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Abstract: Multi-material co-extrusion is a complex thermo-mechanical forming process used to obtain 

bimetallic billets. Its complexity is due to the combination of diffusion phenomena in the interface 

of both materials together with the high temperature and pressure generated and the different flow 

stress characteristics created by the joining of dissimilar materials. Accordingly, the selection of 

optimal process parameters becomes key to ensure process feasibility. In this work, a comparison 

among different multi-criteria decision making (MCDM) methodologies, together with different 

weighting methods, were applied to the simulation results by using DEFORM3D© software to select 

the optimal combination of process parameters to fulfil the criteria of minimum damage, extrusion 

force, and tool wear, together with the maximum reduction in the average grain size. 
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1. Introduction 

One of the main problems that arises during part design processes involves balancing 

weight reduction and the fulfillment of in-service requirements. This problem is especially 

critical in industries such as aerospace, where the parts work under severe conditions and 

the reduction of weight is key to obtain the desired performance of the vehicle. Multi- 

material forming allows designers to combine the mechanical properties of dissimilar 

materials being the co-extrusion process one of the most highlighted. 

Two of the most widely used alloys in the aerospace and automotive industries are 

titanium alloys, which present excellent mechanical and physical–chemical properties, as 

well as a good relationship between strength and weight and high corrosion resistance [1], 

and magnesium alloys, which possess low density and good specific strength [2]. 

Several studies about the application of multi-material forming processes using these 
two alloys have been performed over the years. Among those which can be highlighted 

are the study by Gall et al. [3], which performed Finite Element Method (FEM) simulation 
together with experiments on Al–Mg billets into hollow profiles during a bimetallic co- 

extrusion process. Negendanka et al. [4] studied the effect of the die angle on the formation 
of the diffusion layer during co-extrusion of a bimetallic billet composed by an Mg-core 
and Al-sleeve. Lehmann et al. [5], by experimenting with hydrostatic, coextruded Al–Mg 

compounds. However, there are very few studies that explore the combination of titanium 
and magnesium alloys together. Some of them are, for example, those carried out by 

Fernández et al. [6,7], who applied ANOVA to determine the influence of the different 

process parameters together with the effect of the selection of die material on extrusion 
force and damage during co-extrusion of a Ti6Al4V-AZ31B bimetallic billet. 
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In order to achieve the maximum productivity and the highest performance, proper 

selection of the process parameters becomes a significant task. Due to the complexity and 

the number of variables involved, multi objective optimization presents the best approach 

to obtain a compromise solution for this problem. However, the wide range of Multi- 

Criteria Decision Making (MCDM) methods, each one with its own pros and cons, makes 

its choice the first obstacle to overcome, even more when different results can be obtained 

when applied to the same problem because of the different methods used to determine the 

weights, scale the objectives, and so on. 

The first MCDM method was applied by Pareto in 1896 [8] with his famous 80/20 principle. 

Another example is Saaty in 1977 [9], who used multi-criteria models to solve problems with 

conflicting goals. Since 1980, several MCDM methods have been developed and applied 

to support decision-making in different areas such as supply chain managing contract 

selection [10], manufacturing process selection [11,12], and material selection [13,14]. 

From a literature review, is possible to find several examples of applications and 

even comparisons among MCDM methods regarding the optimization of manufacturing 

process parameters [15–17], but there is a lack of studies which examine the step before 

and compare the different weighting methods [18–21] with the MCMD methods, and their 

effects on the results obtained, being that most of these studies focused on the TOPSIS 

method [22–25]. 

This study develops a methodology of comparison between three weighting methods 

(AHP, Entropy, and Standard Deviation) and their influence on four different MCDM 

methods (ARAS, TOPSIS, VIKOR, and COPRAS) when applied to a multi-metallic co- 

extrusion manufacturing process to obtain the optimal parameters under the principle of 

minimizing the extrusion force, damage, die wear, and grain size. The results of this paper 

determine the best combination between weighting methods and MCDM, additionally 

proving that a compromise solution which brings together criteria as disparate as extrusion 

force, damage, tool wear, and grain size can be reached. 

2. Materials and Methods 

2.1. Materials, Geometrical Dimensions and Process Parameters 

The materials used in this study are a cylindrical sleeve and core made of a titanium 

alloy UNS R56400 (Ti6Al4V) and magnesium alloy UNS M11211 (AZ31B), respectively. 

Figure 1 shows the bimetallic cylinder co-extrusion set up with the initial dimensions. 
 

Figure 1. Bimetallic co-extrusion set up and initial billet dimensions. 
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Chemical compositions, along with the physical and mechanical properties, are shown 

in Tables 1–4 for the aforementioned materials: 

Table 1. Chemical composition of titanium alloy Ti6Al4V [26]. 
 

Ti Al V Fe C O N H 
(wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) (wt.%) 

Bal. 5.5–6.5 3.5–4.5 0.25 0.08 0.13 0.040 0.012 

 
Table 2. Chemical composition of magnesium alloy AZ31B [27]. 

 

Mg 
(wt.%) 

Al 
(wt.%) 

Zn 
(wt.%) 

Mn 
(wt.%) 

Si 
(wt.%) 

Cu 
(wt.%) 

Ca 
(wt.%) 

Fe 
(wt.%) 

Ni 
(wt.%) 

97 2.5–3.5 0.6–1.4 0.20 0.1 0.05 0.04 0.005 0.005 

 
Table 3. Chemical composition of H13 steel [28]. 

 
 

C 
(wt.%) 

Mn 
(wt.%) 

Si 
(wt.%) 

Cr 
(wt.%) 

Mo 
(wt.%) 

Ni (wt.%) 
 

 

0.32–0.45 0.2–0.5 0.80–1.20 4.75–5.50 1.10–1.75 0.30 max 

 

Table 4. Physical and mechanical properties of the titanium alloy Ti6Al4V and magnesium alloy 

AZ31B [26–29]. 
 

Property AZ31B Ti6Al4V H13 

Density (g/cm3) 1.74 4.46 7.78 
Tensile strength (MPa) 260 895 1990 
Yield strength (MPa) 200 828 1650 

Elastic modulus (GPa) 44.80 110 210 

Poisson’s ratio 0.35 0.31 0.3 

 
The parameters affecting the extrusion process considered for this study were the following: 

• Ram speed (mm/s) and temperature (◦C) as process parameters. 

• Die semi-angle (◦), shear friction factor, and extrusion ratio (A0/Af) as tool parameters. 

• Shape factor (H0/D0) and diameter ratio (D0/d0) as geometric parameters. 

Where, A0 and Af are the initial and final areas of the cross-section of the billet, D0 

and d0 are the initial external diameter and internal diameter of the sleeve, and H0 is the 

initial billet height. 

2.2. Finite Element Modeling and Simulation Preparation 

Commercial software DEFORM3D© (v11.2) [30] was used to perform the finite element 

simulations. 

The ram, container, holder, and blocker (extrusion tooling) were modeled as rigid 

objects. The bimetallic cylinders were modeled as an assembly between two plastic objects 

(sleeve and core). The die was modeled as an elastic object. All parts were meshed with 

7000 tetrahedral elements. 

In order to reduce the computation time and the size of the database files, and con- 

sidering the axial symmetry of the co-extrusion process, only one quarter of the problem 

was modeled. 

Ti6Al4V was modeled by using Johnson–Cook constitutive equations [31], and for 

modeling AZ31B, the exponential model defined by Wen-juan et al. (2012) [32] was used. 

The normalized Cockcroft and Latham criterion [33], together with the hydrostatic 

stress criterion (HSC) [34–36], are used to evaluate the damage factor on the extrudate. 
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Finally, in order to evaluate the wear of the die and the dynamic recrystallization the 

Archad’s model [37–39] and the Johnson–Melh–Avrami–Kolmogorov (JMAK) model [40,41], 

respectively, were implemented in the simulations. 

2.3. Weighting Methods 

The weights of the criteria show their importance. These methods are clustered in three 
categories. Subjective weighting methods are when the criteria weights are determined 

dependent of the preferences of decision makers, stakeholders, customer requirements, 

etc. Objective weighting methods are based on initial data or decision matrix with no 

involvement of the actors mentioned before. Finally, hybrid weighting methods are a 

combination of subjective and objective methods, taking features of both methods. Figure 2 

shows the weighting methods classification, as well as some example of each. 

