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Abstract: Selection of the most suitable material is one of the key decisions to be taken at the design 
stage of a manufacturing process. Traditional approaches as Ashby maps based on material prop-
erties are widely used in the industry. However, in the production of multimaterial components, 
the criteria for the selection can include antagonistic approaches. The aim of this work is the imple-
mentation of a methodology based on the results of process simulations for several materials and 
classify them by applying an advanced data analytics method based on Machine Learning (ML), in 
this case the Support Vector Regression (SVR) and Multi-Criteria Decision Making (MCDM) meth-
odologies, specifically Multi-criteria Optimization and Compromise Solution (VIKOR) combined 
with Entropy weighting methods. In order to do this, a Finite Element Model (FEM) has been built 
to evaluate the extrusion force and the die wear in a multi-material co-extrusion process of bimetal-
lic Ti6Al4V-AZ31B billets. After applying SVR and VIKOR combined with Entropy weighting meth-
odologies, a comparison has been established based on the material selection and complexity of the 
methodology used, resulting that material chosen in both methodologies is very similar and MCDM 
method is easier to implement because there is no need of evaluate the error of the prediction model 
and the time for data preprocessing is less than the time needed in SVR. This new methodology is 
proven to be effective as alternative to the traditional approaches and aligned with the new trends 
in the industry based on simulation and data analytics. 

Keywords: Data analytics, Methodologies, Multi-material; Co-extrusion; FEM; Machine Learning; 
SVR; MCDM. 

 

1. Introduction 
In the recent years and with the raise of the Industry 4.0, simulation and data analyt-

ics methodologies have become more relevant due to their capacity of predict results and 
being more sustainable compared with the traditional approaches. The need of develop-
ing lighter materials in aerospace and automotive industry is increasing to improve the 
fuel efficiency reducing the environmental impact and increasing the payload to be car-
ried out. Multi-material forming has become a solution because of the capacity to reduce 
the weight by joining dissimilar materials and also to customize the mechanical properties 
of the final part to fulfil with the in-service requirements. 

Aluminium alloys and carbon fiber reinforced composites are widely used in aero-
space industry; however, magnesium alloys have lower density and also good specific 
strength [1] therefore they could be a good alternative to reduce weight if it wasn´t for its 
poor corrosion resistance. Because of this, a multi-material component made of magne-
sium alloys combined titanium alloys, which have an excellent mechanical and physical-
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chemical properties together with very good strength to weight ratio and superior corro-
sion resistance [2], could be the solution to manufacture lighter parts with good mechan-
ical properties and without corrosion problems and thus, contribute to reduce the weight 
of the aircraft.   

Within multi-material forming highlights co-extrusion process to obtain bimetallic 
billets composed of a cylindrical sleeve and core made of different materials. Some appli-
cation cases of multi-material forming processes with these two alloys that can be high-
lighted are the ones performed by Fernández et al. [3, 4] who analysed the effect of the 
different co-extrusion process parameters by Finite Element Analysis (FEM) simulation 
using Analysis of Variance (ANOVA) to determine the most relevant ones and also inves-
tigated the effect of the selection die material on the co-extrusion process of bimetallic 
cylindrical billets made of magnesium alloy core and titanium alloy sleeve. Other inter-
esting contributions are the ones performed by Negendanka et al. [5] who carried out a 
study about the diffusion layer formation under different die angle values in a Mg–core 
and Al–sleeve billet or Gall et al. [6], who studied the co-extrusion of bimetallic Al–Mg 
billets into hollow profiles by means of Finite Element Method (FEM) simulation together 
with experiments.  

On the other hand, Machine Learning (ML) [7] has been gaining more relevance in 
the industry as preferred method to forecast results and anticipate problems [8] by means 
of algorithms based on statistical methods to detect patterns from data. Support Vector 
Machines (SVM) is one of the most popular supervised learning methods within ML. It 
was introduced by Vladimir Vapnik [9] in 1995 and its main applications are classification 
and regression analysis. For this last one is especially interesting the Support Vector Re-
gression (SVR) module implemented within SVM to estimate discrete values and thus 
predict future results. Some examples of SVR applications in the industry are the predic-
tion of the laser cutting process cost for AISI316L stainless steel [10], prediction of the 
cutting force and temperature in bone drilling [11], prediction of the drilling force drilling 
an internal hole in carbon-fiber-reinforced polymer (CFRP) [12] and applied to wear pre-
diction it can be highlighted the research performed by Benkedjouh et al. [13].  

Apart from ML, there are other approaches that allow to take decisions in situations 
where there are several requirements to fulfil in a complex environment and involving 
large number of variables. Multi-Criteria Decision Making (MCDM) methods based on 
multi objective optimization are applied to find the compromise solution to the problem. 
The first MCDM method was applied by Pareto in 1896 [14] with his famous 80/20 princi-
ple. Another example is Saaty in 1977 [15], who used multi-criteria models to solve prob-
lems with conflicting goals. Several MCDM methods have been developed and applied to 
support decision-making in different areas such as, manufacturing process selection [16], 
supply chain managing contract selection [17] and material selection [18]. In this research 
a combination of VIKOR [19] together with Entropy weighting methods [20, 21] has been 
chosen as MCDM methodology to establish the optimum die material selection, based on 
the results of the study performed by Fernández et al. [22] where different ARAS [23], 
TOPSIS [24], VIKOR and COPRAS [25] MCDM method were compared in conjunction 
with AHP [26], Standard Deviation [27] and Entropy weighting methods.  

This study develops two methodologies, one based on SVR and the other applying 
Entropy weighting method together with MCDM VIKOR, for material selection of the die 
in a multi-material co-extrusion process to obtain bimetallic billets made of Ti6Al4V-
AZ31B. Both methodologies and their results are compared to establish which one gives 
better results for the problem proposed. 
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2. Materials and Methods 

2.1. Materials, Geometrical Dimensions and Process Parameters 

In this study a bimetallic billet made of a Ti6Al4V titanium alloy sleeve and AZ31B 
magnesium alloy core during a co-extrusion process is analyzed.  

Figure 1 shows the co-extrusion set up with process parameters and initial dimen-
sions. 

 

Figure 1. Co-extrusion set up with process parameters and initial billet dimensions 

Main physical and mechanical properties for Ti6Al4V and AZ31B are shown in Table 
1: 

Table 1. Physical and mechanical properties of the titanium alloy Ti6Al4V and magnesium alloy 
AZ31B [28-29] 

Property Ti6Al4V  AZ31B 
Density (g/cm3) 4.46  1.74 
Tensile strength (MPa) 895  260 
Yield strength (MPa) 828  200 
Elastic modulus (GPa) 110  44.80 
Poisson’s ratio 0.31  0.35 

Chemical compositions for Ti6Al4V and AZ31B are collected in Table 2 and Table 3 
respectively: 

Table 2. Chemical composition of titanium alloy Ti6Al4V [28] 

Ti (wt.%) Al (wt.%) V (wt.%) Fe (wt.%) C (wt.%) O (wt.%) N (wt.%) H (wt.%) 
Bal. 5.5–6.5 3.5–4.5 0.25 0.08 0.13 0.040 0.012 

 
Table 3. Chemical composition of magnesium alloy AZ31B [29] 

Mg (wt.%) Al (wt.%) Zn (wt.%) Mn (wt.%) Si (wt.%) Cu (wt.%) Ca (wt.%) Fe (wt.%) Ni (wt.%) 
97 2.5–3.5 0.6–1.4 0.20 0.1 0.05 0.04 0.005 0.005 
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The material candidates for the die are extracted from Daniel et al. [4] which chemical 
composition and physical and mechanical properties are shown in Table 4 and 5 respec-
tively. 

Table 4. Chemical composition of die steels [30-34]. 

