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Nonuniversality of front fluctuations for compact colonies of nonmotile bacteria
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The front of a compact bacterial colony growing on a Petri dish is a paradigmatic instance of non-equilibrium
fluctuations in the celebrated Eden, or Kardar-Parisi-Zhang (KPZ), universality class. While in many experiments
the scaling exponents crucially differ from the expected KPZ values, the source of this disagreement has remained
poorly understood. We have performed growth experiments with B. subtilis 168 and E. coli ATCC 25922 under
conditions leading to compact colonies in the classically alleged Eden regime, where individual motility is
suppressed. Non-KPZ scaling is indeed observed for all accessible times, KPZ asymptotics being ruled out for
our experiments due to the monotonic increase of front branching with time. Simulations of an effective model
suggest the occurrence of transient nonuniversal scaling due to diffusive morphological instabilities, agreeing
with expectations from detailed models of the relevant biological reaction-diffusion processes.

DOI: 10.1103/PhysRevE.98.012407

I. INTRODUCTION

Active matter, i.e., the emergent behavior of a large number
of agents that can produce mechanical forces via energy dissi-
pation [1], is recently proving itself as an extremely rich context
for non-equilibrium phenomena. Instances range from schools
of fish or bird flocks, to vibrated granular rods or propelled
nanoscale or colloidal particles, for all of which fluctuations
play a conspicuous role in the collective dynamics [2].

Bacterial systems [3] provide further instances of active
matter, from microswimmer suspensions in which single cell
motility plays a crucial role [4,5] to bacterial colonies, in which
motility can be hampered [6–8]. Actually, the fronts of bacterial
colonies have long been held as textbook examples [9–11] on
how interactions among individuals lead to collective, highly
correlated behavior. For experiments frequently done using
Bacillus subtilis or Escherichia coli, this ranges from the
formation of characteristic patterns—like diffusion-limited ag-
gregation (DLA) fractals, concentric rings, or dense-branched
morphologies—to formation of disks or of compact, but rough,
morphologies [7,12–15], all of which are also found in other,
non-living, systems.

The simplest situation in which individual bacterial motility
is fully suppressed by a high agar concentration on the support-
ing Petri dish has received particular attention, as it paradigmat-
ically demonstrates a change from DLA branches to compact,
Eden-like, clusters, for an increasing nutrient concentration
[8,12], akin to that found for many other diffusion-limited
(DL) growth systems [16]. This morphological transition has
been recently shown to bear direct importance on the biological
performance of the colony [17–19]: branches enable the space
segregation of cell lines which respond differently with respect

to the production of enzymes needed for biofilm formation,
enhancing the prevalence of cooperative cells. Biofilms are
surface-attached communities hosting most living bacteria in
nature, of paramount importance to medicine and technology,
from infections to energy harvesting [20,21].

Furthermore, front fluctuations of Eden clusters [22] are
in the celebrated Kardar-Parisi-Zhang (KPZ) [23] universality
class of kinetic roughening [10,24,25]. Sparked by break-
throughs on exact solutions of the KPZ equation and related
growth models, that have been experimentally validated (see
[26] for a review), this class is recently being demonstrated
as a paradigm for strong fluctuations in one dimension (1D),
as found, e.g., in non-linear oscillators [27], stochastic hy-
drodynamics [28], quantum liquids [29], or reaction-diffusion
systems [30]. Remarkably, in the low motility case, most
experimental values found for the scaling exponents of com-
pact Eden-like bacterial colonies do not coincide with the
KPZ values [8,13,14]. This fact has been reconciled with a
putative Eden behavior via, e.g., effective quenched disorder
[8], unexpectedly for a system which is successfully described
by continuum [31–36] or discrete [17,37,38] models with no
source of quenched disorder.

