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Abstract

Developments in interfacial shear rheometers have considerably improved
the quality of experimental data. However, data analysis in interfacial shear
rheometry is still an active field of research and development due to the
intrinsic complexity introduced by the unavoidable contact of the interface
with, at least, one supporting bulk subphase. Nonlinear velocity profiles,
both at the interface and the bulk phases, pervade the system dynamical
behavior in the most usual experimental geometries, particularly in the case
of soft interfaces. Such flow configurations demand data analysis schemes
based on the explicit calculation of the flow field in both the interface and
the bulk phases. Such procedures are progressively becoming popular in this
context.

In this review, we discuss the most recent advances in interfacial shear
rheology data analysis techniques. We extensively review some recently pro-
posed flow field-based data analysis schemes for the three most common
interfacial shear rheometer geometries (magnetic needle, double wall-ring,
and bicone), showing under what circumstances the calculation of the flow
field is mandatory for a proper analysis of the experimental data. All cases
are discussed starting at the appropriate hydrodynamical models and using
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the equation of motion of the probe to set up an iterative procedure to com-
pute the value of the complex Boussinesq number and, from it, the complex
interfacial viscosity or, equivalently, the complex interfacial modulus. More-
over, two examples of further extensions of such techniques are proposed,
concerning the micro-button interfacial shear rheometer and the potential
application of interfacial rheometry instruments, together with adapted flow
field-based data analysis techniques, for bulk rheometry, particularly in the
case of soft samples.

Keywords: Interfacial Shear Rheology, Flow Field approximations, Finite
differences, Bicone, Magnetic Tweezers, Microwires, DWR, Microrheology,
Langmuir Monolayers, Surfactants

Highlights:1

• Flow field-based data analysis techniques can handle the pervading non-2

linear interfacial and bulk velocity profiles appearing at moderate and3

low interfacial viscosities in the usual interfacial rheometer geometries.4

• Flow field-based data analysis techniques allow for a more accurate5

separation of the interfacial and bulk phase drags, and a more precise6

calculation of the elastic and viscous components of the response.7

• With modern microprocessors and mathematical platforms, flow field-8

based techniques can be implemented in real-time control and measure-9

ment software of interfacial rheometric systems.10

• The application of geometries designed for interfacial rheometry (DWR,11

MNISR, bicone) together with flow field-based techniques in the study12

of the bulk rheology of soft materials appears to be very promising.13

1. Introduction14

Shear flow and deformation properties of bulk and interfacial systems15

are active fields of research because of their importance from applied and16

basic points of view [1, 2, 3, 4, 5, 6]. However, the translation of rheolog-17

ical experimental data into rheometric parameters values is far from trivial18

because the process typically involves three coupled ingredients: the experi-19

mental system (comprising both the sample and the instrument’s hardware20

and software), the fluid-dynamical problem (including the equations of the21
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sample and probe dynamics and the boundary conditions), and the rheolog-22

ical model of the sample.23

In shear oscillatory tests, the rheological model is usually quite simple24

because it is typically assumed that the viscoelastic properties of the sample25

can be represented by a dynamic modulus, G∗, that relates stresses to defor-26

mations. Moreover, the dynamic modulus is usually represented as a complex27

function of the oscillation frequency, ω, so that G∗(ω) = G′(ω)+iG′′(ω) [1, 2].28

In the standard treatment of the experimental data, the fluid-dynamical29

problem is simplified too because, typically, expressions derived from simple30

analytical solutions of the Navier-Stokes equations [1], supplemented with31

the boundary conditions appropriate to the instrument geometry, are used32

to relate shear stress to shear rate or shear deformation [1, 2]).33

In spite of these simplifications, the analysis of experimental bulk rheo-34

logical data is often complicated by the presence of perturbations due to the35

flow or the instrument, such as instrument inertia ([7]), fluid inertia ([8, 9]),36

or both ([10, 11]). Hence, the proper analysis of rheological experimental37

data is still a subject of active research [12, 13, 14].38

In the case of interfacial systems, further complications appear due to the39

presence of the fluid subphase and the unavoidable coupling of the velocity40

fields at the interface and the subphase, the different geometries that may41

be imposed at the interface (planar Langmuir troughs or spherical drop or42

bubble geometries), and the possibility of having simultaneously different43

types of deformation (shear, extensional, and dilatational). Several books44

[15, 16] and review articles [17, 18, 19, 20] have reviewed different aspects45

of interfacial rheology from both the experimental and theoretical points of46

view.47

Regarding interfacial shear rheometers, a nice account and description48

of many of the instruments designed up to 2009 can be found in Krägel49

[21]. Since then other highly sensitive instruments have been proposed,50

namely, the double wall-ring (DWR) ISR [22], the microbutton ISR [23, 24,51

25, 26], and the magnetic tweezers ISR using commercial [27] or microwire52

[28] probes.53

Since the first attempts to design instruments capable of measuring me-54

chanical properties of interfacial systems [29, 30] it became apparent that55

the role of the liquid subphase should be considered carefully [31, 32, 33].56

In interfacial rheometry, the bulk fluid phases are typically assumed to be57

Newtonian, so that the Navier-Stokes equations with constant viscosity are58

used to represent the upper and lower fluid phases, while the interface is59
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usually represented by the Boussinesq-Scriven boundary condition ([34, 15])60

which represents the equilibrium of stresses tangential to the interface, and61

introduces the coupling between the bulk and interfacial velocity fields into62

the mathematical representation of the problem.63

At an air/liquid interface, the relative importance of the interfacial and64

bulk stresses is represented by the Boussinesq number [22],65

Bo∗ =
η∗s Ps

V
Ls

ηbAb
V
Lb

, (1)

where η∗s is the complex interfacial viscosity, Ps is the perimeter of the contact66

line along the probe surface, ηb is the bulk phase viscosity, Ab is the contact67

area between the probe and the bulk phase, V is a characteristic velocity68

scale (e.g., the velocity at the probe rim), and Ls and Lb are characteristic69

length scales of velocity decay at the interface and bulk phases, respectively.70

When the Boussinesq number is high (say Bo∗ > 100), interfacial stresses71

dominate the system dynamics and the flow at the bulk phase is dominated72

by the interfacial flow. Conversely, when the Boussinesq number is small,73

the bulk flow dominates and the interfacial flow follows the flow at the bulk74

phase.75

In any case, in order to achieve a proper characterization of the interfa-76

cial viscoelasticity of a given sample, a correct separation of interfacial and77

subphase effects in the system response is mandatory. Such separation re-78

quires the introduction of non-oversimplified physical models that include79

the coupling of the interfacial and bulk flow fields and that are suitable for80

implementation of fast numeric computational schemes.81

Since the seminal work of Reynaert et al. [35], such schemes have been82

publicized for the most popular interfacial shear rheometer configurations,83

namely, the magnetic needle ISR (MNISR hereafter) in both the Helmholtz84

coils [35, 36, 28], and the magnetic tweezers [27] configurations, the double85

wall-ring (DWR) rotational interfacial shear rheometer [22], and the bicone86

bob rotational interfacial shear rheometer [37, 38, 39]. Fortunately, the avail-87

ability of fast hardware (multi-kernel microprocessors and graphic cards) and88

fast computational platforms (MATLAB®, GNU Octave, Python®, Mathe-89

matica®, etc.) has shortened the time cost of the required computations so90

that nowadays the computational work can be performed nearly in real time91

during the experiments.92

In this report we will review the most salient developments concerning93
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the application of flow field-based data analysis techniques in the field of94

interfacial shear rheology. Our intention is to give a full account of the95

developments on the different geometries already published, particularly fo-96

cusing on the technical aspects. Experimental data will be introduced to97

illustrate the benefit of flow field-based methods when applied to the analy-98

sis of bulk rheology data, being this application new, to our knowledge. For99

the experimental checks concerning the application of flow field-based data100

analysis to interfacial rheology data, the readers are referred to the bibli-101

ography purposely cited in each section. In Section 2 we will make a brief102

general overview of the common aspects of the flow field-based data analysis103

schemes developed in the last years, together with some comparative perfor-104

mance test against other data analysis approaches based on simple analytic105

flow field configurations. Section 3 will review the details of the different106

implementations of such techniques concerning the MNISR. Section 4 will107

address the application of such techniques to the DWR ISR, while Section108

5 will focus on the bicone bob rotational ISR. Section 6 will sketch some109

new developments, namely the extension of the technique to the microbut-110

ton ISR and the application of such techniques to bulk rheometry of soft111

samples. Finally, in Section 7 we briefly compile some conclusive remarks112

and final comments.113

2. Method overview114

Experimental interfacial shear rheology (ISR) techniques generally use a115

probe that exerts a shear deformation on the interface. We refer to tech-116

niques in which an external force, F (t) (or torque M (t) when a torsion117

rheometer is used), is applied on the probe in a controlled manner as ac-118

tive ISR techniques. In this review we will confine ourselves to discuss the119

three most extended experimental setups mentioned in the Introduction; ac-120

cording to the characteristic length of their probes, we can refer to such121

devices as macro-rheometers. However, active micro-rheometers have also122

been designed, generally comprising microparticles trapped at the interface123

and optical or magnetic tweezers to apply a controlled F (t) on them. For124

details on the hydrodynamical models proposed for such micro-rheometers,125

the reader is addressed to Refs. [40, 41, 42, 43, 44, 45].126

In the macro-rheometers analyzed in this review, the displacement of the127

probe, lp(t) (θp(t) in rotational rheometers), is known through optical inspec-128

tion (or through the rotor angular displacement when a torsion rheometer is129
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used). The three experimental approaches essentially differ in the geomet-130

rical parameters of the sample under study, and the shape, size, and mass131

of the probe. In practice, all probes have a finite size so that, firstly, they132

are in contact with the interface and the adjacent bulk phases and, secondly,133

they have inertia. Hence, the motion of the probe is affected by several134

contributions, where the interfacial drag is just one of them. While, in a135

first approximation (considering the interfacial velocity profile as linear), the136

interfacial strain γs(r, t) can be easily calculated from lp(t) (or θp(t)), the137

non-trivial coupling of the above-mentioned contributions makes the prob-138

lem much more complex when it comes to calculating the interfacial stress,139

σs(r, t), from F (t) or M(t) (we will use the subscript s to refer to interfacial140

parameters, while the corresponding symbols without subscript refer to the141

same magnitudes in the bulk phases).142

The relative importance of the interfacial contribution with respect to143

the total force (or torque) on the probe (bulk phases contribution, probe144

inertia, and device contribution) determines whether the relation between145

F (t) or M (t) and σs(r, t) can be simplified, without a significant cost in146

the accuracy of the method, or whether more precise schemes, such as the147

explicit calculation of the flow field, are mandatory. The non-dimensional148

Boussinesq number, Bo, is the ratio of the interfacial drag to the bulk phases149

drags on the probe, and is in general a good estimator in this regard.150

For the remainder of this review, we will focus on dynamical experiments151

where a one-dimensional oscillatory force (or torque) with angular frequency152

ω is imposed on the probe, which follows an oscillatory motion with the same153

frequency154

F ∗(t) = F0 exp{iωt} ⇒ l∗p(t) = l0 exp{i(ωt+ δl)} = l∗0 exp{iωt},
M∗(t) = M0 exp{iωt} ⇒ θ∗p(t) = θ0 exp{i(ωt+ δθ)} = θ∗0 exp{iωt}, (2)

where F0 (M0) is the amplitude of the force (torque) imposed, and l∗0 (θ∗0) is155

the amplitude of the longitudinal (angular) displacement of the probe, being156

its imaginary part the out-of-phase component of such displacement with157

respect to the force (torque). The physical magnitudes defined in Eq. (2)158

are the experimental observables that are usually combined to define a single159

observable: the complex amplitude ratio, AR∗,160
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AR∗l =
F0

l∗0
,

AR∗θ =
M0

θ∗0
. (3)

If we assume that i) the motion of any fluid element is also oscillatory161

with the same frequency ω and with only one non null velocity component in162

an adequate reference frame, ii) the interfacial system under study and the163

bulk phases are homogeneous and isotropic, and iii) the interfacial system is164

flat and strictly two-dimensional, we can re-write the stress and strain in the165

surface and the bulk phases as166

σ∗s(r, t) = σ∗s,0(r) exp{iωt}, σ∗(1,2)(r, t) = σ
∗(1,2)
0 (r) exp{iωt},

γ∗s (r, t) = γ∗s,0(r) exp{iωt}, γ∗(1,2)(r, t) = γ
∗(1,2)
0 (r) exp{iωt}, (4)

where the expressions on the left side correspond to the interface and the167

expressions on the right side correspond to the bulk phases, being the su-168

perscripts 1 and 2 the indication for the lower bulk phase, or subphase, and169

the upper bulk phase, respectively. The imaginary part of the strain and170

stress amplitudes in Eq. (4) arises from the phase lag with respect to the171

phase reference (the external force or torque). Note that, given the non-172

trivial coupling of all the contributions to the probe motion, there may be173

a phase difference between the external force (or torque) and the stress im-174

posed on the interface and the bulk phases. Using the Kelvin-Voigt model175

and considering the oscillatory problem, stress and strain are related by176

σ∗s(r, t)

γ∗s (r, t)
=
σ∗s,0(r)

γ∗s,0(r)
= G∗s = G′s + iG′′s ,

σ∗(1,2)(r, t)

γ∗(1,2)(r, t)
=
σ
∗(1,2)
0 (r)

γ
∗(1,2)
0 (r)

= G∗(1,2) = G′(1,2) + iG′′(1,2). (5)

Analogously, a complex viscosity is defined as177
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Figure 1: Schematics of the three interfacial rheometers discussed in this review, along
with the corresponding frame of reference. a) Magnetic needle interfacial stress rheometer,
where a is the radius of the needle, L is its length, and the shear channel is cylindrical
with radius R. b) Double wall ring, where R1 and R4 are the inner and outer radius of the
cup containing the upper phase, respectively. R2 and R3 are the inner and outer radius
of the cup containing the subphase, respectively. The ring has a rhomboidal cross section
and is placed with its two co-planar edges pinned to the interface. The inner and outer
radius of the ring are R5 and R6, respectively. H1 is the height of the fluid sub-phase,
and H2 is the height of the upper phase. c) Bicone setup, where Rb is the radius of the
bicone fixture, and Rc is the radius of the cup containing the sample. H is the height of
the fluid sub-phase.

