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Abstract: The use of cooling air during machining is an environmentally conscious procedure, and its
applicability to different processes is a research priority. We studied tapping operations, an important
operation in the assembly process, using cooling air with unreinforced polyamide (PA66) and
polyamide reinforced with glass fiber (PA66-GF30). These materials are widely used in industry, but
their behavior with respect to tapping has not been studied. We analyze the outcomes regarding the
thrust force, torque, and power at cutting speeds between 15 and 60 m/min. The experimental tests
were executed using cooling air at 22 ◦C, 2 ◦C, and −18 ◦C in dry conditions. The M12 × 1.75 mm taps
were high-speed steel, with cobalt as the base material and coatings of TiN and AlCrN. To identify
the more influential factors, an analysis of variance was performed, along with multi-response
optimization to identify the desirability values. This optimization shows that the optimum for
PA66can be found in environments close to 3 ◦C, while the optimum for PA66-GF30 is found at the
minimal temperature studied (−18 ◦C). Thus, cooling air can be considered an adequate procedure
for tapping operations, to increase the sustainability of the manufacturing processes.

Keywords: sustainable manufacturing; green operation; cooling air; machining; tapping; multi-response
optimization; thrust force; torque; power; polyamide

1. Introduction

Green operations in manufacturing are being studied with the purpose of improving the use
of resources. Advances have been realized in machining processes to improve their environmental
characteristics while maintaining or increasing their efficiency. Because machining processes are most
commonly used in industry, great efforts are being made to find a suitable combination of efficiency
and sustainability [1,2]. In this sense, dry and cooling air machining are options to avoid the use of
lubricants, which have a harmful impact on the environment and are chemical exposition risks to
operators. Shokrani et al. [3], in their literature review, identified various procedures used in machining
by cooling air and highlighted composites, among others, as materials that are challenging to machine.
Boswell [4] found that cooling air is an efficient mechanism for metal cutting, with improvements
in the quality of steel workpieces and the tool life after turning. Nor-Khairusshima [5] determined
that the delamination factor improved after the milling of carbon fiber reinforced plastics at −10 ◦C
and high cutting speeds. Lee and Lee [6] had similar realizations during the grinding of steels at
−20 ◦C: a low temperature decreased the forces and tool wear. Su et al. [7] found that cooling air
at −20 ◦C improved the results of steel milling regarding the dry machining, both in forces and
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tool life. Liu and Chou [8], using alloys of aluminum, concluded that cooling effects decrease with
increasing cutting speed and feed rate. As is seen, the decreased temperature provides improved
outcomes. In more radical approaches, with greater reductions in temperature, improved results were
also found. Yuan et al. [9] determined that cryogenic machining with the use of cooling air requires
lower cutting forces to mill metallic alloys (TiAl6V4), and achieves lower surface roughness and higher
tool life than with other procedures, such as wet, dry or MQL machining. Sun et al. [10] analyzed
dry machining and machining with compressed air and cryogenic compressed air at −196 ◦C in a
titanium alloy, and found that the thrust and cutting forces in turning operations were lower when
using compressed air.

The selection of the tool also has an important influence on the results of forces [11], torques [12],
and energy or power [13]. The coating of tools, which is another factor to analyze, can influence the
process variables. The tapping operation is as common as it is complex in the industry, particularly
when the result is an internal thread in through or blind holes for later use in assembly processes.
Two important variables for tapping control are the axial force and cutting torque [14], as well as
the required power as a green operation criterion [15], because this power is responsible for the
energy consumption during the cutting process, and consequently emissions are generated during the
process. Similar combinations of variables, including power, can be found in the literature, e.g., in the
turning [16,17]. Uzun and Korkut [18] studied the tapping process in a titanium alloy under cryogenic
conditions, and found that the torque was lower in a cryogenically-treated tool than in coated and
uncoated tools. In tapping operations, increasing the cutting speed can increase or decrease the thrust
forces [19]. The forces and torques are higher than in flooding or MQL conditions [20]. Moreover,
the values of these variables are important, because they contribute to the consumption of energy
during the holes’ machining [21], and thus low values of force, torque, and power contribute to lower
energy consumption and to the sustainability of the process.