 

Figure 2. Weighting methods classification. 

2.3.1. AHP Method 

Analytic Hierarchy Process (AHP) was produced by Thomas L. Saaty in the 1970s [42,43]. 

It is a structured technique for organizing and analysing complex decisions, based on 

mathematics and psychology. In this study, AHP is applied to assign weights to the 

different criteria (extrusion force, damage, tool wear, Ti6Al4V grain size, and AZ31B 

grain size). 

A paired comparison matrix has to be generated by assigning values based on the 

9-point Saaty rating scale to the different criteria, as shown in Table 5: 

 
Table 5. The Saaty rating scale [9].  

Scale Numerical Rating Reciprocal 

Extremely preferred 9 1/9 
Very strong to extreme 8 1/8 
Very strongly preferred 7 1/7 
Strongly to very strongly 6 1/6 
Strongly preferred 5 1/5 
Moderately to strongly 4 1/4 
Moderately preferred 3 1/3 
Equally to moderately 2 1/2 

Equally preferred 1 1 

 
With these values, the n*n pairwise matrix A is generated, as follows: 
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· · · 

N  = 

∑
 

  

A∗ = 
 
∑n  1 ai1 · · · ∑n  1 ain

  
=[A1∗ . . . A∗n] 

 

  

 
 

 

 
1 a12  a1n 

a21  1 . . . a2n 
. .  . . . . . .  

an1 an2 · · · 1 

The values aij represent the strength of agreement of ith element respect to jth element. 

Being a condition that all the values in the diagonal takes value 1 and aij = 1/aji, where 

i, j = 1, 2 . . . n. 

The next step is to obtain the normalized matrix. The Equation (1) is applied: 

     aij  ij 
 
f or i and j = 1 . . . n. (1) 

 
Obtaining this matrix: 

n 
i=1 aij 

 

i= i= 

 
N12 N12 · · · N1n  

N = ........................................  

Nn1 Nn2 · · · Nnn 

A first check can be done at this point to ensure that the method is well applied. If 

the summation of all the elements of each column is equal to 1 then the normalized matrix 

is correct. 

Then, a column matrix composed by the summation of the elements of each row of 

the normalized matrix can be obtained: 
 

j 
j=1 

N1j  N1
∗  

N∗ = 

∑n 
. 

Nnj 
 =  . 

Nn
∗ 

j=1 

Finally, the weights for each criteria are obtained by using Equation (2): 

W = 
Nj
∗

 
 

 

 

 
(2) 

j ∑ Nj
∗

 

A final check is needed to validate the consistency of the measurement scales during 

the assessment process used to produce matrix A. The recommendation is to calculate the 

maximal eigenvalue λmax, as shown in Equation (3): 

λmax = ∑(Ai ∗ Wj) f or i and j = 1 . . . n. (3) 

The consistency index (CI) can be calculated accordingly with Equation (4): 

CI = 
λmax − n 

n − 1 

where, n is the dimension of pairwise matrix. 

 

(4) 

The consistency ratio (CR) is used as a guidance value to check for conformity. 

Equation (5) shows how it can be obtained: 

CR = 
CI

 
RI 

 
(5) 

where, RI is the random index, which is obtained from Table 6, depending on the dimension 

(n) of our pairwise matrix: 

A = 

∑ 
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p   = 

   
− ∗ ∗ 

∑ 

         
max  x

  − min  xij   

 ij 

    
−ij  ij

F   =ij
 

 
x11 · · · x1n  

 
x11 · · · x1n  

 

 

 

 
Table 6. Random index values as function of dimension of our pairwise matrix [9]. 

 

n 1 2 3 4 5 6 7 8 

CI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 

 
The threshold for the CR value is 0.1. If this condition is fulfilled, then the importance 

degree evaluation criteria is assumed to be rational. 

2.3.2. Entropy Method 

The entropy method [44] is classified within the category of objective weighting 

methods. It was first proposed by C.E. Shannon in 1948 and is applicable when the data 

of the decision matrix are known. Entropy is a measure of randomness and disorder 

in the universe. 

First of all, it is necessary to perform the normalization of the arrays of the decision 

matrix (performance indices) to obtain the project outcomes pij using Equation (6). Being 

the decision matrix D: 

 

D = .............................  

xm1 · · · xmn 

     xij  ij 

 
 

(6) 
m 
i=0 xij 

where, n is the number of criteria and m corresponds with the number of alternatives. 

Starting from this normalized matrix, the entropy measure of project outcomes is 

obtained by means of Equation (7). 

 
 

 
with k = 1/ln (m). 

 
m 

Ej = k ∑ pij    ln  pij (7) 
i=1 

The objective weight-based definition is given by Equation (8). 

w 
  1 − Ej   (8) 

j = n 
j=1 

 
1 − Ej

 
 

 

2.3.3. Standard Deviation (SD) Method 

The SD method [45] is grouped as an objective weighting method and consists of 

establishing weights based on the standard deviations of the different alternatives from 

the target. 

In order to do that, a normalized matrix is created from the decision matrix D, taking 

into account the beneficial and non-beneficial criteria in accordance with Equation (9) for 

beneficial and (10) for non-beneficial. 

 

D = .............................  

xm1 · · · xmn 

x min x 

max
 

xij

 
− min

 
xij

 
 

Fij = 
max

 
xij

 
− xij 

where, n is the number of criteria and m the number of alternatives. 

 

 
(9) 

 

(10) 

∑ 
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∑ 

N  = 

ij 

    i=1  

m 

 
x11 · · · x1n  

 

 

 
Then SD is calculated, as shown in Equation (11): 

s

∑
m

 
 

Fij − F j

 2
 

 
 

 

where, Fj is the mean value of each column. 
Finally, weights are calculated for each criterion using Equation (12): 

     σj  W = 
 

(12) 
i j 

j=1 σj 

2.4. MCDM Methods 

MCDM methods can be classified in two main groups,  according to Hwang and 

Yoon (1981) [46]: Multi-attribute decision making (MADM) and Multi-objective decision 

making (MODM). 

MADM methods are used to solve discrete problems while MODM are applied to- 

wards the resolution of continuous problems. This study is focused on MADM. 

MADM can be also clustered depending on the initial information (determinist,  

stochastic, or uncertain) or depending on the groups of decision makers (single or several 

groups), but the most common classifications are the ones proposed by Hajkwociz–Collins 

(2007) [47] and De Brito–Evers (2016) [48]: 

• Scoring Methods (COPRAS). 

• Distance-based methods (VIKOR and TOPSIS). 

• Pair wise comparison methods (AHP). 

• Utility/Value methods (ARAS) 

2.4.1. ARAS 

The Additive Ratio Assessment (ARAS) [17,49] is a method used to select the best 

alternatives among those given by considering quantitative measurements and utility 

theory, which determines the relative efficiency. The weight criteria will be those obtained 

by the methods mentioned before (AHP, Standard Deviation, and Entropy). 

In the first step of this method, the definition of the beneficial and non-beneficial criteria 

of the objective functions is required. After this, the decision matrix can be produced using 

the following equation, where each column of the matrix represents one of the criteria to 

be evaluated: 

 

D = .............................  

xm1 · · · xmn 

where, m is the number of alternatives and n is the number of criteria. Typically, this 

decision matrix is not symmetrical because the number of criteria is less than the number 

of experimental cases performed. 

At this point, normalization is needed to continue, since the variety and unit of the 

output value differs from the others. By applying a normalization process, the original 

score is converted into a comparable score by means of Equation (13) for beneficial criteria, 

and by means of Equations (14) and (15) for non-beneficial criteria: 

     xij  ij 
 

(13) 
m 
i=0 

 

x∗ =
 1  

xij 

xij  

 
(14) 

∑ 

σj = (11) 
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∑ 

i 

q=ij  
x∑

 

 
x11 · · · x1n  

1 n j 

 

 
 

Nij 

xi
∗

j 

= m 

i=0 

 
xi
∗

j 

 
(15) 

The weight factor matrix (W) is obtained from the multiplication of the normalized 

value of N and its respective weight factor (previously obtained with AHP, Standard 

Deviation, and Entropy methods), as Equation (16) shows: 

Wij = Nij * Wj (16) 

In order to calculate the degree of utility, first it is necessary to get the optimality 

function (Si) for the ith alternative, according to Equation (17): 

n 

Si = ∑ Wi ; i = 0 . . . m. (17) 
j=1 

 

Finally, the degree of utility (Ki) is determined by the comparison made between 

each Si, with the most efficient one (S0) obtained in the previous step, as can be seen 

in Equation (18): 

K  = 
Si

 

S0 
(18) 

The alternatives are ranked by their value of Ki in an increasing sequence, with the 

highest value being the best alternative. 

