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Abstract: This paper focused on the maintenance or repair of holes made using hybrid Mg–Al–Mg
components by drilling, using two sustainable cooling techniques (dry machining and cold
compressed air) and taking surface roughness on the inside of the holes as the response variable.
The novelty of the work is in proving that the repair operations of the multi-material components
(magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately)
but assembled to form a higher component can be done simultaneously, thus reducing the time and
cost of the assembly and disassembly of this type of component. The study is based on a design of
experiments (DOE) defined as a product of a full factorial 23 and a block of two factors (3 × 2). Based
on our findings, we propose that the analyzed operations are feasible under sustainable conditions
and, in particular, under dry machining. Also, the results depend on the machining order.

Keywords: hybrid components; light alloys; magnesium; aluminum; drilling; dry machining; cold
compressed air; lubrication and cooling systems; arithmetical mean roughness; Ra; average maximum
height; Rz; repair and maintenance operations

1. Introduction

Today, energy efficiency and sustainability play an increasingly important role in the development
of new materials and their applications, especially in the transport industry, due to the pollution
generated by the vehicles or their different parts in many stages of their life cycle.

Therefore, in order to reduce such contamination, it is necessary to approach the problem in a
global way, analyzing all the factors that can have an influence during the manufacturing, the use, the
maintenance, the repair, and the recycling of each part.

Although new forms of energy are being investigated to propel vehicles, these new alternative
energies need to be greatly improved to match the level of development achieved with fossil fuels.

Until these new kinds of sustainable energy become competitive, in the transport sector, it is
still essential to decrease the weight of vehicles to reduce the quantity of fossil fuels used, and, as a
consequence, the pollution associated with its consumption. This is particularly true for the aeronautic
and aerospace sectors.

To achieve this goal, research focuses on the use of the combination of different materials to create
new multi-material components with better global properties than those of the original individual
materials. These materials are called hybrid components, and the number of studies associated with
them grew exponentially in recent years. Rubio and collaborators [1] affirmed that, among the possible
combinations of materials used to form hybrid components with structural uses, the metal–polymer
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and metal–metal combinations are two of the most used, with aluminum alloys being most used to
form these types of hybrid materials. Some of the main applications of these combination materials in
the automotive sectors are car sleeper roofs, door structures, car fronts, tubular components of the
exhaust system, and tubular components of the suspension system. In the aeronautic sector, the main
applications are in the fuselage of airplanes and helicopters, the wings and rotors, and the other control
surfaces (ailerons, flaps, spoilers, aerodynamic brakes, slats, and horizontal and vertical stabilizers).

The use of lightweight structural materials is widespread in various industries, particularly the
aeronautics and automotive industries, since the weight of aircraft and cars is directly related to their
consumption and pollution. A 10% reduction in the weight of an automobile can lead to improvements
in fuel efficiency (by 8%), acceleration, and braking performance, and can reduce CO and hydrocarbon
(HC) emissions by 4.5%, and NOx emissions by 8.8% [2]. In the civil aircraft industry, the weight
of a Boeing 747–400 is approximately 183,500 kg, and the estimated fuel savings for an airplane is,
over short distances, 117–134 kg of kerosene per kilogram of reduced weight and, over long distances,
172–212 kg of kerosene per kilogram of reduced weight [3].

Within the industries mentioned above, light alloys are used widely thanks to their excellent
weight/mechanical strength ratio. Also, in recent years, combinations of light alloys (hybrid components)
began to be used. Among them, it is possible to highlight the combination of aluminum and magnesium
alloys. Both types of alloys can be combined with each other or with other lightweight and resistant
materials to create hybrid materials, thereby extending the boundaries of the material’s property
space [4–8]. Also, magnesium and aluminum present other interesting advantages in relation to
sustainability; for example, both are easy to recycle [9,10].

Regarding magnesium, several recycling options exist. Firstly, when the scrap is of sufficient
quality, it can be reprocessed to obtain parts with good specifications. Secondly, magnesium scrap
can be used to produce other metallic materials. Finally, magnesium can be recycled for use as a raw
material in the production of fertilizers [11].

Aluminum has 95% recyclability at the end of its useful life. Also, recycling saves 95% of the
energy used in its initial production. Moreover, according to the Environmental Product Declarations
(EPD), it was shown that aluminum contains an average of 39% recycled aluminum and 61% primary
aluminum. In addition to its recyclability, aluminum has an excellent carbon footprint. The EPD states
that, for its different types (anodized and lacquered, with and without a thermal break), the values of
CO2 range between 10.3 and 11.8 kg of CO2 per kg of aluminum, and recycling can achieve exemptions
of between 3.0 and 4.0 kg of CO2 per kg of aluminum.

The primary non-renewable energy used in the manufacture of aluminum products is another
indicator of the impact they generate. As with the previous rate, considering all aluminum types
included in the EPD, the primary energy is 420 MJ and 324 MJ per kg of aluminum. Therefore,
aluminum recycling provides energy savings of between 49 and 38 MJ [9].

On the other hand, the geometric, dimensional shape and surface requirements are very strict
in the aeronautics or aerospace sectors, which makes these parts types expensive and sometimes
difficult or even impossible to keep stock of them ready for when it is necessary to maintain or
repair damaged parts. Therefore, it is important to guarantee that it is possible to carry out efficient
and sustainable repair or maintenance operations, thereby extending the lifetime of these parts and
improving sustainability [12–14].

As the density of magnesium (1740 kg/m3) is the lowest among structural metals (being two-thirds
that of aluminum and one-quarter that of steel), its alloys are interesting candidates for combination with
heavier alloys to reduce weight. However, magnesium has low machinability and high flammability
(especially as powder or chips). In fact, the magnesium flame temperature and its alloys can reach 3100
◦C and, once the fire starts, it is difficult to extinguish since there is continuous combustion of nitrogen,
carbon dioxide, and water [15]. Also, molten magnesium reacts violently with water. For these reasons,
it is necessary to study the behavior of magnesium when it is mechanized along with other materials
(forming hybrid components), testing if such combinations are suitable for manufacturing, repair, and
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maintenance. For example, steel produces sparks during machining at cutting speeds between 200 to
300 m/min [16], and this can be extremely dangerous if magnesium is present.