In this article, we report colony growth experiments for
B. subtilis and E. coli under suppressed-motility conditions
[15,39] in the alleged Eden regime. We explain the non-KPZ
kinetic roughening that we indeed observe as nonuniversal
scaling behavior induced by the diffusive instabilities that
occur. This is achieved by comparing our data with simulations
of a continuum model that we formulate, indicating that these
experimental conditions keep the system within a DL tran-
sient for all accessible times. Moreover, the increase of front
branching with time for the experimental colonies prevents
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asymptotics from being in the KPZ universality class under
our suppressed-motility conditions. Analogous nonuniversal
behavior has been identified in other DL systems, like thin
film growth by electrodeposition (ECD), by chemical vapor
deposition (CVD) [16,40], or in coffee ring formation by
evaporating colloidal suspensions [41–44].

The paper is organized as follows. Our experimental setup
and methods are described in Sec. II, while a continuum model
which we employ to rationalize our observations is described in
Sec. III. This is followed by our experimental results, which are
reported in Sec. IV. Further discussion is provided in Sec. V,
which also contains our conclusions and an outlook on future
work. Further technical details on error estimates are left to an
appendix.

II. EXPERIMENTAL SETUP

We have grown colonies of B. subtilis 168 (BS) and E.
coli ATCC 25922 (EC) on Petri dishes as in [15,39], in
the high agar concentration (i.e., low motility) regime for
different concentrations of nutrients. Specifically, we have kept
a constant agar concentration Ca = 10 g/l while considering
different values of the nutrient concentration, Cn = 10,15, or
20 g/l, within the Eden-like region in the morphological space
of [15,39]. These conditions correspond to a value for the non-
dimensional thickness δ of the active layer within the bacterial
colony, where the nutrient concentration has non-negligible
gradients [17,33,36–38], which is large enough for the colony
to look compact on the accessible space-time scales.

For inoculating Petri dishes, bacteria were grown overnight
in nutritive liquid medium [5 g/l NaCl (Merck, Germany),
3 g/l meat extract (Merck, Germany), 10 g/l bacto-peptone
(Lab. Conda, Spain)] and the OD600 was measured. Cells were
pelleted at 12 krpm in a microcentrifuge, and resuspended to
0.5 OD600 in minimal medium without bacto-peptone. Two
replica Petri dishes were prepared following [39]: a 3 mm thick
agar plate in nutritive medium [5 g/l NaCl (Merck, Germany),
5 g/l K2HPO4 (Carlo Erba, Italy) and bacto-peptone (Lab.
Conda, Spain)] inoculated at the center with 1 μl of the cell
suspension was incubated at 35◦C in a sealed humid chamber
for up to 33 days, leading to growth of quasi-2D colonies. No
swarming of bacteria has been detected.

Pictures were taken at different incubation times using a
digital camera (Olympus SC30, Japan; 3.3 Mp) coupled to
a stereo microscope (Olympus SZX10), or a digital camera
(Nikon D5000, Japan; 12.3 Mp) for large enough colonies.
These photographs were treated to extract the position of the
colony front at each growth time, see Fig. 1.

A. Extraction of front profiles

We next consider the protocol that we have followed in order
to extract the position of the fronts of the bacterial colonies
from the photographs. The analysis was semi-automatic. An
algorithm was developed, which works in the majority of
the cases without supervision. The images were digitized and
subject to a contrast filter in order to highlight the interface. The
resulting image can be regarded as a matrix with entries equal
to 1 inside the colony and equal to 0 outside the colony. Then,
a discretized continuous curve was obtained as follows. First,

FIG. 1. Experimental photographs of the bacterial colonies [left
column, (a, c, e)] and profiles extracted using the procedure described
in the text [right column, (b, d, f)]. All these examples corresponds to
B. subtilis with Cn = 20 g/l. The growth times are: (a, b) 19 h, (c, d)
168 h, and (e, f) 792 h, top to bottom.

the geometric center of the colony bulk was estimated. Then
we obtained the intensity curve along rays emanating from that
point for different angles, Iθ (r). For each angle θ , we obtained
the distance r(θ ) from the center, such that a certain threshold
value of the total intensity was found below it. Mathematically,∫ r(θ)

0
dr Iθ (r) = μ

∫ ∞

0
dr Iθ (r), (1)

where μ is the threshold parameter. In our present case,
μ = 0.99 was employed, i.e., the radius r(θ ) is defined as the
first percentile of the intensity distribution. As an illustration,
Fig. 1 shows a set of experimental photographs and their
corresponding profiles. Note the compact form of the bacterial
colony, delimited by a well-defined front that fluctuates around
an average circular shape.

