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Abstract This paper presents a novel method which
reconstructs any desired 3D image resolution from raw
cone-beam CT data. X-ray attenuation through the object is
approximated using ridgelet basis functions which allow us
to have multiresolution representation levels. Since the
Radon data have preferential orientations by nature, a
spherical wavelet transform is used to compute the ridgelet
coefficients from the Radon shell data. The whole method
uses the classical Grangeat’s relation for computing
derivatives of the Radon data which are then integrated
and projected to a spherical wavelet representation and
back-reconstructed using a modified version of the well
known back-projection algorithm. Unlike previous recon-
struction methods, this proposal uses a multiscale represen-
tation of the Radon data and therefore allows fast display of
low-resolution data level.

Keywords Computed tomography . 3D ridgelet . Spherical
wavelets

Introduction

Cone-beam tomography is currently used in x-ray industrial
and medical imaging applications. Recent advances in
computational tomography (CT) technology such as
micro-tomography and spiral scanning have significantly
increased scanning velocities and resolutions [16]. A
modern tomography machine is capable to acquire a large
number of images at high resolutions, whereby these
systems require more and more increasing storage capabil-
ities. For instance, a typical 3D acquisition for small
animals amounts up to 256 Mb more or less of hard disk
space [2]. A full reconstruction involves a large number of
acquisition planes at maximal resolution of the particular
object to examine. Overall, researchers are forced to throw
away many of the acquired projections after the reconstruc-
tion process because the storage resources are limited [28].
In consequence, scanners have been devised as to have
increasing storage capacity. Of course this solution is
clearly limited and ignores the fundamental problem of
efficient access to information, defined as the capacity to
satisfy user needs. These user needs include a fast way for
data retrieving, which can be performed via a highly
scalable representation of information, it should allow the
retrieving of the requested information at any resolution
and at any spatial location [11]. Therefore, a first step ahead
is to identify a work frame which defines its basic
dimensions as resolution, quality, and spatial location.

Regarding the data representation in tomography, a first
alternative consists in directly using the tomography
projections. Traditionally, a minimal number of projections
are used for reconstruction since raw projection archiving is
dependent on the computational resources. Besides, this
representation definitely limits access to the information at
any of the previously defined dimensions [4]. Different
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signal representations have been used for compression.
Bae et al. [3, 4] propose to compress projections as if they
were sinograms, obtained by stacking individual projec-
tions of a perpendicular plane to the digitalization axis in
increasing angular order. Sinogram data, unlike projec-
tions, have a highly correlated structure and therefore they
should be very compressible. Sinograms are obtained by
integration processes on neighboring object regions at
multiple directions and therefore they constitute a natural
object directional analysis. For the compression task, Bae
et al. use JPEG-LS [1] in a near-lossless compression
mode so that the absolute difference between every
reconstructed pixel and its original value is previously
bounded. Bae proposes an error bound smaller than
the one introduced by the digitalization process under
the hypothesis that if the distortion compression levels are
lower than the digitalization noise, it can be held that
distortion will be imperceptible. Unfortunately, JPEG-LS
is not scalable compression technique [12] and no random
or multiresolution access is possible. Sánches [17]
compresses by computing a 1D wavelet transform on the
tomography projections and using a conventional arith-
metic codec. Yet this representation produces acceptable
compression rates, this strategy is limited because the
wavelet detects only unidimensional discontinuities and
no 3D multiresolution reconstruction is possible. That is to
say, provided that each projected point is the result of the
line integral and that the wavelet approaches co-planar
points, detected discontinuities correspond to lines. An-
other alternative is presented by Chen [10] in positron
emission tomography applications. The whole idea is to
perform a principal component analysis (PCA) on a
temporal series of sinograms and to reduce the number
of temporal components by ruling out smaller compo-
nents. Its drawback comes from the information loss as
well as from the difficulty to implement highly scalable
reconstruction methods.