Material C (wt.%) Mn (wt.%) Si (wt.%) Cr (wt.%) Mo (wt.%) Ni (wt.%) 
AISI316 0.08 2 0.75 16–18 2–3 10–14 

H13 0.32–0.45 0.2–0. 5 0.8–1.20 4.75–5.50 1.10–1.75 0.30 max 
25CrMo4 0.22–0.29 0.60–0.90 0.10–0.40 0.90–1.20 0.15–0.30 - 
AISI52100 0.1 0.45 0.26 1.51 0.06 3.39 
AISI3310 0.99 0.39 0.16 1.4 - 1.4 

 
Table 5. Physical and mechanical properties of die steels [35]. 

Property AISI316 H13 25CrMo4 AISI52100 AISI3310 
Density (g/cm3) 8.03 7.78 7.85 7.83 7.81 
Tensile strength (MPa) 550 1990 670 992 1866 
Yield strength (MPa) 240 1650 435 579 1800 
Elastic modulus (GPa) 210 210 205 200 210 
Poisson’s ratio 0.3 0.3 0.3 0.3 0.3 

 
The extrusion process parameters evaluated during this research are the following:  

 Process parameters: Ram speed (mm/s) and temperature (° C). 
 Tooling parameters: Die semi-angle (°), shear friction factor, and extrusion 

ratio (A0/Af). 
 Geometric parameters: Shape factor (H0/D0) and diameter ratio (D0/d0). 

Where A0 and Af are the initial and final area of the cross-section of the billet, D0 and 
d0 the initial external diameter and internal diameter of the sleeve and H0 the initial billet 
height. 

2.2. Finite Element Modeling and Simulation preparation 
Commercial software DEFORM3D© (v11.2) [36] was used to perform finite element 

simulations. 
All parts were meshed with 7000 tetrahedral elements and due to the axial symmetry 

of the process, only one-quarter of the problem was modeled to reduce the computation 
time and to avoid heavy database files. 

Contact condition among the objects of the simulation is defined as follows. Rigid 
and elastic objects were considered “masters” (those that deform) and the plastic objects 
were considered “slaves” (those that are deformed). In the case of the sleeve and core 
interaction, where both objects are plastic, the titanium alloy was defined as the “master” 
and the magnesium alloy was defined as the “slave”. All materials were assumed to be 
isotropic throughout the process. 

Heat transfer coefficient between sleeve and core and between sleeve and die was set 
to 11 N/(s·mm·°C), while between extrusion tooling elements and die was set to 5 
N/(s·mm·°C). All the objects of the simulation have 0.02 N/(s·mm·°C) heat transfer 
coefficient with the air. 

The exponential model defined by Wen-juan et al. [37] was used to define the 
behaviour of AZ31B while Johnson-Cook constitutive equations [38] were used for the 
definition of stress-strain curves for the Ti6Al4V. 
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2.2.1. Tool wear model 
Archard’s wear model is used to calculate the wear produced on the surface of the 

die [39–41]. This model is based on Equation (1):  
 

𝑊𝑊 =  ∫𝐾𝐾 ·  𝑝𝑝
𝑎𝑎·𝑣𝑣𝑏𝑏

𝐻𝐻𝑐𝑐 · 𝑑𝑑𝑑𝑑       (1) 
 
Where K is the wear coefficient, P is the interface pressure, v is the sliding velocity 

between die and billet, H is the hardness and a, b and c are experimentally calibrated co-
efficients.  

The commonly taken value for a and b is 1 while for c is 2 in the case of steel alloys.  
K = 2 × 10−5. 
Taking into account Equation (1) the parameters to evaluate the wear are ram speed 

and friction as they can influence in the sliding velocity together with temperature be-
cause it has a direct influence in the stress-strain curves. 

 
2.2.2. FEM Model Validation 

FEM model was validated by using the semi-empirical model of Johnson, used by 
García et al. [42]. This model is typically used as reference in extrusion processes to 
establish an upper limit for the extrusion force. In order to apply the Johnson’s model is 
necessary to obtain the average yield stress of each component in accordance with their 
volume fraction as it is described by Gisbert et al. [43]. The force obtained by FEM is in 
good agreement with the semi-empirical model results, being this last one an upper limit 
of the required forces, as expected, so the FE model can be considered validated. 

 
2.3. Support Vector Regression 
 

SVM works by finding a hyperplane in a high-dimensional space that best separates 
data into different classes. It aims to maximize the margin (the distance between the hy-
perplane and the nearest data points of each class) while minimizing classification errors. 
SVM can handle both linear and non-linear classification problems by using various ker-
nel functions. Unlike SVM used for classification tasks, SVR seeks to find a hyperplane 
that best fits the data points in a continuous space. 

SVR [44] gives the flexibility to define how much error is acceptable in our model and 
will find an appropriate line (or hyperplane in higher dimensions) to fit the data. There-
fore, the goal of SVR is to find a function that approximates the relationship between the 
input variables and a continuous target variable, while minimizing the prediction error. 

Another advantage of the SVR over the linear or logistic regression, is the possibility 
of using different kernel functions such as polynomial or radial ones that allow to trans-
form the data into a higher dimensional space which make it suitable for non-linear prob-
lems. 

 
Figure 2. 2D hyperplane representation  
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As it was said before the idea is to minimize the Equation (2), taking into account the 
constraints of Equations (3), (4) and (5): 
 

1
2

 ‖𝑤𝑤‖2 + 𝐶𝐶 ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖∗)𝑁𝑁
𝑖𝑖=1        (2) 

 
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑥𝑥𝑖𝑖 − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖         (3) 

 
𝑤𝑤𝑥𝑥𝑖𝑖 + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖∗       (4) 

 
𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖∗ ≥ 0          (5) 

 
Where ε is the margin of error while ξ is the deviation from ε also called tolerance 

margin and w is the classification vector. C is known as the regularized parameter. 
The prediction error can be calculated in different ways. One of the most representa-

tive is the determination factor (R2) which shows the quality of correlation between the 
real measured data and the value predicted by Equation (6). A more precise correlation 
will be obtained for the value of the determination factor nearer to 100%. 

 

𝑅𝑅2 =  �∑ (𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚)(𝜃𝜃�𝑖𝑖−𝜃𝜃�𝑖𝑖

𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚
𝑖𝑖=1 )�

2

�∑ (𝜃𝜃𝑖𝑖−𝜃𝜃𝑖𝑖
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚)𝑚𝑚

𝑖𝑖=1 ��∑ (𝜃𝜃�𝑖𝑖−𝜃𝜃�𝑖𝑖
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚)𝑚𝑚

𝑖𝑖=1 �
       (6) 

 
Where 𝜃𝜃𝑖𝑖  is the measurement data, 𝜃𝜃�𝑖𝑖  is the predicted magnitude in accordance 

with SVR, 𝜃𝜃𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the mean of the measurement data and 𝜃𝜃�𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the mean of the pre-
diction. 
 
2.4. Entropy method 

Entropy method [21, 22] is classified within the category of objective weighting meth-
ods and it is applicable when the data of decision matrix are known. The entropy is a 
measure of randomness and disorder in the universe. 

Starting with the decision matrix D the project outcomes pij are calculated by means 
of Equation (7).  

 

D = �
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑚𝑚1 ⋯ 𝑥𝑥𝑚𝑚𝑚𝑚
� 

 

𝑝𝑝𝑖𝑖𝑖𝑖 =  
𝑥𝑥𝑖𝑖𝑖𝑖

∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚
𝑖𝑖=0

       (7) 

Where n is the number of criteria and m the number of alternatives. 
The entropy measure of project outcomes is obtained as it is shown in Equation (8). 
 