2.4.2. TOPSIS 

TOPSIS [50,51] is the acronym for Technique for Order Preference by Similarity to 

Ideal Solution and is a MCDM method initially proposed by Hwang and Yoon in 1981. The 

concept behind this method is that the best option would be the one closest to the ideal 

solution, and at the same time, the most remote to the anti-ideal solution. 

The first step is to determine the objectives to identify the pertinent evaluation criteria 

and to define if the objective for each criterion is maximized or minimized. Then, a decision 

matrix (D) is formulated (same as in the ARAS method). 

 

D = .............................  

xm1 · · · xmn 

The method used to obtain the normalized matrix is slightly different from ARAS, as 

shown in Equation (19): 

R 
xij 

; i = 1 . . . m; j = 1 . . . n. (19) 
2 
ij 

 

To build the weight-normalized matrix, it is necessary to assign the weights previously 

calculated by the AHP, SDM, and Entropy methods to the different criteria and then 

multiply each element of the normalized matrix, as shown in Equation (20): 

Vij = wj ∗ Rij (20) 

Before obtaining the Euclidian distance with the ideal (A+) and anti-ideal (A−) solu- 

tions, it is required to determine which are the elements of these A+ and A−, depending on 
whether the criteria is to maximize (J) or minimize (J*), according to Equation (21): 

A+ = 
 

V+ . . . V+
} 

; Where V+ = 
  

max
  

Vij

   
i f e J; min 

  
Vij

   
i f e J∗} (21) 
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  }           

i 

b=1 

" #

∗b

 

fb
∗ − fb

−
 

i ∑j=1 j ij 

 
x11 · · · x1n  

 

 
 
 

A− = V1
− . . . Vn−  ; Where Vj

− = min Vij  i f e J; maxi   Vij   i f e J∗} 

Euclidian distance is obtained by Equations (22) and (23): 

S+ = 

r 
n       

  

V+ − V  
  2 

(22) 

S− = 

r 
n       

  

V− − V  
  2 

(23) 

 

with i = 1 . . . m. 

i ∑j=1 j ij 

Finally, to settle the relative closeness to the ideal solution, Equation (24) is used: 

C+ = 
Si
−

 
 

 
 
(24) i S+ + S− 

i i 

Now, based on the values obtained, sort the criteria from the highest C+ for the best 
i 

solution to the lowest C+ for the worst. 
 

2.4.3. VIKOR 

The VIKOR method [52,53] is a MCDM originally developed by Serafim Opricovic 

in 1980 and is an acronym for Serbian VIseKriterijumska Optimizacija I Kompromisno 

Resenje, which means Multi-criteria Optimization and Compromise Solution. 

This methodology is based on the same concept as TOPSIS, which assumes that a 

compromise solution is acceptable for conflict resolution. The difference of VIKOR in 

respect to TOPSIS is the addition of a validation step before the compromise solution is 

declared feasible. 

The method begins with the definition of the criteria to be evaluated and the deter- 

mination of whether the objective is to maximize or minimize each criterion. With this 

information, the decision matrix (D) is built. 

 

D = .............................  

xm1 · · · xmn 

At this point, the best fb
∗ and worst fb

− for each criterion is rated according to the 
values of the decision matrix. 

fb
∗ = max(xib) fb

− = min(xib) Whether the objective is to maximize the criteria. 

fb
∗ = min(xib) fb

− = max(xib) Whether the objective is to minimize the criteria. 
Where, b = 1 . . . m, with m being the number of criteria taken into account and 

i = 1 . . . n, where n is the number of the alternatives considered. 

Equations (25) and (26) are used to calculate the Utility measure (Sj) and Regret 
measure (Rj): 

Sj = ∑
m

 
W 

fb
∗ − fij 

(25) 

fb
∗ − fb

−
 

Rj = max

"

Wb ∗ 

" 
fb
∗ − fij 

## 

(26) 

where, Wb are the weight values obtained by the AHP, Entropy, and Standard Deviation 

methods explained before. 
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υ ∗a — υ  ∗( 

 ) 

     
∗S   = min  Sj 

     
∗R   = min  Sj 

— ≥ 

N  = 

j=1 

j=1 

 
x11 · · · x1n  

 

 

 
With these data, the index Q can be obtained by means of Equation (27): 

 
 

 
where: 

Q  = 
Sj − S∗ 

S− − S∗ 
+ 1 

Rj − R∗ 

R− − R∗ 

 

(27) 

S− = max
 
S j

 

R− = max
 
S j

 
 

υ is a parameter that represents the type of voting used during the process. The rule 

states that υ > 0.5 means “vote by majority rule”, υ = 0.5 “vote by consensus”, and υ < 0.5 

“with vote”. 

The best alternative solution is the one with the lowest Qa value, and it can be recom- 

mended if the following conditions are satisfied: 
The “acceptable advantage” condition means that Q(a”) Q(a′) DQ. With a” being 

the alternative with eth second position in the ranking list by Qa, and a′ the first one. DQ is 

defined by Equation (28): 

DQ =
 1 

 
(n − 1) 

(28) 

where, n is the number of alternatives. 

Finally, the “Acceptable stability in decision making” condition implies that the a’ 

alternative must also be the best ranked in Sj and/or Rj. If one of these conditions is not 

fulfilled, then a set of compromise solutions is proposed. 

2.4.4. COPRAS 

The COmplex PRoportional ASsessment [54,55] is a MCDM method developed by 

Zavadskas in 1994, which assumes direct and proportional dependences of the signif- 

icance and utility degree of the available alternatives under the presence of mutually 

conflicting criteria. 

It is a compensatory method, and as with TOPSIS and VIKOR, it also considers both 

the ideal and the ideal-worst solutions to solve the problem. 

COPRAS begins with the definition of the decision matrix (D), and the normalization 

of this D, according to Equation (29): 

 

D = .............................  

xm1 · · · xmn 

     xij  ij 

 
 

(29) 

 
where, m is the number of alternatives. 

m 
i=0 xij 

The weighted normalized decision matrix is obtained by multiplying Nij by the weights 

from the AHP, Entropy, and Standard Deviation methods, as Equation (30) shows: 

yij = Nij ∗ Wj (30) 

At this point, the beneficial and non-beneficial criteria need to be separated, and then 

they are summed, as indicated by Equations (31) and (32): 

S+i  = ∑
n

 

S−i  = ∑
n

 

y+ij (31) 

 

y−ij (32) 

With n being the number of criteria taken into account. 

∑ 
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∗i

 

 

 
Then, the relative significance of the alternatives is determined by Equation (33): 

Q S 
S−min ∗ ∑

m
 S−i  (33) 

i = +i + i=1 m 
 

S−i ∗ ∑i=1(S−min/S−i ) 

where, S−min  = min(S−i). 
Finally, the quantitative utility (Ui) is calculated by Equation (34) and the alternatives 

are sorted by the highest Ui percentage value. 

U   =  
  Qi 

100% (34) 
Qmax 

where, Qmax = max(Qi). 

2.5. Methodology 

A methodology to compare MCDM methods based on weight assignment to select the 

optimum process parameters values is presented in this paper. Both weighting and MCDM 

methods have been selected based on ease of application, results in earlier works, and their 

popularity. The weighting methods selected are AHP, Entropy, and Standard Deviation, 

while the MCDM methods are ARAS, TOPSIS, VIKOR, and COPRAS. The methodology 

steps are shown in Figure 3. 
 

Figure 3. Steps of the methodology. 

3. Results 

In this paper, a set of simulations of a multi-material co-extrusion process have been 

performed by using commercial software DEFORM3D© (v11.2), followed by application 

and comparison of diverse MCDM and weighting methods to establish the optimal process 

parameters. Table 7 and Figure 4 show the list of simulations carried out in the present 

work with the process parameters used and the results obtained by each of them. 
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Table 7. List of simulations with extrusion process parameters. 