Therefore, when magnesium-containing hybrid components are going to be mechanized,
it is necessary to take certain security measures regarding the lubricants or coolant systems
employed. Depending on the material or materials with which magnesium is combined, different
lubrication/cooling techniques can be used [17,18] both individually (dry machining [19–31], minimum
quantity lubrication (MQL) [30–42], solid lubrication [43–47], cryogenic cooling [48–55], gaseous
cooling [56–61], nanofluids [62–66], and sustainable cutting fluids [67–72]) and in combination [73–76].
Some of these techniques were tested in several previous works with the intention of better describing
the behavior of the individual materials (especially aluminum [19–23], titanium [30,31,39], and
magnesium [16,28,77–104]). From the point of view of the optimization of the costs of the process
and its sustainability, the ideal would be (1) to be able to completely eliminate lubricants or coolants
and carry out dry machining, (2) to test more recently developed techniques (such as machining with
minimum quantity of lubricant, cold compressed air or cryogenic refrigerants), and (3) to develop new
lubricants or refrigerants compatible with magnesium.

The machining of this type of hybrid component results in an increase in process instability due to
the different properties of the materials that form them and their particular cutting characteristics [12].
This makes it necessary to determine the best cutting parameters for each combination of materials,
especially when strict design requirements must be reached. Although the literature contains
an important number of experimental works with regard the machining of hybrid components,
only some of them addressed hybrid components based on magnesium. Most studies focused on
machining processes [105–113] and tried to find the optimal combination of machining conditions and
lubrication/cooling systems by means of experimental tests, taking the surface roughness required
in a particular industry sector or application as a response variable. Others dealt with friction and
wear between contact materials [114,115], the effects of pre-treatments on the adhesion of hybrid
materials [116], innovative techniques for forming these types of components [117,118], or identification
of some of the most prominent issues.

The scope of this work is to prove that repair and maintenance operations can fix holes made in
pieces of hybrid components based on magnesium and aluminum, not only in an efficient way, but
also sustainably. Therefore, considering the above, this experimental study focused on the drilling of
hybrid Mg–Al–Mg components. For decades, aluminum and magnesium were used (separately) in
the aeronautical sector due to their good weight/mechanical properties. Thus, given that the density
of magnesium is two-thirds that of aluminum, it was hypothesized that they could be used together,
reducing weight by replacing aluminum with magnesium where possible.

The drilling process is used regularly in this sector and, thus, it was well analyzed; for only the
assembly of the wing to the fuselage, thousands of holes are required [119,120].

The repair and maintenance operations were selected as they represent an additional challenge
versus those of manufacturing, since, as previously mentioned, the lack of parts in aeronautical stock
means having to do the repair in the shortest possible time to reduce the costs associated with the
downtime of the aircraft. Also, two cooling systems (dry machining and cold compressed air) were
tested to analyze the sustainability of the process. Surface roughness was chosen as a response variable
as it is one of the most widespread in the literature, thereby allowing a better contrast of the results
obtained; the required values for the sector are also standardized (0.8 µm < Ra < 1.6 µm) [121].

The novelty of the work is in proving that the repair operations of multi-material components
(magnesium–aluminum–magnesium) and the parts made of aluminum and magnesium (separately)
but assembled to form a higher component can be repaired simultaneously. This approach saves time
and reduces cost.



Materials 2020, 13, 393 4 of 22

2. Methodology

As this work is part of a broader research project that involves different geometries, material
combinations, cutting conditions, tools, and lubrication/cooling systems, the methodology is similar
to that followed in other previous works [105–108] and is based on the guidelines given by
Montgomery [122].

2.1. Pre-Experimental Planning

Here, we report the findings of an experimental study addressing the repair or maintenance of
holes made in parts of Mg–Al–Mg hybrid components using sustainable cooling systems. The study
focuses on the aeronautical sector. As the response variable, we chose surface roughness since it is
commonly used as a reference of quality in aeronautical components and is also used to evaluate the
efficiency of the machining processes; thus, there are several works in the literature with which to
make comparisons.

To determine the factors, levels, and range of their values, it should be noted that these are repair
operations; hence, the depth of cut must be as small as possible to maintain the dimensional design
requirements. On the other hand, since these are two non-ferrous alloys with similar machinability
characteristics, it would be sufficient to test a unique type of tool. Moreover, since two cooling systems
(dry machining and cold compressed air) were tested, and only a single pre-drilled part with eight
holes through the Mg–Al–Mg combination was available, it was necessary to adapt the remaining
factors and levels to the number of holes. Therefore, we decided to use the feed rate and the spindle
speed (and two levels for each) as factors.

Additionally, as it was thought that the surface of the drilled holes could be damaged, not
only by the cutting process but also due to friction caused by the chips inside of them (due to the
accumulation along the mechanized length), and seeing that a similar factor was taken into account in
other works [19–26], it was decided to include two additional factors related to the location relative to
the insert (with three levels, one for each one of the stacks: Mg–Al–Mg) and related to the location
relative to the specimen, that is, each hole (with two levels, one at the entry of the holes and one at the
exit holes), where measurement of the surface roughness was taken.

2.2. Experimental Design

Considering everything explained in the pre-experimental planning, the depth of cut and the type
of tool do not affect the design of experiments (DOE) since they only have one level. For the feed rate, f
(mm/rev), the spindle speed, N (rpm), and the type of cooling system, C, two levels were taken for
each, i.e., (f1, f2), (N1, N2), and (C1, C2), respectively. In the same way, for the additional factors where
the surface roughness was measured, i.e., location relative to the insert, LRI, and location relative to the
specimen, LRS, three (LRI1, LRI2, LRI3) and two (LRS1, LRS2) levels were taken, respectively. Table 1
describes the factors and levels selected for this experimental analysis.

Table 1. Factors and levels.

