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Abstract 

High-quality Cardiac Magnetic Resonance (CMR) images can be hardly obtained when 

intrinsic noise sources are present, namely heart and breathing movements. Yet heart images may 

be acquired in real time, the image quality is really limited and most sequences use ECG gating to 

capture images at each stage of the cardiac cycle during several heart beats. This paper presents a 

novel super-resolution algorithm that improves the cardiac image quality using a sparse Bayesian 

approach. The high-resolution version of the cardiac image is constructed by combining the 

information of the low-resolution series –observations from different non-orthogonal series 

composed of anisotropic voxels– with a prior distribution of the high-resolution local coefficients 

that enforces sparsity. In addition, a global prior, extracted from the observed data, regularizes the 

solution. Quantitative and qualitative validations were performed in synthetic and real images w.r.t 

to a baseline, showing an average increment between 2.8 and 3.2 𝑑𝐵 in the Peak Signal-to-Noise 

Ratio (PSNR), between 1.8% and 2.6% in the Structural Similarity Index (SSIM) and 2 % to 

4 % in quality assessment (IL-NIQE). The obtained results demonstrated that the proposed 

method is able to accurately reconstruct a cardiac image, recovering the original shape with less 

artifacts and low noise. 

 

Keywords: Magnetic resonance; Super-resolution; Sparse representation 

 

 

1  Introduction 
Magnetic Resonance Imaging (MRI) has been broadly applied in diagnosis, surgical 

planning and research of several structural or functional heart disorders. Usually, the limited MRI 

acquisition time results in highly anisotropic voxels, i.e., 1-2 mm in-plane resolution up to 8 mm 

inter-plane separation, a distance that may be even larger when both heart movements and apnea 
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periods are exacerbated. In practice, most cardiac MRI sequences extract slices in arbitrary 

directions, basically three non orthogonal acquisition planes: 4-chamber long axis, 2-chamber long 

axis and 2-chamber short axis. In general, these standard views are enough to examine the heart 

structure, but at a high acquisition time cost. Accordingly, less time demanding methods have been 

developed, either as protocols that radially acquire images or customized sequences that capture 

more rapidly a volume. Nevertheless, these techniques produce highly anisotropic voxels and 

hence very limited image quality [1]. 

Several advances in cardiovascular Magnetic Resonance (CMR) have brought out this 

technique as the imaging gold standard for many cardiac diseases [2], [3]. However, for the CMR 

becomes integrated with the everyday clinical practice, it is crucial the improvement of the image 

quality and the introduction of supplementary education for the specialists. These imaging 

educational programs require reliable 3D reconstructions that facilitate efficient data interaction. It 

might be also useful for patients to be informed about some procedures and in this case the data 

visualization quality is important [4], [5]. Additionally, a higher resolution image may facilitate 

post-processing and/or segmentation so that accurate volume calculation of the cardiac chambers 

or valves may be possible. A great challenge of such reconstruction is that most acquisition 

techniques result in very large anisotropic voxels and therefore very blurred versions of the 3D 

object. Essentially, this problem is equivalent to a non-uniform sampling in a regular grid. 

Traditional interpolation methods fail since they overfit a curve or a surface model that by no 

means reconstructs discontinuities of some structures such as the interventricular septum or the 

valve motion. 

In general, super-resolution (SR) methods reconstruct a high-resolution image from 

low-resolution images that have been captured with small displacements between them [6], [7], 

[8], [9]. Typical SR methods will surely fail in case of CMR images since acquisition planes are 

non-orthogonal and the voxel anisotropy is much larger, i.e., between 5mm and 8mm slice 

thickness. Likewise, heart and chest motions highly increase the uncertainty of any capture. 

This paper presents a novel super-resolution method that reconstructs a high resolution 

version of the CMR image, even in case of non-orthogonal anisotropic voxels and noisy captures. 

The method is based on a Bayesian representation which may deal with the uncertainty from 

multiple noise sources, i.e., the non-orthogonal capturing procedure that introduces different 

degrees of noise from each of the orientations. The acquisition noise is not modeled but 

approximated by a Bayesian representation of the whole volume. A sparsity hypothesis forces the 

method to have a minimal neighborhood, a local vicinity where relations are assumed Gaussian 

and the noise sources independent. In such a case, this local information is driven by a Gibbs 

probability distribution which in addition is continous. The approach was widely evaluated in both 

phantom and real data, demonstrating a substantial gain with respect to the base line. 

This article is divided into four sections: next section presents a brief comparison with 

related works. Section 3 shows the general outline of the proposed method, while Section 4 

describes the experiments performed to evaluate the accuracy of the proposal and the quality of the 

obtained images. Finally Section 5 discusses the results and presents some conclusions. 

 

2  Related works 
 

Greenspan et al. [10] introduced the use of SR algorithms in MRI images, using an iterative 

method that minimizes the mean square distance between the given low-resolution image and 

low-resolution versions of the high-resolution image. This high-resolution image is obtained by 
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simulating the imaging process as a geometric transformation of the high-resolution image, which 

is blurred, downsampled and perturbed by a Gaussian noise. Results were evaluated in a 3D 

isotropic grid with 4.5 mm inter-plane and 1.5 mm in-plane resolutions, respectively, reporting an 

improvement of 3% in the Signal-to-Noise Ratio (SNR). This resolution nevertheless is far from 

what is observed in CMR, typically a slice thickness of 8 mm. Plenge et al. [11] demonstrated the 

advantages of the SR methods to improve the MRI image quality and reduce the acquisition time. 