 

Number of 
Simulation 

Temperature 
(◦ C) 

Die 
Semi-Angle (◦ ) 

Ram Speed 
(mm/s) 

Extrusion 
Ratio (Ao/Af ) Friction Billet Height 

(mm) 
Core Diameter 

(mm) 

1 350 30 2 1.78 0.10 20 6 
2 300 30 2 1.78 0.10 20 6 
3 400 30 2 1.78 0.10 20 6 
4 450 30 2 1.78 0.10 20 6 
5 350 15 2 1.78 0.10 20 6 
6 350 45 2 1.78 0.10 20 6 
7 350 60 2 1.78 0.10 20 6 
8 350 30 1 1.78 0.10 20 6 
9 350 30 3 1.78 0.10 20 6 

10 350 30 4 1.78 0.10 20 6 
11 350 30 2 1.44 0.10 20 6 
12 350 30 2 2.25 0.10 20 6 
13 350 30 2 1.78 0.05 20 6 
14 350 30 2 1.78 0.30 20 6 
15 350 30 2 1.78 0.50 20 6 
16 350 30 2 1.78 0.10 15 6 
17 350 30 2 1.78 0.10 25 6 
18 350 30 2 1.78 0.10 30 6 
19 350 30 2 1.78 0.10 20 4 
20 350 30 2 1.78 0.10 20 8 

 
 

Figure 4. Plot charts of the different co-extrusion criteria obtained during simulations. 

3.1. Weighting Methods 

In this section, the different weighting methods explained before are applied and compared. 

For the AHP method, the pairwise matrix is built, as shown in Table 8: 

 
Table 8. AHP pairwise matrix. 

 

Criteria 
Extrusion 

Force 
Damage Tool Wear 

Grain Average 
Size Ti 

Grain Average 
Size Mg 

Extrusion Force 1.00 0.33 5.00 3.00 3.00 
Damage 3.00 1.00 7.00 5.00 5.00 

Tool wear 0.20 0.14 1.00 0.33 0.33 
Grain average size Ti 0.33 0.20 3.00 1.00 3.00 

Grain average size Mg 0.33 0.20 3.00 0.33 1.00 
Total 4.86 1.87 19.00 9.66 12.33 
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In this pairwise matrix, the order of significance is found to be Damage > Extrusion 

force > Grain average size Ti > Grain average size Mg > Tool wear. The reasons are 

as follows: 

Damage is considered the most important factor due to the fact that a high value could 

mean a central burst or chevron cracking occurrence. In this case, a deeper analysis of 

the hydrostatic stress using the HSC has to be performed. 

Extrusion force is a factor that can limit the characteristics of the machine to be used. 

If a high value is required, a more complex machine is needed to perform the process. 

Grain average size is recommended to be as small as possible to enhance the mechani- 

cal properties of the final part. The results of simulation AZ31B show a smaller range of 

variation in the grain size, which is why Ti6Al4V is considered moderately preferred. 

Tool wear is an economic factor. The less wear in each extrusion, the longer the change 

time of the die. 

Then, the normalized matrix is obtained: 
 

0.20547945 0.17766497 0.26315789 0.31034483 0.24324324 
0.61643836 0.53299492 0.36842105 0.51724138 0.40540541 
0.04109589 0.07614213 0.05263158 0.03448276 0.02702703 
0.06849315 0.10659898 0.15789474 0.10344828 0.24324324 
0.06849315 0.10659898 0.15789474 0.03448276 0.08108108 

 

The weights are calculated from the normalized matrix and shown in Table 9: 

 
Table 9. AHP weights. 

 

Extrusion 
Force (kN) 

Die Wear 
Total (µm) Damage Grain Average 

Size Ti6Al4V (µm) 
Grain Average 

Size AZ31B (µm) 

In % 0.24 0.04 0.48 0.13 0.08 
24.00% 4.63% 48.81% 13.59% 8.97% 

 
Finally, the consistency ratio is calculated to verify the assumptions taken in the 

pairwise matrix. In order to do that, the following parameters are calculated: 

λ max = 5.38 

CI = 0.09 

RI = 1.12 

CR = 0.08 

The condition CR < 0.1 is fulfilled. 

For the Entropy method, the normalized matrix is: 
 

0.04238881 0.06597512 0.02842942 0.04546156 0.05055585 
0.04663699 0.06099129 0.02385686 0.07714065 0.04870302 
0.03916851 0.05496847 0.03936382 0.04628439 0.05293806 
0.03568236 0.06225345 0.04274354 0.04834148 0.05293806 
0.03976735 0.04418737 0.05109344 0.07714065 0.04579142 
0.05053058 0.03514114 0.02624254 0.04309591 0.05029116 
0.06410506 0.02586695 0.04234592 0.03342762 0.04764426 
0.04159751 0.05770154 0.02862823 0.07714065 0.05029116 
0.04230461 0.06371716 0.03240557 0.04628439 0.05055585 
0.04217691 0.06142081 0.03518887 0.04679866 0.05082054 
0.0419384 0.06847687 0.14274354 0.04062741 0.05134992 

0.06025291 0.02717757 0.03081511 0.04011314 0.05108523 
0.04062679 0.03013044 0.02326044 0.04628439 0.05055585 
0.06965068 0.02848820 0.03677932 0.04649010 0.05161461 
0.09860600 0.01949619 0.02067594 0.04443302 0.0518793 
0.04078153 0.02798574 0.03956262 0.04587298 0.05002647 
0.06235858 0.07319051 0.04512922 0.05044999 0.04949709 
0.05784159 0.06833866 0.1584493 0.04787863 0.04870302 
0.04885389 0.06853062 0.10735586 0.04690152 0.04446797 
0.03473095 0.05596188 0.04493042 0.04983286 0.05029116 

 

Then, the entropy array (Ej) is calculated: 

Ej = [0.98691712 0.97765503 0.92705489 0.99129917 0.99970911] 

The weights are presented in Table 10: 

• 

• 

• 

• 
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× 

 

 
Table 10. Entropy method weights. 

 
Extrusion 
Force (kN) 

 
Die Wear 

Total (µm) 

 
Grain Average 

Size Ti6Al4V (µm) 

 
Grain Average 

Size AZ31B (µm) 
 

 

0.11 0.19 0.62 0.07 2.47 10−3 

In % 11.15% 19.04% 62.15% 7.41% 0.25% 

 

For the SD method, the decision matrix is: 

 
 
 
 
 
 
 
 
 
 
 

 
Max 
Min 

 
The normalized matrix is obtained considering that all criteria are clustered as non- 

beneficial, because the objective is to minimize all these outcomes from the co-extrusion process. 
 

0.88011187 0.13437905 0.94372294 0.72470588 0.28125 
0.81360418 0.22719757 0.97691198 0.00 0.50 
0.93052748 0.33936631 0.86435786 0.70588235 0.00 
0.98510504 0.20369129 0.83982684 0.65882353 0.00 
0.92115229 0.54015284 0.77922078 0.00 0.84375 
0.75264777 0.70862940 0.95959596 0.77882353 0.3125 
0.54013161 0.88135139 0.84271284 1.00 0.625 
0.89250003 0.28846584 0.94227994 0.00 0.3125 
0.88143004 0.17643116 0.91486291 0.70588235 0.28125 
0.88342925 0.21919828 0.89466089 0.69411765 0.25 
0.88716326 0.08778657 0.11399711 0.83529412 0.1875 
0.6004392 0.8569424 0.92640693 0.84705882 0.21875 

0.90769727 0.80194843 0.98124098 0.70588235 0.28125 
0.45331185 0.8325334 0.88311688 0.70117647 0.15625 

0.00 1.00 1.00 0.74823529 0.125 
0.90527472 0.84189123 0.86291486 0.71529412 0.34375 
0.56747384 0.00 0.82251082 0.61058824 0.40625 
0.63818985 0.09036064 0.00 0.66941176 0.50 
0.7788973 0.08678554 0.37085137 0.69176471 1.00 

1.00 0.32086517 0.82395382 0.62470588 0.3125 

 

After calculating the standard deviation for each column, the following array is obtained: 

σ = [0.23896758 0.33516811 0.28284746 0.2810343 0.25080053] 

The resultant weights are shown in Table 11: 

 
Table 11. Standard Deviation method weights. 