A second alternative is to represent tomographic data
from the reconstructed object. The wavelet transform is the
best 1D sparse signal representation, i.e., this transform
permits to represent maximal information with a minimum
of coefficients. This representation has been broadly used in
tomography [18] by extending ordinary 1D wavelets to 2D
or 3D problems. This is usually achieved using analysis
frames constructed from the tensor product of 1D wavelets
so that signals are isotropically analyzed. This is why
wavelets are considered as sub-optimal image representa-
tions since images are basically anisotropic. These limi-
tations have been overcome by mixing the multidirectional
image analysis and multiresolution schemes [27]. Two
representation families have been proposed: adaptive and
statics. Adaptive refers to that directional information is
firstly determined for each image and multiresolution

properties are then assigned to regions with any particular
orientation. Statics means that the image projections are
searched upon a set of multiscale basis set with directional
preference [27]. In both cases the fundamental problem is a
search of the directional information. However, multi-
directionality is much more complicated to reach because
this requires oversampling strategies and a non separable
filter design [20]. In addition, these constructions are
defined over continuous domains, making it very difficult
in its implementation for the discrete case. Since the
fundamental problem with directional transforms is the
multidirectional information analysis and the analysis
basically arises from the cone-beam projections, we
propose to use information from the projections for
inferring singularity plane information of the object. Our
main contribution is to use the raw cone-beam data and to
provide them with multiresolution properties under a
ridgelet analysis frame. This representation constitutes a
straight framework for multiresolution reconstruction, ap-
plication of denoising methods and efficient access to
information. Besides, this method permits to store the
whole set of acquired projections because the process is
invertible for retrieving back the original projections.

The remainder of this paper is structured as follows. In
Methods the concepts of cone-beam tomography, ridgelet
transform are introduced and the proposed method is
described. In Results some experimental results, which
validate the present proposal, are presented. Finally,
Discussion and Conclusions presents the discussion and
the conclusions.

Methods

A multiresolution representation is built upon the 3D Radon
transform data, obtained from cone-beam projections. This
Radon data calculation requires planar integrals, but cone-
beam rays project only line integrals to the detector plane
and they are not parallel. If the acquisition rays were parallel,
the sum of line values on the detector plane would coincide
with the plane integral, a fundamental hypothesis which is of
course violated in case of the cone-beam geometry. This
difficulty has been overcome using the Grangeat's relation
[14] which allows us to calculate the Radon data derivatives
from raw cone-beam data. This approach avoids the whole
integral calculation using the best possible estimation of this
value, i.e., what is detected in the acquisition plane.

Hereafter the Radon and cone-beam transforms are
defined. Afterwards, the Grangeat's relation is discussed,
followed by a brief introduction of the ridgelet transform.
Derivative data from Grangeat's relation are integrated for
obtaining the spherical Radon shell data. Finally, a
spherical wavelet representation is used for reconstructing
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the Radon data within a multiresolution analysis frame
using a ridgelet transform.

3D Radon Transform

The continuous 3D Radon transform for a 3D function f ~xð Þ,
Rf (τ, θ, γ) is defined as:

Rf t; q; gð Þ ¼ Rf t~nð Þ ¼
Z

f ~xð Þd hq;g ~xð Þ � t
� �

d~x ð1:1Þ

where ~x ¼ x1; x2; x3ð Þ, ~n ¼ sin qð Þ cos gð Þ; sin qð Þ sin gð Þ;ð
cos qð ÞÞ is a preferential orientation, δ(x) the Dirac delta
function, hq;g ~xð Þ ¼~x �~nTan integration plane whilst τ is the
distance from the plane hq;g to the origin. This transform
corresponds to the integral over the function values f ~xð Þ in
the plane hq;g x1; x2; x3ð Þ and corresponds to the sum of
various parallel line integrals.

Cone-Beam Transform

A cone-beam projection is obtained from the line integrals
diverging from a vertex point ~s 2 R3, which corresponds
either to the position of the x-ray source in computerized
tomography (CT; Fig. 1) or to the focal point of a
converging collimator in single photon emission computed
tomography (SPECT).