III. EFFECTIVE MODEL

The evolution of the colony front can be rationalized
through a kinetic continuum model for the dynamics of the
front position. In this model the detailed dynamics of relevant
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FIG. 2. Given an interface (shown by the curved red solid line),
and a point �r on it, let us consider all the rays emanating from this
point (dashed straight lines), and find out the fraction of rays that do
not intersect the interface again (those delimited on the right side of
the figure by the straight black solid lines). Such a fraction provides
the local aperture angle, �a(�r).

physical fields (e.g., bacterial and nutrient densities) other
than the position, �r(t), of the front itself, is neglected. The
model is tailored so as to capture purely the form and the
dynamics of the front, in a similar way to many other instances
of diffusion-limited growth, like thin solid films [45–47] or
combustion fronts [48,49], in which this type of approach has
proven useful. Specifically, we consider

∂t �r = (A0 + A1K(�r) + Aa�a(�r) + Anη)�n, (2)

where �r is an interface point, �n is the local exterior normal,
K(�r) denotes the curvature of the interface at that point, �a(�r)
is the local aperture angle, and η is a zero-average Gaussian
uncorrelated space-time noise. Furthermore, A0, A1, Aa , and
An are parameters which quantify, respectively, the relative
strengths of the average growth velocity of a planar front,
surface tension, the dependence on the aperture angle, and
fluctuations. Equation (2) is similar to continuum models
earlier put forward in the context of growth of thin solid
films limited by diffusive transport, see, e.g., [11]. Note that,
in contrast with many works in that field, Eq. (2) applies to
interfaces with an arbitrary geometry, in particular with an
average circular shape, and is not affected by small-slope, nor
no-overhang approximations. In this sense, the model can be
considered a stochastic generalization of a previous equation
put forward in the context of combustion fronts [48,49], for
which transport also takes place by diffusion.

In our model, we assume that growth resources increase
locally with the angle under which a given point �r at the
interface sees the exterior world, which we describe as the
aperture angle, �a(�r), which is illustrated by the sketch in
Fig. 2 and further in Fig. 3. Intuitively, points inside cavities get
less nutrient than those at local protuberances. As frequently
done in the context of diffusion-limited growth, one may
make an analogy [11] to an ensemble of grass leaves which
are striving to collect sunlight: taller leaves cast shadows
on shorter ones, hindering growth of the latter. With this
metaphor in mind, we consider this term to implement a
shadowing effect, as frequently done in the context of DL
growth [11]. Mathematically, the computation of the aperture
angle is performed as follows. Let � be the interface with �r0

and �r being points on it. Let A(�r,�r0) be the angle under which
�r is seen from �r0. Then, the aperture angle from point �r0 is
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FIG. 3. Interfaces from numerical simulations of Eq. (2) for
A0 = 0, A1 = 0.1, Aa = 1, An = 0.1, and a circular initial condition.
Sketches further illustrate the meaning of the local aperture angle
�a(�r). The growth time for each profile can be read from the color
bar on the right. Space and time units are arbitrary.

given by

�a(�r0) = 2π − |Range�r∈�(A(�r,�r0))|, (3)

i.e., the measure of the range of function A(�r,�r0) when �r takes
values on �.

Equation (2) implements the basic mechanisms influencing
growth dynamics: on average, the front tends to minimize its
length and grows along the local normal direction, faster at
those locations �r which are more exposed [larger aperture
angle �a(�r)] to the external diffusive fluxes; moreover, the
front position experiences stochastic fluctuations related with
microscopic events (nutrient transport and consumption, as
well as cell division and relocation). The choice of these
mechanisms is supported by more detailed continuum models
of bacterial colonies [33,35,36] which find the front to be
unconditionally unstable to perturbations. In particular, no
quenched disorder is assumed.

In order to simulate Eq. (2), we have proceeded along the
lines of [50,51]: the interface is discretized in an adaptive way,
adding and removing points dynamically in order to keep a
constant spatial resolution. The normal vector and the local
curvature are computed using concepts from discrete geometry.
An important element of the simulation is that the interface is
always a simple curve, although it can have overhangs: self-
intersections are removed.