η∗s(ω) =
G∗s
iω

=
G′′s
ω
− iG

′
s

ω
= η′s(ω)− iη′′s (ω),

η∗(1,2)(ω) =
G∗(1,2)

iω
=
G′′(1,2)

ω
− iG

′(1,2)

ω
= η′(1,2)(ω)− iη′′(1,2)(ω), (6)

which is related to the stress and strain by178

η∗s(ω) =
σ∗s(r, t)

γ̇∗s (r, t)
=

σ∗s(r, t)

iωγ∗s (r, t)
,

η∗(1,2)(ω) =
σ
∗(1,2)
s (r, t)

γ̇
∗(1,2)
s (r, t)

=
σ
∗(1,2)
s (r, t)

iωγ
∗(1,2)
s (r, t)

, (7)

where the dot indicates a time derivative.179
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The goal of any hydrodynamical model applied to interfacial rheology is180

writing down Eq. (5) as a function of known observables, i.e. the geometrical181

parameters of the setup and the experimentally measured amplitude ratio182

AR∗. Consequently, the way in which Eq. (5) is implemented in each model183

defines the corresponding data analysis scheme. Before describing the most184

relevant hydrodynamical models, let us introduce the three experimental185

approaches discussed in this paper. They will be thoroughly described in the186

following section, so that, at this point, we will just describe their key aspects187

in order to have an adequate context for the hydrodynamical models. The188

schematics of the experimental setups are presented in Fig. 1. In the MNISR189

(Fig. 1a), the probe consists of a magnetic needle resting on the interface190

along the center of a shear channel. An external magnetic force is exerted191

on the needle in such a way that it describes an oscillatory displacement192

along the axis of the channel, lp(t) = z∗0 exp{iωt}. Thus, the amplitude ratio193

is in this case AR∗l = F0/z
∗
0 . In the double-wall-ring (DWR) setup (Fig.194

1b), a thin ring is attached to the rotor of a torsion rheometer. The rotor is195

vertically displaced until the ring rests at the interface in between two coaxial196

cylindrical walls that form the shear channel. In this setup, the observable197

is AR∗θ = M0/θ
∗
0, where M0 is the amplitude of the torque imposed by the198

rotor and θ∗0 is the angular displacement of the rotor. The conical bob setup199

(Fig. 1c) also consists of a torsion rheometer in which a conical shaped200

fixture is attached. In this case, the shear channel is formed between the201

conical bob rim and the lateral wall of the cup containing the sample, and202

the experimental observable takes the same form as for the DWR setup.203

2.1. Simple models: linear velocity profile and simply additive contributions204

The simplest model one can come up with consists of making two as-205

sumptions: first, the interfacial drag is the only relevant contribution to the206

probe dynamics; thus, the external force on the probe is entirely applied to207

the interface along the contact line between the probe and the interface. The208

second assumption considers that the velocity profile at the interface is linear.209

To be more precise, one can consider that the interface and the bulk phases210

are decoupled assuming that |Bo∗| → ∞ and calculating the corresponding211

shear strain at the interface. From this assumption, the velocity profile at212

the interface for the MNISR is simply linear, so that the strain is constant213

through the shear channel (see the expression for σ∗s,0 in the Table 1). In the214

DWR and the bicone, imposing |Bo∗| → ∞ in the momentum balance equa-215

tion at the interface (the particular form of this equation will be discussed216
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in detail in Secs. 4 and 5) yields the expressions for γ∗s,0 at the probe contact217

line that we summarize in Table 1. The corresponding expressions for G∗s for218

this model are summarized in the second-to-last column of Table 1.219

Under some experimental circumstances, one can take a step forward in220

the accuracy of the model by accounting for the rest of the contributions in a221

simple manner. Assuming that all the contributions to the probe dynamics222

are simply additive (the interfacial drag plus the additional contributions, i.e.223

bulk phases drag, probe’s inertia, other eventual device contributions), and224

that the additional contributions are independent of the interface drag, one225

would be able to subtract the additional contributions from the experimental226

raw data as long as such additional contributions are known. This knowledge227

can be obtained by performing a calibration experiment, which must be per-228

formed in the same condition as the real experiment (same probe, frequency,229

and bulk phases) but in the absence of the interfacial system under study,230

i.e., with a clean air/subphase interface. The amplitude ratio measured in231

these conditions, which we will refer to as AR∗cal, can be subtracted from the232

experimental amplitude ratio with the interfacial system in place, AR∗exp, so233

that the effective amplitude ratio is AR∗eff = AR∗exp−AR∗cal. The expressions234

for this model are summarized in the last column of Table 1.235

These two models (linear approximation with and without calibration236

experiment, respectively) have the benefit of a very simple data analysis237

scheme, since the calculation of G∗s from the experimental AR∗ is immediate238

with no computational cost. However, it is clear that the aforementioned ap-239

proximations are valid only when the interfacial drag is much larger than the240

rest of the contributions. Moreover, while the subtraction of the additional241

contributions enhances the accuracy of the model, the assumption of such242

contributions as simply additive and independent of the interfacial drag is243

not necessarily valid. And more importantly, the strain does not follow, in244

general, the expressions in Table 1 because, for Bo ∼ 1, the coupling with the245

bulk phases makes the velocity profile at the interface decay in the vicinity246

of the probe in motion.247

An enlightening discussion on the characteristic length scales for both248

interfacial and bulk flows in the MNISR can be found in Ref. [46], where the249

authors define the viscous length scales at both the bulk subphase, `ω, and250

at the interface, `sω, as251
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Linear approximation Calib. subtraction
AR∗exp σ∗s,0 γ∗s,0 G∗s G∗s

ine MNISR F0

z∗0

F0

2L

z∗0
R−a

AR∗
exp(R−a)

2L

(AR∗
exp−AR∗

cal)(R−a)

2L

Bicone M0

θ∗0

M0

2πR2
b

θ∗02R2
c

R2
c−R2

b

AR∗
exp(R2

c−R2
b)

4πR2
bR

2
c

(AR∗
exp−AR∗

cal)(R
2
c−R2

b)

4πR2
bR

2
c

DWRi M1

2πR2
5

θ∗02R2
1

R2
5−R2

1

DWRii M2

2πR2
6

θ∗02R2
3

R2
3−R2

6

DWRiii M0

θ∗0

AR∗
exp

4π

(
R2
5R

2
1

R2
5−R2

1
+

R2
6R

2
3

R2
3−R2

6

) AR∗
exp−AR∗

cal

4π

(
R2
5R

2
1

R2
5−R2

1
+

R2
6R

2
3

R2
3−R2

6

)
Table 1: Summary of the expressions corresponding to the amplitude ratio, surface stress,
surface strain and complex interfacial modulus, G∗s, in the linear approximation for the
three geometries analyzed in the present review (MNISR, bicone, and DWR). The right
column shows the expressions for G∗s introducing the subtraction of the additional contri-
butions, AR∗cal. The row DWRi shows the surface stress and strain at the inner contact
line of the ring (R5). In this row, M1 is the part of the total torque applied to the inner
interface. The row DWRii shows the surface stress and strain at the outer contact line
(R6), being M2 the torque applied to the outer interface. The row DWRiii shows the
resulting expression for G∗s, where M0 = M1 +M2.

`ω =

√
ν

ω
,

`sω =

√
`ω
η∗s
η
, (8)

where ν is the kinematic viscosity of the bulk subphase (ν = η/ρ, being ρ252

the density). `ω and `sω represent the distance at which momentum decays at253

the bulk subphase and at the interface, respectively. In practice, the size of254

the bulk phase in the direction perpendicular to the interface (the depth of255

the bulk phase) is typically much larger than `ω, so that the relevant length256

scale in the bulk phase is `ω. However, the width of the shear channel may257

be smaller or larger than `sω depending on the value of η∗s . The analysis258

for the MNISR and the bicone geometries depicted in Refs. [46, 37] shows259

that these interfacial rheometers are sensitive to values of η∗s small enough260

to verify `sω < (R − a) (or `sω < (Rc − Rb)). In such cases, the interfacial261

velocity profile decreases exponentially within a distance `sω from the probe262

in motion, so that the actual surface strain deviates from those written in263
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Table 1. Thus, the simple models described above, and summarized in Table264

1, overestimate the value of G∗s calculated from the experimental AR∗. The265

overestimation can be of several orders of magnitude at low values of Bo, and266

safely negligible at high values of Bo. We will quantify the overestimation of267

the simple models as a function of G∗s at the end of this section.268

2.2. Flow field-based models269

The eventual non-linear velocity profile at the interface, and the proper270

separation of all the contributions to the probe dynamics, can be solved by271

means of the explicit calculation of the flow field at the interface and the bulk272

phases. Assuming that all the fluid elements describe an oscillatory motion in273

which there is only one non null velocity component (as that of the probe),274

we can define an amplitude function g∗(r) that relates the velocity of the275

fluid element located at r to the velocity of the probe276

v(r, t) = g∗(r)vp(t), (9)

being vp(t) the velocity of the probe. The imaginary part of g∗(r) stands277

for the out-of-phase component of the fluid element velocity with respect278

to the probe velocity. With the appropriate boundary conditions, one can279

write down, and numerically solve, the Navier-Stokes equations, finding the280

solution for the amplitude function g∗(r) for the volume occupied by the281

shear channel (including both bulk phases). Once the flow field is known, the282

separation of the bulk and interface contributions to the probe dynamics is283

achieved through the integration of the gradients of g∗ over the corresponding284

contact areas (contact line in the case of the interface). Analytically, the285

contribution of the surface and bulk phases drags to the amplitude ratio286

takes the form287

AR∗surf = G∗s

∫
L

(∇g∗(r)) · s dL,

AR∗bulk = G∗(1)

[∫ ∫
S1

(∇g∗(r)) · n1 dS

]
+G∗(2)

[∫ ∫
S2

(∇g∗(r)) · n2 dS

]
,

(10)

where s is the unitary vector tangent to the interface and perpendicular288

to the probe-interface contact line, and n1 and n2 are the unitary vectors289
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perpendicular to the contact area between the probe and the bulk phases 1290

and 2, respectively. L represents the contact line between the probe and the291

interface, and S1 and S2 stand for the contact surfaces between the probe292

and bulk phases 1 and 2, respectively.293

The force balance equation can now be outlined, which will contain terms294

for the probe inertia and any other possible device contribution295

AR∗exp − AR∗surf − AR∗bulk + AR∗dev = AR∗inertia, (11)

where AR∗dev represents all the additional contributions from the device (cen-296

tering potential in the MNISR, bearing friction, etc...), and AR∗inertia stands297

for the probe inertia, which is known as long as its mass (or moment of298

inertia) is known.299

The term AR∗dev may have different origin depending on the interfacial300

rheometer geometry. For instance, in the rotational rheometer configurations301

(DWR or bicone) residual friction in the air bearing represents the major con-302

tribution to AR∗dev, although its effect is very minor. Conversely, in magnetic303

needle ISRs, static trapping subsystems, typically used to avoid the probe304

scaping from the measurement window, usually introduce a constant contri-305

bution to AR∗dev [28, 27] that strongly limit the instrument resolution at low306

oscillation frequency.307

Eq. (11) relates the experimental observable, AR∗exp, to the interfacial308

dynamic moduli, G∗s, via AR∗surf . However, once the experiment is executed309

and AR∗exp is known, Eq. (11) does not allow for the direct calculation of310

G∗s because the drag terms depend on g∗(r) (the flow field), which, in turn,311

depends on G∗s. Thus, an iterative procedure is needed to find the proper312

value of G∗s that matches the experimentally obtained AR∗exp.313

The algorithm that allows for the calculation G∗s from the experimental314

observable has the same structure for the three geometries here studied (in-315

deed, it does not depend on the geometry, so it can be applied to any other316

device as long as the flow field can be obtained). First, one has to define the317

simplest flow configuration consistent with the specific geometry, where any318

fluid element follows the motion of the probe as v(r, t) = g∗(r)vp(t). Sec-319

ond, assuming the no-slip condition at the shear channel walls and the probe320

surface, and the Boussinesq-Scriven condition at the interface, the Navier-321

Stokes equations are solved, obtaining the amplitude function g∗(r). Third,322

the interface and bulk drag contributions are calculated from g∗(r), which323
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allows one to write the force, or torque, balance equation with all the con-324

tributions to the probe dynamics explicitly separated. Fourth, an iterative325

scheme must be built to find the value of η∗s that provides the best fit to the326

experimental observable, ARexp.327

In the next sections, we will discuss in detail the physical model, the math-328

ematical formulation, and the numerical scheme needed to find the complex329

velocity amplitude function g∗(r) for the three geometries analyzed, along330

with the particular form of the Eq. (11) and the iterative procedure to find331

G∗s.332

2.3. Comparative performance tests.333

We will conclude this section with a numerical comparison of the perfor-334

mance of the three models here described (linear approximation, with and335

without calibration experiment, and flow field-based) through the results of336

their corresponding data analysis schemes for the MNISR and the bicone337

geometries. For that purpose we have fed the three data analysis schemes338

with the values of AR∗exp, obtained by solving the full hydrodynamic and339

probe motion problem for an air/water interface with an interfacial film of340

given complex interfacial viscosity η∗s , and AR∗cal, obtained by solving the341

full hydrodynamic and probe motion problem for a clean air/water interface342

(Bo∗ = 0).343

Three cases of interfacial films with different rheological behavior have344

been considered: i) purely viscous interfaces (η∗s = η′s = ηs) at a moderately345

high frequency (ω = 10π rad/s), ii) viscoelastic interfaces (η∗s = η′s − iη′′s =346

ηs(1− i)) at an intermediate frequency (ω = π rad/s), and iii) purely elastic347

interfaces (η∗s = −iη′′s = −iηs) at a low frequency (ω = π/10 rad/s). The348

values of ηs span the range 10−7 Ns/m ≤ ηs ≤ 10 Ns/m. The numerically ob-349

tained values of AR∗exp and AR∗cal are substituted into the expressions in the350

central and right columns of Table 1, for the two linear approximation mod-351

els, and into the version of Equation (11) corresponding to each geometry for352

the flow field-based analysis. The values of η∗s obtained through each of the353

three data analysis schemes for each geometry, which we will refer to as the354

apparent surface viscosity η∗s,app, are then compared with the original ones355

that were used to obtain the full flow field configuration and, consequently,356

the complex amplitude ratio values fed to the data analysis schemes. There-357

fore, the overestimation introduced by the oversimplification implicit in the358

linear approximation models can be quantified.359
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The results are summarized in Figure 2, where the top, middle, and bot-360

tom rows correspond, respectively, to the purely viscous, viscoelastic, and361

purely elastic interfaces. The panels at left and right columns show, respec-362

tively, the ratio between the moduli and the difference between the arguments363

of the apparent (calculated) and original values of ηs. The lines with circles,364

triangles, and squares belong to the simple linear approximation, the linear365

approximation with calibration subtraction, and the flow field-based data366

analysis, respectively. Blue graphs correspond to the MNISR and magenta367

graphs to the bicone geometry.368
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Figure 2: Comparative performance test on purely viscous interfaces (η∗s = ηs) at ω = 10π
rad/s (top row panels), viscoelastic interfaces (η∗s = ηs − iηs) at ω = π rad/s (central row
panels), and purely elastic interfaces (η∗s = −iηs) at ω = π/10 rad/s (lower row panels).
Left panels: ratio of the moduli of the calculated and initial interfacial viscosities; right
panels: difference between the arguments of the calculated and initial interfacial viscosities.
The curves with circles, triangles, and squares correspond to the linear approximation,
the linear approximation with calibration subtraction, and the flow field based model,
respectively. The legend in the bottom left panel applies to all the graphs in this figure.