𝐸𝐸𝑖𝑖 =  −𝑘𝑘 ∗ ∑ 𝑝𝑝𝑖𝑖𝑖𝑖 ∗ ln (𝑝𝑝𝑖𝑖𝑖𝑖)𝑚𝑚
𝑖𝑖=1      (8) 

With k = 1/ln (m). 
Objective weight-based definition is given by Equation (9). 

𝑤𝑤𝑖𝑖 =  
1−𝐸𝐸𝑖𝑖

∑ (1−𝐸𝐸𝑖𝑖)𝑚𝑚
𝑖𝑖=1

       (9) 

 



Mathematics 2022, 10, x FOR PEER REVIEW 7 of 24 
 

 

2.5. VIKOR method 
VIKOR method [45, 46] stands for VIseKriterijumska Optimizacija I Kompromisno 

Resenje, which means Multi-criteria Optimization and Compromise Solution.  
This methodology is based on the concept that the compromise solution is the one 

which is at minimum distance for the ideal solution and at the same time at maximum 
distance for the anti-ideal solution.  

One big different with SVM mehtod is that VIKOR does not need a calculation of the 
error because there is no prediction and therefore, there is nothing to compare with. 
Instead of that, VIKOR requests a validation step before declaring the compromise 
solution feasible by fulfilling the “acceptable advantage” and “acceptable stability in 
decision making” conditions.  

Other advantages of using VIKOR method are the following: 
 The ability to inmmediately recognize the proper alternative. 
 Decreases the pairwise comparisons required. 

After the criteria to be evaluated are defined the decision matrix (D) is built.  
 

D = �
𝑥𝑥11 ⋯ 𝑥𝑥1𝑚𝑚
⋮ ⋱ ⋮

𝑥𝑥𝑚𝑚1 ⋯ 𝑥𝑥𝑚𝑚𝑚𝑚
� 

 
At this point, the best 𝑓𝑓𝑏𝑏∗ and worst 𝑓𝑓𝑏𝑏− for each criteria rating values of the decision 

matrix. 
𝑓𝑓𝑏𝑏∗ = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑥𝑥𝑖𝑖𝑏𝑏)  𝑓𝑓𝑏𝑏− = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖𝑏𝑏) Whether the objective is to maximize the criteria. 
𝑓𝑓𝑏𝑏∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑖𝑖𝑏𝑏)  𝑓𝑓𝑏𝑏− = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑥𝑥𝑖𝑖𝑏𝑏) Whether the objective is to minimize the criteria. 
Where b = 1 …m being m the number of criteria took into account and i = 1 …n and n 

is the number of the alternatives. 
Utility measure (Sj) and Regret measure (Rj) are calculated according with Equations 

(10) and (11): 
 

𝑆𝑆𝑖𝑖 =  ∑ 𝑊𝑊𝑏𝑏 ∗ �
𝑓𝑓𝑏𝑏
∗−𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓𝑏𝑏
∗−𝑓𝑓𝑏𝑏

−�𝑚𝑚
𝑏𝑏=1       (10) 

 

𝑅𝑅𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑥𝑥 �𝑊𝑊𝑏𝑏 ∗ �
𝑓𝑓𝑏𝑏
∗−𝑓𝑓𝑖𝑖𝑖𝑖
𝑓𝑓𝑏𝑏
∗−𝑓𝑓𝑏𝑏

−��     (11) 

 
Where Wb are the weight values obtained in the case of this study after applied 

Entropy weighting methods explained above. 
Index Q can be obtained by means of the Equation (12): 
 

𝑄𝑄𝑚𝑚 =  𝜐𝜐 ∗
𝑆𝑆𝑖𝑖−𝑆𝑆∗

𝑆𝑆−−𝑆𝑆∗
+ (1 − 𝜐𝜐) ∗

𝑅𝑅𝑖𝑖−𝑅𝑅∗

𝑅𝑅−−𝑅𝑅∗
    (12) 

 
Where:  
 

𝑆𝑆− = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑆𝑆𝑖𝑖) 
𝑆𝑆∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆𝑖𝑖) 
𝑅𝑅− = 𝑚𝑚𝑚𝑚𝑥𝑥 (𝑆𝑆𝑖𝑖) 
𝑅𝑅∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆𝑖𝑖) 

 
υ is a parameter which represents the type of voting used during the process (υ > 0.5 

means “vote by majority rule”, υ = 0.5 “vote by consensus” and υ < 0.5 “with vote”). 
The lowest Qa value indicates the best alternative solution and it can be 

recommended if the following conditions are satisfied: 
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The “acceptable advantage” condition means that Q(a’’) – Q(a’) ≥ DQ. Being a’’ the 
alternative in second position in the ranking list by Qa and a’ the first one. DQ is defined 
by Equation (13): 

 
𝐷𝐷𝑄𝑄 =  1

(𝑚𝑚−1)
       (13) 

Where n is the number or alternatives. 
Finally, the “Acceptable stability in decision making” condition implies that a’ 

alternative must also be the best ranked in Sj and/or Rj. If one of the conditions is not 
fulfilled, then a set of compromise solutions is proposed. 
 
2.5 Methodology 

Two different methodologies have been proposed for the selection of the optimal die 
material in order to obtain the minimum extrusion force and die wear. The methodology 
steps are shown in Figure 3 flowchart. 

 
 

 
Figure 3. Methodology flowchart. 
 

The criteria for the final results comparison are: 
 

 Simplicity. 
 Amount of data from simulations. 
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 Time consuming. 
 
The prediction was carried out in Python software [47]. 
 

3. Results  
In this paper a set of simulations of a multi-material co-extrusion process have been 

performed by using commercial software DEFORM3D© (v11.2) followed by application 
of two different methodologies to choose which is the best die material to obtain minimum 
extrusion force and minimum wear during the process. For the list of simulations carried 
out in the present work see Table A1 in the Appendix A. 

 
3.1 SVR Methodology  

As explained above the dataset is obtained from Table [6] and for each material and 
each parameter to be predicted, several dataframes were obtained by using “pandas” to-
gether with “sklearn” libraries. 

Using “RFE” module for Regression Feature Selection from “sklearn.feature_selec-
tion” together with “SVR” module from “sklearn.svm”, the influence of the process pa-
rameters are ranked in accordance with their influence in the extrusion force as it is shown 
in table 6. 

 
Table 6. Process parameters ranking for extrusion force 

Material Parameters 

AISI316 Extrusion ratio, friction, ram speed, core diameter, billet height, die semi-angle 
and temperature. 

H13 Friction, extrusion ratio, core diameter, billet height, die semi-angle, ram speed 
and temperature. 

25CrMo4 Friction, ram speed, billet height, core diameter, die semi-angle, temperature and 
extrusion ratio. 

AISI52100 Friction, core diameter, die semi-angle, extrusion ratio, billet height, ram speed 
and temperature. 

AISI3310 Ram speed, core diameter, friction, extrusion ratio, die semi-angle, billet height 
and temperature. 

 
Taking into account these results, it can be said that friction is the most important 

process parameter while temperature is the less important one. This conclusion is in a 
good agreement with the findings obtained by Fernández et al. [3, 4] where a deeper anal-
ysis of the influence of each process parameter in the extrusion force was performed. 

As there is not a clear pattern about the influence of each process parameters and this 
influence is clearly dependent on the die material, for the prediction model all the param-
eters will be implemented. 

For the prediction model of the extrusion force, the dataframes for each material were 
split in two groups, one for training and one for testing using the “train_test_split” func-
tion from “sklearn.model_selection” module, being the test size 0.3. 