The evaluation of the aperture angle is the most costly part
of the calculation to simulate Eq. (2), since it is a global
measurement. We have devised the following algorithm in
order to compute it. Given a point P and a segment P1P2,
we define the minimal angle-interval as the counterclockwise
ordered pair α(P,P1P2) ≡ (α0,α1) of angles, with respect
to the horizontal, under which the segment is viewed from
the point. If a segment is extended to a chain P1 · · · Pn, we
just compute the union of all angle intervals. The aperture
angle is the complementary of the measure of the final angle
interval.
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In order to assess the type of morphological instability
implied by the aperture term in Eq. (2), we have simulated it
numerically by setting to zero all other terms in the equation.
We have performed a linear stability analysis of the ensuing
model by studying the rate of growth or decay in time for
sinusoid-like perturbations of an overall circular shape (not
shown). We have verified the expected unstable behavior:
the amplitude of a small perturbation grows with a velocity
proportional to the wave-number k of the perturbation. In the
case of a band geometry with periodic boundary conditions,
this means that, according to Eq. (2),

∂thk(t) � |k| hk(t) + · · · , (4)

where hk(t) is the amplitude of a small sinusoidal perturbation
of a flat profile with wave-vector k. This is indeed the well-
known behavior of the aperture-angle term, as elucidated in
other diffusion-limited systems [11,48,49]. The growth law
Eq. (4) corresponds specifically to the destabilizing component
of the classic Mullins-Sekerka instability, paradigmatic of
diffusion-limited growth [9,11].

Figure 3 shows the time evolution of an initially circular
interface described by Eq. (2), as obtained from numerical
simulations for a representative choice of parameters. Once
the interface perimeter grows large enough, the shadowing
instability indeed sets in, reflecting the preferential growth at
front protrusions, as compared with front troughs. In strong
similarity with the experimental profile on the Fig. 1, the
colony remains a compact aggregate for all t , with a front that
fluctuates around an average circular shape.

IV. EXPERIMENTAL RESULTS

In this section we report our experimental results for BS and
EC colonies. Along with the various experimental properties
studied, we additionally consider numerical simulations of
Eq. (2) as aids to interpret the experimental results.

A. Time evolution: Radius and global roughness

We first consider quantitatively the time evolution of our
experimental BS and EC colonies through the average radius
and global roughness of the colony fronts: After front extrac-
tion as described in Sec. II, each profile is a set of N points on
the plane, {xi,yi}Ni=1. This set is employed to obtain the radius,
R, of the best fitting circle, using a minimization procedure to
find the corresponding center (xC,yC). The deviations from the
fitting circle provide the global roughness or surface width,

W ≡
〈

1

N

N∑
i=1

(
√

(xi − xC)2 + (yi − yC)2 − R)2

〉1/2

, (5)

where brackets denote averages over experimental realizations.
Both the radius and the global roughness of the experimental
colony fronts depend on growth time. Results for R(t) and W (t)
are provided in the top panel of Fig. 4. Data can be fit by power
laws in both cases, R(t) ∼ tn and W (t) ∼ tβ , with n � 0.38–
0.43 and β � 0.47–0.52 values which are similar for different
nutrient concentration values and bacterial species. Usually,
for experimental circular interfaces that display Eden/KPZ
fluctuations [41,52]—conspicuously including (Vero) cell

FIG. 4. (a) Experimental radius R (open symbols) and roughness
W (solid symbols) vs growth time. Purple and blue (red) symbols are
for BS (EC), with Cn as in the legend. Lines are fits to power-laws,
R ∼ tn and W ∼ tβ with n ≈ 0.4 and β ≈ 0.5. (b) + (×) symbols are
data for R (W ) from numerical simulations of Eq. (2) for parameters
as in Fig. 3, averaged over 500 noise realizations. The lines represent
power-laws R ∼ tn and W ∼ tβ with different values of n and β for
short and long times, as indicated. Units are arbitrary.