As can be seen in Figure 2, all of the three schemes yield correct results369

16



above a certain crossover value of η∗s which depends on the data analysis370

scheme. The simplest linear approximation for the bicone case has the highest371

crossover value, most probably due to the high subphase drag torque of such372

configuration. On the other hand, the flow field-based data analysis schemes373

yield extremely good results all over the range of interfacial viscosity here374

studied, indicating that the iterative procedure is capable of finding the initial375

value of η∗s . Two remarks are in order here. First, the case of the purely376

elastic interface shows qualitatively analogous results although it yields at377

some points underestimated values of the interfacial elasticity, most probably378

due to resonance phenomena [39]. Second, the analysis here outlined does379

not take into account the experimental uncertainty which is different for the380

different geometries [27, 38, 47].381

In any case, the comparison here outlined shows that both versions of382

the linear approximation model display cross-over values of the interfacial383

viscosity below which using a flow field-based model and data analysis scheme384

is mandatory in order to have an accurate translation of the experimental385

raw data into values of the rheological parameters.386

3. The magnetic needle interfacial stress rheometer387

First introduced by Shahin [48] and later developed by Brooks et al. [49],388

the MNISR has been extensively used to explore the mechanical response of389

fluid-fluid interfaces. A number of research groups have used this setup to390

study the mechanical response of particle-laden interfaces [50], lipid Lang-391

muir monolayers [51], such as lung surfactant [52, 53], contact lens tear films392

[54], or fatty acids/alcohols [55], and protein adsorbed (Gibbs) monolayers393

[56].394

The classical design of the MNISR comprises a pair of Helmholtz coils395

through which an electrical current is driven in such a configuration that a396

potential well is established and the equilibrium position (and orientation)397

of the needle is fixed at the center of the shear channel (see Fig. 1a). The398

application of an oscillatory current through a second pair of coils (or its399

superposition in the first pair of coils) imposes an oscillatory force on the400

needle. Then, the needle exerts a stress and, by means of its longitudinal401

displacement, a strain on the interface (and the adjacent bulk phases). For402

more details on the setup design, the reader is addressed to Refs. [49, 35, 36,403

28].404
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Brooks et al. [49] demonstrated that, with the needle placed on a clean405

air-water interface, the system is well described by a driven damped oscilla-406

tor, where the elastic contribution is due to the centering potential and the407

damping is a consequence of the water subphase drag408

F0

z∗0
= k −mω2 + iωd, (12)

wherem is the needle mass, k is the elastic constant of the centering potential,409

and d is the damping coefficient (water subphase drag).410

The experimental observables are the electrical current flowing through411

the coils and the needle displacement. In order to obtain the experimental412

amplitude ratio, AR∗exp = F0/z
∗
0 , it is necessary to convert the electrical cur-413

rent into magnetic force on the needle. This can be achieved by means of414

a frequency sweep at high frequencies, where the probe inertia dominates.415

Since the mass of the needle is known, the proportionality constant between416

electrical current and force, which we will refer to as C, can be obtained.417

The other unknown parameter of the device, the elastic constant of the cen-418

tering potential, k, can be obtained by means of a frequency sweep at low419

frequencies, where the frequency dependent terms become negligible and the420

only relevant term is k. Once the device is calibrated on a clean air-water421

interface, AR∗cal is known and the experiments with the interfacial system in422

place can be performed.423

The procedure to obtain the flow field in the shear channel of the MNISR424

was proposed by Reynaert et al. [35], where they described, first, the nu-425

merical scheme to calculate the amplitude function g∗(r) and, second, the426

particular form of Eq. (11) for this device. Regarding the solution of the427

Navier-Stokes equation, consider the geometry described in Fig. 1a, where428

the shear channel is cylindrical with radius R, being a the rod radius, and429

one bulk phase with viscosity η. Assuming that all the fluid elements move430

with a single non null velocity component (along the z axis in this case), the431

Navier-Stokes equation takes the form432

η∇2∂z(r, t)

∂t
= ρ

∂2z(r, t)

∂t2
, (13)

where ρ is the bulk fluid density and z(r, t) is the fluid displacement. Using433

the cylindrical coordinate system indicated in Fig. 1a and the substitution434
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p = log(r/a), the Navier-Stokes equation in terms of the amplitude function435

g∗(p, θ) takes the form436

∂2g∗(p, θ)

∂p2
+
∂2g∗(p, θ)

∂θ2
= i Re g∗(p, θ)e2p, (14)

where Re is the Reynolds number defined as437

Re =
ρa2ω

η
. (15)

The boundary conditions are no-slip at the needle and channel walls, and438

the mechanical response of the interface is introduced via the Boussinesq-439

Scriven boundary condition at the interface, which for this geometry takes440

the form441

Bo∗ e−p
(
∂2g∗(p, θ)

∂p2
− ∂g∗(p, θ)

∂p

)
− ∂g∗(p, θ)

∂θ
= 0, at θ = π/2, (16)

where the Boussinesq number is defined as442

Bo∗ =
η∗s
aη
. (17)

Eqs. (14)-(17) can be solved numerically by means of a centered finite dif-443

ferences scheme.444

In Figure 3 we show color coded plots of the real and imaginary parts445

of the velocity amplitude function, <[g∗(r, z)] (left panel), and =[g∗(r, z)]446

(right panel), respectively. Calculations were made for a typical commercial447

magnetic needle (a = 200µm, L = 30 mm, andm = 1.30× 10−5 kg) centered448

in a cylindrical channel having R = 10 mm. The flow field has been calculated449

for Bo∗ = 50(1 − i) at a frequency ω = π rad/s, in a 300×300 mesh in the450

(p, θ) domain. Strong velocity gradients can be appreciated in the subphase451

close to the needle surface and at the interface.452
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Figure 3: Color coded plots of (a) <[g∗(r, θ)], and (b) =[g∗(r, θ)] at Bo∗ = 50(1 − i) and
ω = π rad/s. The needle and shear channel radius are a = 200µm and R = 10 mm,
respectively.

Once the amplitude function g∗(p, θ) is known, it is particularly illustra-453

tive to analyze the shape of its profile at the interface g∗s(p) = g∗(p, π/2) or454

g∗s(r) = g∗(r, π/2), in (r, θ) coordinates. Figure 4 shows the interfacial ve-455

locity profile for three cases of viscoelastic interfaces with complex viscosity456

values ranging from η∗s = 10−7(1 − i) Ns/m to |η∗s | → ∞ and at a frequency457

ω = π rad/s. Solid and dashed lines represent, respectively, the real, <[g∗s(r)],458

and imaginary, =[g∗s(r)], parts of the interfacial velocity profile.459
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Figure 4: Real and imaginary parts of g∗s (r) for viscoelastic interfaces at different Bo∗

values for a magnetic needle probe with radius a = 200µm and a shear channel with
radius R = 10 mm. The surface viscosity values used in the calculations are: η∗s =
10−7(1 − i) Ns/m (blue line); η∗s = 10−5(1 − i) Ns/m (red line); η∗s = 10−3(1 − i) Ns/m
(black line); η∗s → ∞ (green line). All cases are calculated at ω = π rad/s. Continuous
lines: <[g∗s (r)]; dashed lines: =[g∗s (r)].

The analytical solution for the interfacial radial velocity profile corre-460

sponding to |η∗s | → ∞ or, equivalently, |Bo∗| → ∞, has been obtained by461

considering an interface fully decoupled from the subphase, i.e., neglecting462

the bulk contribution to the interfacial shear stress balance (the gradient463

in the angular variable at equation (16)). The analytical solution reads464

gs(r) = R−r
R−a , i.e., it is a strictly real function that describes a linear ve-465

locity profile in phase with the probe velocity (green line in Figure 4). As466

can be seen in the Fig. 4, it superimposes on the numerically calculated467

interfacial velocity profile for the high Bo∗ case (black solid line).468

Now it becomes clear why the linear approximation (assuming the surface469

shear strain as constant through the shear channel) fails at low η∗s , demon-470

strating one of the reasons of the overestimation of G∗s when ignoring the471

actual flow field calculation and using the simplest models instead (see last472

two columns in Table 1). Moreover, the out-of-phase component of the fluid473

velocity (dashed lines in Figure 4) becomes non-zero for low values of η∗s ,474

demonstrating that, first, as mentioned in Section 2, γ∗s,0 may have a non-zero475

imaginary part, and second, that the simplest models not only overestimate476

the value of η∗s , but also err in calculating the loss tangent (the ratio of the477

loss to the elastic surface modulus), as can be seen in Figure 2.478

The particular form of the force balance equation (Eq. (11)) for the479

MNISR is [35]480
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F0

z∗0
= AR∗exp = −i2LωηBo∗

(
∂g∗

∂p

)∣∣∣∣
p=0,θ=π/2

−i2Lωη
∫ π/2

0

(
∂g∗

∂p

)∣∣∣∣
p=0

dθ + k −mω2. (18)

From left to right, the terms on the right hand side of this equation are481

AR∗surf , AR
∗
bulk, AR

∗
dev, and ARinertia. Notice that, in this design of the482

MNISR, AR∗dev 6= 0, so that, besides the bulk drag and the inertia, there is483

an additional contribution from the device.484

Later, Verwijlen et al. [36] used particles trapped at the interface to track485

the velocity profile, finding a very good agreement with the numerical so-486

lution of Eqs. (14)-(17). Moreover, they proposed an iterative scheme to487

calculate G∗s from the experimentally measured AR∗exp through Eq. (18);488

namely, they proposed a method to explicitly account for the flow field when489

analyzing experimental data. Initially, a first guess for Bo∗ is used to solve490

Eqs. (14)-(17), which provides a numerically calculated value of the ampli-491

tude ratio F0/z
∗
0 , which we will refer to as AR∗num. Then, AR∗num is compared492

to the experimentally measured AR∗exp, obtaining the value of Bo∗ for the493

next iteration as494

[Bo∗]k+1 =
AR∗num
AR∗exp

[Bo∗]k. (19)

More recently, Tajuelo et al. [28] used thin magnetic microwires as a495

probe for the MNISR. These microwires are more than one order of magni-496

tude smaller in diameter than the conventional needles, being their length497

similar, so that the bulk and inertia contributions are significantly dimin-498

ished while the interfacial contribution remains essentially the same. Hence,499

the sensitivity of the rheometer is increased at low values of η∗s . They also500

showed that the driven damped oscillator approximation for the calibration501

procedure (Eq. (12)) fails for the thin microwires because, due to its lower502

mass, the out-of-phase component of the subphase drag is not negligible.503

Thus, the explicit calculation of the flow field must also be considered for504

the device calibration (calculation of C and k). Tajuelo et al. [28] proposed505

a calibration procedure, later used in Ref. [47], that consists on defining a506
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function S(C, k) that represents, at each point, the sum of the squared dif-507

ferences between the Eq. (18) using the corresponding value of k, and the508

experimentally measured AR∗cal(ω) in the proper units of N/m by means of509

the corresponding value of C. Then, the coordinates (C, k) that minimize510

the function S are selected as the calibration parameters.511

In recent years, a new driving mechanism has been proposed for the512

MNISR [27], where the magnetic coils are replaced by a mobile magnetic trap513

consisting of two small permanent magnets. The magnetic trap is displaced514

in an oscillatory manner along the direction of the shear channel, and, as515

a consequence of the magnetic force on the needle, it is also displaced in516

the same direction with the same frequency, describing essentially the same517

motion as with the magnetic coils. The authors demonstrated [27] that518

the dynamics of this system is well represented by an elastic potential with519

constant kmt whose equilibrium point describes an oscillatory motion along520

the axis of the shear channel.521

The raw data in the mobile magnetic trap MNISR are the displacement522

of the magnetic trap, zmt(t) = zmt,0 exp{iωt}, and the displacement of the523

needle, zp(t) = z∗0 exp{iωt}. The amplitude ratio obtained through the force524

balance equation in terms of these observables is525

zmt,0
z∗0

= 1 +
−i2LωηBo∗

(
∂g∗

∂p

)∣∣∣
p=0,θ=π/2

− i2Lωη
∫ π/2

0

(
∂g∗

∂p

)∣∣∣
p=0

dθ −mω2

kmt
,

(20)

which, for reasons that will be apparent soon, we will label as a position-526

position amplitude ratio, [AR∗exp]
pp = zmt,0

z∗0
, at variance with respect to the527

force-position amplitude ratio defined in (18). Indeed, the force-position528

amplitude ratio for the magnetic trap driving mechanism can be found by529

taking into account the fact that the magnetic force on the needle, F0, can530

be calculated from zmt and z∗0 as531

F0(t) = −kmt (zp(t)− zmt(t)) = −kmt (z∗0 − zmt,0) eiωt, (21)

where kmt is the spring constant belonging to the magnetic trap, which can532

be found by means of calibration experiments [27]. Hence, Eqs. (20) and533

(21) lead to534
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F0

z∗0
= AR∗exp = −i2LωηBo∗

(
∂g∗

∂p

)∣∣∣∣
p=0,θ=π/2

−i2Lωη
∫ π/2

0

(
∂g∗

∂p

)∣∣∣∣
p=0

dθ −mω2. (22)

The comparison of Eqs. (22) and (18) is illustrative: they are equivalent535

if k = 0 in Eq. (22). In other words, using a mobile magnetic trap as a driv-536

ing mechanism keeps the probe dynamics essentially the same, but removes537

the device contribution (AR∗dev = 0), increasing the relative importance of538

AR∗surf with respect to the rest of the terms, which manifests as an increased539

sensitivity particularly at low frequency.540

A variation of the iterative procedure indicated in Eq. (19) can be devised541

by solving for Bo∗ in the expressions (18) or (22). For the case of the MTISR,542

following Eq. (22), it yields:543

[Bo∗]k+1 =

(
[AR∗exp]

pp − 1
)
kmt − i2Lωη

∫ π/2
0

(
∂[g∗]k
∂p

)∣∣∣
p=0

dθ +mω2

i2Lωη
(
∂[g∗]k
∂p

)∣∣∣
p=0,θ=π/2

, (23)

where [AR∗exp]
pp = zmt,0

z∗0
.544

Starting from an appropriate seed, the scheme is iterated till convergence.545

A suitable convergence criterion might be:546

∣∣∣∣ [AR∗calc]ppk − [AR∗exp]
pp

[AR∗exp]
pp

∣∣∣∣ ≤ tolMin, (24)

where [AR∗calc]
pp
k is calculated following expression (20) in each step.547

An important aspect in the evaluation of the procedure’s performance is548

the capability of giving the correct Bo∗ values in cases where the value of Bo∗549

is known. Such tests have been labeled as consistency tests [39] and can be550

easily done by feeding the data analysis scheme with values of the amplitude551

ratio obtained numerically by previously solving the motion of the needle at552

an interface of prescribed interfacial viscosity.553

Consistency tests have been made by applying the aforementioned iter-554

ative scheme to numerically generated [AR∗]pp data for a |η∗s | in the range555
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10−10 ≤ |η∗s | ≤ 10−3 (Eq. (20)). The calculations have been made for the556

commercial needle described above in a cylindrical channel with R = 10 mm,557

at a frequency, ω = π rad/s.558

Three cases are considered: purely viscous (η∗s = η′s = ηs), viscoelastic559

(η∗s = η′s − η′′s i = ηs − ηsi), and purely elastic interfaces (η∗s = −η′′s i = −ηsi).560