Polyamide PA66 and reinforced polyamide with glass fiber, PA66-GF30, are materials widely used
in the industry. Research on polyamide’s machinability [22] has found that the addition of glass fiber
influences the tool performance, and that the specific cutting force is much higher in unreinforced
polyamide. Campos et al. [23] determined that an increase of spindle speeds generates an increase of
cutting temperatures, which affects the responses in drilling operations. Quadrini et al. [24] found that
in drilling operations in PA66-GF30, the thrust forces are strongly dependent on the cutting conditions,
and that these forces never increase with increasing cutting speed and feed rate. Similar considerations
were realized by Domingo et al. [25], and could be extended to torques. Although tapping operations
are performed frequently in polyamide, with or without reinforcement, the material’s response to
tapping has not previously been studied.

Previous studies have identified cooling air machining as an environmentally-conscious technique.
Some studies have focused on the effect of cooling air in dry machining, but they are devoted to the
turning of steel, [4] or the milling of carbon fiber reinforced plastic [5] or steel [7]. In addition, specific
and accurate predictive models have been developed for tapping processes [26], and the influence of
new factors requires new experimental data. Thus, we analyze the outcomes regarding the axial or
thrust force, cutting torque, and required power under various cutting conditions in tapping operations
of PA66 and PA66-GF30, and under various environments in dry conditions with compressed cooling
air at several temperatures. The objective is to find the more adequate temperatures, cutting speed,
and tools, using multi-response surface methodology.

2. Materials and Methods

The methodology consisted of an experimental approach to find the data required, and a statistical
approach to identify the significant factors that affect the analyzed variables. A multi-response
optimization was conducted to identify the desirability values.
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2.1. Experimental Procedure

The experiments were executed in a machining center, Manga Tongtai TMV-510 (Tong-tai
Machine and Tool Co., Ltd., Kaohsiung Hsien, Taiwan), in dry conditions and with cooling air,
using a Ranque-Hilsch vortex tube, Vortec 610 (Vortec, Cincinnati, OH, USA), with a cold air outlet
nozzle 9.5 mm in diameter at three temperatures—22 ◦C, 2 ◦C, and −18 ◦C—and air consumption of
7.83 × 10−4 m3/s; the ambient temperature was 22 ◦C. This approach allowed the effect of cooling air
in the dry machining to be determined. The vortex tube allows cold air to be produced and directed
toward the cutting tool. The temperature was measured by an infrared pyrometer, Optris (Optris
Infrared Sensing, Portsmouth, NH, USA). The inlet air pressure was 0.8 MPa. To maintain the material
properties, the cooling air was directed toward the tool at a distance near 30 mm for 10 min before
the cutting operation. The temperatures were selected because they do not affect the polyamide in
its structure, and because the cutting forces can be increased at low temperatures. At and near room
temperature, the results can be considered similar [27]. Note that at 22 ◦C, the cooling air has only
been used to maintain a constant temperature (room temperature) and to avoid variations throughout
the tests; thus, the results obtained at this temperature can be comparable to those obtained without
cooling air.

The tests were conducted under a variety of cutting conditions, particularly at cutting speeds
between 15 and 60 m/min. Two tools were selected, with different coatings and with high-speed steel
enriched with cobalt near 5% (HSS-E) as the base material, and with a diameter of 12 mm (M12 × 1.75).
These taps were supplied by Guhring (Guhring KG, Albstadt, Baden-Wurtemberg, Germany). The tap
profiles can be observed in Figure 1, and the tap characteristics are given in Table 1. The coating
results in differences between the taps: the titanium nitride (TiN) and aluminum chromium nitride
(AlCrN) have different characteristics. The latter coating is recommended for dry machining [28].
Liew et al. [29] found that an AlCrN coating has a lower coefficient of friction than TiN in ambient air
in a ball-on-disc test. The holes were drilled and then tapped.
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The plates had a thickness of 6.5 mm. The main mechanical and thermal properties of PA66 and 
PA66-GF30 are shown in Table 2. Thrust force and torque data were obtained using a Kistler 
dynamometer model 9257B and a Kistler multichannel amplifier model 5070A with nine channels 
(Kistler Group, Winterthur, Switzerland). Each measurement was taken for 0.001 s, and DasyLab 
software (Measurement Computer, Norton, MA, USA) was used for data conversion. The average 
required power (P) was calculated according to: = × , (1) 

Figure 1. Tap profiles: (a) Tool T1; (b) Tool T2.

Table 1. Characteristics of tools.