aggregates [53]—the average front velocity is constant, hence
the average front position increases linearly with time. At
variance with this, the radial growth rate we measure is
sublinear, i.e., n < 1. On the other hand, W follows power-law
behavior with time as in standard kinetic roughening systems.
Taking into account that uncorrelated surface growth (so-called
random deposition, RD) is characterized by βRD = 0.5 [10],
our relatively large experimental β values are suggestive
of uncorrelated, or possibly unstable growth wherein front
fluctuations are amplified and grow even faster than in mere
RD [9–11]. As noted in [8], to date no other experimental
work on bacterial colony growth provides information on the
time evolution of R(t) or W (t) under our working conditions,
in spite of the fact that universality classes are defined by
two independent exponents [9–11], one of them related with
time-dependent behavior.

For the sake of comparison, the bottom panel of Fig. 4
shows the average radius and global roughness obtained from
numerical simulations of our model, Eq. (2). Apparently in
contrast with the experiment, for each magnitude two different
regimes can be distinguished, one for short times and a
different one for long times, within which the power laws
are characterized by different exponent values. Note that the
numerical values of the exponents which are closest to those
of the experiments correspond to the model short-time regime.
Actually, taking, e.g., BS colonies with Cn = 20 g/l as a
representative case, we can make a more detailed comparison
between the experimental behavior of W (t) and R(t) with that
predicted by Eq. (2).
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FIG. 5. (a) Magnified view of the global roughness of a BS
bacterial colony studied in Fig. 4. The time marked as T0 indicates
a change in the power-law behavior. (b) Magnified view of the
roughness from numerical simulations of Eq. (2) using parameters as
in Fig. 4. Time t0 corresponds to the initial change in scaling behavior.
Time t1, signaling the beginning of asymptotic, long-time behavior,
is also indicated.

1. Simulations in physical units

The experimental data for the evolution of the global
roughness agree closely with the early time behavior of the
simulations; these were performed for several sets of parameter
values with very similar results. The specific choice given
in Fig. 3 (namely, A0 = 0, A1 = 0.1, Aa = 1, and An = 0.1)
turned out to be the most relevant one to our experimental
system. Of course, the units for these constants are arbitrary
in principle. However, we can convert them into physical units
through detailed comparison with the experimental data, as
follows.

In Fig. 5(a) we show the roughness of the interface, W (t), for
the same B. subtilis experiments with Cn = 20 g/l considered
in Fig. 4, but in a magnified view. A certain time T0 = 297
hour (h) can be identified which marks a change in the
power-law behavior of the data, at which the global roughness
is W0 = 0.25 mm. The experiment ends at time Te = 801
h, when We = 0.47 mm. Thus, we have We/W0 = 1.9 and
Te/T0 = 2.7. The physical occurrence of T0 can be confirmed
by in other measurable quantities, such as the average front
velocity, see Fig. 6. The front speed is estimated by comparing
consecutive measurements of the radius and using a finite-
differences approach. The two panels show the same data, the
only difference between them being that the bottom one is
shown in logarithmic scale. We can see how the data divide
into two sequences of points with slightly different scaling
behavior, with the division approximately corresponding to
T0 = 297 h.

Coming back to the simulations of Eq. (2), Fig. 5(b) indi-
cates a change in the scaling behavior of the global roughness
at time t0 = 0.14 [T], with a roughness of w0 = 0.044 [L],
where [L] and [T] are length and time units, respectively. Thus,
the end of the experiment should correspond to a roughness

FIG. 6. Average front speed as a function of time for BS ex-
periments using Cn = 20 g/l in linear (a) and doubly logarithmic
(b) displays. The data group themselves into two scaling regimes,
approximately separated at T0 = 297 h.