This investigation compared six SR algorithms, grouped into three different approaches: iterative 

back-projection, algebraic reconstruction and regularized least squares, concluding that the SR 

algorithms remarkably improve the SNR. 

Other type of approximations have used different capture protocols that improve the image 

quality. Peeters et al. [12] acquired shifted versions of brain functional images, whereby simple 

interpolations would increase the data quality, but at a higher acquisition time. From the obtained 

results, these authors claim that the detectability of small activated areas is increased and the SNR 

improved. Poot et al. [13] presented a multi-slice MRI SR method, reconstructing the 

high-resolution image as a squared minimum problem, regularized by the second order derivatives 

in three non-orthogonal directions of the estimated image. Experiments were performed using 

MRI images of brain birds, but the presented results were purely qualitative. 

Bai et al. [9] increased the quality of brain MRI images by applying a Bayesian approach to 

exclusively orthogonal series. In such approach, the local prior is a Markov Random Field 

approximated as a discretization of a Laplacian operator within a fully regular grid. Rahman et al. 

[14] estimated a SR image by computing a Maximum a Posteriori (MAP) from a set of orthogonal 

series of CMR images, but only orthogonal views are considered. The prior term was also a 

Markov Random field which basically defined conditional independence between the members of 

the local neighborhood, a statement hardly applicable to images with very similar textures. In 

addition, their evaluation was purely qualitative on real images, with no numerical or quantitative 

measures. Gholipur et al. [15] estimated the high-resolution image by maximizing a likelihood 

term, defined as the difference between the observations and a pseudo-inverse of the generative 

model of the image. The method was validated with phantoms and brain imaged newborn subjects, 

reporting a Peak Signal-to-Noise Ratio (PSNR) improvement of 2dB to 3dB in images with a 

slice thickness of 6 mm for phantoms and 3 to 4 mm for newborn subjects. This method however 

has not prior at all. 

 

3  Methods 
 

The proposed method takes as input N low-resolution images, corresponding to series of 

2D slices acquired at non-orthogonal and different orientations, and combine them into a single 

high-resolution volume. The method is divided into two steps, the first or pre-processing aims to 

correct or eliminate differences in the grayscale intensity and to spatially transform the images to a 

common reference system. The second step is the super-resolution method, formulated as a 

regression problem in terms of a set of bases or regressors whose weights are obtained from a 

Bayesian approach. The method looks for the sparsest solution of a particular prediction at both the 

local level, determined by the capture procedure, and the global information that ensures fidelity to 

the particular heart shape. Figure (1) shows the method overview. 
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Figure  1: Flowchart of the proposed method 

  

 

3.1  Image pre-processing 
 

The purpose of this stage is twofold, 1) to homogenize the grayscale low-resolution images 

and 2) to obtain a common spatial representation. In the present investigation, only those series 

that contained the whole organ were selected and three different operations were performed on 

them: a contrast correction, an upsampling (interpolation) and a spatial transformation. 

 

3.1.1  Contrast correction 

 

The image contrast correction is a non-parametric intensity transformation using a 

reference image. Following the method described in [16], the reference image used in this study is 

that one with the larger dynamic range, and a mapping transformation is performed by matching 

the histogram bin coincidences, as follows  

 

𝑝 = 𝑚𝑎𝑥
𝑘

[𝑇𝑚−1 < 𝐻𝑘 ≤ 𝑇𝑚] (1) 

 

Where 𝑝 is the gray level to be placed in the 𝑘 − 𝑡ℎ bin of the histogram to be modified, 

𝑇𝑚  represents the cumulative histogram of the image to be modified, 𝐻𝑘  is the cumulative 

histogram of the reference image and the subscripts 𝑘 and 𝑚 are the gray levels of the reference 

and modified images, respectively. 

 

3.1.2  Upsampling 

 

As a second step, a high-resolution image is constructed by combining high-resolution 

versions of the non-orthogonal low-resolution series. Instead of dividing the contribution of the 

low-resolution Point Spread Function (PSF) between the corresponding four high-resolution 
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pixels, as usual, an isotropic image is constructed by linearly combining non-orthogonal series that 

previously have been converted to isotropic. For doing so, either a statistical filtering
2
 or an 

interpolation (linear and bi-cubic) is firstly carried out for each of the anisotropic series, converting 

the series into isotropic. 

 

3.1.3  Spatial mapping 

 

Finally, to bring all images of each series to a single reference system, the DICOM header 

information is used to extract the rotation and translation matrices of the mapping, locating all 

series in the origin of the spatial reference system of the machine. As stated in [18], a 2D image (a 

slice) is represented by assigning a null vector to the third column of the transformation matrix. In 

the present investigation, the third column corresponds to the vector [𝑍𝑥𝑍𝑦𝑍𝑧]
𝑇

𝛥𝑧, where 𝛥𝑧 is 

the height in millimeters of the low-resolution voxels and [𝑍𝑥𝑍𝑦𝑍𝑧]
𝑇

= [𝑋𝑥𝑋𝑦𝑋𝑧]
𝑇

× [𝑌𝑥𝑌𝑦𝑌𝑧]
𝑇
, 

and [𝑋𝑥𝑋𝑦𝑋𝑧]
𝑇
 and [𝑌𝑥𝑌𝑦𝑌𝑧]

𝑇
 are the row direction cosine values (𝑋 and 𝑌 respectively) of the 

patient orientation and [𝑃𝑥𝑃𝑦𝑃𝑧]
𝑇
 are the voxel coordinates, calculated as 

 