Tool T1 Tool T2

Tool material HSS-E HSS-E
Coating TiN AlCrN

Number of flutes 5 5
Chamfer form C C

Class of fit 6HX 6HX

The plates had a thickness of 6.5 mm. The main mechanical and thermal properties of PA66
and PA66-GF30 are shown in Table 2. Thrust force and torque data were obtained using a Kistler
dynamometer model 9257B and a Kistler multichannel amplifier model 5070A with nine channels
(Kistler Group, Winterthur, Switzerland). Each measurement was taken for 0.001 s, and DasyLab
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software (Measurement Computer, Norton, MA, USA) was used for data conversion. The average
required power (P) was calculated according to:

P = T × ω, (1)

where T is the torque and ω is the tool rotational speed. A specific tooling was placed between the
workpiece and the dynamometer to protect the latter during the tapping. Figure 2 shows a schematic
diagram of experimental setup.

Table 2. Mechanical and thermal properties of PA66 and PA66-GF30.

Properties PA66 PA66-GF30

Density (kg/m3) 1140 1350
Rockwell hardness M 88 75
Tensile strength (MPa) 93 93.1
Tensile modulus (GPa) 3.55 4.65

Flexural modulus (GPa) 3.24 4.48
Compression strength (MPa) 62 124

Thermal conductivity (W/m·K) 0.280 0.245
Coefficient of thermal expansion, linear (µm/m·◦C) 95 36

Melting temperature (◦C) 260 260
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2.2. Statistical Procedure

An experimental design based on mixed-level factorial analysis was conducted using Statgraphics
software (Statgraphics Technologies, Inc., The Plains, VA, USA). This design involved two numerical
factors, at three and two levels, and one categorical factor at two levels, resulting in 12 tests (31 × 22).
The factors (environmental temperature that affects the tool, cutting speed, and coating tool) and levels
(three or two, according to each factor) are shown in Table 3.

This study included a multifactorial analysis of variance (ANOVA) to determine the significant
factors and interactions from a statistical perspective, at a confidence level of 95%. A p-value less than
0.05 indicates that there are significant differences between the means of two groups of data [30]. Levels
above 90% are acceptable in productive environments. Afterwards, an analysis of means (ANOM) was
conducted, according to the Tukey test, to know what groups are significantly different, i.e., what levels
within each factor [30].

A third-order regression model was developed for each variable. The adequacy of the regression
model for each variable was determined by the coefficient of determination (R2) and adjusted R2

(adj-R2). R2 indicates goodness of fit, and adj-R2 indicates the variability of the output, and is more
suitable for comparing models with different numbers of independent variables [31].

Moreover, a response surface methodology was implemented for each variable, along with a
multi-response optimization to determine the desirability; this function takes values between 0 and 1,
and its optimization allows the variables to be optimized simultaneously.



Sustainability 2018, 10, 889 5 of 14

Table 3. Factors and levels.

Factors Levels
A B C

Environment (◦C) Cutting Speed (m/min) Coating Tool

1 Cooling at 22 ◦C 15 TiN (−1)
2 Cooling at 2 ◦C 60 AlCrN (1)
3 Cooling at −18 ◦C -

The desirability function (d) when the variables must be minimized, as in this case, is [32]

d =


0 i f ŷi > Ui(

Ui−ŷi
Ui−Li

)t
i f Li ≤ ŷi ≤ Ui

1 i f ŷi < Li

, (2)

where ŷi is the estimated response, Ui is the upper specification limit, Li is the lower specification limit,
and t is a weight. The global desirability (D) is

D =
(
∏n

i=1 dri
i

)1/∑ ri
, (3)

where ri is the relative importance of each variable and n is the number of variables. This methodology
is especially useful in manufacturing operations, because the optimization of the variables typically
requires different parameter values, as can be seen in the CO2 laser-welding process [33] or in the end
milling process [34]. Moreover, the methodology has a high level of interest in adapting to predict
responses and optimize the process [35].

3. Results and Discussion

The outcomes of the experimental test can be seen in Table 4. These results have been previously
analyzed to assess which model to adopt. A third-order model was found to be the most convenient.
The mixed-level factorial analysis is a screening design with resolution V, so the factors to consider as
maximum are A3, A, B, C, A2, A2B, A2C, AB, ABC, AC, and BC. In ANOVA, some factors have been
eliminated to find a fitted model. In the regression equations, or the equations of the fitted models,
the values of the variables are specified in their original units.

Table 4. Experimental results of thrust force, torque, and power.