A cone-beam data acquisition consists of various cone-
beam transforms Xf ~s;~rð Þ for a number of vertex positions
along a given curve in the direction~r 2 R3, that is:

Xf ~s;~rð Þ ¼
Z 1

0
f ~sþ t~rð Þdt ð1:2Þ

Radon Data Calculation

Grangeat [14] established a relationship between cone-
beam and Radon data:

@

dt
Rf t; q; gð Þ ¼ 1

cos2b
@

@s

Z
SO

SA
Xf l; q; g; s½ �dl ð1:3Þ

where SO is the distance between the origin and the source,
SA is the distance between the source and an arbitrary point
A over the detector plane located in a line l perpendicular to
the origin, as observed in Fig. 2, where β is the angle
between SO and SA, Xf[t, θ, γ, s] is the detected value at a
distance s from the detector center along the line l. This
relation establishes that the integral variation over parallel
planes, separated by an infinitesimal distance, coincides
with the variation of neighboring planar integrals generated
over cone-beam geometry. These planar integrals are
weighted, depending on the source position and the plane
detector orientation.

On the other hand, the continuous 3D radon transform
Eq. 1.1 can be represented upon a spherical shell with
diameter OS since the Radon points associated to the source
S must satisfy OP⊥SP, as shown in Fig. 3. Given a source
point S, the planes through this point can only define a
limited set of Radon transforms, which in turn, are
identified with a 3D point P. The Grangeat's relation allows
us to calculate the Radon data derivatives upon a spherical
spatial shell so that each point on the sphere determines a
vector which generates an integration Radon plane as
illustrated in Fig. 3. Thanks to this transformation we can
calculate actual Radon data but on a spherical representa-
tion. A multiresolution analysis, as will be observed later in

x

yz

Fig. 1 Cone-beam acquisition: a particular ray is emitted from the
origin s! (source) in the r! direction. The detected value corresponds
to the line integral and is used to calculate the plane integral of the
Radon transform. Difficulties for calculating Radon transform arise
because rays are not parallel

Fig. 2 Grangeat's relation is illustrated, the basic idea is that the
difference of integral values separated by a small distance Δs is
proportional to the change of the Radon data

J Digit Imaging (2011) 24:1087–1095 1089



the paper, results much more complicated because of this
spherical representation.

Ridgelets

The ridgelet transform has proven to be a 2D and 3D
optimal representation of linear singularities in images [8,
9]. Usually, the image is analyzed in terms of a basis called
the ridgelet function ya;b;q;g : R

3 ! R, defined as follows:

ya;b;q;g x1; x2; x3ð Þ ¼ y hq;gð~xÞ
� �

a;b

where ψ(x)a, b is a 1D wavelet with scale a>0 and centered
at b. The basis ya;b;q;g x1; x2; x3ð Þ corresponds to a ridge
with a shape ψ(x)a,b oriented to the plane direction
hq;g x1; x2; x3ð Þ.

The ridgelet continuous transform CRTf (a, b, θ, γ) of a
function f : R3 ! R, is the projection of f onto the ridgelet
basis ya;b;q;g , that is to say:

CRTf a; b; q; gð Þ ¼
Z

f ~xð Þya;b;q;g ~xð Þd~x; ð1:4Þ

where~x ¼ x1; x2; x3ð Þ. Ridgelet coefficients CRTf(a, b, θ, γ)
allow to reconstruct f from:

f ~xð Þ ¼
Z

Ca;b;q;gCRTf a; b; q; gð Þya;b;q;gdadbdqdg

where Ca;b;q;g is a normalization constant, dependent on the
parameters a, b, θ, γ. The CRT can be re-written in terms of
a Radon transform:

CRTf a; b; q; gð Þ ¼
Z

ya;bðtÞRf t; q; gð Þdt ð1:5Þ

in this case, Rf(t, θ, γ) performs a directional analysis of
f ~xð Þ in planes parallel to hq;g ~xð Þ. If the plane orientation
(θ, γ) is fixed, linear singularities (planes, lines) are mapped
onto single points, co-linear in the Radon domain. Then a
1D wavelet is likely the best approximation to these points

and therefore to linear singularities. Figure 4 shows how
parallel planes are mapped onto points whilst the wavelet is
used to approximate their spatial distribution. The resultant
coefficients correspond to the ridgelet transform because of
oriented nature of the Radon transform, as seen in Fig. 4.

Information contained in the different planes is now
projected to the wavelet basis which very naturally
approaches singularities.