The results are represented in Figure 5, where the left panels show the values561

of the real and imaginary parts of η∗s obtained after convergence, namely [η′s]c562

(filled symbols) and [η′′s ]c (open symbols), as a function of the prescribed value563

of ηs. The red line represents the perfect consistency line, [η′s]c = [η′′s ]c =564

|ηs|. The top, middle, and bottom panels correspond, respectively, to the565

cases of purely viscous, viscoelastic, and purely elastic interfaces. The right566

panels in Figure 5 indicate, in each case, the number of iterations needed for567

convergence of the iterative process. The results are remarkably good in all568

cases except for in a small range of ηs values in the case of the purely elastic569

interfaces. Such an artifact has already been described for the case of the570

bicone bob rotational ISR [38, 39], probably due to a resonance phenomenon.571
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Figure 5: Results of the consistency test for the MTISR geometry (commercial needle at
ω = π rad/s) for purely viscous (top row), viscoelastic (middle row), and purely elastic
(bottom row) interfaces with real and imaginary parts of the complex interfacial viscosity
in the range 10−10 < ηs < 10−3 Ns/m. Left panels: Comparison of the converged values
[η′s]c (filled symbols), and [η′′s ]c with the programmed value ηs (red line). Right panels:
Number of iterations needed for convergence of the results in the corresponding left panel.
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4. The Double wall-ring interfacial rheometer572

The DWR geometry, shown in Figure 1c, was proposed by Vandebril et al.573

[22]. It takes advantage of the excellent control and measurement capabil-574

ities of modern digital rotational rheometers regarding torque and angular575

displacement. In such a design, the authors were able to put together many576

advantages from other geometries, such as: i) the small contact perimeter577

to area ratio (similar to the case of the MNISR or knife-edge geometries),578

and ii) the sharp edges that pin the interface, mantaining it in a horizontal579

plane (similar to the case of the bicone bob rotational rheometer). Moreover,580

rotational systems with circular symmetry do not suffer from end effects, an581

advantage regarding the MNISR which has a necessarily limited linear dis-582

placement range, and consequently allow to make not only oscillatory mea-583

surements but also continuous rotation measurements, such as viscometry or584

creep/recovery modes. Finally, the DWR geometry usually presents a smaller585

moment of inertia compared to the bicone bob probes, which is an advantage586

when working at high frequencies or short times. Interestingly, in the case587

of the DWR ISR, the corresponding flow field-based data analysis scheme588

was proposed simultaneously to the instrument design [22]. In the following589

we will mainly focus on the case of oscillatory excitation because, usually, it590

allows for a better separation of the viscous and elastic components of the591

sample’s response.592

4.1. The flow field-based data analysis scheme for the DWR593

The physical model [22] assumed a horizontal and flat interface between594

two Newtonian fluids, pinned at the sharp edges at the channel and the ring.595

The flow velocity, both at the bulk phases and the interface, is supposed to596

have just one non null azimuthal component and to be purely axisymmet-597

ric. Under such assumptions, the Navier-Stokes equations for the azimuthal598

component of the velocity, in a cylindrical coordinate system with the origin599

at the center of the bottom surface of the channel, can be written as600

ηj

[
∂

∂r

(
1

r

∂

∂r
(rvj)

)
+
∂2vj
∂z2

]
= ρj

∂vj
∂t
, (25)

where the subindex j refers to either of the bulk phases. Consequently, ηj601

and ρj represent, respectively, the dynamic viscosity and the density of the602
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bulk phase j. Correspondingly, the boundary conditions are no-slip at the603

channel walls and floor, and free surface at the air/upper bulk phase interface604

v1(R1, z) = v2(R2, z) = v1(R3, z) = v2(R4, z) = v1(r, 0) = 0 (26)(
∂v2(r, z)

∂z

)
z=H1+H2

= 0, (27)

and605

vj(R5) = R5Ω, (28)

vj(R6) = R6Ω, (29)

at the ring surface, where Ω is the instantaneous angular velocity of the ring.606

Notice that it can represent either a rotational motion, if Ω is constant, or607

oscillatory motion, if Ω = iθ0ωe
iωt, where i is the imaginary unit, and θ0608

and ω the angular amplitude and frequency, respectively, of an oscillatory609

motion, θ(t) = θ0e
iωt.610

In the case of the DWR configuration with two fluid phases, contributions611

from both bulk phases appear in the Boussinesq-Scriven boundary condition,612

that reads,613

η1
∂v1

∂z
− η2

∂v2

∂z
= ±η∗s

∂

∂r

(
1

r

∂

∂r
(rvs)

)
, at z = H1, (30)

where the subscript s indicates physical quantities corresponding to the in-614

terface, and the ± signs correspond to the cases of the inner and outer parts615

of the interface, respectively. In the case of constant angular velocity and616

Newtonian interfaces the interfacial viscosity is a real parameter.617

Next, the velocity field is assumed to be separable into a time dependent618

part, that follows the probe angular velocity Ω, and a spatially varying func-619

tion, aj(r, z) that carries the spatial dependence of the velocity field at the620

interface and both bulk phases, namely,621

vj = aj(r, z)Ω. (31)
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The mathematical problem defined by the Navier-Stokes equations (25),622

the no-slip boundary conditions (27) and (29), the Boussinesq-Scriven condi-623

tion at the interface (30), and the velocity field ansatz (31), can be discretized624

and solved numerically. The numerical solution for the velocity field can be625

used later on to calculate the total drag torque, Mc, comprising the interface626

and bulk phases contributions, from the following expression:627

MC = 2πη∗s

[
R3

5

∂

∂r

(vs
r

)∣∣∣
r=R5

−R3
6

∂

∂r

(vs
r

)∣∣∣
r=R6

]
− 2πη1

[∫ Rr

R5

∂v1

∂p1

r2dr +

∫ R6

Rr

∂v1

∂p2

r2dr

]
− 2πη2

[∫ Rr

R5

∂v2

∂p3

r2dr +

∫ R6

Rr

∂v2

∂p4

r2dr

]
, (32)

where Rr is the radial coordinate of the upper and lower vertexes of the ring,628

coordinates pi are normal to the ring facets, and the contributions of the629

interface and both bulk phases are easily recognized. A complete description630

of the flow field configurations obtained with such a scheme and the overall631

instrument performance can be found in reference [22].632

The calculated total drag torque, MC , can be compared with the inertia633

corrected torque data given by most commercial rotational rheometers and,634

hence, it can be used to devise an iterative scheme to obtain the value of the635

complex interfacial viscosity. For instance, Vandebril et al. [22] proposed to636

use the simple scheme637

[η∗s ]k+1 = [η∗s ]k
Mexp

Mk
C

, (33)

where Mexp is the inertia corrected torque yielded by the rotational rheome-638

ter. The MATLAB® implementation of this scheme has been made freely639

available by its authors at https://softmat.mat.ethz.ch/opensource.640

html641

Such a scheme has been successfully exploited in experimental studies of642

interfacial systems such as polymer blends [57], particle laden interfaces [58,643

59, 60], microgels [61], asphaltene films [62], tiled graphene oxide nanoflakes644

[63], protein films [64, 65, 66], protein-surfactant mixtures [67], CO2 in water645
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foams [68], amyloid biofilms [69], DPPC monolayers [52], cereal dough liquor646

[70, 71], and thermo-responsive polymers [72].647

However, expression (33) is an ad-hoc choice that has no physical basis.648

This might bring problems because Mk
C is a nonlinear function of [η∗s ]k and,649

hence, there is no guarantee that the fixed points of the iterative map (33)650

are a proper solution for the problem. Opting for iterative schemes based651

on physical grounds should be advantageous. The equation of motion of the652

probe has been shown [38, 39] to be of great help for this purpose in the653

case of the bicone bob ISR. In the following subsection we show how to use654

the equation of motion of the probe to set up a physically founded iterative655

scheme for the DWR.656

4.2. An alternative scheme for the DWR derived from the probe dynamics.657

Let us, first, particularize the mathematical problem for the most usual658

case of oscillatory forcing, by making physical quantities non-dimensional,659

using R6 and 1/ω as characteristic length and time scales, and slightly mod-660

ifying expression (31) so that now the ansatz for the velocity field is661

vj = g∗j (r, z)ΩR6. (34)

Notice that now the velocity amplitude function is non-dimensional. The662

choice of R6 as the characteristic length scale is immaterial because any other663

length related to the ring would be equally adequate. Nevertheless, the choice664

of R6 as the characteristic length scale is very convenient because it is the665

position at which the flow speed will take its highest value and, consequently,666

the value of the non-dimensional velocity amplitude function at the external667

rim of the ring will be g∗(R̄6) = 1. After the non-dimensionalization process668

and using expression (34), the Navier-Stokes equations for both bulk phases669

are (the overbars indicate non-dimensional quantities)670

iRejg
∗
j (r̄, z̄) =

∂

∂r̄

(
1

r̄

∂

∂r̄

(
r̄g∗j
))

+
∂2g∗j
∂z̄2

, (35)

where the Reynolds numbers for the bulk phases are Rej = ρjωR
2
6/ηj. The671

boundary conditions are again no-slip at the channel walls and floor, and free672

surface at the air/upper bulk phase interface.673
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g∗1(R̄1, z̄) = g∗2(R̄2, z̄) = g∗1(R̄3, z̄) = g∗2(R̄4, z̄) = g∗1(r̄, 0) = 0, (36)(
∂g∗2(r̄, z̄)

∂z̄

)
z̄=H̄1+H̄2

= 0 (37)

There must be no-slip boundary conditions at the ring contact lines, too

g∗j (R̄5) = R̄5, (38)

g∗j (R̄6) = 1, (39)

while the Boussinesq-Scriven boundary condition is written as674

∂g∗1
∂z̄
− 1

Y

∂g∗2
∂z̄

= ±N∗ ∂
∂r̄

(
1

r̄

∂

∂r̄
(r̄g∗s)

)
, at z̄ = H̄1, (40)

being Y = η1
η2

and N∗ = η∗s
η1R6

, as is done in reference [73]. Following [74], we675

define the complex Boussinesq number as: Bo∗ = η∗s
(η1+η2)R6

so that the drag676

torque can be written in the following way677

M∗
C = 2πiωθ0e

iωtBo∗(η1 + η2)R3
6

[
R̄3

5

∂

∂r̄

(
g∗s
r̄

)∣∣∣∣
r̄=R̄5

− ∂

∂r̄

(
g∗s
r̄

)∣∣∣∣
r̄=R̄6

]

− 2πiωθ0e
iωtη1R

3
6

[∫ R̄r

R̄5

∂g∗1
∂p̄1

r̄2dr̄ +

∫ R̄6

R̄r

∂g∗1
∂p̄2

r̄2dr̄

]

− 2πiωθ0e
iωtη2R

3
6

[∫ R̄r

R̄5

∂g∗2
∂p̄3

r̄2dr̄ +

∫ R̄6

R̄r

∂g∗2
∂p̄4

r̄2dr̄

]
= M∗

s +M∗
1 +M∗

2 , (41)

where coordinates pi are normal to the ring facets, and, again, the contri-678

butions due to the interface, M∗
s , and both bulk phases, M∗

1 and M∗
2 , are679

easily identified. In this scheme, the above equations must be completed680

with the probe (rotor plus ring fixture ensemble) equation of motion. Since681

θ(t) = θ0e
iωt and the total applied torque, without inertia correction, is sup-682

posed to be M∗(t) = M0e
i(ωt−δ), the equation of motion for the probe is683
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Iθ̈ +M∗
C = M0e

i(ωt−δ). (42)

Furthermore, the complex amplitude ratio between the (measurable) total684

applied torque and the angular position can be written as:685

AR∗ =
M0e

i(ωt−δ)

θ0eiωt
=
M0

θ0

e−iδ =
M∗

s +M∗
1 +M∗

2 − Iω2θ0e
iωt

θ0eiωt
=

iω2πBo∗(η1 + η2)R3
6

[
R̄3

5

∂

∂r̄

(
g∗s
r̄

)∣∣∣∣
r̄=R̄5

− ∂

∂r̄

(
g∗s
r̄

)∣∣∣∣
r̄=R̄6

]
+ iω2πR3

6

(
η1M̄

∗
1 + η2M̄

∗
2

)
− Iω2, (43)

which, upon solving for the complex Boussinesq number, Bo∗, can be used686

to set up the following iterative scheme:687

[Bo∗]k+1 =
AR∗exp − iω2πR3

6

(
η1

[
M̄∗

1

]
k

+ η2

[
M̄∗

2

]
k

)
+ Iω2

iω2π(η1 + η2)R3
6

[
M̄∗

s

]
k

, (44)

where the non-dimensional drag torques are:

[
M̄∗

s

]
k

= R̄3
5

∂

∂r̄

(
[g∗s ]k
r̄

)∣∣∣∣
r̄=R̄5

− ∂

∂r̄

(
[g∗s ]k
r̄

)∣∣∣∣
r̄=R̄6

, (45)

[
M̄∗

1

]
k

=

∫ R̄r

R̄5

∂ [g∗1]k
∂p̄1

r̄2dr̄ +

∫ R̄6

R̄r

∂ [g∗1]k
∂p̄2

r̄2dr̄,

[
M̄∗

2

]
k

=

∫ R̄r

R̄5

∂ [g∗2]k
∂p̄3

r̄2dr̄ +

∫ R̄6

R̄r

∂ [g∗2]k
∂p̄4

r̄2dr̄.