A B C PA66 PA66-GF30

Test No. Environment
(◦C)

Cutting Speed
(m/min) Coating F (N) T

(N·m) P (W) F (N) T
(N·m) P (W)

1 –18 15 TiN 23.04 1.42 59.18 32.51 1.89 78.78
2 –18 15 AlCrN 27.22 1.77 73.77 22.54 1.67 69.60
3 –18 60 TiN 21.72 1.23 204.93 33.32 1.01 168.27
4 –18 60 AlCrN 27.47 1.72 286.57 25.77 1.77 294.90
5 2 15 TiN 12.52 1.05 43.76 28.69 1.74 72.52
6 2 15 AlCrN 19.87 1.25 52.10 37.78 1.01 42.09
7 2 60 TiN 14.68 1.25 208.26 39.66 1.98 329.89
8 2 60 AlCrN 22.51 2.27 378.20 26.37 1.99 331.55
9 22 15 TiN 15.69 1.92 80.02 21.06 2.57 107.11

10 22 15 AlCrN 20.76 2.38 99.19 32.56 3.10 129.20
11 22 60 TiN 19.38 1.14 189.93 31.74 3.62 603.12
12 22 60 AlCrN 23.01 1.83 304.89 22.28 2.37 394.86
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3.1. Factors Affecting Thrust Force, Torque, Power, and Regression Models

3.1.1. Unreinforced Polyamide PA66

As shown in Tables 5–7, the ANOVA study, which explains the variability of a variable for each
effect, indicates that there are significant factors. For thrust forces (see Table 5), four main factors (A2,
A, B, and C) and two interactions (AB and A2C) at a 95% confidence level are associated with p-values
of less than 0.05. The most influential factors are A2, C, and A; the environment as second-order factor
(A2) is responsible of 27.25% of the variability, while C and A represent variability close to 25% and
23%, respectively. The residual values represent only 0.01%. The strong dependency of the force
regarding A and A2 confirms the importance of analyzing the tool temperature in the tapping and
its influence.

The torque, T_PA66, has three significant factors: A2B, B, and C (see Table 6). In this particular
case, the coating had an influence of 39.31%, an A2B of 30.67%, and a cutting speed of 17.04%; thus,
these factors had the most influence on the torque. The influence of residual values fell to 4.06%.

For the power, P_PA66, there are four significant factors: A2B, B, BC, and C (see Table 7).
As expected, the most influential factor was B (42.25%), due to the dependence of power on speed.
Note that the residual values only represented 1.11%. In this sense, the interaction was between
environment and speed and between speed and coating, and the importance of coating can be
appreciated; this finding implies a satisfactory choice of coating in the experimental test.

Table 5. Analysis of variance (ANOVA) for F_PA66.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 53.0965 1 53.0965 1849.78 0.0148
B: cutting speed 5.76 1 5.76 200.67 0.0449

C: coating 57.6081 1 57.6081 2006.96 0.0142
A2 63.7982 1 63.7982 2222.61 0.0135
AB 6.14251 1 6.14251 213.99 0.0435
AC 0.189112 1 0.189112 6.59 0.2365
BC 0.0310083 1 0.0310083 1.08 0.4877

A2B 0.932204 1 0.932204 32.48 0.1106
A2C 5.73304 1 5.73304 199.73 0.0450
ABC 1.13251 1 1.13251 39.45 0.1005

Residual 0.0287042 1 0.0287042
Total (adj.) 234.136 11

Table 6. ANOVA for T_PA66.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 0.159613 1 0.159613 7.20 0.0550
B: cutting speed 0.3721 1 0.3721 16.79 0.0149

C: coating 0.858675 1 0.858675 38.74 0.0034
A2 0.130537 1 0.130537 5.89 0.0722
AB 0.148512 1 0.148512 6.70 0.0608
BC 0.118008 1 0.118008 5.32 0.0823

A2B 0.670004 1 0.670004 30.23 0.0053
Residual 0.0886667 4 0.0221667

Total (adj.) 2.18423 11

Table 7. ANOVA for P_PA66.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 307.272 1 307.272 0.78 0.4282
B: cutting speed 60172.1 1 60172.1 151.88 0.0002

C: coating 7945.94 1 7945.94 20.06 0.0110
A2 182.381 1 182.381 0.46 0.5347
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Table 7. Cont.