we = 0.044 [L] ×1.9 = 0.084 [L], which takes place at te ∼
0.44 [T]. We make this time correspond to Te = 801 h. Thus,
the numerical conversion from arbitrary time units to hours
is 801 h/0.44 [T] ≈ 1800 h/[T]. The same reasoning can
be performed with the length unit and we obtain a conver-
sion factor of 0.47 mm/0.044 [L] ≈ 11 mm/[L]. Alternative
procedures can be designed to obtain the conversion factors,
and they all provide similar results. At any rate, using the
indicated conversion factors we can estimate the physical
values of the equation parameters in physical units, namely,
A0 = 0 mm/h, A1 = 0.067 mm2/h, Aa = 6.1 × 10−3 mm/h,
An = 0.086 mm3/2/h1/2. Experimental data are compared with
simulations for this parameter choice in Fig. 7. With respect
to W (t), agreement is reached for essentially the full duration
of the experiments. For times longer than approximately 800
h (which remain beyond our experimental setup), Eq. (2)
predicts almost linear increase with time for W (t) and R(t).
The agreement between experimental and simulation data is
slightly worse in the case of R(t), for which the initial condition

FIG. 7. Evolution of the radius and global roughness predicted by
Eq. (2) with physical parameters A0 = 0 mm/h, A1 = 0.067 mm2/h,
Aa = 6.1 × 10−3 mm/h, An = 0.086 mm3/2/h1/2. Squares (circles)
are experimental radius (roughness) for BS with Cn = 20 g/l; error
bars are of the same size as symbols or smaller, see the Appendix.
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FIG. 8. Experimental length-scale dependence of the local roughness of BS (a) and EC (b) colony fronts for different times and Cn as
indicated in the legends. (c) Same observable for numerical simulations of Eq. (2) as in Fig. 3. All straight lines represent w(�) ∼ �0.75.

plays a stronger role in the continuum model. Nevertheless,
agreement also becomes quantitative for t > 100 h. Note,
the time t1 required for the onset of long-time, asymptotic
behavior in the experiments can be assessed from the numerical
simulation of Eq. (2), see the bottom panel of Fig. 5. We
estimate t1 = 0.8, which approximately corresponds to 1440
hours. Overall, Fig. 7 suggests that the scaling behavior reached
in the experiments is preasymptotic, clear-cut asymptotics
occurring for t > t1, approximately twice our longest experi-
mental growth time.

B. Geometrical properties: Local roughness
and radial correlations

Further non-trivial properties of the experimental colonies
involve the spatial dependence of front fluctuations. We can
characterize them quantitatively by considering the so-called
local roughness, w(�), which evaluates interface deviations
from an average position, within observation windows of size �

[9–11]. We proceed as is customary for systems with an overall
circular symmetry [11,51]: Namely, each point on the front is
converted to polar coordinates emanating from the geometric
center, (xi,yi) → (θi,ri), whereby θi (ri) is considered a new
independent (dependent) variable. Given an initial point �r0

and a length scale �, we consider the set of points within a
circle centered at �r0 with radius �. Then, we make a fit to the
straight line which minimizes the deviations. The mean-square
distance of the front positions to that fitting line provides the
local roughness w(�). Results for our experimental BS and EC
colonies are displayed in Fig. 8. An approximate power-law
dependence, w(�) ∼ �α , holds at intermediate scales above
100 μm, and up to 3 mm for the most favorable cases,
with α � 0.75. For the sake of comparison, we recall that a
one-dimensional interface provided by the world-line of an
uncorrelated random walk features αRW = 1/2 [9–11]. Our

experimental value for α is in the same range as those found
earlier for similar bacterial colony experiments [8,13,14] and
is also similar to values measured in other DL systems, like
1D ECD [54,55] or 2D thin films grown by CVD under low
sticking conditions [46,56]. In these contexts, such large α are
known not to correspond to any well-defined universality class
of kinetic roughening [16,40,47], but to merely reflect the large
surface slopes that ensue, due to diffusive instabilities. Such
instabilities are actually well known to correlate with front
branching [9–11], which in our experiments can be assessed
through the behavior of the autocorrelation of the radial
interface fluctuations as a function of the angular distance,

C(�θ,t) = 〈[r(θ,t) − R(t)][r(θ + �θ,t) − R(t)]〉. (6)

As seen in Fig. 9, and in spite of the compactness of the
colonies, C(�θ,t) vanishes approximately at the same angular
distance for different times, indicating fronts that develop
well-defined branches. Moreover, the importance of such
branching increases monotonically along the experimental
time evolution. Such a behavior is analogous to the result
of detailed continuum models of bacterial colony growth put
forward in [35,36], which predict unconditional instability of
the colony front to perturbations for a variety of relaxation
mechanisms that include both, chemotactic and volumetric
expansions. In application of the analysis in [35,36] to our data,
Fig. 10 shows the time evolution of the area or perimeter ratio
for the experimental colonies, compared to the R(t)/2 value
that would correspond to a perfectly circular front in each case;
clearly the actual perimeter grows too fast with time relative to
the enclosed area, as compared with expectations for an ideally
circular front. Such a behavior is inconsistent in particular with
the occurrence of Eden behavior at long times [9–11].