Such a scheme does not rely on the rheometer’s automatic inertia cor-688

rection. A comparative study, in terms of the number of iterations needed689

for convergence, the total processing time, and the numerical consistency690

between both formulations of the iterative process, would be of significant691

practical interest.692

To conclude this section we would like to mention briefly that Lopez693

and Hirsa [75] proposed an elegant approach to the hydrodynamic problem,694

based on a stream function and vorticity formulation. Such an approach695
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allows one to find the full three dimensional configuration of the velocity696

field for the knife-edge ISR and the DWR ISR. It is appealing to apply such697

a formulation to build a flow field-based data analysis scheme for both types698

of ISR by finding the solution of the full 3D velocity field, supplementing it699

with the calculation of the interfacial and subphase drag torques, and setting700

up an iterative scheme that might have a higher accuracy than the simple701

single velocity component schemes here mentioned. Such an scheme will have702

the obvious drawback of demanding larger computational times.703

5. The oscillating conical bob704

The bicone bob is one of the oldest geometries still in use in the im-705

plementation of interfacial shear rheometers based on stress controlled ro-706

tational bulk rheometers (see, for instance, [16, 21] and references therein).707

Among the interfacial shear rheometers built on rotational bulk rheometers708

the DWR [36] typically offers higher values of Bo∗ and better resolution709

than the bicone ones, due to its smaller area of contact with the subphase.710

However, the bicone bob geometry is a convenient and popular entry point711

into interfacial shear rheology for many experimental groups having a stress712

controlled rheometer because of the simplicity of the elements needed to set713

it up [37]. Not surprisingly, the bicone geometry is still widely used, e.g,714

in the study of biofilms [76, 77, 78], PMMA and colloidal polystyrene latex715

quasi-monolayers [79], differences between proteins and surfactants [80], in-716

terfacial layers of cellulose nanocrystals [81], emulsifiers (e.g., chitosan) [82],717

polyhydroxyalkanoate degradation at interfaces [83], or interfacial network718

formation induced by crystalization [84].719

Common to all interfacial rheometers is the challenge of extracting ac-720

curate values for the rheological parameters out of the experimental data,721

mainly due to the strong coupling between the interfacial and bulk flow. In722

the case of the bicone geometry there is an extreme need to separate the723

interfacial and subphase contributions of the system response because of the724

large contact area of the probe with the subphase. Consequently, consider-725

able effort has been made in the past to obtain analytical models that might726

be useful to unravel the rheological information contained in the experimental727

data for different geometrical and dynamical configurations.728

Soo-Gun and Slattery [73] provided an exact solution for the case of a729

zero-thickness disk pending from a torsion wire, with the fluid-containing730

cup rotating at a constant angular velocity. Later on, the work of Soo-Gun731
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and Slattery [73] was adapted to the case where the cup performs angular732

oscillations at a given frequency by Ray et al. [85] and Nagarajan et al. [86].733

However, nowadays, the most used configuration consists on the conical bob734

being fixed to the moving rotor of a stress controlled rotational rheometer.735

During dynamical measurements in this configuration, an oscillating torque736

is applied to the rotor plus probe assembly, and its angular displacement is737

measured. Erni et al. [74] adapted the exact solution in [73] to the stress738

controlled oscillating bob system by imposing appropriate boundary condi-739

tions and recasting the constant angular velocity into an oscillatory angular740

velocity. However, the validity of such an approach is limited to situations in741

which the vertical velocity profile in the subphase is linear, which demands742

small subphase depths, low frequencies, and/or moderate viscosity subphase743

fluids. A detailed analysis of the flow field configurations in the oscillating744

cup and oscillating bob configurations can be found in [37].745

Tajuelo et al. [37] transposed the ideas from Reynaert et al. [35] and Ver-746

wijlen et al. [36] to the case of the oscillating bob in the stress controlled747

mode. In this configuration, the experimental data usually consists on the748

complex amplitude ratio, AR∗, between the total imposed torque and the749

angular displacement of the rotor+bicone assembly. The experimental dis-750

position of the interfacial oscillating bob is depicted in Figure 1c.751

The rheometer consists of a conical bob, connected to the rheometer ro-752

tor, that is level with the air/water interface. The bulk fluid subphase is753

contained in a cylindrical cup having its axis aligned with the cylindrical754

symmetry axis of the bob (see Fig.1c). The surface is considered horizon-755

tal and having null-thickness, and the flow field is assumed to have only756

one non null velocity component in the azimuthal direction, vθ. For such a757

configuraton, the Navier-Stokes equations in cylindrical coordinates read:758

∂vθ
∂t

=
η

ρ

(
∂2vθ
∂r2

+
∂2vθ
∂z2

+
1

r

∂vθ
∂r
− vθ
r2

)
, (46)

where ρ and η are the density and the viscosity of the bulk fluid subphase,759

respectively, and r and z the radial and vertical direction coordinates, re-760

spectively. The rotor is supposed to oscillate at a constant frequency, ω,761

with an angular amplitude, θ0, so that θ(t) = θ0e
iωt. It is further assumed762

that the fluid velocity at any point will be proportional to the velocity of the763

points at the bicone rim, so that the temporal and spatial dependencies of764

the velocity field can be separated as765
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vθ(r, z, t))θ(t) = vθ,b(t)g
∗(r, z), (47)

where vθ,b(t) is the velocity of the points at the bicone rim,766

vθ,b(t) = iωRbθ0e
iωt, (48)

and g∗(r, z) is a nondimensional amplitude of the velocity field, which is a767

complex function whose real and imaginary parts are in phase and out of768

phase with the bicone velocity. Making spatial coordinates nondimensional,769

by using the cup radius as the characteristic length scale, the Navier-Stokes770

equation for this problem (46) can be written as follows:771

i Re g∗(r̄, z̄) =
∂2g∗(r̄, z̄)

∂r̄2
+
∂2g∗(r̄, z̄)

∂z̄2
+

1

r̄

∂g∗(r̄, z̄)

∂r̄
− g∗(r̄, z̄)

r̄2
. (49)

Here the Reynolds number is defined as Re = ρωR2
c/η, where ρ and η772

are the bulk density and viscosity, respectively, ω is the oscillating frequency,773

and Rc is the cup radius.774

Boundary conditions are no-slip at the cup floor and lateral walls, and at775

the bicone-subphase contact area. Moreover, null fluid velocity is assumed a776

at points located along the vertical symmetry axis, i.e.,777

g∗(r̄, 0) = g∗(1, z̄) = 0,

g∗(0, z̄) = 0,

g∗(r̄ ≤ R̄b, h̄) =
r̄

R̄b

. (50)

Moreover, the Boussinesq-Scriven boundary condition applies at the in-778

terface and, in cylindrical coordinates and in non-dimensional form, reads:779

∂g∗

∂z̄
= Bo∗

∂

∂r̄

(
1

r̄

∂

∂r̄
(r̄ g∗)

)
, at R̄b < r̄ < 1, z̄ = h̄, (51)

where the complex Boussinesq number is defined as

Bo∗ =
η∗s
Rcη

. (52)
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Next, the angular displacement and the torque exerted by the instrument780

are related through the equation of motion of the rotor+bicone assembly781

which reads782

M∗(t) +M∗
sub(t) +M∗

surf (t) = I
∂2θ(t)

∂t2
, (53)

where M∗(t) is the torque applied by the instrument, M∗
sub(t) and M∗

surf (t)783

are the drag torques imposed by the subphase and interface, respectively,784

and I is the moment of inertia of the rotor+bicone assembly. Incidentally,785

many commercial rotational rheometers perform an inertia correction over786

experimental data. When working with the full equation of motion (53), non787

inertia corrected (raw) data must be used. Conversely, the inertia term in788

equation (53) may be dropped when working with inertia-corrected torque789

data, hence, applying just a torque balance condition.790

The interfacial and bulk subphase drag torques can be calculated from791

the horizontal and vertical velocity gradients of the velocity field. Written in792

terms of g∗, the corresponding expressions are:793

M∗
sub = −iω2πRbηθ0e

iωt

∫ Rb

0

r2

(
∂g∗

∂z

)∣∣∣∣
z=h

dr,

M∗
surf = iω2πR2

bRcBo
∗ηθ0e

iωt

(
Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb, z=h

− 1

)
. (54)

In this scheme the next step consists in assuming that the torque exerted794

by the instrument is an oscillation with frequency ω with a certain phase lag795

with respect to the angular displacement, i.e.,796

M∗(t) = M0e
i(ωt−δ) = M∗

0 e
iωt (55)

The main output data of modern rotational rheometers is just the time797

series corresponding to the time evolution of the applied torque and the798

angular displacement. Then, a complex amplitude ratio,799

AR∗exp =
M∗

exp(t)

θexp(t)
=
M0

θ0

e−iδ, (56)
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can be easily constructed. An equivalent definition of a theoretical amplitude800

ratio, using the applied torque and the angular displacement, followed by the801

substitution of expressions (54) into Eq.(53) leads to the following relation802

between AR∗ and the spatial flow field configuration:803

AR∗ = iω2πRbη

[∫ Rb

0

r2

(
∂g∗

∂z

) ∣∣∣∣∣
z=h

dr

−RbRcBo
∗

(
Rb

(
∂g∗

∂r

)∣∣∣∣
r=Rb, z=h

− 1

)]
− Iω2. (57)

Hence the question is: given an experimental value of AR∗, what is804

the value of the complex Boussinesq number, Bo∗, that solves the prob-805

lem defined by Eqs. (49), (50), (51) coupled to (57)? Once that problem is806

solved, the complex interfacial viscosity can be found right away from (52),807

as η∗s = Rc η Bo
∗. However, the complex interfacial viscosity is also implicitly808

contained in the g∗ calculation (Boussinesq-Scriven boundary condition, Eq.809

(51)). More precisely, equation (57) can be solved for Bo∗ if one knows the810

gradients of the complex velocity amplitude function, but to find such gradi-811

ents one needs to know the value of Bo∗ in order to solve the hydrodynamic812

problem with the Boussinesq-Scriven boundary condition, equation (51).813

Hence, it is necessary to resort to an iterative scheme. A first version814

of such an iterative scheme [37] was devised along the lines developpd in815

Reynaert et al. [35] and Verwijlen et al. [36], iterating over Bo∗, starting816

from a suitable value and using the experimental value of the amplitude817

ratio, AR∗exp, as follows:818

[Bo∗]k+1 =
AR∗exp
AR∗calc

[Bo∗]k. (58)

However, recently Sánchez-Puga et al. [39] proposed a different scheme,819

based on the same arguments here used is Subsection 4.2, that was based on820

solving equation (57) for Bo∗, so that821

[Bo∗]k+1 =
−AR∗exp − Iω2 + iω2πRbη

∫ Rb

0
r2
(
∂[g∗]k
∂z

)∣∣∣
z=h

dr

RbRc

(
Rb

(
∂[g∗]k
∂r

)∣∣∣
r=Rb, z=h

− 1

) . (59)
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In this scheme, thoroughly described in Sánchez-Puga et al. [39], one822

starts from an appropriate seed, for instance, the Bo∗ value corresponding823

to a linear interfacial velocity profile, or the solution of the hydrodynamic824

problem corresponding to a clean interface, Bo∗ = 0. Then, the gradients825

of the complex velocity amplitude function are introduced in equation (59),826

and a new value of Bo∗ is found. The scheme is iterated till convergence is827

achieved.828

The condition for convergence might be defined on the successive values829

of Bo∗. However, since the experimental observable being the complex am-830

plitude ratio, we have chosen to stipulate it on the successive values of AR∗,831

as follows832

∣∣∣∣∣ [AR∗calc]k − AR∗expAR∗exp

∣∣∣∣∣ ≤ tolMin, (60)

where [AR∗calc]k is the numerically calculated value for AR∗ in the k-th iter-833

ation, and tolMin is the user-defined threshold tolerance. MATLAB® (or834

GNU Octave) and Python3® versions of the code to solve the full iterative835

scheme, including the hydrodynamic calculations, have been made publicly836

available by the authors at [39].837

We will briefly illustrate the performance of this scheme by showing some838

results obtained for the case of a bicone with radius Rb = 34 mm, in a cup839

with radius Rc = 40 mm, with a water lower bulk phase with depth H = 10840

mm, and a forcing frequency ω = π rad/s. Such values are typical of the841

experimental realizations [37]. Full details on the second order centered finite842

difference numerical scheme used to solve the hydrodynamic problem can be843

found in Sánchez-Puga et al. [39].844

First we show the results of some convergence tests performed on the845

hydrodynamic computations by varying the spatial resolution (mesh spac-846

ing) for a clean air/water interface (Bo∗ = 0). The results using different847

rectangular meshes with N ×M nodes (with N = 2M) are shown in Figure848

6. The values of N and M have been chosen so that a node falls exactly at849

the bicone rim. The left panel of Figure 6 illustrates the dependency of the850

values of the real (blue line and symbols) and imaginary (red line and sym-851

bols) parts of the total torque of hydrodynamic origin (M∗
tot = M∗

sub+M∗
surf )852

acting on the rotor+bicone assembly. Very good convergence is attained for853

N ≥ 2000. The right panel of Figure 6 shows the time needed to obtain854
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the flow field configuration for the clean air/water interface as a function of855

N , when computed in a desktop computer having a Pentium Core i5-4460856

microprocessor and 16 Gb RAM, with the MATLAB® code using the sparse857

matrix routines. The computation time per flow field configuration grows858

as N2 but remains quite manageable even for high resolutions meshes (for859

N = 1000, ts ∼ 4 s).860
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Figure 6: Left panel: Convergence of the real (blue trace) and imaginary (red trace) parts
of the torque M∗tot as a function of mesh size for a clean interface (Bo∗ = 0). Right panel:
time needed to solve the hydrodynamic problem to obtain the flow field configuration as
a function of mesh size.

To illustrate how the mesh size affects the dynamical variables we have861

computed the relative differences in the real and imaginary parts of the total862

torque for the solutions obtained with three mesh sizes: 200×100, 440×220863

and 1000×500 taking as a reference the solution for the 2520 × 1260 mesh864

size. More specifically, we have computed865

[∆r(<(M∗
tot))]N×M =

∣∣∣∣∣<((M∗
tot)N×M)−<((M∗

tot)2520×1260)

<((M∗
tot)2520×1260)

∣∣∣∣∣, (61)

and866

[∆r(=(M∗
tot))]N×M =

∣∣∣∣∣=((M∗
tot)N×M)−=((M∗

tot)2520×1260)

=((M∗
tot)2520×1260)

∣∣∣∣∣, (62)
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for purely viscous interfaces with ηs in the range 10−6 ≤ ηs ≤ 1 Ns/m, and867

at the same frequency, ω = π rad/s. The results are shown in Fig. 7.868
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Figure 7: Relative differences in the real part, ∆r(<(M∗tot)) (solid symbols), and imaginary
part, ∆r(=(M∗tot)) (open symbols), of the total torque between the solutions obtained with
different mesh sizes taking as a reference the 2520 × 1260 mesh solution. Black symbols:
200× 100 mesh. Red symbols: 440× 220 mesh. Blue symbols: 1000× 500.