Discrete Ridgelet Transform

A discrete ridgelet can be obtained by merely sampling the
projection of the Radon data onto the wavelet bases Eq. 1.5.
However, such strategy requires sampling on both the
wavelet and Radon data. The drawback is that a discretiza-
tion of the Radon space is achieved through approximations
to planar integrals. Two strategies have been proposed in
the literature for making these approximations

& A spatial plane is divided in parallel lines which are
then digitized in the spatial domain [21].

& The image is transformed to the Fourier domain and the
integral values are calculated on discrete lines, with
specific orientations defined on this domain, thanks to
the slice-projection theorem [5].

Fig. 3 The Radon shell slice generated by the point S. The shell is
formed by any point P whose line segment OP is orthogonal to SP.
The Grangeat's data are not homogeneously distributed upon the
sphere

Fig. 4 Ridgelet transform of parallel planes. Thanks to the 3D Radon
transform, planes are mapped to co-linear points. A wavelet transform
is able to approach singularities of the mapped planes, resulting in a
multiscale and multidirectional representation of such singularities

1090 J Digit Imaging (2011) 24:1087–1095



In both cases, the line integral value is an approximation
to the continuous line integral value. Unlike previous
methods which discretize the line for calculating the
integral value, our method straightforwardly uses the line
integrals from cone-beam projections. A direct use of these
projections allows exact reconstructions of the object, with
no need to approximate lines or to use a redundant
discretization of them as will be showed later. Besides, this
method uses every cone-beam projection for reconstruction.

Discrete Ridgelet Transform from Cone-Beam

Provided that a point in the Radon space represents
directional information, a multiresolution analysis in the
Radon space is also directional by nature. Figure 5
illustrates how linear singularities are distributed upon the
Radon shell surface, which in turn forms a torus when
circular acquisitions are available. In cone-beam acquis-
itions the directional information is not co-linear while the
resulting data are distributed upon a Radon shell, as
observed in Fig. 5. This is a major obstacle as to make a
uni-dimensional analysis using a wavelet transform, but a
multiscale analysis may be carried out on the sphere shell
itself. The propagation of the information direction was
thus determined by a spherical wavelet analysis. The whole
method can be summarized as follows: Grangeat's relation
is used for calculating the Radon derivatives, from which
the Radon shell data are computed. Then, these data are
represented in a multiscale space upon the sphere using axi-
symmetric spherical wavelets so that the resultant data
coincide with the ridgelet transform.

Discrete ridgelet calculation requires Radon values
rather than their derivatives, which are firstly integrated.

Each Radon shell is centered in the origin and the its
derivative values integrated over n derivative samples at the
circumferences corresponding to fixed azimuth planes γ,
using the following approximation to the Radon value:

Rf t~xqm;g
� � � w

Xm
i¼0

@

dt
Rf t~xqi;g
� �

with m � n; qi ¼ iΔq;Δq ¼ 2p
n ;~xq;g ¼ cos qð Þ sin gð Þ; sin qð Þð

sin gð Þ; cos gð ÞÞ; t is the middle of the distance between
the source and the origin and w is an integration weight
(△θ for a conventional quadrature integration method).

After the integration process, Radon values are
available all over the sphere. Usually, calculation of
the ridgelet transform is carried out over parallel planes
which correspond to the co-linear Radon data. Unfortu-
nately, the Radon data associated to the cone-beam
acquisition are distributed over the sphere but they are
not parallel. This problem was overcome using spherical
wavelet representations which allow a multiscale repre-
sentation of geodesic geometries. The spherical wavelet
transform herein used [6] projects the function onto a
wavelet in the spherical domain. The wavelet is dilated or
rotated by stereographically projecting the spherical
wavelet onto the tangent plane to the North Pole. Therein,
Euclidian operations can be performed on a conventional
wavelet representation and afterward the wavelet is lifted
back to the sphere

Wf r; að Þ ¼
Z

f wð Þ TrDay
� �»

wð Þdm wð Þ

where dm wð Þ ¼ dm q; fð Þ ¼ sin qð Þdqdf is an invariant
measure on the sphere, Trf wð Þ ¼ f r�1wð Þ is a rotation

Fig. 5 A linear geodesic
discontinuity is drawn upon the
Radon shell. This Radon shell
forms the torus when multiple
circular acquisitions are
available

J Digit Imaging (2011) 24:1087–1095 1091



operator with parameters ρ ∈ SO(3), being SO(3) the
group of rotations under the composition operation and
Da ∈ R+ is the function of dilation on the sphere which
includes the stereographic projection operation [6]. The
projection of Rf over the spherical wavelet corresponds to
our ridgelet definition over the sphere WRf r; að Þ.