 

Extrusion 
Force (kN) 

Die Wear 
Total (µm) Damage Grain Average 

Size Ti6Al4V (µm) 
Grain Average 

Size AZ31B (µm) 

0.17 0.24 0.20 0.20 0.18 
In % 17.21% 24.13% 20.37% 20.24% 18.06% 

 
The weighting process results comparison among these three methods is shown 

in Table 12: 

Damage 

74.99224 0.00027495 1.43 8.84 19.10 
82.50792 0.00025418 1.20 15.00 18.40 
69.29504 0.00022908 1.98 9.00 20.00 
63.12752 0.00025944 2.15 9.40 20.00 
70.35448 0.00018415 2.57 15.00 17.30 
89.39628 0.00014645 1.32 8.38 19.00 
113.4116 0.0001078 2.13 6.50 18.00 
73.59232 0.00024047 1.44 15.00 19.00 
74.84328 0.00026554 1.63 9.00 19.10 
74.61736 0.00025597 1.77 9.10 19.20 
74.19540 0.00028538 7.18 7.90 19.40 

106.59656 0.00011326 1.55 7.80 19.30 
71.874960 0.00012557 1.17 9.00 19.10 
123.22264 0.00011872 1.85 9.04 19.50 
174.44900 0.00008125 1.04 8.64 19.60 
72.14872 0.00011663 1.99 8.92 18.90 

110.32180 0.00030502 2.27 9.81 18.70 
102.33056 0.0002848 7.97 9.31 18.40 
86.42996 0.00028560 5.40 9.12 16.80 
61.44432 0.00023322 2.26 9.69 19.00 
174.4490 0.00030502 7.97 15.00 20.00 
61.44432 0.00008125 1.04 6.50 16.80 
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Table 12. Standard Deviation method weights. 

 
Extrusion 

 
Die Wear 

 
Grain Average 

Damage Size Ti6Al4V 

 
Grain Average 

Size AZ31B 
 

Force (kN) Total (µm) 
 (µm) (µm) 

AHP 24.00% 4.63% 48.81% 13.59% 8.97% 
Entropy 11.15% 19.04% 62.15% 7.41% 0.25% 

Standard Variation 17.21% 20.37% 24.13% 20.24% 18.06% 

 

3.2. MCDM Methods 

This section presents the results obtained after applying the MCDM methods explained 

in this paper. To avoid being redundant, only the numbers for weighting values obtained 

by AHP methods will be shown. For the Entropy and SD methods, only the final results 

will be presented. 

All the methods share the same Decision matrix (D): 
 

74.99224 0.000274950 1.43 8.84 19.10 
82.50792 0.000254180 1.20 15.00 18.40 
69.29504 0.000229080 1.98 9.00 20.00 
63.12752 0.000259440 2.15 9.40 20.00 
70.35448 0.000184150 2.57 15.00 17.30 
89.39628 0.000146450 1.32 8.38 19.00 
113.4116 0.000107800 2.13 6.50 18.00 
73.59232 0.000240470 1.44 15.00 19.00 
74.84328 0.000265540 1.63 9.00 19.10 
74.61736 0.000255970 1.77 9.10 19.20 
74.1954 0.000285376 7.18 7.90 19.40 

106.59656 0.000113262 1.55 7.80 19.30 
71.87496 0.000125568 1.17 9.00 19.10 

123.22264 0.000118724 1.85 9.04 19.50 
174.449 0.000081250 1.04 8.64 19.60 

72.14872 0.000116630 1.99 8.92 18.90 
110.3218 0.000305020 2.27 9.81 18.70 

102.33056 0.000284800 7.97 9.31 18.40 
86.42996 0.000285600 5.40 9.12 16.80 
61.44432 0.000233220 2.26 9.69 19.00 

 

The first MCDM method to be applied is ARAS. 

As explained before, all the criteria are considered non-beneficial; therefore, before 

calculating, the normalized matrix needs to be obtained xij
*: 

 
 
 
 
 
 
 
 
 
 

Optimal value 
 

 

With these values, the normalized matrix is obtained: 

(OV) 

0.01333471 3637.02491 0.6993007 0.11312217 0.05235602 
0.01212005 3934.21984 0.83333333 0.06666667 0.05434783 
0.01443105 4365.28724 0.50505051 0.11111111 0.05 
0.01584095 3854.45575 0.46511628 0.10638298 0.05 
0.01421374 5430.35569 0.38910506 0.06666667 0.05780347 
0.01118615 6828.26903 0.75757576 0.11933174 0.05263158 
0.00881744 9276.43785 0.46948357 0.15384615 0.05555556 
0.01358837 4158.52289 0.69444444 0.06666667 0.05263158 
0.01336125 3765.91097 0.61349693 0.11111111 0.05235602 
0.01340171 3906.70782 0.56497175 0.10989011 0.05208333 
0.01347792 3504.14891 0.13927577 0.12658228 0.05154639 
0.00938117 8829.08654 0.64516129 0.12820513 0.05181347 
0.01391305 7963.81244 0.85470085 0.11111111 0.05235602 
0.00811539 8422.8968 0.54054054 0.11061947 0.05128205 
0.00573233 12307.6923 0.96153846 0.11574074 0.05102041 
0.01386026 8574.1233 0.50251256 0.11210762 0.05291005 
0.00906439 3278.47354 0.44052863 0.10193680 0.05347594 
0.00977225 3511.23596 0.12547051 0.10741139 0.05434783 
0.01157006 3501.40056 0.18518519 0.10964912 0.05952381 
0.01627490 4287.79693 0.44247788 0.10319917 0.05263158 

0.0162749 12307.6923 0.96153846 0.15384615 0.05952381 
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OV 

 
The normalized weighted matrix is calculated by multiplying the weights obtained 

before by the normalized matrix. 

 
 
 
 
 
 
 
 
 
 
 

 
OV 

 
To calculate the degree of utility (Ki), it is necessary to obtain the optimality function (Si): 

 

16.1056049 
17.402993 
19.3000136 
17.0503101 
23.9677618 
30.1490479 
40.9174329 
18.3840353 
16.6679403 
17.284625 
15.4990652 
38.9477853 
35.1492432 
37.1482761 
54.2594451 
37.8182926 
14.5084422 
15.5205301 
15.4844283 
18.9560708 

OV 54.2855944 
 

Finally, Ki is obtained and the results are sorted by highest value: 

0.05173867 32.78369954 0.71314958 0.28840608 0.21459583 
0.04702577 35.46257844 0.84983659 0.16996732 0.2227598 
0.05599244 39.3481674 0.51505248 0.28327886 0.20493902 
0.06146287 34.74359462 0.47432740 0.27122444 0.20493902 
0.05514928 48.9485647 0.39681086 0.16996732 0.23692372 
0.04340224 61.54918531 0.77257871 0.30423744 0.21572528 
0.03421166 83.61668079 0.47878117 0.39223227 0.22771002 
0.05272287 37.4844188 0.70819715 0.16996732 0.21572528 
0.05184164 33.94546279 0.62564657 0.28327886 0.21459583 
0.05199861 35.21458838 0.57616040 0.28016591 0.21347814 
0.05229433 31.58597145 0.14203397 0.32272275 0.21127734 
0.03639891 79.58431061 0.65793800 0.32686023 0.21237204 
0.05398262 71.78483522 0.87162727 0.28327886 0.21459583 
0.03148771 75.92296577 0.55124535 0.28202542 0.21019386 
0.02224145 110.9400392 0.98058068 0.29508215 0.20912144 
0.05377779 77.28610296 0.51246427 0.28581948 0.21686668 
0.03516983 29.55176116 0.44925282 0.25988886 0.21918611 
0.03791632 31.64985319 0.12795532 0.27384638 0.2227598 
0.04489183 31.56119814 0.18885257 0.27955151 0.24397502 
0.06314658 38.64967922 0.45124066 0.26310730 0.21572528 
0.06314658 110.9400392 0.98058068 0.39223227 0.24397502 

 