For the case of the 1000×500 mesh (blue symbols), the relative difference869

with the finest mesh is always below 5% in the real part (solid symbols)870

and below 0.5% in the imaginary part (open symbols). The 1000×500 mesh871

represents, therefore, a good compromise between resolution and computa-872

tional costs, comprising memory availability and computational time (ap-873

proximately 5 s per flow field configuration solved for the 1000 × 500 nodes874

mesh against 55 s for the 2520× 1260 nodes mesh).875

In Figure 8 we show color coded plots of the real and imaginary parts876

of the velocity amplitude function, <[g∗(r, z)] (left panel), and =[g∗(r, z)]877

(right panel), respectively. The flow fields were calculated for Bo∗ = 0.1 −878

0.1i with a 2520×1260 mesh. Strong velocity gradients can be appreciated879

in the subphase close to the bicone surface and at the interface. Notice880

that the values of <[g∗(r, z)] are very small everywhere but in a very small881

neighborhood of the bicone surface, which is located at the top row of the882

images, spanning from r = 0 to r = 34 mm.883
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Figure 8: Color coded plots of (a) <[g∗(r, z)], and (b) =[g∗(r, z)] at Bo∗ = 0.1− 0.1i and
ω = π rad/s.

To illustrate the influence of the values of Bo∗ and ω on the interfacial884

velocity profile, g∗s(r) = g∗(Rb < r < Rc, z = h), we show in Figure 9885

some interfacial velocity profiles obtained in calculations performed with a886

mesh of 2520 × 1260 nodes, for three different conditions. Case A (black887

lines) stands for a viscoelastic interface with η∗s = (1 − i) × 10−3 Ns/m at888

moderately high frequency, ω = 10π rad/s. Case B (red lines) corresponds889

to a purely viscous interface, η∗s = 10−5 Ns/m, at an intermediate frequency,890

ω = π rad/s. Case C refers to a clean interface, η∗s = 0 Ns/m, at low891

frequency, ω = π/10 rad/s. Continuous lines correspond to the real part of892

the velocity amplitude function at the interface, <[g∗s(r)], and the dashed893

lines to the imaginary part of the same function, =[g∗s(r)]. We also plot the894

analytical solution corresponding to |Bo∗| → ∞, that has been obtained by895

considering an interface fully decoupled from the subphase, i.e., neglecting896

the bulk contribution to the interfacial shear stress balance (left hand side897

in expression (51)). In this configuration, the nondimensional analytical898

solution of equation (51) for |Bo∗| → ∞ is [75]899

gs(r̄) =
R̄b (r̄2 − 1)

r̄
(
R̄2
b − 1

) =
R̄b

R̄2
b − 1

(
r̄ − 1

r̄

)
, (63)

which in all configurations with small bicone rim-to-cup wall distance com-900

pared to the bicone radius (as is the case here: Rc − Rb = 6 mm, Rc = 40901

mm; R̄b = 0.85) is quite close to a linear profile.902
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Figure 9: Real and imaginary parts of g∗s (r) at different ω and Bo∗ values. Continuous
and dashed lines represent the real and imaginary parts, respectively. Case A: High
frequency with a viscoelastic interface (black); case B: Medium frequency with purely
viscous interface (red); case C: Low frequency and clean air-water interface (blue). |Bo∗| →
∞ analytical solution (green line). Continuous lines: <[g∗s (r)]; dashed lines: =[g∗s (r)]

Case A corresponds to a high |Bo∗| situation and, consequently, the real903

part of the velocity amplitude function is close to the analytical solution904

given in equation (63), and the imaginary part is close to zero. As the value905

of |Bo∗| decreases, strongly nonlinear radial gradients appear on g∗s with non906

null imaginary parts, as is clearly illustrated by the graphs corresponding to907

cases B and C in Figure 9.908

In order to study the consistency [38, 39] of the iterative scheme to obtain909

the converged value of the complex Boussinesq number and, consequently910

the value of η∗s , we have performed a two step process: i) solving the fluid911

dynamical problem for different values of the complex interfacial viscosity912

and computing the corresponding amplitude ratio, AR∗, and ii) feeding the913

iterative process with the AR∗ values found in order to obtain the converged914

value of the complex Boussinesq number and, consequently, the converged915

value of η∗s . All computations have been made on the same system geometry916

considered up to here and at the same frequency.917

We have applied such a procedure to interfaces that are purely viscous,918

with η∗s = ηs, viscoelastic, with η′s = η′′s = ηs (i.e., η∗s = (1 − i)ηs), and919

purely elastic, with η∗s = −iηs. The values of ηs have spanned the range920

10−7 ≤ ηs ≤ 1 Ns/m and we have recorded the corresponding number of921

iterations needed to achieve convergence. The results are represented in922

Figure 10, where the left panels show the values of the real and imaginary923

parts of η∗s obtained after convergence, namely [η′s]c (filled symbols) and [η′′s ]c924
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(open symbols), as a function of the programmed value of ηs. The red line925

represents the perfect consistency line, [η′s]c = [η′′s ]c = |ηs|. Top, middle,926

and bottom panels correspond, respectively, to the cases of purely viscous,927

viscoelastic, and purely elastic interfaces. The right panels in Figure 10928

indicate, in each case, the number of iterations needed for convergence of the929

iterative process.930
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Figure 10: Results of the consistency test of the bicone geometry (Rm = 10 µm and ω = π
rad/s) for purely viscous (top row), viscoelastic (middle row), and purely elastic (bottom
row) interfaces with real and imaginary parts of the complex interfacial viscosity in the
range 10−7 < ηs < 1 Ns/m. Left panels: Comparison of the converged values [η′s]c (filled
symbols), and [η′′s ]c with the programmed value ηs (red line). Right panels: Number of
iterations needed for convergence for the results in the corresponding left panel.
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For the purely viscous interfaces (top row), the value of η′s is nicely re-931

covered, while numerical errors yield a value of η′′s that is always at least932

two orders of magnitude smaller than the value of η′s. For the viscoelastic933

interfaces (middle row), both the real and imaginary parts of the complex934

interfacial viscosity are recovered by the iterative process with high preci-935

sion. For the purely elastic interfaces (bottom row), the value of η′′s is nicely936

recovered, while numerical errors yield a value of η′s that is always at least937

two orders of magnitude smaller than the value of η′s. The only exception is938

a small region at approximately ηs = 10−5 Ns/m, where a resonance effect939

disturbs the data analysis procedure [38, 39]. The plots of the number of940

iterations needed for convergence are very similar to each other in the three941

cases considered, varying between 2 and 100 iterations in the full complex942

viscosity range here studied.943

To estimate the resolution of a particular instrument, a specific study of944

the impact of the measurement uncertainties (in the torque and the angular945

displacement) of the instrument on the output η∗s values should be carried946

out. Different aspects of such a study, for the case of the Bohlin C-VOR947

instrument with purposely built conical bob and cup, may be found in [37,948

38, 39].949

Although we will not make a detailed discussion of the case of rotational950

rheometers working in controlled strain mode, some comments can be antici-951

pated. The analysis of experimental results on very soft samples obtained in952

rheometers working in controlled strain mode (systems with separate motor953

transducer, in the terminology of reference [11]) must be made with care,954

particularly in the case of low viscosity subphases (such as water). In such955

systems, a motor drives one part of the geometry (typically the external cup,956

which includes the bottom plate) while the hydrodynamic torque is measured957

at the other part (for instance, the upper rotor plus bicone/ring assembly). In958

such a case, the viscous length scale, `ω, at the subphase rules the transfer of959

momentum from the oscillating cup towards the probe, while the interfacial960

viscous length scale, `sω, rules the transfer of momentum from the lateral wall961

of the cup towards the probe rim through the interface. In other words, in an962

upwards frequency sweep one might go from a linear vertical velocity profile963

situation (`ω > H1) to a nonlinear vertical velocity profile one (`ω < H1).964

This happens, for instance, for a water subphase with a depth typically965

used in the bicone or DWR ISRs (H1 ∼ 1 cm). Consequently, the condition966

for having a linear vertical velocity profile is fulfilled only if ω ≤ 10−2 rad/s.967

Hence, in most practical situations such condition is not fulfilled, the vertical968
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velocity profile in the subphase is not linear, and only an adequate flow field-969

based data analysis can properly obtain the interfacial rheological parameters970

out of the experimental data in such a situation. Decreasing the gap might971

bring back the system to a linear vertical velocity profile condition but at the972

expense of increasing the subphase drag torque while keeping the interfacial973

drag torque unchanged and, consequently, loosing instrument’s sensitivity.974

Anyway, modifying the flow field-based scheme here sketched for the bicone975

case (Section 5) to fit the separate motor transducer configuration merely976

amounts to a change in the boundary conditions at the probe surface (at977

rest) and at the cup’s floor and lateral walls (oscillating). This should be978

a rather straightforward modification of the code and should deal smoothly979

with the eventually nonlinear interfacial and subphase flow configurations.980

6. Extensions of the techniques981

In this section we will briefly outline some extensions of the above dis-982

cussed techniques to different open problems.983

6.1. Flow field-based data analysis for the microbutton ISR984

A very elegant and highly sensitive interfacial rheometer based on rotat-985

ing microfabricated probes (microbuttons) was proposed and developed by986

the Santa Barbara group [23, 24, 25, 26]. The probes are ferromagnetic, they987

are subject to a magnetic torque generated by externally controlled electro-988

magnets, and their position and orientation is measured by an image tracking989

system in real time. The data analysis is carried out by using the expressions990

obtained by Hughes et al. [41], in their analysis of the rotational drag on a991

cylinder moving in a membrane, which implicitly means that the interface992

and subphase motions are assumed to be decoupled from each other, i.e.,993

such approximation is strictly valid only for Bo >> 1.994

Interestingly, the fluid mechanical problem for the microbutton is very995

similar to the bicone one [37, 39], and the scheme mentioned in the previ-996

ous section for the bicone could conceivably be applied to the microbutton997

system [26] right away. However, a careful consideration of the probe and998

cup sizes, and the interfacial and bulk viscous length scales [46] shows that a999

rectangular mesh should be excedingly fine in order to adequately resolve the1000

flow structure close to the microbutton rim, at the interface, and under the1001

microbutton, at the bulk subphase. Hence, it is convenient to use logarithmic1002
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variables in the radial and vertical directions in order to achieve better res-1003

olution close the microbutton with manageable mesh sizes and computation1004

times.1005

For the sake of completeness we will directly present the formulation of1006

the problem corresponding to a geometry including two bulk phases under1007

oscillatory forcing. Using logarithmic variables in such a configuration makes1008

it necessary to place the vertical coordinate origin in the plane were the1009

microbutton is located, and making the vertical coordinate to be positive1010

downwards in the lower bulk phase (1), and positive upwards in the upper1011

bulk phase (2). With this choice, the signs of the derivatives in the equations1012

for the lower bulk phase and in the boundary condition at the interface must1013

be properly taken care of.1014

We start the formulation of the mathematical problem by using the but-1015

ton rim velocity in the velocity ansatz for this problem. We assume that the1016

microbutton, with radius Rm, performs an oscillatory motion with angular1017

displacement amplitude, Ω, and frequency, ω, so that Ω(t) = iωθ0e
iωt. Then,1018

the velocity field at the bulk phase j is assumed to be separable in spatial1019

and temporal components as follows1020

vj = g∗j (r̄, z̄)ΩRm. (64)

The non-dimensional Navier-Stokes equations in regular cylindrical coor-1021

dinates for such a motion are1022

iRe1g
∗
1 =

∂2g∗1
∂r̄2

+
1

r̄

∂g∗1
∂r̄
− g∗1
r̄2

+
∂2g∗1
∂z̄2

, (65)

iRe2g
∗
2 =

∂2g∗2
∂r̄2

+
1

r̄

∂g∗2
∂r̄
− g∗2
r̄2

+
∂2g∗2
∂z̄2

, (66)

where the Reynolds number at each bulk phase is Rej = ρjωjR
2
m/ηj, and1023

the spatial variables have been made non-dimensional by using the following1024

transformations1025

r̄ =
r

Rm

, 0 ≤ r̄ ≤ R

Rm

= R̄

z̄ =
z

Rm

, − h

Rm

≤ z̄ ≤ h

Rm

= h̄
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Notice that for the microbutton probe Rej will be very small, even in1026

the case of low viscosity fluid phases, so that, for many practical purposes,1027

the left hand side of equations (65) and (66) might be discarded. At the1028

interface, the boundary condition is the usual Boussinesq-Scriven condition1029

that now reads1030

N∗
∂

∂r̄

(
1

r̄

∂

∂r̄
(r̄g∗s)

)
=

1

Y

∂g∗2
∂z̄
− ∂g∗1

∂z̄
(67)

where we have defined parameters N∗ and Y as in reference [73].1031

N∗ =
η∗s

Rmη1

Y =
η1

η2

Now, we change to logarithmic spatial variables, taking care to avoid1032

values in the interval [0, 1) inside the logarithm. Hence, we choose the change1033

of variables1034

p = log(r̄ + 1)

s1 = log(z̄ + 1), (lower phase)

s2 = log(1− z̄), (upper phase)

with domains1035

0 ≤ p ≤ log(R̄ + 1)

0 ≤ s1 ≤ log(h̄+ 1)

0 ≤ s2 ≤ log(1 + h̄)

Performing the change of variables g∗1 = g∗1(p, s1), g∗2 = g∗2(p, s2), the1036

Navier-Stokes equations for both bulk phases are1037
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iRe1g
∗
1 =

1

e2p

(
∂2g∗1
∂p2
− ∂g∗1

∂p

)
+

1

e2p − ep
∂g∗1
∂p
− g∗1
e2p − 2ep + 1

+
1

e2s1

(
∂2g∗1
∂s2

1

− ∂g∗1
∂s1

)
(68)

iRe2g
∗
2 =

1

e2p

(
∂2g∗2
∂p2
− ∂g∗2

∂p

)
+

1

e2p − ep
∂g∗2
∂p
− g∗2
e2p − 2ep + 1

+
1

e2s2

(
∂2g∗2
∂s2

2

− ∂g∗2
∂s2

)
(69)

and the boundary conditions turn to1038

g∗j (0, sj) = 0, (70)

g∗1(p, s1) = log(h̄+ 1)) = 0, (71)

g∗j (log(R̄ + 1), sj) = 0, (72)

g∗j (0 ≤ p ≤ log(2), 0) = ep − 1, (73)

where equation (70) imposes symmetry of the velocity field at the rotation1039

axis, equations (71) and (72) stand for the no-slip condition at the cup floor1040

and lateral walls, and equation (73) represents the velocity of the fluid in1041

contact with the probe.1042

Another boundary condition is required at the top surface of the upper1043

bulk phase. Two distinct cases may be considered; either a free upper inter-1044

face, i.e.,1045

(
∂g∗

∂s2

)∣∣∣∣
p,s2=log(h̄+1)