Source Sum of Squares Df Mean Square F-Ratio p-Value

BC 8771.78 1 8771.78 22.14 0.0093
A2B 3928.07 1 3928.07 9.91 0.0346
A2C 663.602 1 663.602 1.67 0.2653

Residual 1584.75 4 396.188
Total (adj.) 142409.0 11

The ANOM study identified significant differences between the means of all levels of each factor
for variables F_PA66, T_PA66, and P_PA66, at a 95% confidence level. This could indicate that the
levels have been chosen appropriately, and that there is no particularly sensitive level affecting the
results, so the following analysis is necessary.

A regression model was developed for thrust forces, torque and power. With respect to thrust
forces of PA66, initially, a third-order model provides an R2 value of 99.99% and an adj-R2 value of
99.86, which implies that this model can be considered acceptable. Close values of R2 and adj-R2

indicate that the significant terms are included in the model [31]. Therefore, this thrust force model in
terms of multiple regression can be considered adequate, because adj-R2 is between 0.8 and 1 [31].

The torque analysis provides an R2 value of 95.94% and adj-R2 of 88.84%. To achieve a more
closely fitted model, it was necessary to eliminate several factors, such as A2C, ABC, and AC.

In power, the R2 statistic indicates that the model as fitted explains 98.89% of the variability in
P_PA66. The adj-R2 statistic, which is more suitable for comparing models with different numbers of
independent variables, is 96.94%. The regression model shows accurate capability for the third-order
approach. The environment temperature (◦C) can be a determinant factor in the results obtained in F,
T and P.

The equations of the fitted model are:
For C = TiN,

F_PA66 = 12.21 − 0.26 × A + 0.05 × B + 0.01 × A2 + 0.002 × AB (4)

T_PA66 = 0.92 + 0.014 × B + 0.000001 × A2B (5)

P_PA66 = −39.57 − 0.16 × A + 5.46 × B + 0.005 × AB (6)

For C = AlCrN,

F_PA66 = 19.51 − 0.26 × A + 0.05 × B + 0.01 × A2 + 0.002 × AB (7)

T_PA66 = 1.02 + 0.014 × B + 0.000001 × A2B (8)

P_PA66 = −40.87 + 0.16 × A + 5.46 × B + 0.005 × AB (9)

3.1.2. Reinforced Polyamide PA66-GF30

In the ANOVA study, for axial forces (see Table 8), a second-order main factor A2 and three
interactions (AC, BC, and ABC) are significant, because the p-value is less than 0.05 at the 95%
confidence level. BC was the most influential factor (34.37%). To achieve an acceptable value for adj-R2,
several factors were eliminated: A3, A2B, A2C, AB, and B. Thus, R2 was 91.40%, adj-R2 was 81.09%,
and adj-R2 was close to 80%, so it can be considered suitable in machining processes [36].

Table 9 describes the ANOVA results for torques; at a confidence level of 95%, there are two
significant factors, A and A2, and a significant interaction ABC. Note that the effect of environment
was very strong (54.8%). The residuals values achieved 7.77%. To achieve adequate R2 and adj-R2,
the factors A3, A2C, AB, BC, and C had been eliminated. For the other factors, R2 took a value of
92.23%, and adj-R2 was 83%.
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With respect to the power, Table 10 shows the results of the ANOVA study. Factors A3 and A2C
had been eliminated to achieve a major correlation. Two main factors (A and B) and three interactions
(AB, AC, and ABC) have a significant effect on the results. The influence of cutting speed was higher,
at 22.17% over the total. Regarding the power, its strong dependency on cutting speed was shown
as a factor through interactions with the environment, as well as with the environment and coating.
Therefore, the effect on power depends on variations of speed, together with the environment for each
coating. Note that A2 was not a significant factor in this case. The coating affected only the interactions
of the first and second order. Note that the residual represents only the 0.31%. The adjustment provided
an R2 of 99.68% and an adj-R2 of 98.23%.

On the same manner as in the PA66 material, for PA66-GF30, the ANOM study identified
significant differences between the means of all the levels of each factor for the variables F, T, and P,
at a 95% confidence level. The same considerations above could be taken into account.