0.01241615 16.00173107 0.03300162 0.03920468 0.01925142 
0.01128515 17.30929246 0.03932693 0.02310462 0.01998381 
0.01343696 19.20584930 0.02383451 0.0385077 0.01838511 
0.01474974 16.95835630 0.02194992 0.03686908 0.01838511 
0.01323462 23.89180537 0.01836277 0.02310462 0.02125446 
0.01041559 30.04217110 0.03575176 0.04135672 0.01935275 
0.00821005 40.81332058 0.02215602 0.05331836 0.0204279 
0.01265233 18.29615319 0.03277244 0.02310462 0.01935275 
0.01244086 16.56878797 0.02895234 0.03850770 0.01925142 
0.01247853 17.18824846 0.02666233 0.03808454 0.01915115 
0.01254949 15.41711972 0.00657275 0.04386954 0.01895372 
0.00873494 38.8451198 0.03044666 0.04443197 0.01905193 
0.01295465 35.03819411 0.04033532 0.0385077 0.01925142 
0.00755636 37.05801656 0.02550936 0.03833732 0.01885652 
0.00533746 54.14985795 0.04537723 0.04011219 0.01876031 
0.01290549 37.72336413 0.02371473 0.03885306 0.01945514 
0.00843999 14.42422123 0.02078957 0.03532817 0.01966322 
0.00909909 15.44830042 0.00592124 0.03722549 0.01998381 
0.01077305 15.40502787 0.00873932 0.03800102 0.02188703 
0.01515379 18.86491707 0.02088156 0.03576567 0.01935275 
0.01515379 54.14985795 0.04537723 0.05331836 0.02188703 
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ij 

 
0.29668285 
0.32058216 
0.35552735 
0.31408535 
0.44151238 
0.55537843 
0.75374385 
0.33865403 
0.30704168 
0.31840169 
0.28550973 
0.71746079 
0.64748749 
0.68431186 
0.99951830 
0.69665430 
0.26726137 
0.28590513 
0.28524010 
0.34919155 

 
For AHP weighted values, the best alternative is number 15. In Tables 13 and 14 

below, there is a comparison with the results obtained by using the weight values of the 

other methods. 

Table 13. Best alternative comparison among weighting methods for process parameters using ARAS. 
 

 Temperature 
(◦ C) 

Die Semi-Angle 
(◦ ) 

Ram Speed 
(mm/s) 

Extrusion 
Ratio (Ao/Af) 

Friction Billet Height 
(mm) 

Core Diameter 
(mm) 

AHP 350.00 30.00 2.00 1.78 0.50 20.00 6.00 
Entropy 350.00 30.00 2.00 1.78 0.50 20.00 6.00 

SD 350.00 30.00 2.00 1.78 0.50 20.00 6.00 

 
Table 14. Best alternative comparison among weighting methods for process criteria using ARAS. 

 
Force (kN) (µm) 

 
 
 

 

In the case of the ARAS method, it can be verified that independent of the weight 

criterion, the best extrusion parameter combination is number 15. 

The next MCDM method to be studied is TOPSIS. As with the ARAS method, the 

starting point is the decision matrix D. 

The first difference is the method used to calculate the normalized matrix. With the 

TOPSIS method, Equation (19) is used: 

    xij  

ij = q
∑ x2

 

 

Consequently, the normalized matrix obtained is different from the one obtained by 

using ARAS. 

R 

Extrusion Die Wear Total Damage Grain Average 
Size Ti6Al4V 

(µm) 

Grain Average 
Size AZ31B 

(µm) 

AHP 174.45 8.12 × 10−5 1.04 8.64 19.60 
Entropy 174.45 8.12 × 10−5 1.04 8.64 19.60 

SD 174.45 8.12 × 10−5 1.04 8.64 19.60 
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0.18169569 0.27841399 0.10124168 0.19771981 0.22589903 
0.19990512 0.25738231 0.08495806 0.33549741 0.21762001 
0.16789217 0.23196609 0.14018079 0.20129845 0.23654349 
0.15294913 0.26270858 0.15221652 0.21024504 0.23654349 
0.17045904 0.18647003 0.18195184 0.33549741 0.20461012 
0.21659466 0.14829507 0.09345386 0.18743122 0.22471631 
0.27478041 0.10915813 0.15080055 0.14538221 0.21288914 
0.17830388 0.24349959 0.10194967 0.33549741 0.22471631 
0.18133478 0.26888543 0.11540136 0.20129845 0.22589903 
0.18078740 0.25919486 0.12531313 0.2035351 0.22708175 
0.17976505 0.28897134 0.50833237 0.1766953 0.22944718 
0.25826852 0.11468894 0.10973749 0.17445865 0.22826446 
0.17414295 0.12714998 0.08283411 0.20129845 0.22589903 
0.29855118 0.12021976 0.13097700 0.20219311 0.23062990 
0.42266547 0.08227364 0.07363032 0.19324651 0.23181262 
0.17480623 0.11809938 0.14088878 0.19950913 0.22353359 
0.26729426 0.30886283 0.16071232 0.21941531 0.22116816 
0.24793260 0.28838808 0.56426310 0.20823206 0.21762001 
0.20940768 0.28919816 0.38231126 0.20398243 0.19869653 
0.14887097 0.23615825 0.16000434 0.21673133 0.22471631 

 

From normalized decision matrix, the weighted one is obtained by multiplying each 

column by the weight associated to the correspondent criteria. 

 
 
 
 
 
 
 
 
 
 
 

 
A+ 

A− 

 

Then, the distance to the ideal solution (A+) and anti-ideal solution (A−) is calculated: 
 

+ Dj
− 

0.01956117 
0.03028185 
0.03454403 
0.04038909 
0.05927627 
0.02012987 
0.04832116 
0.03114406 
0.02479289 
0.02882775 
0.21258354 
0.03201143 
0.01118059 
0.04631054 
0.06609285 
0.03432669 
0.05319383 
0.24100142 
0.15187762 
0.04390472 

0.23403861 
0.23999658 
0.21663412 
0.21197447 
0.19627868 
0.23604237 
0.20674868 
0.23317247 
0.22735737 
0.22271237 
0.06789948 
0.22657484 
0.2432685 

0.21451981 
0.24048647 
0.2160158 

0.20109593 
0.04540224 
0.10410771 
0.20862622 

 

The last step is to obtain the closeness to the ideal solution and sort the values from 

highest to lowest. 

D j 

0.04360298 0.01288385 0.04941609 0.02687718 0.02026543 
0.04797285 0.01191059 0.04146805 0.04560607 0.01952272 
0.04029044 0.01073443 0.06842228 0.02736364 0.02122035 
0.03670444 0.01215707 0.07429692 0.0285798 0.02122035 
0.04090643 0.00862906 0.08881073 0.04560607 0.0183556 
0.05197797 0.00686248 0.04561485 0.02547859 0.02015933 
0.06594127 0.00505139 0.07360578 0.01976263 0.01909831 
0.04278902 0.01126816 0.04976166 0.04560607 0.02015933 
0.04351637 0.01244291 0.05632743 0.02736364 0.02026543 
0.04338501 0.01199447 0.06116537 0.02766768 0.02037154 
0.04313967 0.01337240 0.24811715 0.02401920 0.02058374 
0.06197878 0.00530733 0.05356289 0.02371516 0.02047764 
0.04179049 0.00588398 0.04043135 0.02736364 0.02026543 
0.07164574 0.00556327 0.06392991 0.02748526 0.02068984 
0.10143045 0.00380728 0.03593897 0.0262691 0.02079594 
0.04194966 0.00546515 0.06876784 0.02712041 0.02005323 
0.06414476 0.0142929 0.07844372 0.02982637 0.01984103 
0.05949839 0.01334541 0.27541694 0.02830617 0.01952272 
0.05025325 0.0133829 0.18660621 0.02772849 0.01782509 
0.03572577 0.01092843 0.07809815 0.02946152 0.02015933 
0.10143045 0.0142929 0.27541694 0.04560607 0.02122035 
0.03572577 0.00380728 0.03593897 0.01976263 0.01782509 
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0.05935214 
0.06486590 
0.05441376 
0.05349463 
0.05015999 
0.06046750 
0.05273535 
0.06163134 
0.05732822 
0.05602110 
0.01904465 
0.05858914 
0.06189945 
0.05595327 
0.07372818 
0.05407793 
0.05113664 
0.01300337 
0.02665005 
0.05268458 

 

Using the AHP weights, the best alternative solution is again number 15. After 

applying the weights from the Entropy and SD methods, the results obtained are shown in 

Tables 15 and 16. 