Factors Levels

Feed rate, f (mm/rev) f1, f2
Spindle speed, N (rpm) N1, N2

Type of cooling system, C C1, C2
Location relative to the insert, LRI LRI1, LRI2, LRI3

Location relative to the specimen, LRS LRS1, LRS2

The surface roughness was taken as the response variable, and the average roughness values (Ra)
and the average maximum height (Rz) were measured in the different zones defined by the factors
location relative to the insert (LRI) and location relative to the specimen (LRS). The factors and levels
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are shown in Table 1, and a DOE, as a product of a full factorial 23 and a block of two factors (3 × 2),
was defined with a total of eight experimental re-drills and 24 measurements of the surface roughness,
which provided a total of 48 values (24 of Ra and 24 of Rz). Also, the design was randomized to reduce
the influence of non-considered variables [122] (Table 2).

Table 2. Experimental design: product of a full factorial 23 and a block of two factors (3 × 2).

No. f * N ** C LRI LRS No f * N ** C LRI LRS No. f * N ** C LRI LRS

1 f1 N1 C1 LRI1 LRS1 1 f1 N1 C1 LRI2 LRS1 1 f1 N1 C1 LRI3 LRS1
1 f1 N1 C1 LRI1 LRS2 1 f1 N1 C1 LRI2 LRS2 1 f1 N1 C1 LRI3 LRS2
2 f1 N2 C1 LRI1 LRS1 2 f1 N2 C1 LRI2 LRS1 2 f1 N2 C1 LRI3 LRS1
2 f1 N2 C1 LRI1 LRS2 2 f1 N2 C1 LRI2 LRS2 2 f1 N2 C1 LRI3 LRS2
3 f2 N1 C1 LRI1 LRS1 3 f2 N1 C1 LRI2 LRS1 3 f2 N1 C1 LRI3 LRS1
3 f2 N1 C1 LRI1 LRS2 3 f2 N1 C1 LRI2 LRS2 3 f2 N1 C1 LRI3 LRS2
4 f2 N2 C1 LRI1 LRS1 4 f2 N2 C1 LRI2 LRS1 4 f2 N2 C1 LRI3 LRS1
4 f2 N2 C1 LRI1 LRS2 4 f2 N2 C1 LRI2 LRS2 4 f2 N2 C1 LRI3 LRS2
5 f1 N1 C2 LRI1 LRS1 5 f1 N1 C2 LRI2 LRS1 5 f1 N1 C2 LRI3 LRS1
5 f1 N1 C2 LRI1 LRS2 5 f1 N1 C2 LRI2 LRS2 5 f1 N1 C2 LRI3 LRS2
6 f1 N2 C2 LRI1 LRS1 6 f1 N2 C2 LRI2 LRS1 6 f1 N2 C2 LRI3 LRS1
6 f1 N2 C2 LRI1 LRS2 6 f1 N2 C2 LRI2 LRS2 6 f1 N2 C2 LRI3 LRS2
7 f2 N1 C2 LRI1 LRS1 7 f2 N1 C2 LRI2 LRS1 7 f2 N1 C2 LRI3 LRS1
7 f2 N1 C2 LRI1 LRS2 7 f2 N1 C2 LRI2 LRS2 7 f2 N1 C2 LRI3 LRS2
8 f2 N2 C2 LRI1 LRS1 8 f2 N2 C2 LRI2 LRS1 8 f2 N2 C2 LRI3 LRS1
8 f2 N2 C2 LRI1 LRS2 8 f2 N2 C2 LRI2 LRS2 8 f2 N2 C2 LRI3 LRS2

* f (mm/rev); ** N (rpm).

2.3. Performing the Experiment

Before carrying out the re-drilling tests, it was necessary to collect the specimens of the hybrid
parts, the tools, and the cooling systems, as well as introduce the parameter values into the machine
tools and establish cutting conditions and data collecting protocols. Next, the machining operations
were carried out and, finally, photographs and videos of the trials were taken for subsequent analysis.

2.4. Statistical Analysis of the Data

Once the machining process was finished, the arithmetical mean roughness (Ra) and average
maximum height (Rz) were measured. The data were statistically analyzed, including an analysis of
variance (ANOVA) to identify the influential factors for surface roughness variation and the interactions
among them.

2.5. Conclusions

The main conclusions extracted from the descriptive analysis of the obtained results and their
statistical analysis were established.

3. Applications and Results

3.1. Materials

The hybrid component specimen was made of three parallelepiped plates of dimensions 50 × 50
× 15 mm pre-drilled with eight holes of 8 mm in diameter. The three plates were mechanically fixed so
that they could be easily disassembled to take the measurements inside the holes. The plates placed
above and below were of magnesium alloy (UNS M11917), and the other (placed between them) was
of aluminum alloy (UNS A92024). The chemical composition of both materials is given in Table 3.
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Table 3. Chemical composition of the materials used for the manufacturing specimens.

UNS M11917 (AZ91D) UNS A92024 (AA2024 T351)

Al 8.30–9.70% Al 90.7–94.7%
Cu ≤ 0.03% Cr ≤ 0.1%
Fe ≤ 0.005% Cu 3.8–4.9%

Mg 90% Fe ≤ 0.5%
Mn ≥ 0.13% Mg 1.2–1.8%
Ni ≤ 0.002% Mn 0.3–0.9%

Si ≤ 0.1% Si ≤ 0.5%
Zn 0.35–1% Ti ≤ 0.15%

– Zn ≤ 0.25%

These materials were selected because the authors had previous experience in their machining, both
independently [12–14,16–23,25,28–32,77–79,82–94] and together [105–108]. Also, there were interesting
works of other researchers in the literature, thus allowing comparisons to be drawn [15,24,26,27,80,81,95–104].

3.2. Tools

As the target of this study was to analyze the feasibility of carrying out the repair and maintenance
operations in an efficient and sustainable way, a single level for the depth of cut factor, d, was taken
(d = 0.5 mm, using of a 9-mm-diameter drill bit). On the other hand, keeping the depth of cut at a low
level also helps to keep the cutting temperature low and, therefore, to keep the magnesium temperature
far from its ignition temperature.