[

𝑃𝑥

𝑃𝑦

𝑃𝑧

1

] = [

𝑋𝑥𝛥𝑥 𝑌𝑥𝛥𝑦 𝑍𝑥𝛥𝑧 𝑆𝑥

𝑋𝑦𝛥𝑥 𝑌𝑦𝛥𝑦 𝑍𝑦𝛥𝑧 𝑆𝑦

𝑋𝑧𝛥𝑥 𝑌𝑧𝛥𝑦 𝑍𝑧𝛥𝑧 𝑆𝑧

0 0 0 1

] [

𝑖
𝑗
𝑘
1

] (2) 

 

Where Δ𝑥, Δ𝑦 and Δ𝑧 correspond to the voxel size at each dimension, 𝑆𝑥, 𝑆𝑦 and 𝑆𝑧 are 

the patient location w.r.t. the scanner, [𝑖𝑗𝑘]𝑇  is a voxel position in the volume before 

transformation. 

 

3.2  The Super-Resolution algorithm 
 

Given a data set of the form {𝐱𝑛, 𝐈𝑛}𝑛=1
𝑁 , where 𝐱 is a vector of known inputs, 𝐈 is a 

desired output or target and 𝑁 is the number of corresponding pairs of 𝐈 and 𝐱, a regression 

model is capable of making accurate predictions of 𝐈 for new examples of 𝐱. In case of CMR, the 

observed samples {𝐈𝑙} stand for the low-resolution images, from which a high-resolution version 

will be obtained. In the SR context, 𝐱 is associated with locations in a sampling grid, where 𝐱𝑙 

corresponds to the acquisition spatial locations (low-resolution grid) and 𝐱ℎ  stands for the 

high-resolution grid (𝐱𝑙 ⊂ 𝐱ℎ). Given {𝐱𝑙, 𝐈𝑙} and {𝐱ℎ}, the SR reconstruction can be written as  

 

𝐼 = 𝑓(𝐱) + 휀 (3) 

 

Where 휀  is an additive noise from sensors and/or acquisition devices and 𝑓  is a 

continuous function representing the real object. The SR problem can then be stated as an optimal 

search of continuous information from a discrete non-regular grid of samples, a classical 

regression problem. Under such regression formulation, an approximation of the continuous 

function 𝑓 can be stated as 

                                                 
2 The statistical filtering is a 3D variant of the Non-Local Means filter which has been classically used as a a noise reduction strategy, under the 
constraint that the downsampled version of the reconstructed image must be as similar as possible to the low-resolution image [17]. 
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𝑓 = ∑  
𝐽

𝑗=1
𝐼ℎ,𝑗𝛿(𝐱ℎ,𝑗) = 𝐰 ⋅ 𝚽 (4) 

 

Where, 𝑓 is a discrete version of 𝑓 in the high-resolution locations (𝐱ℎ), 𝐰 is a vector of 

weights representing the intensities to be learned and 𝚽 is a discrete basis that exists only for the 

spatial locations (𝐱ℎ). 

 

3.2.1  The Sparse Bayesian approach 

 

Provided that a main difficulty of this SR reconstruction is the uncertainty of the capturing 

grid, a sparse Bayesian framework was herein adapted to deal with it. From a sparse point of view, 

the SR problem can be stated as the estimation of a minimal number of weights 𝜔𝑖 such that the 

regression 𝜔𝑖𝜙𝑖  approximates the observation 𝐈𝑗  ,.i.e., 𝐈 ≈ Φ𝑇𝐰  with 𝐈 ≡ [𝐼1, … , 𝐼𝑗]
𝑇

 and 

𝚽 ≡ [𝜙1, … , 𝜙𝑗]
𝑇
. 

Unlike previous approaches [13,14,15], the presented method imposes the sparsity 

condition by assuming the weights are set within a pre-defined neighborhood, trying to maximize 

the covariance between weights that follow a Gibbs distribution. The prior probability forces local 

information to highly depend on the central voxel, provided 𝚽 is square and built from a positive 

kernel function. 

The regression bases correspond then to unitary Kronecker pulses placed over the 

predefined high-resolution grid and the weights correspond to a kernel that models the PSF as a 

Gibbs distribution. This kernel modulates the likelihood function, approximated herein by a 

Gaussian function of the difference between the observations and the linear model. 

Given a regressor basis 𝚽, the full Bayesian treatment of (3) leads to find the predictive 

distribution 𝑝(𝐰|𝐈𝑙, 𝚽), which typically is calculated as a product between two probabilities (the 

likelihood and prior terms): 

 

𝑝(𝐰|𝐈𝑙, 𝚽) = 𝑝(𝐈𝑙|𝐰, 𝚽)𝑝(𝐰, 𝚽) (5) 

 

The Likelihood term (𝑝(𝐈𝑙|𝐰, 𝚽)) is a measure of the ability to generate the observed data 

𝐈𝑙 from possible regressors 𝚽. Assuming Gaussian noise, it follows  

휀 = 𝐈𝑙 − 𝐰 ⋅ 𝚽 (6) 

 and  

𝑝(𝐈𝑙|𝐰, 𝚽) =   
1

(2𝜋)
𝑀
2 𝜎𝑀

exp {−
1

2𝜎2
(𝐈𝑙 − 𝑔𝑙(𝐰 ⋅ 𝚽))𝑇(𝐈𝑙 − 𝑔𝑙(𝐰 ⋅ 𝚽))} (7) 

 

Where 𝜎2 represents the image noise variance and 𝑔𝑙 is the subsampling and blurring 

effect that maps the high-resolution to the low-resolution image. 