After applying the “LinearRegression” function from “sklearn.linear_model” to 
build the prediction model using the training data and afterwards evaluate the model 
using the test data, the determination factor (R2) for each material is shown in Table 7: 
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Table 7. Determination factor (R2) for extrusion force linear regression model 

Material R2 

AISI316 0.91461 

H13 0.92245 

25CrMo4 0.70708 

AISI52100 0.86922 

AISI3310 0.91966 

 
Figures 4 to 8 show the comparison between the simulation obtained values and the 

prediction ones. 
 

 
Figure 4. AISI316 extrusion force prediction comparison 

 

 
Figure 5. H13 extrusion force prediction comparison 
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Figure 6. 25CrMo4 extrusion force prediction comparison 

 

 
Figure 7. AISI52100 extrusion force prediction comparison 
 

 
Figure 8. AISI3310 extrusion force prediction comparison 
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Using the prediction models for each die material a bigger number of results for the 
extrusion force can be compared without the need of performing more simulations. Table 
8 show the ranking of the die materials as function of the times that their prediction value 
for the extrusion force is the lowest one. 

 
Table 8. Die materials ranking as function of the lowest extrusion force produced. 

Material Ranking 

AISI316 2 

H13 2 

25CrMo4 5 

AISI52100 3 

AISI3310 1 

 
 
If there was only the minimum extrusion force as requirement for the die material 

election, AISI3310 would be the chosen one followed by AISI316 and H13 sharing the sec-
ond position in the ranking. 

The SVR methodology is now applied for the wear prediction with the following 
modification. 

Due to the results variation is not possible to apply a linear model regression but a 
polynomial one. In order to do this is necessary to import “PolynomialFeatures” module 
from “sklearn.preprocessing” library to generate a new feature matrix consisting of all 
polynomial combinations of the features with degree less than or equal to the specified 
degree (in this case a 2 degree polynomial is used). 

In Tables 9 and 10 are shown the process parameters ranking and the determination 
factor (R2) for the wear model: 

 
Table 9. Process parameters ranking for die wear 

Material Parameters 

AISI316 Friction, ram speed and temperature. 

H13 Friction, ram speed and temperature. 

25CrMo4 Temperature, friction and ram speed. 

AISI52100 Friction, temperature and ram speed. 

AISI3310 Temperature, ram speed and friction. 

 
This conclusion is in a good agreement with the findings obtained by Fernández et 

al. [4] where a deeper analysis of the influence of each process parameter in the die wear 
was performed. 

 
 
 
 
 
 
 
 
 



Mathematics 2022, 10, x FOR PEER REVIEW 13 of 24 
 

 

Table 10. Determination factor (R2) for extrusion force linear regression model 

Material R2 

AISI316 0.75695 

H13 0.74873 

25CrMo4 0.63223 

AISI52100 0.80571 

AISI3310 0.65881 

 
 

The prediction model is not as accurate as the one for the extrusion force. This can be 
due to the number of simulations performed to obtain the wear distribution are lower than 
for the extrusion force because of Archad’s wear model only takes into account tempera-
ture, friction and ram speed as it was mentioned in section 2.2.1.  

 
Figures 9 to 13 show the comparison between the simulation obtained values and the 

prediction ones.  
 

 
Figure 9. AISI316 die wear prediction comparison 
 

 
Figure 10. H13 die wear prediction comparison 
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Figure 11. 25CrMo4 die wear prediction comparison 
 

 
Figure 12. AISI52100 die wear prediction comparison 
 

 
Figure 13. AISI3310 die wear prediction comparison 
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Table 11 show the ranking of the die materials as function of the times that their pre-
diction value for the die wear is the lowest one. 

 
Table 11. Die materials ranking as function of the minimum wear in the die produced. 

Material Ranking 

AISI316 2 

H13 3 

25CrMo4 N/A 

AISI52100 N/A 

AISI3310 1 

 
Finally, a crosscheck between Tables 8 and 11 is performed to rank the die material 

which fulfil better the minimum extrusion force and the minimum die wear as it can be 
seen in Table 12. 

 
Table 12. Die materials ranking as function of the minimum extrusion force and the 

minimum die wear 
Material Ranking 

AISI316 2 

H13 3 

25CrMo4 5 

AISI52100 4 

AISI3310 1 

 
 
In both rankings AISI3310 is the best choice to reduce the extrusion force and die 

wear. AISI316 and H13 have the same position for the extrusion force but not for the die 
wear, this is the reason because in the final ranking AISI316 is positioned better than H13. 
The die materials that can be rejected as feasible option are AISI52100 and 25CrMo4. 

 
3.2 MCDM Methodology  

As explained in section 3. the dataset is obtained from Table A1. In the MCDM meth-
odology the weights are calculated by means of Entropy method and afterwards VIKOR 
method is applied to classify the different materials based on criteria rating values deci-
sion. 

For the Entropy method, the decision matrix D is obtained from the results for each 
simulation in Table A1 regarding extrusion force and die wear. 

 
86.019 136.529 228.511 307.324 97.898 88.621 88.040 84.512 83.759 0.367 0.318 0.302 0.124 0.417 0.253 0.378 0.361 0.370 

86.153 124.955 227.644 307.783 98.095 88.706 88.140 84.799 83.850 0.379 0.382 0.257 0.219 0.414 0.271 0.404 0.381 0.354 

95.608 128.196 199.579 307.520 100.048 87.505 111.049 87.149 86.484 0.361 0.327 0.250 0.211 0.471 0.445 0.354 0.341 0.345 

87.120 134.333 206.128 309.397 100.654 86.238 110.203 88.307 88.602 0.507 0.369 0.410 0.452 0.573 0.462 0.430 0.436 0.428 

92.531 132.578 221.350 306.154 100.708 87.422 112.221 89.296 87.588 0.304 0.257 0.281 0.236 0.389 0.303 0.291 0.292 0.173 

 
From D, the normalized matrix is obtained by means of Equation (7): 
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0.1923 0.2079 0.2110 0.1998 0.1968 0.2021 0.1727 0.1947 0.1947 0.1913 0.1925 0.2011 0.1000 0.1842 0.1459 0.2035 0.1993 0.2214 

0.1926 0.1903 0.2102 0.2001 0.1972 0.2023 0.1729 0.1954 0.1949 0.1977 0.2311 0.1717 0.1764 0.1829 0.1563 0.2175 0.2105 0.2118 

0.2137 0.1952 0.1842 0.1999 0.2011 0.1996 0.2179 0.2008 0.2010 0.1884 0.1978 0.1667 0.1701 0.2078 0.2568 0.1908 0.1881 0.2067 

0.1947 0.2046 0.1903 0.2011 0.2024 0.1967 0.2162 0.2034 0.2059 0.2642 0.2233 0.2733 0.3639 0.2532 0.2665 0.2315 0.2407 0.2565 

0.2068 0.2019 0.2043 0.1990 0.2025 0.1994 0.2202 0.2057 0.2036 0.1584 0.1553 0.1871 0.1897 0.1719 0.1744 0.1567 0.1614 0.1037 

 
Then, the entropy array (Ej) is calculated by applying Equation (8): 
 
Ej = [0.999418867 0.999681506 0.999085371 0.999996437 0.999952024 0.999966715

 0.996102816 0.999852667 0.999839187 0.990960752 0.99430503 0.989129167
 0.944884512  0.993690857  0.979914551  0.994771731  0.99470602  0.976990905] 

 
The weights are presented in table 13: 
 
Table 13. Entropy method weights 

 
In VIKOR the best 𝑓𝑓𝑏𝑏∗ and worst 𝑓𝑓𝑏𝑏− values for each criterion are obtained directly 

from decision matrix D. 
 