The tools used in the trials were helical drill bits of high performance. They were made of a
high-speed-steel (known as Cobalt Steel, HSSE, or HSS-E), obtained by powder metallurgy (PM)
(Figure 1). The tools, with reference HSS-E-PM A1 1257, were purchased from Garant (Hoffmann
Iberia, San Fernando de Henares, Madrid, Spain).

Materials 2020, 13, x FOR PEER REVIEW 6 of 22 

 

Table 3. Chemical composition of the materials used for the manufacturing specimens. 

UNS M11917 (AZ91D) UNS A92024 (AA2024 T351) 
Al 8.30–9.70% Al 90.7–94.7% 

Cu ≤ 0.03% Cr ≤ 0.1% 
Fe ≤ 0.005% Cu 3.8–4.9% 

Mg 90% Fe ≤ 0.5% 
Mn ≥ 0.13% Mg 1.2–1.8% 
Ni ≤ 0.002% Mn 0.3–0.9% 

Si ≤ 0.1% Si ≤ 0.5% 
Zn 0.35–1% Ti ≤ 0.15% 

– Zn ≤ 0.25% 

These materials were selected because the authors had previous experience in their machining, 
both independently [12–14,16–23,25,28–32,77–79,82–94] and together [105–108]. Also, there were 
interesting works of other researchers in the literature, thus allowing comparisons to be drawn 
[15,24,26,27,80,81,95–104]. 

3.2. Tools 

As the target of this study was to analyze the feasibility of carrying out the repair and 
maintenance operations in an efficient and sustainable way, a single level for the depth of cut factor, 
d, was taken (d = 0.5 mm, using of a 9-mm-diameter drill bit). On the other hand, keeping the depth 
of cut at a low level also helps to keep the cutting temperature low and, therefore, to keep the 
magnesium temperature far from its ignition temperature. 

The tools used in the trials were helical drill bits of high performance. They were made of a high-
speed-steel (known as Cobalt Steel, HSSE, or HSS-E), obtained by powder metallurgy (PM) (Figure 
1). The tools, with reference HSS-E-PM A1 1257, were purchased from Garant (Hoffmann Iberia, San 
Fernando de Henares, Madrid, Spain).  

 

Figure 1. Helical drill bits HSS-E-PM A1 1257 manufactured by Garant [123]. 

Their dimensions were 9 mm of diameter, 81 mm of helical length, and 131 mm of total length. 
In addition, their special geometry allowed self-centering and optimal chip evacuation.  

3.3. Machines and Equipment 

The trials were carried out in a Tongtai TMV510 machining center (Tongai Machine &Tool Co., 
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made the tool penetrate 10 mm, and then return to evacuate the generated chips. The same sequence 
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implementing a Vortec Cold Air Gun (Vortec, Cincinnati, Ohio, USA) (Figure 2b). The roughness 
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off, 0.8 mm; scan rate, 4 mm (N = 5); the standard ISO 1997 [124] was used.   

Figure 1. Helical drill bits HSS-E-PM A1 1257 manufactured by Garant [123].

Their dimensions were 9 mm of diameter, 81 mm of helical length, and 131 mm of total length. In
addition, their special geometry allowed self-centering and optimal chip evacuation.

3.3. Machines and Equipment

The trials were carried out in a Tongtai TMV510 machining center (Tongai Machine &Tool Co.,
Luzhu Dist, Kaohsiung City, Taiwan) equipped with a Control Numeric Computer (CNC) Fanuc (Fanuc
Iberia, Castelldefels, Barcelona, Spain) (Figure 2a). A drilling cycle was programmed that made the tool
penetrate 10 mm, and then return to evacuate the generated chips. The same sequence was repeated
until the tool crossed the entire width of the piece formed by the three stacks of Mg–Al–Mg. This
was done so that the accumulated chips inside the holes did not scratch the surface or stop or hinder
the tool inside the piece. Cold compressed air (CCA) was used as the cooling system, implementing
a Vortec Cold Air Gun (Vortec, Cincinnati, Ohio, USA) (Figure 2b). The roughness measurements
were taken using a Mitutoyo Surftest SJ 401 roughness tester (Figure 2c) with the following settings:
measuring range, 800 µm; resolution, 0.000125 µm; transverse length, 25 mm; cut off, 0.8 mm; scan rate,
4 mm (N = 5); the standard ISO 1997 [124] was used.
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3.4. Experimental Tests

The design of experiments, the materials, tools, machines, and equipment used in the trials, and
the parameter value ranges are given in Table 4.

Table 4. Factors, levels, and values. CCA—cold compressed air.

Factors Level Values

Feed rate, f (mm/rev) f1 = 0.05; f2 = 0.10
Spindle speed, N (rpm) N1 = 500; N2 = 1200

Type of cooling system, C C1 = CCA; C2 = dry
Location relative to the insert, LRI LRI1 = Mg; LRI2 = Al; LRI3 = Mg

Location relative to the specimen, LRS LRS1 = specimen entry zone; LRS2 = specimen exit zone

The locations of the measurement zones of the surface roughness are shown in Figure 3. LRI1
denotes the first magnesium plate, LRI2 denotes the aluminum plate, and LRI3 denotes the second
(and last) magnesium plate. LRS took into account the location of the measuring zone inside each
hole after re-drilling it, and its levels were defined as LRS1 (the specimen entry zone) and LRS2 (the
specimen exit zone). Figure 4 provides a graphical summary of the experimental set-up.

Materials 2020, 13, x FOR PEER REVIEW 7 of 22 

 

   
(a) (b) (c) 

Figure 2. (a) Tongtai TMV510 machining center; (b) details of the Vortec Cold Air Gun during the 
trials; (c) Mitutoyo Surftest SJ 401 roughness tester. 

3.4. Experimental Tests 

The design of experiments, the materials, tools, machines, and equipment used in the trials, and 
the parameter value ranges are given in Table 4. 

Table 4. Factors, levels, and values. CCA—cold compressed air. 