The geometrical properties of the front observed in the
experiments are very similarly found also in the simulations of
Eq. (2). Figure 8 shows the dependence of the simulated local

FIG. 9. Left to right: Autocorrelation function of experimental radial fluctuations vs angular distance rescaled by θ0, for BS (a), EC (b), and
simulations (c) of Eq. (2) with parameters as in Fig. 3, where θ0 = 30◦,60◦, and 15◦, respectively. Times and Cn are as given in the legends.
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FIG. 10. Experimental area/perimeter ratio vs time. Symbols are
direct measurements for conditions described in the legend; lines show
R(t)/2 as obtained from Fig. 4 for the corresponding sets of data.

roughness with length scale for different times, readily com-
pared with the experimental data in the same figure. Indeed,
for small scales the model yields w(�) ∼ �α , with α increasing
with time up to 0.75, very close to the experimental value.
Comparison between the model and the experiments improves
with increasing times, as typical length-scales also increase.
Note, these simulation data include the long-time, asymptotic
regime identified for the model in Fig. 4. Finally, the behavior
in simulations of the radial autocorrelation function C(�θ,t)
also supports our interpretation on branching at the interface:
Fig. 9 indeed shows the selection of a precise correlation angle
value θ0, analogous to the experimental morphologies.

V. DISCUSSION AND CONCLUSIONS

Summarizing our experimental observations for both
BS and EC colonies in the suppressed-motility conditions
[14,15,39] which are in the classically alleged Eden regime,
we obtain branched interfaces with scaling exponents β � 0.5
and α � 0.75, which unambiguously differ from Eden-KPZ
behavior, characterized by non-branched interfaces, βKPZ =
1/3, and αKPZ = 1/2 [9–11]. Our experimental data are also
inconsistent with quenched noise effects which, e.g., allegedly
induce β = 0.61,α = 0.68 in agent-based simulations of bac-
terial colonies [8], or with the so-called quenched KPZ (qKPZ)
equation [10]. Unconditioned by any comparison to models,
the fact that our experimental colony profiles become increas-
ingly branched during all accessible times (Figs. 9 and 10)
moreover suggests that the observed scaling is preasymptotic
behavior for a system whose asymptotics is not Eden, and we
speculate that this could also be the case for other, classical,
experiments [13,14] performed under conditions which are
similar to ours.

Given the semi-quantitative agreement between our exper-
iments and simulations of the effective model, Eq. (2), we
can consider the latter in order to predict what would be
the actual asymptotic behavior of the former. Indeed, Eq. (2)
predicts a long-time behavior with β = 0.93 (Fig. 4) and
α = 0.75 (Fig. 8). Actually, a small-slope approximation of
Eq. (2) yields dimension-independent exponents α = β = 1
[16,57]—recently measured in CVD under DL conditions
[47]—which are definitely non-KPZ and are expected to char-
acterize Eq. (2) at long times. Note, for interfaces with α � 1,
local measurements using w(�) are known to underestimate

the correct value of the roughness exponent [40], explaining
our α = 0.75 value. Parameter conditions in our experiments
would make such a long-time regime hardly accessible, re-
quiring growth times at least twice the longest time that we
have been able to reach, as estimated in Sec. IV A 1. On
the other hand, the preasymptotic (t < 800 h) behavior in
Eq. (2)—during which W (t) evolves as in our experiments—
is dominated by the diffusive (shadowing) instabilities that
induce branching of the front and large exponent values. In
such a case, and as shown for other DL systems [16,40,47],
the exponent values are nonuniversal and may depend on
parameter values and even on the specific space/time ranges in
which power-law fits are attempted.