On the other hand, the Prior term is estimated by assuming that a sparse solution should 

neglect nearly every basis except the one belonging to a pre-defined neighborhood, determined by 

the acquisition procedure. A prior model, following a simple Gibbs distribution, has the advantage 

of providing a convex cost function with a global minimum, which is also easily differentiable 

with respect to the estimated 𝐰. This kind of model can be written as  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

𝑝(𝐰|𝚽) =
1

(2𝜋)𝑀|𝐤|12 exp {−
1

2
(𝐰 ⋅ 𝚽)𝑇𝐤𝑇(𝐰 ⋅ 𝚽)} (8) 

 

Where 𝐤 is the 𝑀 × 𝑀 kernel to be learned. The exponential term can be factored as a 

sum of products, where 𝐤 = 𝐤𝑖𝐤𝑖
𝑇 is the searched kernel, 𝐤𝑖 = [𝑘𝑖,1, 𝑘𝑖,2, … , 𝑘𝑖,𝑀]

𝑇
 is a vector of 

coefficients. The vectors of coefficients 𝐤𝑖  are the set of prior assumptions about the local 

relationships between the values of 𝐰. This kernel was learned using a Gibbs distribution and a 

pre-defined neighborhood as  

 

�̂� =∗ 𝑎𝑟𝑔 𝑚𝑎𝑥𝐤𝑝(𝐈𝑙|𝐤) =∗ 𝑎𝑟𝑔 𝑚𝑎𝑥𝐤 ∫  𝑝(𝐈ℎ, 𝐈𝑙|𝐤) ∂𝐈ℎ (9) 

 

This Maximum a Posteriori (MAP) formulation can be approached by an 

Expectation-Maximization (EM) framework that includes the high-resolution images 𝐈ℎ  as a 

hidden variable and onto which the problem is marginalized and treated as an usual EM problem. 

The E-step estimates a high-resolution image and its covariance using the current kernel, and the 

M-step determines the best kernel using the high-resolution image from the E-step. The algorithm 

reads as follows:   

1. E-step: considering 𝑝(𝐈ℎ) = 𝑝(𝐈ℎ|𝐈𝑙, 𝐤), an averaged estimation and covariance of 

the high-resolution image, 𝐈ℎ is computed  

2. M-step: 𝐤 is obtained by minimizing 𝐸𝐈ℎ
(||𝐤𝐈ℎ − 𝐈𝐥||

2)  

 

These local relationships were herein well approximated with the Kronecker function as 

the canonical base 𝜙 and within a small pre-defined 3 × 3 × 3 neighborhood, imposed by the 

acquisition procedure, i.e., the neighborhood was set to a size equivalent to the ventricular septum 

thickness, a 3 × 3 neighborhood in the low-resolution image. The weights were set to 1 at the 

center and −0.0384  at any other location within the neighborhood, after maximizing the 

covariance of weights of the Gibbs distribution from a set of 1000 randomly selected 

neighborhoods, as described above. 

 

𝐤𝑖,𝑗 = (
1, 𝑓𝑜𝑟𝑖 = 𝑗
−0.0384 𝑓𝑜𝑟𝑗: 𝜙𝑗𝑖𝑠𝑎𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑜𝑓𝜙𝑖

 (10) 

 

The above approach only takes into account local characteristics of the image. The prior 

was then complemented to include global information from the low-resolution image by centering 

the data 𝐰 around an estimated of the smooth variations of the low-resolution image �̅�. For so 

doing, �̅� is divided into tiles of a predetermined size and the tile averages are calculated for the 

whole set of available series, that is to say  

 

𝐰 ⋅ 𝚽 = �̅� ⋅ 𝚽 + 휀 (11) 

 

Assuming an additive and independent noise, the complementary prior reads as  

 

𝑝(𝐰|�̅�) =
1

(2𝜋)𝑀𝜎12 exp {−
1

2𝜎2 (𝐰 ⋅ 𝚽 − �̅� ⋅ 𝚽)2} (12) 

 

The prior term is then a function that captures the uncertainty of the local influence under a 
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restricted global shape, as formulated in Equations (8) and (12). The global information �̅� is an 

estimate of the smooth variations of the average image intensity, calculated for the whole set of 

available series at each of the neighborhoods defined in Equation (8). This term forces any 

instance to stay close to the prior global shape and preserves not only shapes but relationships 

between Regions of Interest. In contrast, the local information prior tends to highlight low-level 

features like homogeneous regions and/or sharper edges, factors which are straightforwardly 

associated with the particular acquisition protocol. 

 

3.2.2  Gradient descent 

 

The complete Bayesian formulation is solved using a cost function with the likelihood, the 

local and global prior terms previously defined 

�̂� =   

∗ 𝑎𝑟𝑔 𝑚𝑖𝑛𝐰{−ln[𝑝(𝐈𝑙|𝐰, 𝚽)] − ln[𝑝(𝐰|𝚽)] − ln[𝑝(𝐰|�̅�)]} (13) 

  

Solving and eliminating terms that do not depend on 𝐰, the cost function 𝐿(𝐰) is  

𝐿(𝐰) =
1

2𝜎2
∑  

𝑛=1

𝑁

(𝐈𝑙,𝑛 − 𝑔𝑙 ∑  

𝑟=1

𝑀

𝑤𝑛,𝑟𝜙𝑟)

2

 