Factors Level Values 
Feed rate, f (mm/rev) f1 = 0.05; f2 = 0.10 

Spindle speed, N (rpm) N1 = 500; N2 = 1200 
Type of cooling system, C C1 = CCA; C2 = dry  

Location relative to the insert, LRI LRI1 = Mg; LRI2 = Al; LRI3 = Mg 
Location relative to the specimen, LRS LRS1 = specimen entry zone; LRS2 = specimen exit zone 

The locations of the measurement zones of the surface roughness are shown in Figure 3. LRI1 
denotes the first magnesium plate, LRI2 denotes the aluminum plate, and LRI3 denotes the second 
(and last) magnesium plate. LRS took into account the location of the measuring zone inside each 
hole after re-drilling it, and its levels were defined as LRS1 (the specimen entry zone) and LRS2 (the 
specimen exit zone). Figure 4 provides a graphical summary of the experimental set-up. 

  
(a) (b) 

Figure 3. The concrete locations of the measurement zones of the surface roughness: (a) location 
relative to the insert, LRI; (b) location relative to the specimen, LRS. 
Figure 3. The concrete locations of the measurement zones of the surface roughness: (a) location
relative to the insert, LRI; (b) location relative to the specimen, LRS.



Materials 2020, 13, 393 8 of 22

Materials 2020, 13, x FOR PEER REVIEW 8 of 22 

 

 
Figure 4. The experimental set-up. 

3.5. Analysis and Discussion of the Results 

After performing the eight re-drilling tests, surface roughness measurements were made in each 
hole in the three plates (entry and exit zones). The values of the arithmetical mean roughness (Ra) 
and the average maximum height (Rz) were calculated (in micrometers) and are given in Table 5.  

Table 5. The arithmetical mean roughness (Ra) and the average maximum height (Rz) obtained 
during the measurement tests. 

No. f (mm/rev) N (rpm) C LRI LRS Ra (µm) Rz (µm) 
1 0.05 500 CCA LRI1 LRS1 0.35 2.70 
1 0.05 500 CCA LRI1 LRS2 0.81 4.30 
2 0.05 1200 CCA LRI1 LRS1 1.06 6.10 
2 0.05 1200 CCA LRI1 LRS2 1.23 7.20 
3 0.10 500 CCA LRI1 LRS1 1.27 8.50 
3 0.10 500 CCA LRI1 LRS2 1.31 7.00 
4 0.10 1200 CCA LRI1 LRS1 1.03 6.40 
4 0.10 1200 CCA LRI1 LRS2 1.33 7.20 
5 0.05 500 Dry  LRI1 LRS1 1.22 6.90 
5 0.05 500 Dry  LRI1 LRS2 0.19 2.20 
6 0.05 1200 Dry  LRI1 LRS1 0.61 4.60 
6 0.05 1200 Dry  LRI1 LRS2 0.73 5.70 
7 0.10 500 Dry  LRI1 LRS1 0.73 5.40 
7 0.10 500 Dry  LRI1 LRS2 0.48 3.60 
8 0.10 1200 Dry  LRI1 LRS1 0.98 7.00 
8 0.10 1200 Dry  LRI1 LRS2 0.62 4.00 
1 0.05 500 CCA LRI2 LRS1 2.94 16.80 
1 0.05 500 CCA LRI2 LRS2 3.00 16.20 
2 0.05 1200 CCA LRI2 LRS1 1.31 7.20 
2 0.05 1200 CCA LRI2 LRS2 3.95 18.00 
3 0.10 500 CCA LRI2 LRS1 1.20 8.70 
3 0.10 500 CCA LRI2 LRS2 2.11 11.50 
4 0.10 1200 CCA LRI2 LRS1 0.13 1.50 
4 0.10 1200 CCA LRI2 LRS2 2.91 15.20 
5 0.05 500 Dry  LRI2 LRS1 1.24 6.80 

Figure 4. The experimental set-up.

3.5. Analysis and Discussion of the Results

After performing the eight re-drilling tests, surface roughness measurements were made in each
hole in the three plates (entry and exit zones). The values of the arithmetical mean roughness (Ra) and
the average maximum height (Rz) were calculated (in micrometers) and are given in Table 5.

Table 5. The arithmetical mean roughness (Ra) and the average maximum height (Rz) obtained during
the measurement tests.

No. f (mm/rev) N (rpm) C LRI LRS Ra (µm) Rz (µm)

1 0.05 500 CCA LRI1 LRS1 0.35 2.70
1 0.05 500 CCA LRI1 LRS2 0.81 4.30
2 0.05 1200 CCA LRI1 LRS1 1.06 6.10
2 0.05 1200 CCA LRI1 LRS2 1.23 7.20
3 0.10 500 CCA LRI1 LRS1 1.27 8.50
3 0.10 500 CCA LRI1 LRS2 1.31 7.00
4 0.10 1200 CCA LRI1 LRS1 1.03 6.40
4 0.10 1200 CCA LRI1 LRS2 1.33 7.20
5 0.05 500 Dry LRI1 LRS1 1.22 6.90
5 0.05 500 Dry LRI1 LRS2 0.19 2.20
6 0.05 1200 Dry LRI1 LRS1 0.61 4.60
6 0.05 1200 Dry LRI1 LRS2 0.73 5.70
7 0.10 500 Dry LRI1 LRS1 0.73 5.40
7 0.10 500 Dry LRI1 LRS2 0.48 3.60
8 0.10 1200 Dry LRI1 LRS1 0.98 7.00
8 0.10 1200 Dry LRI1 LRS2 0.62 4.00
1 0.05 500 CCA LRI2 LRS1 2.94 16.80
1 0.05 500 CCA LRI2 LRS2 3.00 16.20
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Table 5. Cont.