In conclusion, bacterial colonies where individual motility
is suppressed form compact aggregates whose front mor-
phology can still be dominated by diffusive instabilities. For
our experimental conditions, similar to those in [14,15,39],
preasymptotic scaling seems to occur at the accessed times,
which in any case is not in the Eden-KPZ universality class.
There is no need to invoke quenched disorder to account for this
discrepancy. Rather, the shadowing instability induces large
front fluctuations with non-universal scaling. This behavior
is strongly reminiscent of many other experimental systems
[41,46,54–56] in which transport-induced instabilities induce
effective scaling. In some of these cases [41] the observed
kinetic roughening properties have also been associated with
the qKPZ universality class, due to accidental similarities in the
values of the scaling exponents [42–44]. Note, attributing a set
of scaling exponents to a well-defined, asymptotic, universality
class like qKPZ, or to nonuniversal preasymptotic behavior as
we are presently advocating for, are conceptually very different
interpretations.

Non-KPZ exponents due to diffusive instabilities are also
predicted by agent-based simulations [37,38] for small values
of the active layer thickness δ. However, for sufficiently large
δ very compact colonies with extremely flat fronts are found
[37,38]. While this seemingly questions the prevalence of
diffusive instabilities, continuum models [35,36] analytically
predict such flat front conditions to be a finite-size effect.
Thus, parameter conditions select a typical length-scale �0

for the instabilities, which is well defined for any value of
δ. As standard in pattern formation [58], the correlation length
along the front (initially a few cell sizes across) needs to
increase up to �0 for the instability to set in. If �0 is very
large (in band geometry, for systems smaller than �0), the front
may effectively be flat. In circular geometries, for sufficiently
(perhaps, exceedingly) long times, the instability will still
occur.

We should still note that additional systems exist, which are
closely related to the ones we study, and for which Eden-KPZ
scaling does occur. For instance, bacterial colonies for which
individual motility is non-negligible [14] yield a roughness
exponent compatible with the 1D KPZ value. Also, aggregates
of non-cancerous (Vero) or cancerous (HeLa) primate cells
display unambiguous KPZ [53], and even qKPZ [59,60],
scaling, as is the case with fungal growth [61]. Experimentally,
KPZ scaling also applies to fluctuating frontiers between
different genetic strains in range expansion of E. coli [62],
although deviations from Eden behavior can also occur [63,64].
In general, individual cell motility seems to play a relevant
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role, to the extent that instabilities associated with nutrient
transport can eventually be superseded. Indeed, the Eden
model [22] will at any rate stand as the prime example for
reaction-limited growth [9–11], where nutrient transport is,
effectively, infinitely fast and irrelevant to front fluctuations.
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APPENDIX: SOME ERROR ESTIMATES

For each bacterial species and nutrient concentration we
have only one sample available. Therefore, the error bars on
the measurements of the radius and the roughness cannot be
estimated via statistical error between different samples. An
alternative approach is to consider that measurements per-
formed on different parts of the interface constitute a suitable
statistical ensemble from which we can estimate the magnitude
of the desired fluctuations. Thus, the global roughness itself
provides an estimate for the uncertainty in the measurement of
the radius.

The estimate of the fluctuations of the roughness is more
involved. Our approach is to divide the interface into patches
of size � and measure the estimate for each of them, Wi(�).

FIG. 11. Scale dependence of the estimate for the error in the
global roughness obtained using Eq. (A1), when applied to the profiles
of our BS sample grown with Cn = 20 g/l. The actual estimate is
provided by the maximum of each curve.

Then, for each size � we can determine the deviation of those
measures,

σ 2
W (�) = 〈W 2(�)〉 − 〈W (�)〉2. (A1)

Naturally, this deviation will depend on the measurement scale
�. We have thus chosen the worst case to determine our estimate
for the error in the roughness, namely,

σ 2
W = max

�
σ 2

W (�). (A2)

This is how the error bars are estimated in Fig. 7. The behavior
of σW (�) for the fronts of BS colonies grown with Cn = 20 g/l
is shown as an illustration in Fig. 11.
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