 
Utility measure (Sj) and Regret measure (Rj) are obtained: 
 

 Sj  Ri 

 

0.23758265 

0.36022622 

0.44932592 

0.98459134 

0.21183731 
 

 

0.12075866 

0.11092085 

0.1258087 

0.37557176 

0.12764252 
 

S* 0.21183731 R* 0.11092085 

S- 0.98459134 R- 0.37557176 
 
Using the values S*, S-, R* and R- together with the assumption of vote by consensus 

(υ = 0.5), the index Q is calculated: 
 
 
 

W. 
1(%) 

W. 
2(%) 

W. 
3(%) 

W. 
4(%) 

W. 
5(%) 

W. 
6(%) 

W. 
7(%) 

W. 
8(%) 

W. 
9(%) 

W. 
10(%) 

W. 
11(%) 

W. 
12(%) 

W. 
13(%) 

W. 
14(%) 

W. 
15(%) 

W. 
16(%) 

W. 
17(%) 

W. 
18(%) 

0.40 0.22 0.62 0 0.03 0.02 2.66 0.10 0.11 6.16 3.88 7.41 37.56 4.30 13.69 3.56 3.61 15.68 

 86.019 136.529 228.511 307.324 97.898 88.621 88.040 84.512 83.759 0.367 0.318 0.302 0.124 0.417 0.253 0.378 0.361 0.370 

 86.153 124.955 227.644 307.783 98.095 88.706 88.140 84.799 83.850 0.379 0.382 0.257 0.219 0.414 0.271 0.404 0.381 0.354 

 95.608 128.196 199.579 307.520 100.048 87.505 111.049 87.149 86.484 0.361 0.327 0.250 0.211 0.471 0.445 0.354 0.341 0.345 

 87.120 134.333 206.128 309.397 100.654 86.238 110.203 88.307 88.602 0.507 0.369 0.410 0.452 0.573 0.462 0.430 0.436 0.428 

 92.531 132.578 221.350 306.154 100.708 87.422 112.221 89.296 87.588 0.304 0.257 0.281 0.236 0.389 0.303 0.291 0.292 0.173 

 447.431 656.591 1083.212 1538.178 497.402 438.492 509.653 434.063 430.283 1.918 1.652 1.499 1.242 2.265 1.735 1.856 1.812 1.669 

fi* 86.019 124.955 199.579 306.154 97.898 86.238 88.040 84.512 83.759 0.304 0.257 0.250 0.124 0.389 0.253 0.291 0.292 0.173 

fi- 95.608 136.529 228.511 309.397 100.708 88.706 112.221 89.296 88.602 0.507 0.382 0.410 0.452 0.573 0.462 0.430 0.436 0.428 
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In VIKOR the index Q is ranked from the lowest to the highest value, therefore the 

best material to obtain minimum extrusion force and minimum die wear is AISI3310. But 
before recommending this material as best compromise solution the conditions of “Ac-
ceptable advantages” and “Acceptable stability in decision making” have to be fulfilled. 

In this case DQ = 0.25 according with Equation (13). 
 
Q(2) – Q(1) = 0.0365261 
Q(3) – Q(1) = 0.0644211 
Q(4) – Q(1) = 0.15019917 
Q(5) – Q(1) = 0.96840807 > DQ 
Q(1) = S* 
 

As only the second condition is fulfilled, a set of compromise solution is presented 
and ranked in Table 14. 
 
Table 14. Die materials VIKOR ranking 

Material Ranking 

AISI316 2 

H13 3 

25CrMo4 4 

AISI52100 5 

AISI3310 1 

 

4. Discussion 
In this paper two methodologies are proposed to choose the best material for the die 

in a multi-material coextrusion process, taking into account that the process has to fulfil 
the requirements of minimum extrusion force and minimum die wear. 

The first methodology proposed is the SVR based on SVM. The main advantage is 
the prediction model obtained during the process which allows the engineers to know the 
outcomes when varying the process parameters. On the other hand, the disadvantages are 
the number of simulations needed to obtain a good prediction model and depending on 
the results of those simulations the complexity to obtain the prediction model can be very 
high. 

MCDM methodology allows to select the best die material with a smaller number of 
simulations than the SVR one and without considering the accuracy or complexity of pre-
diction models. Also, it is less time consuming because Entropy and VIKOR methods can 
be applied directly to the data and there is no need to have knowledge in programming 
languages like Python. 

 Qi 

AISI3310 0.03524455 

H13 0.09601303 

AISI52100 0.18179111 

25CrMo4 1 

AISI3310 0.03159193 



Mathematics 2022, 10, x FOR PEER REVIEW 18 of 24 
 

 

The results for the top three materials selected are the same independently of the 
methodology applied. Therefore, if there is no need to obtain a prediction model to fore-
cast results by applying other values to the parameters, the die material selection meth-
odology recommended is MCDM one due to its simplicity and time saving to implement 
it because there is no need of data preprocessing, neither programming or statistical 
knowledge to interpretate the results of the model. In addition, MCDM is more scalable 
due to the fact that SVM needs to re-evaluate the model with the new data to ensure the 
adherence to the results while the prediction error is not increased. 

Finally, for future research it would be interested a comparison among different ma-
chine learning methods to obtain a more robust prediction model not only for the wear 
but also for other parameters such as damage factor, mean stresses, microstructure result-
ant and so on. 

Appendix A. 
 

Table A1. List of simulations performed by DEFORM3D© (v11.2) 
 

Simulation Material 
Ram speed 

(mm/s) 

Core  

diameter  

(mm) 

Billet  

Height  

(H) 

Temperature 

(⁰ C) 
Friction 

Die  

semi-angle 

 (⁰) 

Extrusion  

Ratio 

1 AISI316 2 5 20 200 0.2 30 1.78 

2 AISI316 2 6 15 100 0.2 30 2.25 

3 AISI316 2 7 25 100 0.3 30 1.44 

4 AISI316 3 6 15 200 0.3 15 2.25 

5 AISI316 3 7 15 300 0.2 45 1.44 

6 AISI316 2 6 20 200 0.1 30 1.78 

7 AISI316 2 6 20 200 0.1 15 1.78 

8 AISI316 2 6 20 200 0.1 45 1.78 

9 AISI316 2 6 20 200 0.1 60 1.78 

10 AISI316 2 6 20 200 0.1 75 1.78 

11 AISI316 2 6 20 200 0.1 90 1.78 

12 AISI316 2 2 20 200 0.1 30 1.78 

13 AISI316 2 4 20 200 0.1 30 1.78 

14 AISI316 2 8 20 200 0.1 30 1.78 

15 AISI316 2 10 20 200 0.1 30 1.78 

16 AISI316 2 6 15 200 0.1 30 1.78 

17 AISI316 2 6 25 200 0.1 30 1.78 

18 AISI316 2 6 30 200 0.1 30 1.78 

19 AISI316 2 6 35 200 0.1 30 1.78 

20 AISI316 2 6 20 200 0.2 30 1.78 

21 AISI316 2 6 20 200 0.3 30 1.78 

22 AISI316 2 6 20 200 0.4 30 1.78 

23 AISI316 2 6 20 200 0.5 30 1.78 

24 AISI316 2 6 20 200 0.6 30 1.78 

25 AISI316 2 6 20 200 0.7 30 1.78 

26 AISI316 2 6 20 100 0.1 30 1.78 
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27 AISI316 2 6 20 300 0.1 30 1.78 