= 0, (74)

or a rigid wall (no-slip) condition, namely1046

g∗(p, s2 = log(h̄+ 1)) = 0, (75)

while the Boussinesq-Scriven boundary condition at the interface turns to1047
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N∗
[

1

e2p

(
∂2g∗s
∂p2
− ∂g∗s

∂p

)
+

1

e2p − ep
∂g∗s
∂p
− g∗s
e2p − 2ep + 1

]
= − 1

Y

∂g∗2
∂s2

− ∂g∗1
∂s1

,

(76)

at s1, s2 = 0, log(2) ≤ p ≤ log(R̄+1). Notice that in the boundary condition1048

at the interface there is no an explicit appearance of 1/es because at s = 0,1049

1/es = 1. Now, the complex Boussinesq number does not appear explicitly in1050

the expression of the Boussinesq-Scriven condition, but the proper definition1051

[74] is Bo∗ = η∗s
Rm(η1+η1)

.1052

Conversely, the expression for the drag torque imposed by the lower bulk1053

phase at the lower disk surface is1054

M∗
1 = iω2πR3

mη1θ
∗
0e
iωt

∫ log(2)

0

ep(ep − 1)2 ∂g
∗
1

∂s1

∣∣∣∣
s1=0

dp, (77)

while the corresponding expression for the drag torque imposed by the upper1055

bulk phase at the upper disk surface is:1056

M∗
2 = −iω2πR3

mη2θ
∗
0e
iωt

∫ log(2)

0

ep(ep − 1)2 ∂g
∗
2

∂s2

∣∣∣∣
s2=0

dp. (78)

The interfacial drag along the contact line between the microbutton and1057

the interface is:1058

M∗
s = iω2πR3

m(η1 + η2)Bo∗θ0e
iωt

(
1

2

∂g∗s
∂p

∣∣∣∣
p=log(2),s=0

− 1

)
, (79)

and the complex amplitude ratio between the total torque and the microbut-1059

ton angular position is:1060

AR∗ =
M∗

0

θ0

=iω2πR3
m

[
−η1

∫ log(2)

0

ep(ep − 1)2 ∂g
∗
1

∂s1

∣∣∣∣
s1=0

dp

+ η2

∫ log(2)

0

ep(ep − 1)2 ∂g
∗
2

∂s2

∣∣∣∣
s2=0

dp

−(η1 + η2)Bo∗

(
1

2

∂g∗s
∂p

∣∣∣∣
p=log(2),s=0

− 1

)]
− Iω2, (80)
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where, again, the contributions from the interface and both bulk phases are1061

easily recognized. Solving for the complex Boussinesq number, Bo∗, we can1062

set up the following iterative scheme:1063

[Bo∗]k+1 = −
AR∗exp + iω2πR3

m

(
η1

[
M̄∗

1

]
k
− η2

[
M̄∗

2

]
k

)
+ Iω2

iω2π(η1 + η2)R3
m

[
M̄∗

s

]
k

, (81)

where1064

[
M̄∗

1

]
k

=

∫ log(2)

0

ep(ep − 1)2 ∂ [g∗1]k
∂s1

∣∣∣∣
s1=0

dp,

[
M̄∗

2

]
k

=

∫ log(2)

0

ep(ep − 1)2 ∂ [g∗2]k
∂s2

∣∣∣∣
s2=0

dp,

[
M̄∗

s

]
k

=

(
1

2

∂ [g∗s ]k
∂p

∣∣∣∣
p=log(2),s=0

− 1

)
. (82)

Now we will briefly illustrate the performance of this scheme by showing1065

some preliminary results obtained for the case of a microbutton with radius1066

Rm = 10µm, in a cup with radius Rc = 2.5 mm, with a water lower bulk1067

phase depth H1 = 2.5 mm, and a forcing frequency ω = π rad/s. Such values1068

are typical of the experimental realizations [23, 24, 25, 26].1069

First we show the results of some convergence tests performed on the1070

fluid mechanics computations by varying the spatial resolution (mesh spac-1071

ing). The results using different rectangular meshes (in the logarithmic co-1072

ordinates) with N nodes in, both, the p and s coordinates, respectively, are1073

shown in Figure 11. The values of N must be chosen so that the node at1074

the microbutton rim is as close as possible to the radial coordinate value1075

p = log(2).1076

51



0 1000 2000 3000 4000

N

-2.5795

-2.579

-2.5785

-2.578

-2.5775

-2.577

-2.5765

[A
R

* ] 
  

(N
m

/r
a

d
)

10-19

1.2

1.3

1.4

1.5

1.6

[A
R

* ] 
  

(N
m

/r
a

d
)

10-17

0 1000 2000 3000 4000

N

0

20

40

60

80

100

120

t e
  

 (
s
)

Figure 11: Left panel: Convergence of the real (blue trace) and imaginary (red trace)
parts of the amplitude ratio as a function of mesh size for a clean interface (Bo∗ = 0).
Right panel: time needed to solve the hydrodynamic problem to obtain the flow field
configuration as a function of mesh size.

In the left panel we show the variation of the real and imaginary parts1077

of the complex amplitude ratio, AR∗, for a clean interface (Bo∗ = 0) as a1078

function of mesh size. Both components converge nicely, the convergence1079

error being higher in =[AR∗]. The right panel of Figure 11 shows the time1080

needed to solve the full flow field configuration as a function of the mesh size1081

(in a desktop computer having a Pentium Core i5-4460 microprocessor and1082

16 Gb RAM). The computation time grows approximately with N2. Based1083

on the results shown in Figure 11 we have taken N = 1722 for the rest of1084

the results shown here because it offers a good compromise between spatial1085

resolution and computational time cost (∼ 17.33 s for each full flow field1086

configuration).1087

In Figures 12 and 13 we show color coded plots of the real and imaginary1088

parts of the velocity amplitude function (<[g∗1(r, z)] and =[g∗1(r, z)], respec-1089

tively) for different interfacial properties. Figure 12 shows the results for a1090

clean interface, i.e., η∗s = 0, while Figure 13 corresponds to the case η∗s = 10−5
1091

Ns/m. Representations in both actual spatial and logarithmic coordinates1092

(top and bottom rows, respectively) are provided. Notice that the values of1093

<[g∗1(r, z)] are very small everywhere but in a very small neighborhood of the1094

microbutton, which in the real space coordinates is located at the top left1095

corner of the images. Consequently, we have chosen to show <[g∗1(r, z)] in a1096

logarithmic colour scale.1097

As expected, only the real part of the velocity amplitude function takes1098

large values (the imaginary part is everywhere three orders of magnitude1099
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smaller that the real one) and it does so close to the microbutton disk. Hence,1100

large velocity gradients occur close to the probe. The effect of the interfacial1101

viscosity can be clearly appreciated by the much larger radial extension of1102

the flow close to the interface.1103

Figure 12: Color coded plots of the real and imaginary parts (left and right panels, respec-
tively) of the velocity amplitude function, g∗1 , for the microbutton configuration indicated
in the text with a clean interface (η∗s = 0). Representation in real coordinates (top row)
and logarithmic coordinates (bottom row). Notice the logarithmic color scale in the upper
left panel.
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Figure 13: Color coded plots of the real and imaginary parts (left and right panels, respec-
tively) of the velocity amplitude function, g∗1 , for the microbutton configuration indicated
in the text for a purely viscous interface with ηs = 10−5 Ns/m. Representation in real
coordinates (top row) and logarithmic coordinates (bottom row). Notice the logarithmic
color scale in the upper left panel.

In Figure 14 we show the dependence of the interfacial velocity profile,1104

g∗s(r) = g∗(r, 0), or g∗s(p) = g∗(p, 0), on the interfacial viscosity, η∗s , for the1105

microbutton configuration previously indicated, at a forcing frequency ω = π1106

rad/s. Results for purely viscous interfaces with η∗s = 0, 10−9, 10−7, 10−5, and∞1107

Ns/m (green, magenta, blue, black, and brown lines, respectively), which1108

correspond to the complex Boussinesq number values Bo∗ = η∗s/(Rmη1) =1109

0, 10−1, 10, 103, and ∞, are shown. The analytical solution corresponding1110

to |Bo∗| → ∞ is obtained by considering an interface fully decoupled from1111

the subphase, i.e., neglecting the bulk contribution to the interfacial shear1112

stress balance (right hand side in expression (67)). The Reynolds number1113

value is in all cases Re1 = 3 × 10−4. The real, <[g∗s(r)], and imaginary,1114

=[g∗s(r)], parts of the interfacial velocity amplitude function are shown as1115
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continuous and dotted lines, respectively. The left panel shows the plots in1116

the real space coordinate r, while the right panel shows the plot of |<[g∗s(p)]|1117

as a function of the logarithmic variable p and with a logarithmic scale in1118

the corresponding vertical axis.1119

In all of the cases, <[g∗s(r)] is a rapidly decreasing function of r, which1120

for low values of Bo∗ changes sign (see the downward peak in the green1121

and magenta traces at the right panel) at a logarithmic radial position p ∼1122

5.2, i.e., r ∼ 1.8 mm. As expected, increasing the interfacial viscosity, η∗s ,1123

increases the distance in which <[g∗s(r)] decays and, consequently, the curves1124

tend to show a less steep decay. For values of the complex Boussinesq number1125

Bo∗ ≥ 103 the curves corresponding to <[g∗s(r)] are not distinguishable from1126

each other and they decrease in the whole range of the radial coordinate.1127

=[g∗s(r)] always shows negative values, typically much smaller in modulus1128

that those pertaining to <[g∗s(r)]. However, the variation of =[g∗s(r)] with the1129

interfacial viscosity is not monotonous. Actually, starting from η∗s = 0, the1130

modulus of =[g∗s(r)] increases with η∗s up to some value of about 10−7 Ns/m,1131

above which the modulus of =[g∗s(r)] starts decreasing because in the limit1132

of very high interfacial viscosity (i.e., lsω >> Rc) the imaginary part of the1133

velocity amplitude function vanishes, as shown in the right panel of Figure1134
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0 0.5 1 1.5 2 2.5

r   (mm)

0

0.2

0.4

0.6

0.8

1

(g
* s
(r

))

-6

-4

-2

0

(g
* s
(r

))

10
-4

Bo = 0

Bo = 0.1

Bo = 10

Bo = 1000

Bo

1 2 3 4 5

10
-8

10
-6

10
-4

10
-2

10
0

|
(g

*
)|

-6

-4

-2

0

(g
*
)

10
-4

Figure 14: Radial plots of the real and imaginary parts (continuous and dotted lines,
respectively) of the velocity amplitude function, g∗s at the interface, for viscous interfaces
with η∗s = 0, 10−9, 10−7, 10−5 and∞ Ns/m (light green, magenta, blue, black, and dark
green lines, respectively), represented in the real space coordinate, r. Left and right panels
show g∗s (r) and g∗s (p) values, respectively. Notice that in the right panel the vertical scale
of the left vertical axis is logarithmic. The legend in the left panel applies to the right
panel too.
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In order to study the consistency of the iterative scheme [38], [39] to obtain1136

the converged value of the complex Boussinesq number and, consequently the1137

value of η∗s , we have performed the same two step process described in the1138

bicone section of this report, i.e., i) solving the fluid dynamical problem1139

for different values of the complex interfacial viscosity and computing the1140

corresponding amplitude ratio, AR∗, and ii) feeding the iterative process1141

with the AR∗ values found in order to obtain the converged value of the1142

complex Boussinesq number and, consequently, the converged value of η∗s .1143

All computations have been made on the same system geometry considered1144

up to here and at the same frequency.1145

We have applied such a procedure to interfaces that are purely viscous,1146

with η∗s = ηs, viscoelastic, with η′s = η′′s = ηs (i.e., η∗s = (1 − i)ηs), and1147

purely elastic, with η∗s = −iηs. The values of ηs have spanned the range1148

10−13 ≤ ηs ≤ 10−5 Ns/m and we have recorded the corresponding number1149

of iterations needed to attain convergence. The results are represented in1150

Figure 15, where the left panels show the values of the real and imaginary1151

parts of η∗s obtained after convergence, namely [η′s]c (filled symbols) and [η′′s ]c1152

(open symbols), as a function of the programmed value of ηs. The red line1153

represents the perfect consistency line, [η′s]c = [η′′s ]c = |ηs|. Top, middle,1154

and bottom panels correspond, respectively, to the cases of purely viscous,1155

viscoelastic, and purely elastic interfaces. The right panels in Figure 151156

indicate, in each case, the number of iterations needed for convergence of the1157

iterative process.1158

For the purely viscous interfaces (top row), the value of η′s is nicely re-1159

covered, while numerical errors yield a value of η′′s that is always at least1160

six orders of magnitude smaller than the value of η′s. For the viscoelastic1161

interfaces (middle row), both the real and imaginary parts of the complex1162

interfacial viscosity are nicely recovered by the iterative process. For the1163

purely elastic interfaces (bottom row), the value of η′′s is nicely recovered,1164

while numerical errors yield a value of η′s that is always at least three orders1165

of magnitude smaller than the value of η′s. The plots of the number of it-1166

erations needed for convergence are very similar to each other in the three1167

cases considered, varying between 5 and 25 iterations in the full complex1168

viscosity range here studied. A full report of the numerical study will be1169

given in a separate publication. According to the results shown here, the1170

microbutton ISR appears to be an excellent candidate for the application of1171

the flow field-based data analysis techniques here described.1172
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Figure 15: Results of the consistency test, for Rm = 10 µm and ω = π rad/s, for purely
viscous (top row), viscoelastic (middle row), and purely elastic (bottom row) interfaces
with real and imaginary parts of the complex interfacial viscosity in the range 10−13 <
ηs < 10−5 Ns/m. Left panels: Comparison of the converged values [η′s]c (filled symbols),
and [η′′s ]c with the programmed value ηs (red line). Right panels: Number of iterations
needed for convergence for the results in the corresponding left panel.
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6.2. Extension to 3D rheometry1173