No. f (mm/rev) N (rpm) C LRI LRS Ra (µm) Rz (µm)

2 0.05 1200 CCA LRI2 LRS1 1.31 7.20
2 0.05 1200 CCA LRI2 LRS2 3.95 18.00
3 0.10 500 CCA LRI2 LRS1 1.20 8.70
3 0.10 500 CCA LRI2 LRS2 2.11 11.50
4 0.10 1200 CCA LRI2 LRS1 0.13 1.50
4 0.10 1200 CCA LRI2 LRS2 2.91 15.20
5 0.05 500 Dry LRI2 LRS1 1.24 6.80
5 0.05 500 Dry LRI2 LRS2 1.30 6.80
6 0.05 1200 Dry LRI2 LRS1 1.88 11.20
6 0.05 1200 Dry LRI2 LRS2 0.51 4.00
7 0.10 500 Dry LRI2 LRS1 0.87 5.10
7 0.10 500 Dry LRI2 LRS2 0.33 2.40
8 0.10 1200 Dry LRI2 LRS1 1.66 8.40
8 0.10 1200 Dry LRI2 LRS2 1.70 9.80
1 0.05 500 CCA LRI3 LRS1 0.48 4.00
1 0.05 500 CCA LRI3 LRS2 0.59 3.40
2 0.05 1200 CCA LRI3 LRS1 0.64 4.00
2 0.05 1200 CCA LRI3 LRS2 0.56 3.50
3 0.10 500 CCA LRI3 LRS1 0.56 3.20
3 0.10 500 CCA LRI3 LRS2 0.78 5.10
4 0.10 1200 CCA LRI3 LRS1 1.13 6.10
4 0.10 1200 CCA LRI3 LRS2 0.92 5.90
5 0.05 500 Dry LRI3 LRS1 0.34 2.40
5 0.05 500 Dry LRI3 LRS2 0.67 6.50
6 0.05 1200 Dry LRI3 LRS1 0.53 3.50
6 0.05 1200 Dry LRI3 LRS2 0.63 3.80
7 0.10 500 Dry LRI3 LRS1 0.46 2.80
7 0.10 500 Dry LRI3 LRS2 0.42 3.60
8 0.10 1200 Dry LRI3 LRS1 0.59 3.80
8 0.10 1200 Dry LRI3 LRS2 0.53 3.90

Initially, a descriptive method was used to analyze the Ra and Rz values. The obtained results are
separated into Tables 6 and 7. Tables 6 and 7 give the values of Ra and Rz, respectively, in each plate
(both in the entry and exit zones of the holes).

Table 6. Values of Ra in each plate at the entry and at the exit zones of the holes.

No. F (mm/rev) N (rpm) C
Ra (µm)

LRI1 LRI2 LRI3
LRS1 LRS2 LRS1 LRS2 LRS1 LRS2

1 0.05 500 CCA 0.35 0.81 2.94 3.00 0.48 0.59
2 0.05 1200 CCA 1.06 1.23 1.31 3.95 0.64 0.56
3 0.10 500 CCA 1.27 1.31 1.20 2.11 0.56 0.78
4 0.10 1200 CCA 1.03 1.33 0.13 2.91 1.13 0.92
5 0.05 500 Dry 1.22 0.19 1.24 1.30 0.34 0.67
6 0.05 1200 Dry 0.61 0.73 1.88 0.51 0.53 0.63
7 0.10 500 Dry 0.73 0.48 0.87 0.33 0.46 0.42
8 0.10 1200 Dry 0.98 0.62 1.66 1.70 0.59 0.53
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Table 7. Values of Rz in each plate at the entry and exit zones of the holes.

No. F (mm/rev) N (rpm) C
Rz (µm)

LRI1 LRI2 LRI3
LRS1 LRS2 LRS1 LRS2 LRS1 LRS2

1 0.05 500 CCA 2.70 4.30 16.80 16.20 4.00 3.40
2 0.05 1200 CCA 6.10 7.20 7.20 18.00 4.00 3.50
3 0.10 500 CCA 8.50 7.00 8.70 11.50 3.20 5.10
4 0.10 1200 CCA 6.40 7.20 1.50 15.20 6.10 5.90
5 0.05 500 Dry 6.90 2.20 6.80 6.80 2.40 6.50
6 0.05 1200 Dry 4.60 5.70 11.20 4.00 3.50 3.80
7 0.10 500 Dry 5.40 3.60 5.10 2.40 2.80 3.60
8 0.10 1200 Dry 7.00 4.00 8.40 9.80 3.80 3.90

From the Ra and Rz values given in Tables 6 and 7, the graphics of Figure 5 were drawn. Figure 5
shows the normal distribution of Ra (left column) and Rz (right column) with respect to feed rate, f
(mm/rev), (a) Ra and (b) Rz; spindle speed, N (rpm), (c) Ra and (d) Rz; type of cooling system, C, (e) Ra
and (f) Rz; location relative to the insert, LRI, (g) Ra and (h) Rz; and location relative to the specimen,
LRS, (i) Ra and (j) Rz.
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Taking into account that a good behavior of the results is considered when the obtained values
are concentrated in the interval [0.8 µm; 1.6 µm] given by the standard [121], a first approach to the
analysis can be made by observing data collected in Tables 6 and 7 and graphics from Figure 5. Thus,
it was possible to affirm that Ra and Rz had a similar behavior for the cutting parameters; however,
they were perhaps slightly better for high feed rates (f = 0.10 mm/rev) and dry machining and they
were very similar for both tested values of the spindle speed (perhaps slightly better for low values
N = 500 rpm). Regarding the location relative to the insert, in both magnesium plates, Ra and Rz
were better than in the aluminum plate. Also, when comparing the results of the first and the last
magnesium plates, the results were lower for the latter (LRI3). However, LRI1 was considered as better
since the surface roughness values were closer to the standard values used in the aeronautic sector
(between 0.8 µm and 1.6 µm) [121]. Finally, regarding the location relative to the specimen, the results
were lower at the entry of the holes than at the exit.

The values from Tables 6 and 7 are plotted in Figures 6 and 7, respectively, revealing possible
combinations of parameters that could be used for repairing hybrid parts by re-drilling. Figure 8 plots
the Ra and Rz values obtained in the trials and collected in Table 5. All of them were inside of the usual
upper and lower limits given in the chart of conversion relations between Ra and Rz, according to DIN
47 [125].
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Observing the Ra and Rz values in Figures 6 and 7, we see that, for the aluminum plate, the
roughness values were higher than for the magnesium plate, especially at the exit of the holes and when
using cold compressed air as the cooling system. Therefore, it seems reasonable to select aluminum as
the more critical material when establishing the cutting parameters. As the results were better at the
entry of the holes, it would perhaps be possible to improve the results by modifying the geometry
of hybrid component, for example, by searching for the adequate proportions of the thicknesses of
the combined materials. On the other hand, in the second plate of magnesium, most of the surface
roughness values (except the obtained one for f = 0.05 mm/rev, N = 1200 rpm, and C = CCA) were
lower than those established in the design requirement standards. Therefore, roughness values might
be improved by drilling halfway, turning the hybrid component, and then continuing to drill from the
opposite side.