+
1

2
∑  

𝑖=1

𝑀

( ∑  
𝑗=1

𝑀

𝑘𝑖,𝑗𝑤𝑗𝜙𝑗)

2

 (14) 

+
1

2𝜎2
∑  

𝑖=1

𝑀

(𝑤𝑖𝜙𝑖 − �̅�𝑖𝜙𝑖)2 

 

Values for �̂� are calculated according to  

�̂�𝑛+1 = �̂�𝑛 − 휀∇𝐿(�̂�𝑛) (15) 

 

Where  

∇𝐿(�̂�𝑛) = [
∂𝐿(�̂�𝑛)

∂𝑤1

∂𝐿(�̂�𝑛)

∂𝑤2
⋯

∂𝐿(�̂�𝑛)

∂𝑤𝑁
]

𝑇

 (16) 

 

 

4  Experimental results 
 

Qualitative and quantitative evaluations were carried out by calculating the reconstruction 

accuracy of the proposed SR method. Several quantitative experiments were conducted using 

artificial (synthetic) and real images. The proposed method was implemented in C++ using ITK 

library version 3.20 on an Intel Core i7, 12 GB of RAM and Debian-Linux operating system 

version 6.0. For a single low-resolution slide (256 × 256 pixels), a full reconstruction took 280 

seconds. For a complete 3D reconstruction, the computation time is calculated by 𝑡𝑖𝑚𝑒 = 280 ×
𝑠𝑙𝑖𝑐𝑒𝑠 × 𝑠𝑒𝑟𝑖𝑒𝑠. For the datasets used in this study, reconstruction times varies between 1 ℎ 

30 𝑚𝑖𝑛 and 4 ℎ 25 𝑚𝑖𝑛. 

 

4.1  Artificial (synthetic) images 
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The Shepp-Logan phantom was used as a synthetic image model. The size of the phantom 

is 300 × 300 × 300 voxels, and the intensity values vary from 1000 to 9000 (typical values in 

CMR). The use of these synthetic images evaluates different factors that affect the reconstruction 

accuracy under controlled conditions. In this work, five scenarios were covered: influence of prior 

information, upsampling strategy, orthogonality, number of series and comparison with other 

methods. For these experiments, up to 7 series were extracted from the original volume. Each 

series consisted of a set of 43 slices (size 256 × 256 pixels), with an in-plane resolution of 1.6 

mm and a slice separation of 8 mm. A Gaussian noise (𝜇 = 0, 𝜎2 = 1000) was added to each 

slice to emulate the acquisition process. Orthogonal series were extracted along the three principal 

axes of the phantom, while the non-orthogonal series were extracted along randomly-selected 

angles (values included in Table 0). Three different metrics were used to quantitatively measure 

the reconstruction quality: the Peak Signal-to-Noise Ratio (PSNR), the Structural Similarity index 

(SSIM) [19] and IL-NIQE quality assessment [20]. A noiseless version of the phantom was used as 

the reference image. 

IL-NIQE is a blind image quality assessment (BIQA) which models the way humans score 

quality. This metric requires a multivariate Gaussian model learned from a collection of 

paradigmatic images. The quality of an image is quantified by using a Bhattacharyya-like distance, 

i.e., the learned multivariate model is compared with the distribution of particular features 

extracted from the test image. In the following experiments, results are presented as percentage of 

the quality difference between the reference and test images. 

 

 

Table  1: Random values for evaluated angles in radians 

   non-orthogonal series orthogonal series 

a

xis  

 

1 

 

2  

 

3  

 

4  

 

5  

 

6  

 

7  

1 2 3 

x

  

 

0.5 

 

0  

 

0  

 

-0.8  

 

0.2  

 

-0.1  

 

0  
π/2 0 0 

y

  

 

0 

 

0.7  

 

-0.5  

 

0  

 

-0.5  

 

0.4  

 

0  

0 π/2 0 

 

 

 

4.1.1  Prior influence on reconstruction 

 

In this section, the contribution of global prior information is evaluated. Two different 

strategies were tested: using only local prior information and a combination of local and global 

information. A set of 7 non-orthogonal series were used in this test. Table (1) presents the 

quantitative reconstruction performance. Numerical results in Table (1) confirm that the 

reconstruction, using the two prior hypotheses (local and global), shows a better reconstruction 

accuracy. The use of the two priors results in an improvement of 1.2 𝑑𝐵 in the PSNR, 3% in the 

SSIM and 2.1% in the quality metrics. Hence, only the local + global prior combination was used 

for the rest of experiments. 

 

Table  2: Evaluation of the reconstruction accuracy using two prior hypothesis 
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 2*Metric   2*local prior   2*local + global prior 

PSNR   21.7112   22.9424 

SSIM   0.9530   0.9837 

Quality %  76.21   78.29  

 

 

 

4.1.2  Upsampling method 

 

This section evaluates the influence of the upsampling strategy used in the preprocessing 

step (Section 3.1.2). Three different upsampling strategies were tested: tri-linear and bi-cubic 

interpolations and the statistical filtering method [17]. In this test, a set of 7 non-orthogonal series 

is used. Table (2) shows the obtained results and values with the statistical filtering demonstrate an 

important improvement of the reconstruction accuracy, i.e., 3 𝑑𝐵 and 1 𝑑𝐵 for PSNR, 3.8% 

and 2.8% for SSIM and 3.17% and 1.7% for the quality metrics, when comparing with linear 

and bi-cubic interpolation, respectively. 