28 AISI316 1 6 20 300 0.1 30 1.78 

29 AISI316 3 6 20 300 0.1 30 1.78 

30 AISI316 4 6 20 300 0.1 30 1.78 

31 AISI316 2 6 20 200 0.1 30 1.44 

32 AISI316 2 6 20 200 0.1 30 2.25 

33 AISI316 2 6 20 200 0.1 30 2.94 

34 H13 2 5 15 100 0.1 15 1.44 

35 H13 2 6 25 300 0.1 15 1.78 

36 H13 3 5 15 300 0.3 30 1.78 

37 H13 3 6 25 100 0.2 45 1.44 

38 H13 3 7 25 200 0.1 30 2.25 

39 H13 2 6 20 200 0.1 30 1.78 

40 H13 2 6 20 200 0.1 15 1.78 

41 H13 2 6 20 200 0.1 45 1.78 

42 H13 2 6 20 200 0.1 60 1.78 

43 H13 2 6 20 200 0.1 75 1.78 

44 H13 2 6 20 200 0.1 90 1.78 

45 H13 2 2 20 200 0.1 30 1.78 

46 H13 2 4 20 200 0.1 30 1.78 

47 H13 2 8 20 200 0.1 30 1.78 

48 H13 2 10 20 200 0.1 30 1.78 

49 H13 2 6 15 200 0.1 30 1.78 

50 H13 2 6 25 200 0.1 30 1.78 

51 H13 2 6 30 200 0.1 30 1.78 

52 H13 2 6 35 200 0.1 30 1.78 

53 H13 2 6 20 200 0.2 30 1.78 

54 H13 2 6 20 200 0.3 30 1.78 

55 H13 2 6 20 200 0.4 30 1.78 

56 H13 2 6 20 200 0.5 30 1.78 

57 H13 2 6 20 200 0.6 30 1.78 

58 H13 2 6 20 200 0.7 30 1.78 

59 H13 2 6 20 100 0.1 30 1.78 

60 H13 2 6 20 300 0.1 30 1.78 

61 H13 1 6 20 300 0.1 30 1.78 

62 H13 3 6 20 300 0.1 30 1.78 

63 H13 4 6 20 300 0.1 30 1.78 

64 H13 2 6 20 200 0.1 30 1.44 

65 H13 2 6 20 200 0.1 30 2.25 

66 H13 2 6 20 200 0.1 30 2.94 

67 AISI52100 2 5 15 100 0.1 15 1.44 

68 AISI52100 2 6 25 300 0.1 15 1.78 
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69 AISI52100 3 5 15 300 0.3 30 1.78 

70 AISI52100 3 6 25 100 0.2 45 1.44 

71 AISI52100 3 7 25 200 0.1 30 2.25 

72 AISI52100 2 6 20 200 0.1 30 1.78 

73 AISI52100 2 6 20 200 0.1 15 1.78 

74 AISI52100 2 6 20 200 0.1 45 1.78 

75 AISI52100 2 6 20 200 0.1 60 1.78 

76 AISI52100 2 6 20 200 0.1 75 1.78 

77 AISI52100 2 2 20 200 0.1 30 1.78 

78 AISI52100 2 4 20 200 0.1 30 1.78 

79 AISI52100 2 8 20 200 0.1 30 1.78 

80 AISI52100 2 10 20 200 0.1 30 1.78 

81 AISI52100 2 6 15 200 0.1 30 1.78 

82 AISI52100 2 6 25 200 0.1 30 1.78 

83 AISI52100 2 6 30 200 0.1 30 1.78 

84 AISI52100 2 6 35 200 0.1 30 1.78 

85 AISI52100 2 6 20 200 0.2 30 1.78 

86 AISI52100 2 6 20 200 0.3 30 1.78 

87 AISI52100 2 6 20 200 0.4 30 1.78 

88 AISI52100 2 6 20 200 0.5 30 1.78 

89 AISI52100 2 6 20 200 0.6 30 1.78 

90 AISI52100 2 6 20 200 0.7 30 1.78 

91 AISI52100 2 6 20 100 0.1 30 1.78 

92 AISI52100 2 6 20 300 0.1 30 1.78 

93 AISI52100 1 6 20 300 0.1 30 1.78 

94 AISI52100 3 6 20 300 0.1 30 1.78 

95 AISI52100 4 6 20 300 0.1 30 1.78 

96 AISI52100 2 6 20 200 0.1 30 1.44 

97 AISI52100 2 6 20 200 0.1 30 2.25 

98 25CrMo4 2 6 20 200 0.3 45 1.44 

99 25CrMo4 2 7 15 200 0.1 45 1.78 

100 25CrMo4 3 5 25 200 0.2 15 1.44 

101 25CrMo4 3 7 20 100 0.3 15 1.78 

102 25CrMo4 2 6 20 300 0.1 30 1.78 

103 25CrMo4 2 6 20 200 0.1 30 1.78 

104 25CrMo4 2 6 20 200 0.1 15 1.78 

105 25CrMo4 2 6 20 200 0.1 45 1.78 

106 25CrMo4 2 6 20 200 0.1 60 1.78 

107 25CrMo4 2 6 20 200 0.1 75 1.78 

108 25CrMo4 2 6 20 200 0.1 90 1.78 

109 25CrMo4 2 2 20 200 0.1 30 1.78 

110 25CrMo4 2 4 20 200 0.1 30 1.78 



Mathematics 2022, 10, x FOR PEER REVIEW 21 of 24 
 

 

111 25CrMo4 2 8 20 200 0.1 30 1.78 

112 25CrMo4 2 10 20 200 0.1 30 1.78 

113 25CrMo4 2 6 15 200 0.1 30 1.78 

114 25CrMo4 2 6 25 200 0.1 30 1.78 

115 25CrMo4 2 6 30 200 0.1 30 1.78 

116 25CrMo4 2 6 35 200 0.1 30 1.78 

117 25CrMo4 2 6 20 200 0.2 30 1.78 

118 25CrMo4 2 6 20 200 0.3 30 1.78 

119 25CrMo4 2 6 20 200 0.4 30 1.78 

120 25CrMo4 2 6 20 200 0.5 30 1.78 

121 25CrMo4 2 6 20 200 0.6 30 1.78 

122 25CrMo4 2 6 20 200 0.7 30 1.78 

123 25CrMo4 2 6 20 100 0.1 30 1.78 

124 25CrMo4 2 6 20 300 0.1 30 1.78 

125 25CrMo4 1 6 20 300 0.1 30 1.78 

126 25CrMo4 3 6 20 300 0.1 30 1.78 

127 25CrMo4 4 6 20 300 0.1 30 1.78 

128 25CrMo4 2 6 20 200 0.1 30 1.44 

129 25CrMo4 2 6 20 200 0.1 30 2.25 

130 AISI3310 2 6 20 200 0.1 30 1.78 

131 AISI3310 2 6 20 200 0.1 15 1.78 

132 AISI3310 2 6 20 200 0.1 45 1.78 

133 AISI3310 2 6 20 200 0.1 60 1.78 

134 AISI3310 2 6 20 200 0.1 75 1.78 

135 AISI3310 2 6 20 200 0.1 90 1.78 

136 AISI3310 2 2 20 200 0.1 30 1.78 

137 AISI3310 2 4 20 200 0.1 30 1.78 

138 AISI3310 2 8 20 200 0.1 30 1.78 

139 AISI3310 2 10 20 200 0.1 30 1.78 

140 AISI3310 2 6 15 200 0.1 30 1.78 

141 AISI3310 2 6 25 200 0.1 30 1.78 

142 AISI3310 2 6 30 200 0.1 30 1.78 

143 AISI3310 2 6 35 200 0.1 30 1.78 

144 AISI3310 2 6 20 200 0.2 30 1.78 

145 AISI3310 2 6 20 200 0.3 30 1.78 

146 AISI3310 2 6 20 200 0.4 30 1.78 

147 AISI3310 2 6 20 200 0.5 30 1.78 

148 AISI3310 2 6 20 200 0.6 30 1.78 

149 AISI3310 2 6 20 200 0.7 30 1.78 

150 AISI3310 2 6 20 100 0.1 30 1.78 

151 AISI3310 2 6 20 300 0.1 30 1.78 

152 AISI3310 1 6 20 300 0.1 30 1.78 
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153 AISI3310 3 6 20 300 0.1 30 1.78 

154 AISI3310 4 6 20 300 0.1 30 1.78 

155 AISI3310 2 6 20 200 0.1 30 1.44 

156 AISI3310 2 6 20 200 0.1 30 2.25 

157 AISI3310 2 6 20 200 0.1 30 2.94 
 

 
Author Contributions: Conceptualization, D.F., A.R.-P., and A.M.C.; methodology, D.F.; formal 
analysis, D.F., A.R.-P., and A.M.C.; investigation, D.F., A.R.-P., and A.M.C.; resources, A.R.-P. and 
A.M.C.; writing—original draft preparation, D.F.; writing—review and editing, A.R.-P. and A.M.C.; 
supervision, A.R.-P. and A.M.C.; project administration, A.R.-P. and A.M.C.; funding acquisition, 
A.R.-P. and A.M.C. All authors read and agreed to the published version of the manuscript.  