Table 15. Best alternative comparison among weighting methods for process parameters 

using TOPSIS. 
 

 Temperature 
(◦ C) 

Die Semi-Angle 
(◦ ) 

Ram Speed 
(mm/s) 

Extrusion 
Ratio (Ao/Af) 

Friction Billet Height 
(mm) 

Core Diameter 
(mm) 

AHP 350.00 30.00 2.00 1.78 0.50 20.00 6.00 
Entropy 350.00 30.00 2.00 1.78 0.50 20.00 6.00 

SD 350.00 30.00 2.00 1.78 0.50 20.00 6.00 

 
Table 16. Best alternative comparison among weighting methods for process criteria using TOPSIS. 

 
Force (kN) (µm) 

 
 
 

 

The TOPSIS results are aligned with the ARAS ones. In both cases, the best alternative 

is number 15, independent of the weighting method used. 

After obtaining the same results with the ARAS and TOPSIS methods, it is needed to 

check what happened with the other two pending MCDM methods. Let us start by VIKOR. 

In VIKOR, the best fb
∗ and worst fb

− values for each criteria are obtained directly from 
decision matrix D. 

 
 
 
 
 
 
 
 
 
 
 
 

fi
∗ 

fi
− 

Extrusion Die Wear Total Damage Grain Average 
Size Ti6Al4V 

(µm) 

Grain Average 
Size AZ31B 

(µm) 

AHP 174.45 8.12 × 10−5 1.04 8.64 19.60 
Entropy 174.45 8.12 × 10−5 1.04 8.64 19.60 

SD 174.45 8.12 × 10−5 1.04 8.64 19.60 

 

74.99224 0.00027495 1.43 8.84 19.10 
82.50792 0.00025418 1.20 15.00 18.40 
69.29504 0.00022908 1.98 9.00 20.00 
63.12752 0.00025944 2.15 9.40 20.00 
70.35448 0.00018415 2.57 15.00 17.30 
89.39628 0.00014645 1.32 8.38 19.00 
113.4116 0.00010780 2.13 6.50 18.00 
73.59232 0.00024047 1.44 15.00 19.00 
74.84328 0.00026554 1.63 9.00 19.10 
74.61736 0.00025597 1.77 9.10 19.20 
74.1954 0.000285376 7.18 7.90 19.40 

106.59656 0.000113262 1.55 7.80 19.30 
71.87496 0.000125568 1.17 9.00 19.10 

123.22264 0.000118724 1.85 9.04 19.50 
174.449 0.00008125 1.04 8.64 19.60 

72.14872 0.00011663 1.99 8.92 18.90 
110.3218 0.00030502 2.27 9.81 18.70 

102.33056 0.0002848 7.97 9.31 18.40 
86.42996 0.0002856 5.4 9.12 16.80 
61.44432 0.00023322 2.26 9.69 19.00 
61.44432 0.00008125 1.04 6.50 16.80 
174.449 0.00030502 7.97 15.00 20.00 
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− 

− 

− 

− 

 

Utility measure (Sj) and Regret measure (Rj) are obtained: 

 
 Sj  Ri 

0.19819819  0.06447916 
0.27255304  0.13593568 
0.24314147  0.08971014 
0.25469310  0.08971014 
0.29791683  0.13593568 
0.18430526  0.06167572 
0.22626210  0.11035833 
0.28450908  0.13593568 
0.21258124  0.06447916 
0.22438568  0.06728261 
0.59702892  0.43245821 
0.22930296  0.09588583 
0.14493217  0.06447916 
0.31230722  0.13119317 
0.35269826  0.23997808 
0.19453387  0.06691129 
0.34290553  0.10379680 
0.70681489  0.48810022 
0.44430736  0.30708759 
0.23004732  0.08592818 

S* 0.14493217 R* 0.06167572 
S− 0.70681489 R− 0.48810022 

Using the values S*, S−, R*  and R− together with the assumption of vote by consensus 

(υ = 0.5), the index Q is calculated: 
 

0.05068674 
0.20063820 
0.12026455 
0.13054395 
0.22320856 
0.03503675 
0.12945502 
0.21127747 
0.06348572 
0.07727723 
0.83706275 
0.11519138 
0.00328715 
0.23045330 
0.39395059 
0.05027775 
0.22555831 

1.00 
0.55415898 
0.10417802 

 

In VIKOR, the index Q is ranked from the lowest to the highest value, therefore 

the best alternative solution should be number 13. However, before recommending this 

alternative as the best compromise solution, the conditions of “Acceptable advantages”  

and “Acceptable stability in decision making” have to be fulfilled. 

In this case, DQ = 0.05263158 due to the number of alternatives is 20. Then: 
Q(2) Q(1) = 0.0317496 

Q(3) Q(1) = 0.0469906 

Q(4) Q(1) = 0.04739959 

Q(5) Q(1) = 0.06019857 > DQ 

Q(1) = S* 

As only the second condition is fulfilled, a set of compromise solutions is presented. 

These results were obtained using AHP weights. Next, the same process is performed, 

but using the weights from the Entropy and SD methods, and the results are compared in 

Tables 17 and 18: 
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N  = 

 

 
Table 17. Best alternative comparison among weighting methods for process parameters 

using VIKOR. 
 

 Temperature 
(◦ C) 

Die Semi-Angle 
(◦ ) 

Ram Speed 
(mm/s) 

Extrusion 
Ratio (Ao/Af) 

Friction Billet Height 
(mm) 

Core Diameter 
(mm) 

AHP 350.00 30.00 2.00 1.78 0.05 20.00 6.00 
Entropy 350.00 30.00 2.00 1.78 0.05 20.00 6.00 

SD 350.00 60.00 2.00 1.78 0.10 20.00 6.00 

 
Table 18. Best alternative comparison among weighting methods for process criteria using VIKOR. 

 
Force (kN) (µm) 

 
 
 

 

Entropy weights lead to the same results as the AHP ones, stating the best alternative 

solution is number 13, but only fulfilling the condition of “Acceptable stability in decision 

making”. In the case of the SD method, the results are different, and the best compromise 

solution is number 7, which, in addition, fulfils the two conditions for Q index; however, 

it is the one with the highest value of damage, which is the criteria considered the most 

relevant, followed by extrusion force and Ti6Al4V grain size.  In the case of alternative 7, 

a deeper analysis using the HSC method is recommended to verify the integrity of the 

final part. 

The last method to be analyzed is COPRAS. The normalization matrix is obtained by 
using Equation (29): 

     xij  ij 
m 
i=0 xij 

 
0.04238881 0.06597512 0.02842942 0.04546156 0.05055585 
0.04663699 0.06099129 0.02385686 0.07714065 0.04870302 
0.03916851 0.05496847 0.03936382 0.04628439 0.05293806 
0.03568236 0.06225345 0.04274354 0.04834148 0.05293806 
0.03976735 0.04418737 0.05109344 0.07714065 0.04579142 
0.05053058 0.03514114 0.02624254 0.04309591 0.05029116 
0.06410506 0.02586695 0.04234592 0.03342762 0.04764426 
0.04159751 0.05770154 0.02862823 0.07714065 0.05029116 
0.04230461 0.06371716 0.03240557 0.04628439 0.05055585 
0.04217691 0.06142081 0.03518887 0.04679866 0.05082054 
0.04193840 0.06847687 0.14274354 0.04062741 0.05134992 
0.06025291 0.02717757 0.03081511 0.04011314 0.05108523 
0.04062679 0.03013044 0.02326044 0.04628439 0.05055585 
0.06965068 0.02848820 0.03677932 0.04649010 0.05161461 
0.09860600 0.01949619 0.02067594 0.04443302 0.0518793 
0.04078153 0.02798574 0.03956262 0.04587298 0.05002647 
0.06235858 0.07319051 0.04512922 0.05044999 0.04949709 
0.05784159 0.06833866 0.1584493 0.04787863 0.04870302 
0.04885389 0.06853062 0.10735586 0.04690152 0.04446797 
0.03473095 0.05596188 0.04493042 0.04983286 0.05029116 