 

Table  3: Reconstruction performance of the proposed method using three upsampling 

strategies 

 2*Metric   Linear   bi-cubic   Statistical 

  interp.   interp.   Filtering 

PSNR   20.1069   22.6689   22.9424 

SSIM   0.9456   0.9553   0.9837 

Quality %   75.12   76.62   78.29  

 

  

 

4.1.3  Orthogonality influence 

 

The influence of orthogonality was tested by using two different configurations: three 

orthogonal series (sagittal, coronal and transversal views) against three non-orthogonal series, 

extracted following arbitrary angles. Numerical evaluation using the three selected metrics (see 

Table 3) shows no important differences between both configurations, suggesting that the 

orthogonality is not a relevant factor for the reconstruction quality. 

 

Table  4: Reconstruction performance using orthogonal and non-orthogonal series. 

 Metric   orthogonal   non-orthogonal 

PSNR   18.3807   18.3787 

SSIM   0.8668   0.8624 

Quality %   69.09   69.13  

  

 

4.1.4  Quality of the Reconstruction of the high-resolution image  

 

This section explores the capability of the method to approximate the high-resolution 

image from a smaller number of slices. For this purpose, one subset of the Shepp-Logan phantom 
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and two real cases (named subjects A and B) were prepared. Each series contained a different 

number of non-orthogonal views, chosen from the original volume. The original series are always 

composed of 8 𝑚𝑚 -thick slices at a resolution of 256 × 256 , and the experiments were 

performed by subsampling these sets of series in the inter-slice dimension, resulting in series with 

16 𝑚𝑚-thick slices. The distribution of series and slices for each dataset is as follows: 

• The Shepp-Logan: The full set of data corresponds to 7 series with 43 slices per 

series. The subset used for the reconstruction consists of 2 series with 22 slices per 

series.  

• Real subject A: the set of images for subject A is composed of 5 series with 10 

slices. The subset used for the experiment is composed of 2 series with 5 slices 

each.  

• Real subject B: The set of images for subject B is composed of 6 series with 12 

slices. The subset is composed of 2 series with 6 slices each.  

 

Table (4) shows a net PSNR gain of about 2.68 𝑑𝐵 and 2.25 𝑑𝐵 when compared with the 

linear and the bi-cubic interpolations, respectively, a SSIM gain of 4.1 % and 2.9 %, and an 

increasing of the quality metrics in about 4% and 2%. Likewise, visual comparison of the 

resulting images suggests that edge irregularities nearly disappeared when using the proposed 

method. 

 

Table  5: Comparison of a standard interpolation and the proposed method when 

combining a subset of slices of the original volume. 

 Metric   linear   bi-cubic   Proposed 

method 

PSNR   24.6384   25.0727   27.3263 

SSIM   0.9564   0.9681   0.9975 

Quality %   80.47   82.23   84.04  

 

 

Table (5) shows the PSNR, SSIM and quality metrics for the two different subjects, using 

the reconstruction obtained with the full set of slices as the reference image. The proposed method 

outperforms the linear interpolation by improving the reconstruction in 1.77 𝑑𝐵 and 4.22 𝑑𝐵 for 

subjects A and B respectively, a SSIM increment of 2.02 % is observed for subject B and of 

0.03 % for subject A, while the quality metrics shows an increment of 5% and 4% for subjects 

A and B respectively. Likewise, the net PSNR gain for the bi-cubic interpolation is 0.96 𝑑𝐵 and 

2 𝑑𝐵 for subjects A and B, respectively, 0.01 % and 0.9 % for the SSIM metrics and 3% and 

2% in the quality metrics. Overall, SSIM figures are larger than 0.9, indicating a reconstructed 

image very close to the reference. 

 

Table  6: Comparison of interpolation strategies and proposed method combining a subset 

of input cardiac MR series. 

Metric linear bi-cubic Prop. method  

PSNR 29.58 30.39 31.35 Subject 

SSIM 0.9739 0.9741 0.9742 A 

Quality % 83.03 85.35 88.62  

PSNR 25.19 27.41 29.41 Subject 
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SSIM 0.9381 0.9481 0.9571 B 

Quality % 82.76 84.88 86.14  

 

 

 

4.1.5  Baseline comparison  

 

In this section, the performance of the proposed method is compared with a baseline 

strategy, commonly used for visualization of the CMR images. It consists in a simple average of 

the voxel intensities after interpolation and spatial normalization of the different series. In this test, 

the statistical filtering method [17] is used for interpolation, and a set of 7 non-orthogonal series is 

used. 

 

 
[a] 

 
[b] 
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[c] 

Figure  2: Comparison with a basic strategy. (2a) original image, (2b) interpolation and averaged 

image, (2c) result using the proposed method. The difference between the interpolated and the 

reconstructed images is observed at the zoomed window as a black boundary that is sharper for the 

reconstructed version. 

 

Fig. (2b) and (2c) show the results of the basic strategy (interpolation and averaging) and 

the proposed approach, respectively. Zoomed areas illustrate the differences, mainly at the edges, 

where the proposed method (Fig. (2c)) achieved a reconstruction with edges better defined than the 

basic strategy. Although edge artifacts are present in both images, they are more visible for the 

baseline strategy. The quantitative results presented in Table (6) show that the proposed method 

outperforms the baseline in about 2dB in PSNR, 1% for SSIM and 5% in the quality metrics with 

respect to the interpolation and averaging strategy. 

 

 

Table  7: Comparison between a basic strategy and the proposed approach. 

