝑘+1𝑗𝑗𝑘𝑘

2ℎ𝑘𝑘
 

𝑐𝑐𝑘𝑘 =
𝜎𝜎𝑘𝑘+1 �

3 · 𝑗𝑗𝑘𝑘
2

ℎ𝑘𝑘
− ℎ𝑘𝑘� − 𝜎𝜎𝑘𝑘 �

3 · 𝑗𝑗𝑘𝑘+1
2

ℎ𝑘𝑘
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