Reviewing the surface roughness values at the entry of the aluminum holes (Table 6 column LRI2,
LRS1), it can be seen that test numbers 2, 3, 5, and 7 presented values within the range of the values
given by the standard (0.8 µm < Ra < 1.6 µm) [121]. Among them, test numbers 2 and 3 were within
the same range for the first magnesium plate; test number 5 could be an option if the magnesium plates
were about half as thick, since the LRI1 had values within such an interval; test number 7 indicated
room for improvement because the roughness value of the aluminum was close to the lower limit of the
roughness required in the aeronautic sector (0.8 µm). In fact, comparing the roughness values obtained
in test number 7 with those from test number 8, we propose that a new parameter combination is
possible by selecting a spindle speed equal to 1000 rpm or near this value; this would also increase the
feed speed, decrease the machining time, and, consequently, improve the efficiency of the process.

In addition, an ANOVA was performed to identify the factors that influence the variation of
the response variables, Ra and Rz. To apply an ANOVA, it is necessary that the variables meet three
conditions: (1) each data group must be independent, (2) the results obtained for each group must
follow a normal distribution (although a breach of this assumption is supported when the distribution
is symmetric), and (3) the variances of each data group must not differ significantly (homoscedasticity).

Using the data extracted directly from the experiment, the Ra and Rz values did not follow a
normal distribution (Shapiro–Wilk test p-value < 0.05). Therefore, the data were processed using
logarithmic transformation, maintaining its order but softening the effect of outliers.
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By this approach, normally distributed LnRa and LnRz values (Shapiro–Wilk test p-value > 0.05)
were obtained (Figure 9). In addition, the condition of homoscedasticity was also fulfilled (Levene
statistic, p-value > 0.05), and independent data groups had a similar number of cases (Table 8). In the
analysis, interactions up to the third order were considered, and successive iterations were performed
until all values were significant. In each iteration, the statistically less significant effect was excluded if
it had a p-value greater than 0.05. Tables 9 and 10 give the outcome of the first and the last ANOVA over
LnRa, and Tables 11 and 12 collect the outcome of the first and the last ANOVA over LnRz, respectively.

Materials 2020, 13, x FOR PEER REVIEW 13 of 22 

 

within the same range for the first magnesium plate; test number 5 could be an option if the 
magnesium plates were about half as thick, since the LRI1 had values within such an interval; test 
number 7 indicated room for improvement because the roughness value of the aluminum was close 
to the lower limit of the roughness required in the aeronautic sector (0.8 µm). In fact, comparing the 
roughness values obtained in test number 7 with those from test number 8, we propose that a new 
parameter combination is possible by selecting a spindle speed equal to 1000 rpm or near this value; 
this would also increase the feed speed, decrease the machining time, and, consequently, improve 
the efficiency of the process. 

In addition, an ANOVA was performed to identify the factors that influence the variation of the 
response variables, Ra and Rz. To apply an ANOVA, it is necessary that the variables meet three 
conditions: (1) each data group must be independent, (2) the results obtained for each group must 
follow a normal distribution (although a breach of this assumption is supported when the 
distribution is symmetric), and (3) the variances of each data group must not differ significantly 
(homoscedasticity). 

Using the data extracted directly from the experiment, the Ra and Rz values did not follow a 
normal distribution (Shapiro–Wilk test p-value < 0.05). Therefore, the data were processed using 
logarithmic transformation, maintaining its order but softening the effect of outliers.  

By this approach, normally distributed LnRa and LnRz values (Shapiro–Wilk test p-value > 0.05) 
were obtained (Figure 9). In addition, the condition of homoscedasticity was also fulfilled (Levene 
statistic, p-value > 0.05), and independent data groups had a similar number of cases (Table 8). In the 
analysis, interactions up to the third order were considered, and successive iterations were performed 
until all values were significant. In each iteration, the statistically less significant effect was excluded 
if it had a p-value greater than 0.05. Tables 9 and 10 give the outcome of the first and the last ANOVA 
over LnRa, and Tables 11 and 12 collect the outcome of the first and the last ANOVA over LnRz, 
respectively. 

  
(a) (b) 

Figure 9. Probability plots: (a) Ra and Rz; (b) LnRa and LnRz. 

Table 8. Homogeneity test of variances for factors f and N and response variables LnRa and LnRz. 

 f (mm/rev) N (rpm) 
 Levene Statistic Significance Levene Statistic Significance 

LnRa 0.30 0.59 0.58 0.46 
LnRz 0.21 0.65 0.13 0.72 

 

  

Figure 9. Probability plots: (a) Ra and Rz; (b) LnRa and LnRz.

Table 8. Homogeneity test of variances for factors f and N and response variables LnRa and LnRz.

f (mm/rev) N (rpm)

Levene Statistic Significance Levene Statistic Significance

LnRa 0.30 0.59 0.58 0.46
LnRz 0.21 0.65 0.13 0.72

Table 9. Outcome of the first iteration for the ANOVA over LnRa.

Source DF * Sum of Squares Mean Square F-value p > F

Corrected Model 23 13.037 0.567 1.415 0.202
Intercept 1 1.486 1.486 3.709 0.066

LRI 2 4.983 2.491 6.217 0.007
N 1 0.306 0.306 0.764 0.391
f 1 0.010 0.010 0.025 0.875
C 1 1.882 1.882 4.697 0.040

LRI × N 2 0.365 0.183 0.456 0.639
LRI × f 2 1.766 0.883 2.203 0.132
LRI × C 2 0.070 0.035 0.087 0.917

N × f 1 0.002 0.002 0.006 0.938
N × C 1 0.306 0.306 0.764 0.391
f × C 1 0.003 0.003 0.008 0.929

LRI × N × f 2 0.368 0.184 0.459 0.638
LRI × N × C 2 0.801 0.401 1.000 0.383
LRI × f × C 2 0.906 0.453 1.130 0.340
N × f × C 1 0.576 0.576 1.437 0.242

LRI × N × f × C 2 0.694 0.347 0.865 0.434
Error 24 9.617 0.401 – –
Total 48 24.141 – – –

Corrected Total 47 22.654 – – –

* DF, degrees of freedom.
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Table 10. Outcome of the last iteration for the ANOVA over LnRa.