Table 8. ANOVA for F_PA66-GF30.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 5.28125 1 5.28125 0.760 0.4242
C: coating 32.2752 1 32.2752 4.62 0.0842

A2 77.832 1 77.832 11.15 0.0206
AC 47.8242 1 47.8242 6.85 0.0472
BC 139.537 1 139.537 19.99 0.0066

ABC 68.328 1 68.328 9.79 0.0260
Residual 34.9027 5 6.98055

Total (adj.) 405.981 11

Table 9. ANOVA for T_PA66-GF30.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 3.5378 1 3.5378 35.25 0.0019
B: cutting speed 0.3721 1 0.3721 3.71 0.1121

A2 0.8664 1 0.8664 8.63 0.0323
AC 0.19845 1 0.19845 1.98 0.2187
A2B 0.350417 1 0.350417 3.49 0.1206
ABC 0.9522 1 0.9522 9.49 0.0275

Residual 0.5018 5 0.10036
Total (adj.) 6.4552 11

Table 10. ANOVA for P_PA66-GF30.

Source Sum of Squares Df Mean Square F-Ratio p-Value

A: environment 48,475.6 1 48,475.6 91.91 0.0107
B: cutting speed 74,755.8 1 74,755.8 141.73 0.0070

C: coating 798.025 1 798.025 1.50 0.3451
A2 3595.13 1 3595.13 6.82 0.1207
AB 24,962.7 1 24,962.7 47.33 0.0205
AC 11,523.1 1 11,523.1 21.85 0.0429
BC 325.0 1 325.0 0.62 0.5147

A2B 12.3267 1 12.3267 0.02 0.8925
ABC 16,759.15 1 16,759.15 31.77 0.0301

Residual 1054.88 2 527.438
Total (adj.) 337,207.0 11

The equations of the fitted model of the force, torque, and power are:
For C = TiN,

F_PA66 GF30 = 33.15 − 0.37 × A + 0.14 × B + 0.006 × AB − 0.01 × A2 (10)
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T_PA66 GF30 = 1.12 + 0.02 × A + 0.003 × A2 + 0.0008 × AB (11)

P_PA66 GF30 = −31.9 − 3.12 × A + 5.83 × B + 0.22 × AB (12)

For C = AlCrN,

F_PA66 GF30 = 33.15 + 0.37 × A − 0.14 × B − 0.006 × AB − 0.01 × A2 (13)

T_PA66 GF30 = 1.12 + 0.02 × A + 0.003 × A2 − 0.0008 × AB (14)

P_PA66 GF30 = −31.9 + 0.8 × A + 5.83 × B + 0.02 × AB (15)

3.2. Response Surfaces

Figure 3 shows the estimated response surface in the variables F, T and P in tapping operations of
PA66. The effect of the coating is unambiguous, as is seen in Figure 3a–f. At environmental temperature,
the thrust forces practically do not vary (Figure 3a,b), but the effect of the cutting speed is greater
when the temperature drops. The coating has a determining effect on the torque; the cooling air gives
a minimum at temperatures close to 0 ◦C with TiN (Figure 3c), while it has almost no influence with
the use of AlCrN (Figure 3). With regards to power, the cooling effect is similar with both coatings,
although with a greater influence on cutting speed when using AlCrN (Figure 3e,f).
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For PA66-GF30, Figure 4 shows the estimated response surface. These results indicate dissimilar
behavior with each tool, as was expected. For high speeds, the effect of the AlCrN coating was milder.
With tool T1, the thrust force increased with increasing cutting speed (Figure 4a). However, for tool T2,
the thrust force decreased when the speed is increased (Figure 4b); this phenomenon is common in
other materials, such as steel [19].

For each coating, in general, a reduction of torques (Figure 4c,d) and power (Figure 4e,f) could be
achieved when the environmental temperature was lower, although with a strong influence of speed.
This can explain the effect of the interaction ABC.

In the range of cutting conditions, with the tapping operations of the PA66-GF30 material, a coating
of AlCrN resulted in a decrease in the thrust forces when the cutting speed was increased.
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3.3. Multi-Response Optimization

The goals of optimizing the response are to minimize all variables and identify each one’s optimal
value. In Table 11, the optimal values of each variable can be observed. First, for PA66, the importance
of TiN coating can be observed; this is the coating that provides the optimal result for the three
variables. However, with respect to the environment and cutting speed, several contradictions are
found, as shown in Figure 3.
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Table 11. Combination of factor levels that minimize F_PA66, T_PA66, P_PA66, F_PA66-GF30,
T_PA66-GF30, and P_PA66-GF30, and maximize the desirability.