Multiresolution Reconstruction

Finally, a multiresolution reconstruction is achieved by
modifying the classical 3D Radon reconstruction formula.
The proposed reconstruction process is based on a 3D

Radon inverse through a multiscale version of the parallel
filtered back-projection algorithm [16]:

f a ~xð Þ ¼ � 1

8p2

Z p=2

q¼�p=2

Z 2p

g¼0

@2

@2t
Ra
f ~x �~nT� �

~n
� �

sin qð Þj jdgdq

ð1:6Þ

where f a ~xð Þ is a version of f at scale a and @2

@2t R
a
f is the

second derivate of the Radon data at scale a. Unlike
previous reconstruction methods, the proposed strategy
uses a multiscale version of the Radon shell, within which
the number of samples is lower than the obtained with

Fig. 7 Reconstruction at various scales

Fig. 6 Multiresolution reconstruction of the Shepp–Logan central slice brain phantom

1092 J Digit Imaging (2011) 24:1087–1095



traditional ones, accelerating the reconstruction process.
Additionally, as the reconstruction is multiscale, each
sample contains more information about linear singularities
presented in the object. The scaled version of Ra

f is
computed using a discrete weighted controlled wavelet
frame on the sphere [6], as follows:

< ¼ y jpq ¼ TwjpqDajy : j 2 Z; p; q 2 Z 2bj
� �n o

where p, q are indexes of an equiangular partition of the
sphere wjpq. This partition at the jth resolution, is defined
as qjp; gjp

� � 2 S2, where qjp ¼ 2pþ1ð Þp
4bj

; gjp ¼ qp
bj
; Z 2Bj

� � ¼
0; 1; . . . ; 2bj � 1

� �
; bj a bandwidth and Daj are dilations of

the mother wavelet at the discrete values aj 2 Rþ with
aj > ajþ1. Using the following relation and the previous
frame, original data are easily reconstructed at any scaled
version of Rf:

Ra
f ðwÞ ¼

X
j�a

X
p;q2Z 2bj½ �

y jpq;Rf

D E
L�1
y y jpq

h i
ðwÞ

Results

The method was twofold evaluated: simulations were firstly
carried out on a sphere and the Shepp–Logan phantom,
while precision of the reconstruction was assessed by
comparing the original image with the reconstructed result,
using a conventional peak signal to noise ratio (PSNR)
measure. Usually, for compression applications it is well
known that a PSNR larger than 30 dB is considered as
convenient for actual applications. Synthetic phantoms
were fabricated as follows: simple forms such as a sphere
were cone-beam projected using a CT projection simulator
[22] while simulations on the Shepp–Logan phantom
corresponded to the central slice of Shepp–Logan. The

source-to-origin distance was set to 6 cm, the number of
detectors per cone-beam projection was 128×128, the size
of the 2D detector plane was 2×2 cm and the number of
projections was set to 128. Each reconstructed image
contains 128×128×128 voxels. Once cone-beam projec-
tions were generated, the Radon shell was computed for
each projection. This calculation was carried out in Matlab
as well as the multiresolution Grangeat-type image recon-
struction. The algorithms run on a Intel Xeon X5460 Quad-
Core 3.16 GHz with 8 GB in RAM. For the Grangeat-type
formula implementation, the numerical differentiation was
performed using a linear interpolation. Also, 128 different
rotations with 128 s derivate evaluations were computed to
cover up each projection's Radon shell. Finally, the
spherical wavelet corresponded to the first Gaussian
derivate of an equiangular grid of 256×256 with four
levels of dilations. The multiresolution reconstruction
process was performed with the parallel back-projection
relation, in two back-projection steps for the meridional
planes and a unique back-projection for the axial planes.