Source DF * Sum of Squares Mean Square F-value p > F

Corrected Model 5 6.935a 1.387 3.706 0.007
Intercept 1 1.486 1.486 3.971 0.053

LRI 2 4.983 2.491 6.656 0.003
C 1 1.882 1.882 5.029 0.030

Error 42 15.720 0.374 – –
Total 48 24.141 – – –

Corrected Total 47 22.654 – – –

* DF, degrees of freedom.

Table 11. Outcome of the first iteration for the ANOVA over LnRz.

Source DF * Sum of Squares Mean Square F-value p > F

Corrected Model 23 8.726a 0.379 1.600 0.130
Intercept 1 137.220 137.220 578.50 0.000

LRI 2 3.673 1.836 7.742 0.003
C 1 0.963 0.963 4.061 0.055
f 1 0.009 0.009 0.039 0.845
N 1 0.150 0.150 0.633 0.434

LRI × C 2 0.190 0.095 0.402 0.674
LRI × f 2 1.027 0.514 2.165 0.137
LRI × N 2 0.172 0.086 0.363 0.699

C × f 1 0.014 0.014 0.057 0.813
C × N 1 0.232 0.232 0.978 0.332
f × N 1 0.011 0.011 0.048 0.828

LRI × C × f 2 0.490 0.245 1.034 0.371
LRI × C × N 2 0.840 0.420 1.770 0.192
LRI × f × N 2 0.381 0.190 0.803 0.460
C × f × N 1 0.311 0.311 1.310 0.264

LRI × C × f × N 2 0.263 0.131 0.553 0.582
Error 24 5.693 0.237
Total 48 151.639

Corrected Total 47 14.419

* DF, degrees of freedom.

Table 12. Outcome of the last iteration for the ANOVA over LnRz.

Source DF * Sum of Squares Mean Square F-value p > F

Corrected Model 5 4.826 0.965 4.226 0.003
Intercept 1 137.22 137.220 600.78 0.000

LRI 2 3.673 1.836 8.040 0.001
C 1 0.963 0.963 4.217 0.046

Error 42 9.593 0.228
Total 48 151.63

Corrected Total 47 14.419

* DF, degrees of freedom.

Taking into account the results shown in Tables 10 and 12, we conclude that the most influential
factors, in both cases, were the location relative to the insert (LRI) and the type of cooling system (C),
and that there were no interactions among factors with influence.

Considering the re-drilling surface roughness variability of hybrid Mg–Al–Mg components
explained by the statistically significant effect obtained from the ANOVA, the percentage of variability
attributed to each factor is shown in Table 13, and the contribution of each effect was obtained as the
percentage of the sum of squares values of each significant effect relative to the sum of squares of all
significant effects.
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Table 13. Percentage variability of the statistically significant effects obtained from ANOVA.

Source
Ra Rz

Sum of Squares Variability Percentage Sum of Squares Variability Percentage

LRI 5.0 72.6% 3.7 79.2%
C 1.9 27.4% 1.0 20.8%

Total 6.9 100% 4.6 100%

4. Conclusions

This work focused on the maintenance and repair of holes made of hybrid Mg–Al–Mg components
by drilling, using two sustainable cooling techniques: dry machining and cold compressed air.
The aeronautic and aerospace sectors were selected as relevant applications. In such sectors, the pieces
have strict design requirements for surface roughness (0.8 µm < Ra < 1.6 µm). Ra and Rz were taken as
response variables. From our analyses, we propose that Ra and Rz values have similar behaviors and
they exhibit the following characteristics:

� They are better for high feed rates and dry machining.
� They are very similar for both tested values of spindle speed, although perhaps slightly better for

low values.
� They are, regarding the location relative to the insert, better in both magnesium plates than in

the aluminum plate; also, when comparing the results of the first and the last magnesium plate,
the results were lower for LRI3, yet the values for LRI1 were considered better since the surface
roughness values were closer to the aeronautic industry standard.

� They display, for the location regarding specimen, better behavior at the entry of the holes than at
the exit.

� They are higher in the plate of aluminum than in the magnesium one, particularly at the exit of the
holes and, in a more pronounced way, using cold compressed air as a cooling system. Therefore,
aluminum is considered a more valuable material when selecting the cutting parameters. Also,
as the results are better (lower values) at the entry of the holes than at the exit, it will perhaps be
possible to improve the results by modifying the geometry of the hybrid component, for example,
by searching for the adequate thicknesses among the different combined materials.

� They are lower, in most cases, in the second plate of magnesium than the established standard.
Therefore, the process can be influenced by the drilling direction, and it could be improved by
drilling halfway, turning the part, and drilling again from the opposite side.

In addition, from the ANOVA analysis, we found that the factors that influence the response
variables Ra and Rz are location relative to the insert and type of cooling system, with percentages of
influence of 72.6% and 27.4%, respectively, for Ra, and 79.2% and 20.8%, respectively, for Rz.

With this work, we showed that it is possible to simultaneously repair
magnesium–aluminum–magnesium multi-material components and parts made of aluminum and
magnesium (separately) but assembled to form a higher component using sustainable cooling
systems (dry machining). This approach reduces the time and cost associated with the assembly and
disassembly of these types of components during maintenance or repair.

In conclusion, we propose three ways to optimize (or at least improve) the process: (1) using
different parameters values (for example, higher values of the spindle speed that increase the efficiency
of the process); (2) designing a hybrid component with new proportions of the thicknesses of the
materials combined; (3) applying other drilling sequences (e.g., firstly drilling halfway and then turning
the part and drilling from the opposite side).
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