Optimal Values F_PA66 T_PA66 P_PA66 F_PA66-GF30 T_PA66-GF30 P_PA66-GF30

Environment (◦C) 6.88 −2.27 −5.25 22.0 −18.0 −5.7
Cutting speed (m/min) 15.1 15.01 16.98 15.0 60.0 15.0

Coating TiN TiN TiN TiN TiN AlCrN
Optimal value 11.99 N 0.99 N·m 42.62 W 19.77 N 1.02 N·m 48.68 W
Desirability (d) 1 1 1 1 0.99 0.99

The optimal values for F, T, and P can be obtained with different cutting and environmental
conditions; only the coating is maintained in PA66. Thus, to achieve a global solution, multi-response
optimization is conducted for F, T, and P and for PA66 and PA66-GF30.

3.3.1. Multi-Response Optimization for PA66

This procedure helps determine the combination of experimental factors that simultaneously
optimize several responses by minimizing F, T and P, and by maximizing a desirability function.
The values of weights (t) are 1 for all variables, and the importance or impact (ri) is 3 for all variables in
the two materials, as well as in the range analyzed that corresponds to the value, identified in Table 4.
The current goal for each of the responses (variables) is to minimize the force, torque, and power.
As shown in Figure 3, the cutting conditions that provide the minimal force, torque, and power for
PA66 are different; only the TiN coating is recommended for the three variables. The temperatures
are practically equal in T and P, as is the cutting speed in F and P (despite the strong dependence of
the power on the torque). The multiple performance gives a common optimization, according to the
combination of factor levels that maximize the overall optimal desirability over the indicated region.
The evolution of the desirability function is shown in Figure 5.

Finally, this optimum can be found using cooling air at temperatures near 3 ◦C (3.15 ◦C), a cutting
speed of 15 m/min, and a TiN coating. Consequently, the cooling air has a positive influence, although
it is not necessary to achieve temperatures under zero. The TiN coating is the reference, as expected,
because it is the better coating in the sub-optimization; a possible explanation is that although TiN is
less lubricous than AlCrN, and has a higher coefficient of friction than AlCrN [29], the required forces
are low and the friction has no affect. The optimal responses for F_PA66, T_PA66, and P_PA66 are
12.26 N, 1 N·m, and 30.9 W, respectively. The optimal value of desirability (D) is 0.99.
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3.3.2. Multi-Response Optimization for PA66-GF30

With respect to PA66-GF30, the optimization of each variable does not allow all variables to be
optimized, because the values of parameters are different for each variable, as observed in Table 11.
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Thus, the multi-response optimization allows the optimal combination of cutting conditions to
obtain the optimal desirability. The cooling is effective, and the minimal temperature achieved (−18 ◦C)
allows a strong desirability value. The low cutting speed (15 m/min) can be explained by its high
influence on the power; the AlCrN coating is better for achieving the maximal desirability, which is
notable because this coating has favorable properties for use in dry machining [28]. This coating is more
lubricous than TiN [29]—AlCrN is dense and has few microvoids and microdroplets, which provides
a uniform structure [37]. This uniform structure can benefit the machining process in a composite
material such as PA66-GF30. Figure 6 shows the contours of the estimated response surface for the
AlCrN coating.

The optimal response is 24.94 N for F_PA66-GF30, 1.45 N·m for T_PA66-GF30, and 63.45 W for
P_PA66-GF30. The optimal value of desirability (D) is 0.83, which is lower than that for PA66, while the
values of F, T, and P are higher than in unreinforced polyamide.
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4. Conclusions

A study based on machining through cooling air has been conducted, with the purpose of finding
greener operation processes. These processes were performed on tapping operations in dry conditions
and with two materials, PA66 and PA66-GF30. The experimental results were treated statistically by
an ANOVA study, regression models, and multi-response optimization. In PA66, the environment is
an influence factor, and the cooling of the tool affects the results of F, T, and P. Similar considerations
can be realized for PA66-GF30, due to the influence of the first-order, second-order, or interaction effect
of the “environment” factor.

A multi-response surface optimization shows that the optimum value can be found in
environments close to 3 ◦C for PA66, while the optimum for PA66-GF30 is found at the minimal
temperature studied (−18 ◦C). Thus, cooling air can be considered an adequate procedure for tapping
operations to increase the sustainability of the manufacturing processes.

In future work, the influence of other geometries and the coating should be explored with
regards to tapping operations in polyamide and reinforced polyamide, along with the effect of lower
temperatures in the machining, particularly with PA66-GF30. In both materials, it can be of interest to
seek other conditions that achieve a desirable result.
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