 

Next, the weighted matrix is calculated by multiplying the normalized one by the 

weights obtained before: 

∑ 

Extrusion Die Wear Total Damage Grain Average 
Size Ti6Al4V 

(µm) 

Grain Average 
Size AZ31B 

(µm) 

AHP 71.87 1.25 × 10−4 1.17 9.00 19.10 
Entropy 71.87 1.25 × 10−4 1.17 9.00 19.10 

SD 113.41 1.07 × 10−4 2.13 6.50 18.00 
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− 

j=1 

 
 

0.01017238 0.00305306 0.01387641 0.00617985 0.00453537 
0.01119185 0.00282243 0.01164454 0.01048617 0.00436915 
0.00939958 0.00254371 0.01921349 0.00629170 0.00474908 
0.00856298 0.00288083 0.02086313 0.00657133 0.00474908 
0.00954329 0.00204481 0.02493872 0.01048617 0.00410796 
0.01212623 0.00162619 0.01280899 0.00585827 0.00451163 
0.01538381 0.00119702 0.02066906 0.00454401 0.00427417 
0.00998249 0.00267019 0.01397345 0.01048617 0.00451163 
0.01015218 0.00294857 0.01581716 0.00629170 0.00453537 
0.01012153 0.0028423 0.01717569 0.00636161 0.00455912 
0.01006430 0.00316883 0.06967315 0.00552271 0.00460661 
0.01445938 0.00125767 0.01504086 0.00545281 0.00458286 
0.00974954 0.00139431 0.01135342 0.00629170 0.00453537 
0.01671464 0.00131832 0.01795200 0.00631966 0.00463035 
0.02366328 0.0009022 0.01009193 0.00604003 0.0046541 
0.00978667 0.00129506 0.01931053 0.00623577 0.00448788 
0.01496469 0.00338696 0.02202758 0.00685795 0.00444039 
0.01388071 0.00316243 0.07733914 0.00650841 0.00436915 
0.01172386 0.00317131 0.05240042 0.00637559 0.00398923 
0.00833467 0.00258968 0.02193055 0.00677406 0.00451163 

 

As all the criteria are considered to be non-beneficial. Only S i, according to Equation (28), 

has to be calculated: 

S−i = ∑
n 

y−ij 

Finally, the relative significance of alternatives (Qi) and quantitative utility (Ui) are 

determined: 

Qi Ui 
0.06051591 88.1198594 
0.05648730 82.2536226 
0.05423380 78.9722039 
0.05245640 76.3840570 
0.04476706 65.1872727 
0.06196732 90.2333220 
0.04967724 72.3372077 
0.05498123 80.0605711 
0.05758046 83.8454203 
0.05573600 81.1596231 
0.02459848 35.8189210 
0.05610036 81.6901852 
0.06867454 100.00 
0.04875969 71.0011115 
0.05046210 73.4800694 
0.05566054 81.0497473 
0.04428486 64.4851229 
0.02174176 31.6591243 
0.02946848 42.9103388 
0.05184648 75.4959312 

 
Ranking Ui from highest to lowest value, the best alternative using COPRAS combined 

with AHP weighting method is number 13; the same obtained by VIKOR. In Tables 19 

and 20, a comparison of combining the Entropy and SD weighting methods with COPRAS 

is shown: 

Table 19. Best alternative comparison among weighting methods for process parameters using 

COPRAS. 
 

 Temperature 
(◦ C) 

Die Semi-Angle 
(◦ ) 

Ram Speed 
(mm/s) 

Extrusion 
Ratio (Ao/Af) 

Friction Billet Height 
(mm) 

Core Diameter 
(mm) 

AHP 350.00 30.00 2.00 1.78 0.05 20.00 6.00 
Entropy 350.00 30.00 2.00 1.78 0.05 20.00 6.00 

SD 350.00 30.00 2.00 1.78 0.05 20.00 6.00 

 
Table 20. Best alternative comparison among weighting methods for process criteria using COPRAS. 

 
Force (kN) (µm) 
Extrusion Die Wear Total Damage Grain Average 

Size Ti6Al4V 
(µm) 

Grain Average 
Size AZ31B 

(µm) 

AHP 71.87 1.25 × 10−4 1.17 9.00 19.10 
Entropy 71.87 1.25 × 10−4 1.17 9.00 19.10 

SD 71.87 1.25 × 10−4 1.17 9.00 19.10 
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The results after applying the three weighting methods confirm that the best alternative 

is number 13; no matter which weighting method is used, the best alternative is the same 

in all cases. 

4. Discussion 

The main novelty of this paper is the comparison of four different MCDM methods 

together with three weighting methods to check the grade of influence of choosing a 

particular weighting method on the final result, and also to evaluate which of the MCDM 

methods applied fits better in obtaining the optimal process parameters to meet specific 

criteria to manufacture a bimetallic billet of dissimilar materials by co-extrusion. 

The results reveal that in three of the four MCDM methods studied, the best solution 

obtained is the same, independent of the weighting method used. This becomes especially 

relevant when observing the great difference in weights obtained for the damage criteria 

between AHP and SD, the grain size criteria between Entropy and SD, or the total wear 

among AHP, Entropy, and SD. It must be taken into account that the Entropy and SD 

methods are independent of previous experience and only consider the current results of the 

different experiments, while AHP is supported by customer needs or design characteristics. 

In addition, the AHP method needs a validation to check the consistency of the pairwise 

comparison matrix. 

Regarding the MCDM methods, it has been seen that they are aligned two by two; 

on one side, ARAS and TOPSIS, and on the other side, VIKOR and COPRAS. It is also 

relevant to take into account that TOPSIS and VIKOR are both distance-based methods 

(see Section 2.4) and, therefore, the results they obtain should be similar. Comparing these 

methods by complexity, TOPSIS can  be considered  more  complex  than ARAS because 

it needs to calculate the Euclidian distances from the ideal and non-ideal solution, and 

VIKOR is more complex than COPRAS because COPRAS performs a final validation before 

recommending the best compromise solution. 

VIKOR is the only method that obtains different results depending on the weighing 

method used, leading to the result that alternative 7 is the optimal one when applied 

together with the SD method. 

Table 21 shows a summary of the best alternative for each MCDM method depending 

on the weighting method applied. 

 
Table 21. Best alternative comparison for each MCDM together with weighting method. 

 

 ARAS TOPSIS VIKOR COPRAS 

AHP Alternative 15 Alternative 15 Alternative 13 Alternative 13 
Entropy Alternative 15 Alternative 15 Alternative 13 Alternative 13 

SD Alternative 15 Alternative 15 Alternative 7 Alternative 13 

 
A comparison among all the alternative solutions has been made in Table 22 to evaluate 

which can be considered as optimal. After studying the values obtained for each criterion, 

our conclusion is that the alternative with the best balance among all the criteria considered 

is number 13. 

Table 22. Best alternative comparison for process criteria. 

 
Force (kN) (µm) 

 
 
 

 

In summary, it could be said that both VIKOR and COPRAS are the recommended 

MCDM methods from the point of view of calculation results. The COPRAS method also 

Extrusion Die Wear Total Damage Grain Average 
Size Ti6Al4V 

(µm) 

Grain Average 
Size AZ31B 

(µm) 

Alternative 7 113.41 1.07 × 10−4 2.13 6.50 18.00 
Alternative 13 71.87 1.25 × 10−4 1.17 9.00 19.10 

Alternative 15 174.45 8.12 × 10−5 1.04 8.64 19.60 
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obtained the same result independent of the weighting method chosen and it is simpler than 

VIKOR, considering the computing mechanism. Secondly, the VIKOR method implements 

two conditions to be fulfilled to confirm the compromise solution or set of compromise 

solutions; these conditions increase the complexity of application of this method but also 

provide a security check of the alternative chosen. Finally, the methodology recommended 

to obtain the optimal manufacturing parameters in a multi-material co-extrusion process 

is VIKOR together with the Entropy weighting method. Even when considering that is 

VIKOR a more complex process than COPRAS, the determining factors are the “Acceptable 

advantages” and “Acceptable stability in decision making” conditions to confirm the 

compromise solution or set of compromise solutions to be recommended. 

In future work, this methodology can be extended to other multi-material manufactur- 

ing processes. 
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