2*Metric Interpolation Proposed 

 and averaging approach 

PSNR 18.0656 22.9424 

SSIM 0.9575 0.9837 

Quality % 73.17 78.29 

 

 

 

4.2  Real images 
 

For testing the method performance in real images, two different datasets were used. The 

first was composed of five CMR cases acquired in a 1.5 T scanner from five different subjects. The 

cases are composed of a variable number of series (between 5 and 11 series) at different 

non-orthogonal orientations. Each series contains between 2 to 15 slices, an inter-slice separation 

varying between 8 𝑚𝑚 to 11 𝑚𝑚, an in-plane resolution of 256 x 256 and a pixel spacing of 
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1.6 𝑚𝑚. In this section, results obtained with the proposed method are qualitatively compared 

with baseline consisting in a combination of a statistical filtering [17] and a voxel intensity 

averaging, as previously explained with synthetic images in Section 4.1.5. 

 

[a]  

 

[b]  

 

[c]  

 

[d]  
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Figure  3: SR reconstruction using real images from two different subjects. Row 1: subject A; 

Row 2: subject B. (3a) and (3c). The figure illustrates the reconstruction of the interventricular 

septum at the level of the heart apex. Panels (a) and (c) correspond to the results after interpolating 

and averaging, the baseline. Likewise, panels (b) and (d) stand for results after the proposed 

method. Notice how the septum is better defined by the proposed method 

   

Images in panels (3b) and (3d), compared with panels (3a) and (3c), show that the proposed 

method delivers better structural (shape) details and sharper edges than the averaging-based 

method, the baseline. Specifically, the reconstructed images (3b) and (3d) have succeeded about 

improving the details of the ventricular and septum walls, particularly at the level of the heart apex. 

Note that reconstructed images present some artifacts related with contrast differences. These 

artifacts are essentially multicausal, associated with the long transient of the sequence which 

causes the first image to show a different contrast since there is not time to reach the stationary 

state [21]. A complementary effect is introduced by the differences in the dynamic range of the 

original low-resolution images. CMR images are reconstructed using captures from different 

cardiac cycles, each under different non-controlled conditions such as changes in the thorax 

volume or patient movement. As observed in panels (3b) and (3d), the correction contrast strategy 

highly reduced the described non-desirable effects. This might also be improved by carefully 

selecting only those series where the gray value variations can be corrected, but a supervised 

process would then be required. 

The second dataset allowed us to quantitatively evaluate the reconstruction quality. This 

dataset, an open project publicly available [22], is composed of 30 real CMR studies captured from 

different patients. These images were scanned with a GE Genesis Signa MR scanner using the 

FIESTA scan protocol. Each case is composed of a set of parallel slices that follow the long heart 

axis, capturing the whole heart and always showing a view with two chambers. The in-plane 

resolution is 256 × 256 with a pixel spacing of 1.64 𝑚𝑚, along with an interslice separation of 

8 𝑚𝑚. Series are composed of 10 to 15 slices, depending on the heart size. Before the SR 

algorithm, a spline interpolation method was applied and isotropic voxels were generated. From 

this corrected volume, 7 non-orthogonal series were obtained for each of the cases by randomly 

setting non-orthogonal angles. An additional subsampling process generated anisotropic voxels 

for the interslice space was set to 8 𝑚𝑚. For every available case, three high-resolution images 

were reconstructed from the anisotropic voxel series, the first using the spline interpolation and 

averaging strategy, a second reconstruction used the super-resolution method proposed by Manjon 

et. al and the third was obtained by applying the proposed method. Quantitative comparisons of the 

reconstruction quality were performed using PSNR, SSIM metrics and IL-NIQE quality metrics. 

The obtained metrics from the reconstructed images are presented in Figure (4). 
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[a]  

[b]  

[c]  

 

Figure  4: Quantitative results of SR reconstruction compared with interpolated and averaged 

low-resolution data and Manjon et. al method for the three different metrics herein used, namely 

PSNR, SSIM and the Quality metric. 

 

Numerical results show that our proposal always improves the baseline method 

(interpolation plus averaging) and SR method (Manjon et.al) using the real CMR dataset in about 
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two to three dB, as observed in Figure (4a). In terms of the applied PSNR, SSIM and Quality 

assessment metrics, the reconstruction using the proposed method outperforms in average the 

baseline strategy, i.e., about 3.2dB in PSNR, 0.26 in SSIM and 6 % in Quality. The PSNR for 

every SR reconstruction exceeds the 31dB, the SSIM reaches levels of 0.97 and Quality is over 

80 %, achieving levels of high-quality reconstruction. 

 

5  Discussion and conclusion 
 

In this paper, a novel SR method for improving the image quality of CMR image series, 

based on a sparse Bayesian approach, has been described and analyzed. This method can be 

applied with non-orthogonal series and highly anisotropic voxels, conditions which are associated 

to a non-uniform sampled grid. Two main stages are proposed, a pre-processing step and a SR 

algorithm. The pre-processing step is intended to transform the input series into a set of volumes 

with normalized intensities, isotropic voxels and a common spatial representation. In the SR 

algorithm, a Bayesian sparse framework includes a likelihood function and a very adapted prior 

model. Two prior hypotheses were used in the proposal, the former related to preserve local 

information (defined in Equation (8)), searching for a low-noise estimated image, while the latter 

attempted to include global features like the organ shape (defined in Equation (12)). The set of 

hypotheses promotes sparse solutions by defining a prior dependent on the local influences 

associated to the particular capture protocol and an averaged heart correction. This method 

generates high-resolution reconstructions of cardiac MR images, much more suitable for accurate 

heart segmentation and motion analysis. 