As shown in the previous Sections of this report, the application of flow1174

field-based data analysis techniques has i) extended the usability window of1175

interfacial shear rheometers, ii) allowed for a much better separation of the1176

viscous and elastic components of the response, and iii) considerably im-1177

proved our understanding of the flow field dynamics in the main practical1178

interfacial rheometer configurations. Would there be any gain in transpos-1179

ing such techniques to bulk rheometry? The answer is most probably yes in1180

situations were the structure of the flow field departs from the linear veloc-1181

ity profile configuration at the subphase or the interface. For instance, two1182

aspects in which the application of FFBDA techniques in bulk rheology are1183

expected to be advantageous are the study of very soft samples (water-like1184

viscosity), where the structure of the flow field would easily develop a nonlin-1185

ear vertical velocity profile, and shear banding problems where the combina-1186

tion of a shear thinning constitutive equation with fluid inertia would easily1187

produce a low viscosity highly sheared region close to the moving probe.1188

In the context of bulk rheology we will use the terms “gap loading” and1189

“surface loading” [8], most used when dealing with the plate-plate configura-1190

tion in rotational bulk rheometry, as corresponding to the two limiting cases1191

regarding the flow field configuration: “gap loading” refers to the case where1192

fluid inertia is negligible (typically, very small gap and low frequency) and1193

the vertical velocity profile is linear, while surface loading refers to the case1194

where fluid inertia is relevant (typically, at large gaps and/or high frequency)1195

and the vertical velocity profile is nonlinear.1196

To our knowledge, all commercial rheometers process the torque and an-1197

gular displacement experimental data with simple expressions that are cor-1198

rect exclusively for the gap loading situation, i.e., for linear vertical velocity1199

profiles. As soon as the experimental situation deviates from the gap loading1200

situation, the values output by the rheometer software are in error, while flow1201

field-based techniques may deal with the nonlinear vertical velocity profile1202

easily, yielding more accurate values of the dynamic moduli, with a more1203

realistic separation of elastic and viscous components.1204

Among the many possibilities that can be thought as extensions of the1205

techniques previously described we will like to mention three combinations of1206

experimental systems with already published FFBDA software that require1207

minimum or null software development:1208

i) Suitably adapting the flat plate approximation scheme here shown for1209
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the bicone bob to the analysis of experimental data obtained in the plate-1210

plate configuration in bulk rheometry. Here Bo∗ = 0 and the iterative1211

process should be organized around the Reynolds number, i.e., the probe1212

equation of motion will have a single drag torque, corresponding to the1213

lower bulk phase. Solving the equation of motion for Re (or the bulk1214

phase viscosity) will give the expression on which to build the iterative1215

process. Such a procedure will certainly extend the usability window1216

in the cases where the “gap loading” condition is not fulfilled anymore1217

because the Stokes length scale becomes smaller than the plate-plate1218

gap in an upwards frequency sweep.1219

ii) Using the bicone configuration with a lower bulk subphase and an in-1220

terfacial film with known interfacial viscosity. Choosing a fluid with a1221

low viscosity and low vapor pressure for the interfacial film, and setting1222

an adequate film depth, one might have an interfacial film with known1223

interfacial viscosity and impermeable to the bulk phase solvent. Here1224

the probe equation of motion will have both bulk phase and interfacial1225

contributions to the drag torques. Solving, then, the probe equation of1226

motion for the bulk phase viscosity will provide the expression for the1227

iterative process. Such a system will be adequate for rheological studies1228

of low viscosity bulk samples with high vapor pressure.1229

iii) Using the high sensitivity instruments and data analysis schemes devel-1230

oped for interfacial rheology (DWR, magnetic tweezers, or microbutton1231

ISRs) to measure the rheological properties of bulk samples with or with-1232

out interfacial layers. Here again, the probe equation of motion should1233

be solved for the Reynolds number or the bulk phase viscosity to set up1234

the iterative scheme. In the following we will illustrate the application1235

of this last scheme to measure the viscosity of water/glycerol mixtures1236

with, both, the magnetic tweezers and the bicone ISR.1237

Solutions of glycerol (Merck, Reagent grade) in Milli-Q quality water were1238

prepared at percent volume concentrations that were multiples of 10. The1239

solutions were freshly prepared, sonicated for 15-20 minutes, and stored for at1240

least 24 hours at room temperature before use. The samples were put in a 3D-1241

printed PLA block with an excavated pool consisting in a concavity shaped1242

as a horizontal half cylinder (100 mm long and 16 mm in diameter) connected1243

by a small channel to a 40 × 40 mm square pool (with a depth of 4 mm),1244

that is used to measure the interface temperature by means of a pyrometer.1245

The cavity is filled up to the pool rim always with the same sample volume1246
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so that good horizontality of the interface and the same vertical distance1247

between the magnets and the needle are assured. The sample temperature1248

was controlled to within ±0.05oC, by placing the 3D-printed block on top1249

of a much larger Aluminum plate thermostated by means of a temperature1250

controlled circulation bath (Polyscience 9110) with ±0.01◦C precision. A1251

pyrometer (Micro-Epsilon CS-micro-2W) having±25 mK resolution was used1252

to measure the interfacial temperature continuously.1253

The magnetic tweezers ISR, together with the probe calibration proce-1254

dure, has been fully described in reference [27] for both the microwires [28]1255

and the commercial needles. Here, two different microwires were used, with1256

diameter a = 24.6 µm, lengths of 8.5 and 9.0 mm, and masses of 19.5 and1257

20.6 µg, respectively.1258

The measurements were performed by imposing an oscillatory displace-1259

ment of amplitude z0 = 200µm and frequency ω = π rad/s on the magnetic1260

trap. The large viscosity measurements were made with a vertical distance1261

h = 20 mm between the probe and the magnet trap, while the small viscosity1262

measurements were made with h = 35 mm. For each sample, 20 independent1263

experiments with a typical time span of 10-15 periods of the forcing signal1264

were performed.1265

As stated above, the data analysis procedure is identical to the interfacial1266

rheology one, with the only exception that the iterative scheme has to be1267

changed. In this case, no interfacial film is present, so that the Boussinesq-1268

Scriven boundary condition, equation (16), must be substituted by the free1269

surface boundary condition (null vertical velocity gradient at the interface).1270

Moreover, the term corresponding to the interfacial drag torque in the probe1271

equation of motion can be dropped and, upon solving for Re∗, the following1272

iterative scheme can be proposed:1273

[Re∗]k+1 =
i2Lω2a2ρ

∫ π/2
0

(−∂[g∗]k/∂p)|p=0 dθ

(AR∗exp − 1)kmt +mω2
, (83)

where ρ and m are the bulk fluid density and the rod mass, respectively.1274

For each sample, we performed a set of 20 measurements at a fixed fre-1275

quency ω = π rad/s. The results of such measurements are shown in Figure1276

16, where the left and right panels show, respectively, a typical example of1277

a set of 20 measurements at fixed frequency and the global results for all of1278

the measurements made at different concentrations.1279

60



0 5 10 15 20

measure

10
-2

10
-1

10
0

10
1

'; 
|

''|
  

 (
m

P
a

 s
)

'

| ''|

0 20 40 60 80 100

%wt.

10
-2

10
-1

10
0

10
1

10
2

10
3

', 
|

''|
  
 (

m
P

a
 s

)

'

| ''|

Ref[87]

Ref[88,89]

Figure 16: Bulk rheology measurements with the magnetic rod ISR on glycerol in water
solutions. Left panel: Set of 20 measurements at C = 12.25 %wt. and ω = π rad/s
(filled symbols: η′; open symbols: η′′). Right panel: η′ and η′′ versus concentration (filled
symbols: η′; open symbols: η′′; red line: reference data [87]; black line: data computed
with the van de Ven equation [88, 89]).

The left panel in Figure 16 shows a typical example of a sequence of the1280

20 values obtained for η′ and |η′′|, just to give an idea of the variability of1281

the individual measurements. In this case the data correspond to a sample1282

with 10%vol. = 12.3%wt. concentration, at a temperature T = 22.3± 0.6oC.1283

For this particular case, the individual measurements are dispersed in the1284

1.24 ≤ η′ ≤ 1.28 mPas interval, the average value is η̄′ = 1.25 mPas, and1285

the standard deviation is 0.01 mPas. The results obtained for all of the1286

concentration values explored are shown in the left panel, together with the1287

reference data, according to [87], and data computed from the van de Ven1288

equation [88, 89]. The error bars of the experimental results are typically1289

smaller than the symbol size. The agreement of the results here obtained1290

with the reference and numerical data is remarkable.1291

An equivalent scheme can be devised for the bicone ISR by discarding the1292

M∗
surf term in equation (53) and solving it for the complex Reynolds number,1293

so that the following iterative scheme is obtained:1294

[Re∗]k+1 =
iω22πρRbR

2
c

∫ Rb

0
r2
(
∂[g∗]k
∂z

)∣∣∣
z=h

dr

ARexp + Iω2 − ibω
. (84)

The very same aforementioned glycerol in water solutions were used in the1295

experiments made with the bicone ISR, in the configuration shown in Figure1296
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1c, whose physical parameters were described in detail in [37], mounted on1297

a Bohlin C-VOR rheometer. In the measurements reported here, the sample1298

depth was h = 10 mm. For each sample, 20 to 25 independent experiments1299

with a typical time span of 4 periods of the forcing signal were performed.1300

The angular displacement signals showed important drifts for the low viscos-1301

ity cases; before applying the FFBDA scheme the drift was subtracted.1302
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Figure 17: Bulk rheology measurements with the bicone ISR on glycerol in water solutions.
Left panel: Set of 25 measurements at C = 34.9 %wt. and ω = 10π rad/s (filled symbols:
η′; open symbols: η′′; lines represent average values). Right panel: η′ and η′′ versus
concentration (filled symbols: η′; open symbols: η′′; red line: reference data [87]; black
line: data computed with the van de Ven equation [88, 89]).

The left panel in Figure 17 shows a typical example of a sequence of the 201303

values obtained for η′ and |η′′|. In this case the data correspond to a sample1304

with 30%vol. = 34.93%wt. concentration, at a temperature T = 20.0±0.1oC.1305

For this particular case, the individual measurements are dispersed in the1306

2.85 ≤ η′ ≤ 3.12 mPas interval, the average value is η̄′ = 2.85 mPas, and1307

the standard deviation is 0.12 mPas. Although the individual measurements1308

have a slightly larger variability than those obtained with the microwire ISR,1309

the agreement of the global results with the reference data [87], and data1310

computed from the van de Ven equation [88, 89] is, again, remarkable.1311

Such a precision is hardly achievable with the C-VOR in the regular1312

plate-plate configuration even at very small gap size. Moreover, the range1313

of validity of the standard rheometer software for data processing, that is1314

strictly applicable only for the case of linear vertical velocity profile, will be1315

limited in frequency. For instance, for a water sample and a 500 µm gap, the1316
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vertical velocity profile will be nonlinear for f ≥ η
2πρH2

1
∼ 0.6 Hz, and the1317

values output by the rheometer will be in error.1318

Interestingly, when using instruments designed for interfacial rheology1319

to make bulk rheological measurements the disadvantage of the bicone ISR,1320

with respect to the DWR or the MNISR, is compensated to a certain extent.1321

Obviously, the larger area of contact of the bicone surface with the bulk1322

sample is not anymore a shortcoming because it increases, comparatively,1323

the drag torque sensed by the probe. Anyway, the fact that viscosities of1324

a few mPas can be accurately measured with a sample 10 mm deep gives a1325

good idea of the gain attainable with the use of FFBDA methods in bulk1326

rheology.1327

7. Conclusions and final comments1328

In this report we have presented a unified view of the different flow field-1329

based interfacial rheology data analysis schemes publicised up to date. The1330

initial development of such schemes for the MNISR or the DWR are already1331

about a decade old [35, 22, 36] and are at work in many interfacial rheology1332

laboratories. The development of such schemes for the bicone bob rotational1333

ISR is much more recent [37, 38, 39]. Interestingly, some commercial builders1334

of rotational interfacial rheometers already offer data analysis software pack-1335

ages incorporating flow field-based data analysis.1336

A first conclusion can be drawn directly from the comparative perfor-1337

mance tests made on the MNISR and the bicone ISR in Section 2: flow1338

field-based data analysis techniques have the potential to cope with nonlin-1339

ear velocity profiles both at the interface and in the surrounding bulk phases.1340

Such nonlinear velocity profiles pervade the practical situations in interfacial1341

rheometry for moderate to low values of the complex Boussinesq number,1342

Bo∗, where the flow field-based data analysis methods yield not only more1343

realistic values of the sample’s rheological properties but also the structure1344

of the flow field within the sample. This allows for a much better knowl-1345

edge and assessment of the experimental conditions, a more realistic separa-1346

tion of interfacial and bulk contributions, and a more precise separation of1347

the elastic and viscous components of the sample’s response. On the other1348

hand, the techniques here described require data analysis procedures that are1349

more complex, mathematically and numerically, and at significantly larger1350

computational (memory and time) cost. However, we have also shown that1351

the spatial resolution and computation times are manageable with nowadays1352
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desktop personal computers, so that embedding flow field-based techniques1353

in the real time control and measurement software of commercial or “home-1354

made” rheometers is currently feasible.1355

Moreover, we have provided examples of the possibility to extend the ap-1356

plication of flow field-based techniques to two other cases: i) the data analysis1357

of the measurements performed with the micro-button ISR, which requires1358

some particular considerations because of the great disparity between the1359

micro-button and cup sizes, and ii) the application of such techniques in the1360

3D rheometry of soft bulk samples, which we exemplify through the analysis1361

of bulk rheometry experimental data obtained in the MNISR and the bicone1362

bob ISR on glycerol in water solutions. The results of both new examples1363

appear to be very promising. Applying such techniques to bulk rheology of1364

soft samples (water-like viscosity samples) is particularly appealing because1365

in such situations the bulk viscous length scale will be typically very small1366

and the application of the classical data analysis based on very simple flow1367

configurations may yield significant errors, while flow field-based techniques1368

may deal with the nonlinear flow field configurations rather easily.1369

A key point in the understanding of the origin and the consequences1370

of the existence of the nonlinear velocity profiles is the role of the viscous1371

length scales [46], both at the interface, `sω, and the bulk subphase, `ω, and1372

their competition with the lateral extension of the interface, Rc−Rb, and the1373

depth, H1, of the bulk subphase. Such concepts have been used, for instance,1374

in discussing the subphase flow structure in the bicone case, and can be used1375

with benefit in other instruments as, for instance, the rotational rheometers1376

working in controlled strain mode.1377

Some caveats are in order here, however. Obviously, the limitations of the1378

particular physical model chosen for a given geometry are imported directly1379

into the data analysis scheme. For instance, in all geometries here considered,1380

very simple flow field configurations have been used, having only one non null1381

and highly symmetric component of the velocity. Situations in which those1382

two conditions are not fulfilled cannot be dealt with, evidently. Additionally,1383

the rheological properties of the sample are assumed to be dependent only on1384

frequency, but not on the local deformation or shear rate. Hence, problems1385

involving spatially non uniform rheological properties are out of the scope of1386

the techniques here described. Nonetheless, it is conceivable that some simple1387

constitutive equations supplemented with a suitable definition of the local1388

shear rate might be incorporated into the formulation of the fluid mechanical1389

problem. From the mathematical point of view, the main open front is that,1390
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to our knowledge, there is not a theorem stating that the iterative process has1391

a single stable fixed point. In fact, although rare, some consistency problems1392

may appear, as we have shown in the case of purely elastic interfaces. Hence,1393

the results obtained when applying the procedures here described have to be1394

analyzed with care.1395
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