Funding: This research was funded within the framework of the “Doctorate Program in Industrial 
Technologies” of the UNED and it has been funded by the project 2021V/-TAJOV/006 (awarded in 
the UNED Research Projects call named “Young Talents 2021”). 

Data Availability Statement: The raw/processed data required to reproduce these findings cannot 
be shared at this time as the data also forms part of an ongoing study. 

Acknowledgments: We would like to extend our acknowledgement to the Research Group of the 
UNED “Industrial Production and Manufacturing Engineering (IPME)” and the Industrial Research 
Group “Advanced Failure Prognosis for Engineering Applications”. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results. 

  



Mathematics 2022, 10, x FOR PEER REVIEW 23 of 24 
 

 

References 
 

1. Sheng, L. Y., Du, B. N., Hu, Z. Y., Qiao, Y. X., Xiao, Z. P., Wang, B. J., Xu, D. K., Zheng, Y. F. & Xi, T. F. Effects of annealing 
treatment on microstructure and tensile behaviour of the Mg-Zn-Y-Nd alloy. Journal of Magnesium Alloys 2020, 8, pp.601–613. 

2. Bermudo, C., Andersson, T., Svensson, D., Trujillo, F. J., Martín-Béjar, S. & Sevilla, L. Modeling of the fracture energy on the 
finite element simulation in Ti6Al4V alloy machining. Scientific Reports 2021, 11, 18490. 

3. Fernández, D.; Rodríguez-Prieto, A.; Camacho, A.M. Effect of Process Parameters and Definition of Favorable Conditions in 
Multi-material Extrusion of Bimetallic AZ31B-Ti6Al4V Billets. Appl. Sci. 2020, 10, 8048. 

4. Fernández, D.; Rodríguez-Prieto, A.; Camacho, A.M. Selection of Die Material and Its Impact on the Multi-Material Extrusion 
of Bimetallic AZ31B-Ti6Al4V Components for Aeronautical Applications. Materials 2021, 4, 7568. 

5. Negendanka, M.; Mueller, S.; Reimers, W. Co-extrusion of Mg–Al macrocomposites. J. Mater. Process. Technol. 2021, 212, 1954–
1962. 

6. Gall, S.; Müller, S.; Reimers, W. Aluminum coating of magnesium hollow profiles by using the co-extrusion process. Alum. Int. 
J. 2009, 85, 63–67. 

7. Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine learning in manufacturing and industry 4.0 applications. Int. J. Prod. Res. 
2021, 59, 4773–4778. 

8. Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.; Sanyal, S.; Favilla, J.; Barbosa, J. Machine learning and reasoning for predictive 
maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. 

9. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. 
10. Jović, S.; Radović, A.; Šarkoćević, Ž.; Petković, D.; Alizamir, M. Estimation of the laser cutting operating cost by support vector 

regression methodology. Appl. Phys. A 2016, 122, 798. 
11. Rabiee, A.H.; Tahmasbi, V.; Qasemi, M. Experimental evaluation, modeling and sensitivity analysis of temperature and cutting 

force in bone micro-milling using support vector regression and EFAST methods. Eng. Appl. Artif. Intell. 2023, 120, 105874. 
12. Xu, C.; Yao, S.; Wang, G.; Wang, Y.; Xu, J. A prediction model of drilling force in CFRP internal chip removal hole drilling based 

on support vector regression. Int. J. Adv. Manuf. Technol. 2021, 117, 1505–1516. 
13. Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Health assessment and life prediction of cutting tools based on support 

vector regression. J. Intell. Manuf. 2015, 26, 213–223. 
14. Rebello, C.M.; Martins, M.A.F.; Santana, D.D.; Rodrigues, A.E.; Loureiro, J.M.; Ribeiro, A.M.; Nogueira, I.B.R. From a Pareto 

Front to Pareto Regions: A Novel Standpoint for Multiobjective Optimization. Mathematics 2021, 9, 3152. 
15. Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. 
16. Ghaleb, A.M.; Kaid, H.; Alsamhan, A.; Mian, S.H.; Hidri, L. Hindawi Assessment and Comparison of Various MCDM Ap-

proaches in the Selection of Manufacturing Process. Adv. Mater. Sci. Eng. 2020, 4039253. 
17. Karbassi Yazdi, A.; Tan, Y.; Spulbar, C.; Birau, R.; Alfaro, J. An Approach for Supply Chain Management Contract Selection in 

the Oil and Gas Industry: Combination of Uncertainty and Multi-Criteria Decision-Making Methods. Mathematics 2022, 10, 3230. 
18. Rodríguez-Prieto, A.; Camacho, A.M.; Sebastián, M.A. Multi-criteria materials selection for extreme operating conditions base 

on a multi-objective analysis of irradiation embrittlement and hot cracking prediction models. Int. J. Mech. Mater. Des. 2018, 14, 
617–634. 

19. Alrababah, S.A.A.; Gan, K.H. Effects of the Hybrid CRITIC–VIKOR Method on Product Aspect Ranking in Customer Reviews. 
Appl. Sci. 2023, 13, 9176.  

20. Kao, C. Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Appl. Math. Model. 
2010, 34, 1779–1787. 

21. Dev, S.; Aherwar, A.; Patnaik, A. Material Selection for Automotive Piston Component Using Entropy-VIKOR method. Silicon 
2020, 12 (4). 

22. Fernández, D.; Rodríguez-Prieto, Á.; Camacho, A.M. Optimal Parameters Selection in Advanced Multi-Metallic Co-Extrusion 
Based on Independent MCDM Analytical Approaches and Numerical Simulation. Mathematics 2022, 10, 4489.  

23. Zavadskas, E.K.; Turskis, Z. A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technological 
and Economic Development of Economy 2010, 16 (2), pp 159-172. 

24. Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. 
Appl. 2012, 39, pp.13051–13069.  

25. Zavadskas, E.K.; Kaklauskas, A.; Peldschus, F.; Turskis, Z. Multi-attribute assessment of road design solutions by using the 
COPRAS method. Balt. J. Road Bridge Eng. 2007, 2, pp.195–203.  

26. Pant, S.; Kumar, A.; Ram, M.; Klochkov, Y.; Sharma, H.K. Consistency Indices in Analytic Hierarchy Process: A Review. Math-
ematics 2022, 10, 1206.  

27. Narayanamoorthy, S.; Annapoorani, V.; Kalaiselvan, S.; Kang, D. Hybrid Hesitant Fuzzy Multi-Criteria Decision Making 
Method: A Symmetric Analysis of the Selection of the Best Water Distribution System. Symmetry 2020, 12, 2096. 

28. Donachie, M.J. Titanium: A Technical Guide; ASM International: Novelty, OH, USA, 1988 
29. Avedesiam, M.; Baker, H. ASM Speciality Handbook: Magnesium and Magnesium Alloys; ASM International: Novelty, OH, 

USA, 1999. 