SR has been introduced for MRI to enhance the quality of medical images [10], [9], [14]. 

Previous works have considered orthogonal and non-orthogonal views of brain images [15], [13]. 

In contrast, as far as we know, SR in CMR has been applied only in orthogonal series [14], in 

which case the SR has been formulated as a multi-resolution problem with a constant sampling 

factor. This feature allows to manage a high-resolution uniform grid, simplifying the task of 

estimating the high-resolution image. The complexity generated by the non-orthogonality amounts 

to a non uniform sampling, or to the ill conditioned problem of a space generated by an uncomplete 

set of bases. Introduction of specific problem knowledge has facilitated the sub-space 

regularization, setting thereby an acceptable solution, a way already explored by a precedent work 

in CMR images [14]. Yet this investigation approached such problem, their conclusions were very 

limited since the presented results were purely qualitative and the model not general. 

In addition, previous works have introduced SR methods for dealing with anisotropic and 

non-orthogonal multislice images, such as Poot et al. [13], [23] and Plenge et al. [11]. These 

strategies are dependent on an acquisition process in which the anisotropic sampling is 

approximated by a linear operator, limiting the capability of successfully dealing with 

uncertainties or corrupted data coming from the cardiac or thorax motions. In the particular case of 

Poot et al., the resultant high-resolution intensities are obtained by linear combination of a local 

model defined as a function of the image tensor, i.e, only first-order relationships are taken into 

account. Likewise, the PSF model is a kind of linear combination of the low-resolution PSF that is 

defined with a windowed sinc function along the slice direction. This amounts to ensure that only 

information contained in two adjacent parallel slices is considered for the reconstruction. With 

such approach, it is crucial a correct alignment between slices. In contrast, our method presents a 

more flexible strategy (not dependent on the acquisition model) that establishes more complex 

relationships, with larger statistical dependencies, i.e., second- or third-order relations, since the 
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approximation weights can be learned. In case of CMRI, an important uncertainty source is the 

inter- and intra-series misalignments, coming from the motion effect, and in this scenario a 

strategy based on a classical acquisition model may crash, because such organ movements are not 

considered into the model. Finally, provided that main hypotheses of these methods are local, they 

usually incorporate high-frequency energy minimization terms as regularizers. In contrast, the 

presented proposal naturally combines different and adapted hypotheses in the regularization 

strategy, in particular those related with fundamental anatomical relations that may be either local 

or global. 

The proposed method introduces a very adaptable model and has been assessed in several 

(at least five) non-orthogonal and very anisotropic voxel images (proportion of 5:1). Evaluation of 

the reconstruction with the proposed method was performed by conducting tests on synthetic and 

real images. The analysis performed in synthetic images demonstrates the influence of different 

parameters and conditions related with the input images. Four factors were herein explored: prior 

influence, upsampling strategy, orthogonality and number of series. The learning phase 

corresponded herein to the determination of the kernel weights that defined the local neighborhood 

of the sparse representation by using the covariance metrics, considered as a good estimator under 

Gaussian support. The chosen local relationship should balance the statistical dependence and the 

sample distance, a relationship that was herein covered using a 3 × 3 × 3 neighborhood. On the 

other hand, the upsampling strategy has also shown to directly influence the reconstruction 

accuracy results. The use of an accurate interpolation method in the pre-processing step, such as 

the state-of-the-art statistical filtering method [17] for single MRI volumes, results crucial since 

this step operates as a first estimation of the reconstruction. Furthermore, this preprocessing step 

can be also considered as a baseline of the present work, case in which our method outperformed 

this state-of-the-art super-resolution method [17] that fails since it was basically devised to 

reconstruct parallel series. In addition, the experiment using a variable number of series, to 

reconstruct the whole volume, has demonstrated that the proposed method obtains more accurate 

results than a simple approximation (interpolation) or an isotropic super-resolution method [17]. In 

particular, this method achieves high resolution versions of an image by integer factors, forcing the 

super-resolution to be performed within a regular grid, an obvious limitation in case of the heart 

reconstruction. This effect is visually illustrated in Section 4.2, where the blurred image is likely 

the result of the superposition of different series with intersections at real locations. Finally, the 

orthogonality acquisition appears to be not important for the reconstruction accuracy. These 

results suggest that the proposed method is not affected by the orientation of the input series and 

hence it can be directly applied to any type of protocol acquisition. Figure (3) shows an evident 

improvement in the right column images, when comparing with images in the left column, 

A comparison with a baseline strategy was also performed in both synthetic and real 

images. The obtained results show that the proposed method always obtains a better high-quality 

reconstruction than the interpolation or averaging strategies. The main difference between the 

baseline strategy and the proposed SR method is that the former basically calculates the mean 

intensity of the available series, while the latter attempts to find the most probable high-resolution 

image that explains the input series, regularized by a certain prior knowledge of both the heart 

structure and the capture protocol. The obtained reconstruction results confirm that the inclusion 

of prior information and a probabilistic framework represents an advantage in SR of CMR images, 

increasing the reconstruction accuracy. Given the difficulty of the current acquisition process of 

CMR images, where the heart motion restricts the scanning time and thus the number of slices per 

volume series, the search of a high-resolution image for diagnosis and surgical planning is still an 
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open issue. The quality of the high-resolution reconstructions obtained with the proposed method 

introduce a promising approach for increasing the image quality in tasks such as segmentation, 

morphometry and heart motion analysis. An initial extension to handle complete 4D CMR image 

series can be achieved by reconstructing individually each 3D frame volume. 
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