Figure 6 shows results for three different multiscale
reconstructions of the phantom sphere. The low resolutions
present some artifacts attributed to the reconstruction with
low-resolution ridgelets, but this effect is lost when more
ridgelet coefficients are added to the final representation, as
expected.

Figure 7 shows different resolution levels of reconstruc-
tion of the Shepp–Logan brain phantom. In this case, the
object is much more complex and different luminance
shapes are present within the object. The importance of this
evaluation is that the internal anisotropy of these objects is
not altered by the applied transform.

The reconstruction times in seconds for the two tested
phantoms in different resolution levels are shown in Table 1
the proposed method presents a small performance overload
(approximately 12%) when compared with the wavelet

Res 1 Res 2 Res 3 Res 4

W-FDK Our W-FDK Our W-FDK Our W-FDK Our

Sphere 7.1 7.5 11.2 11.8 17.9 18.5 29.3 31.2

Shepp–Logan 8.3 8.9 11.7 12.3 17.5 18.2 23.6 24.3

Table 2 Reconstruction quality
in decibels for the two tested
phantoms at different resolution
levels

Table 1 Reconstruction times in seconds for the two tested phantoms at different resolution levels

Res 1 Res 2 Res 3 Res 4

W-FDK Our W-FDK Our W-FDK Our W-FDK Our

Sphere 12.3 14.6 21.4 25.7 44.7 50.2 90.4 97.3

Shepp–Logan 16.2 19.2 32.3 37.2 63.3 65.5 110.1 115.2

W-FDK is the wavelet-based Feldkamp-type cone-beam tomography reconstruction algorithm [23] and Our is the proposed method
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based Feldkamp-type cone-beam tomography reconstruc-
tion algorithm [23], very likely because of the use of a more
complex wavelet transform for the multiscale analysis in
our method.

Nevertheless, as observed in Table 2, reconstruction
provided by our method improves the Feldkamp-type in
approximately 0.5 dB. Finally, the PSNR for the Shepp–
Logan reconstruction was 31.2 dB and the sphere was
24.3 dB, indicating that modifications can be considered as
minimal for actual applications.

Discussion and Conclusions

Cone-beam tomography is currently used for research
applications, nowadays CT scanners are capable to acquire
large sets of high-resolution images, leading to a need of
large storage devices. Several times, researches are forced
to throws away their raw data and keep only the
reconstructed data, making it impossible to try new
reconstruction algorithms or correcting artifacts discovered
when analyzing images or extracting results. In this work,
we have presented a novel method which reconstructs any
desired 3D image resolution from raw cone-beam CT data.
The idea is to use preferential orientations given by the
Radon data and to use a spherical wavelet transform to
obtain a multiresolution representation of the tomographic
data. We have shown through synthetic images that the
model is effective for obtaining multiresolution versions for
the tomographic data.

Every actual application of the proposed methodology,
shares the same requirement, i.e., it is not needed to
reconstruct full-resolution images. This can be directly
applied to improve the acquisition in noisy conditions, case
in which artifacts from any origin may be detected and
removed at a low resolution so that the full reconstruction
step can be avoided [24–26]. This is of particular interest in
the group of pathologies associated with organs in constant
movement, for example the lung or the heart. These organs
perform physiological movements that contaminate any
acquisition protocol and confuse the diagnosis in micro-
structural diseases, such as in the interstice pathologies
[15]. Another application is the multiscale analysis in many
non rigid registration methods, for which the solution at a
low-resolution version of the image is the initial condition
to higher image resolution versions [24]. These methods are
nowadays used when studying populations or estimating
certain measurements in neurodegenerative diseases [7]. It
is worthy also to mention prostate cancer, a disease in
which a high-resolution first tomography allows to locate
the organ and concentrate the radiotherapy [19]. Neverthe-
less, this organ changes during the treatment so that
radiotherapy ends up by radiating the surrounding organs

[13]. This type of technology would allow us to acquire
low-resolution prostate versions which can be mixed with
the first image so that prostate changes can be better
estimated and the radiation focused on the organ. Finally,
mobile devices show a continuous improvement of the
different displays and telemedicine applications are becom-
ing more and more available, case in which progressive
transmission in low-band channels is possible [25, 26].
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