Mathematics 2022, 10, x FOR PEER REVIEW 24 of 24 
 

 

30. Karmakar, D.; Muvvala, G.; Kumar, A. High-temperature abrasive wear characteristics of H13 steel modified by laser remelting 
and cladded with Stellite 6 and Stellite 6/30% WC. Surf. Coat. Technol. 2021, 422, 127498. 

31. Li, D.; Zhu, Z.; Xiao, S.; Zhang, G.; Lu, Y. Plastic flow behavior based on thermal activation and dynamic constitutive equation 
of 25CrMo4 steel during impact compression. Mater. Sci. Eng. A 2017, 707, 459–465. 

32. Bhandarkar, L.; Behera, M.; Mohanty, P.; Sarangi, S. Experimental investigation and multi-objective optimization of process 
parameters during machining of AISI 52100 using high performance coated tools. Measurement 2021, 172, 108842. 

33. Bedekar, V.; Voothaluru, R.; Yu, D.; Wong, A.; Galindo-Nava, E.; Gorti, S.B.; An, K.; Hyde, R.S. Effect of nickel on the kinematic 
stability of retained austenite in carburized bearing steels—In-situ neutron diffraction and crystal plasticity modeling of uniax-
ial tension tests in AISI 8620, 4320 and 3310 steels. Int. J. Plast. 2020, 131, 102748. 

34. Peat, T.; Galloway, A.; Toumpis, A.; Steel, R.; Zhu, W.; Iqbal, N. Enhanced erosion performance of cold spray co-deposited 
AISI316 MMCs modified by friction stir processing. Mater. Des. 2017, 120, 22–35. 

35. Davis, J.R. ASM Speciality Handbook—Stainless Steels; ASM International: Novelty, OH, USA, 1999. 
36. Scientific Forming Technologies. DEFORM v11.2 User’s Manual; Scientific Forming Technologies Corporation: Columbus, OH, 

USA, 2017. 
37. Li, W.; Zhao, G.; Ma, X.; Gao, J. Flow Stress Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperatures. Int. J. 

Appl. Phys. Math. 2012, 2, 83–88. 
38. Wang, F.; Zhao, J.; Zhu, N.; Li, Z. A comparative study on Johnson—Cook constitutive modelling for Ti6Al4V alloy using au-

tomated ball indentation (ABI) technique. J. Alloys Compd. 2015, 633, 220–228. 
39. Zhang, C.; Zhao, G.; Li, T.; Guan, Y.; Chen, H.; Li, P. An Investigation of Die Wear Behavior during Aluminum Alloy 7075 Tube 

Extrusion. J. Tribol. 2012, 135, 011602. 
40. Li, T.; Zhao, G.; Zhang, C.; Guan, Y.; Sun, X.; Li, H. Effect of Process Parameters on Die Wear Behavior of Aluminum Alloy Rod 

Extrusion. Mater. Manuf. Process. 2013, 28, 312–318. 
41. Lepadatu, D.; Hambli, R.; Kobi, A.; Barreau, A. Statistical investigation of die wear in metal extrusion processes. Int. J. Adv. 

Manuf. Technol. 2005, 28, 272–278. 
42. García-Domínguez, A., Claver, J., Camacho, A.M. & Sebastián, M.A. Comparative analysis of extrusion processes by finite ele-

ment analysis. Procedia Engineering 2015; 100: 74-83. 
43. Gisbert, C., Bernal, C. & Camacho, A.M. Improved analytical model for the calculation of forging forces during compression of 

bimetallic axial assemblies. Procedia Engineering 2015; 132: 298-305. 
44. Safari, M.; Rabiee, A.H.; Joudaki, J. Developing a Support Vector Regression (SVR) Model for Prediction of Main and Lateral 

Bending Angles in Laser Tube Bending Process. Materials 2023, 16, 3251. 
45. Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. 

Oper. Res. 2004, 156, 445–455. 
46. Sasanka, C. T. ; Ravindra, K. Implementation of VIKOR Method for Selection of Magnesium Alloy to Suit Automotive Appli-

cations. International Journal of Advanced Science and Technology 2015, Vol.83, 49–58.   
47. Raschka, S.; Mirjalili, V. Python Machine Learning. Second Edition. Packt Publishing. Birminghan, UK. 2017. 

 


	1. Introduction
	2. Materials and Methods
	2.1. Materials, Geometrical Dimensions and Process Parameters
	2.2. Finite Element Modeling and Simulation preparation
	2.2.1. Tool wear model
	2.2.2. FEM Model Validation
	FEM model was validated by using the semi-empirical model of Johnson, used by García et al. [42]. This model is typically used as reference in extrusion processes to establish an upper limit for the extrusion force. In order to apply the Johnson’s mod...
	As it was said before the idea is to minimize the Equation (2), taking into account the constraints of Equations (3), (4) and (5):
	,1-2. ,,𝑤.-2.+𝐶,𝑖=1-𝑁-(,𝜉-𝑖.+,𝜉-𝑖-∗.).       (2)
	,𝑦-𝑖.−𝑤,𝑥-𝑖.−𝑏≤𝜀+,𝜉-𝑖.        (3)
	𝑤,𝑥-𝑖.+𝑏−,𝑦-𝑖.≤𝜀+,𝜉-𝑖-∗.       (4)
	,𝜉-𝑖.,,𝜉-𝑖-∗.≥0          (5)
	,𝑅-2.= ,,,,𝑖=1-𝑛-(,𝜃-𝑖.−,𝜃-𝑖-𝑚𝑒𝑎𝑛.)(,,𝜃.-𝑖.−,,𝜃.-𝑖-𝑚𝑒𝑎𝑛..).-2.-,,𝑖=1-𝑛-(,𝜃-𝑖.−,𝜃-𝑖-𝑚𝑒𝑎𝑛.)..,,𝑖=1-𝑛-(,,𝜃.-𝑖.−,,𝜃.-𝑖-𝑚𝑒𝑎𝑛.)...       (6)
	Where ,𝜃-𝑖. is the measurement data, ,,𝜃.-𝑖. is the predicted magnitude in accordance with SVR, ,𝜃-𝑖-𝑚𝑒𝑎𝑛. is the mean of the measurement data and ,,𝜃.-𝑖-𝑚𝑒𝑎𝑛. is the mean of the prediction.
	2.4. Entropy method
	2.5. VIKOR method
	2.5 Methodology

	Two different methodologies have been proposed for the selection of the optimal die material in order to obtain the minimum extrusion force and die wear. The methodology steps are shown in Figure 3 flowchart.
	3. Results
	3.1 SVR Methodology
	As explained above the dataset is obtained from Table [6] and for each material and each parameter to be predicted, several dataframes were obtained by using “pandas” together with “sklearn” libraries.
	Using “RFE” module for Regression Feature Selection from “sklearn.feature_selection” together with “SVR” module from “sklearn.svm”, the influence of the process parameters are ranked in accordance with their influence in the extrusion force as it is s...
	Taking into account these results, it can be said that friction is the most important process parameter while temperature is the less important one. This conclusion is in a good agreement with the findings obtained by Fernández et al. [3, 4] where a d...
	As there is not a clear pattern about the influence of each process parameters and this influence is clearly dependent on the die material, for the prediction model all the parameters will be implemented.
	For the prediction model of the extrusion force, the dataframes for each material were split in two groups, one for training and one for testing using the “train_test_split” function from “sklearn.model_selection” module, being the test size 0.3.
	After applying the “LinearRegression” function from “sklearn.linear_model” to build the prediction model using the training data and afterwards evaluate the model using the test data, the determination factor (R2) for each material is shown in Table 7:
	3.2 MCDM Methodology

	4. Discussion
	Appendix A.
	References

