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Piercing the rainbow state: Entanglement on an inhomogeneous spin chain with a defect
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The rainbow state denotes a set of valence bond states organized concentrically around the center of a spin 1/2
chain. It is the ground state of an inhomogeneous XX Hamiltonian and presents a maximal violation of the area
law of entanglement entropy. Here, we add a tunable exchange coupling constant at the center, γ , and show that it
induces entanglement transitions of the ground state. At very strong inhomogeneity, the rainbow state survives for
0 � γ � 1, while outside that region the ground state is a product of dimers. In the weak inhomogeneity regime,
the entanglement entropy satisfies a volume law, derived from CFT in curved space-time, with an effective central
charge that depends on the inhomogeneity parameter and γ . In all regimes we have found that the entanglement
properties are invariant under the transformation γ ←→ 1 − γ , whose fixed point γ = 1/2 corresponds to the
usual rainbow model. Finally, we study the robustness of nontrivial topological phases in the presence of the
defect.
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I. INTRODUCTION

Entanglement provides a very useful connecting thread
through condensed matter physics, quantum optics and quan-
tum field theory, towards a unified field of quantum mat-
ter [1,2]. One of the most relevant insights is expressed
through the area law [3,4]: the entanglement entropy of a
block within the ground state (GS) of a local quantum sys-
tem is, in general terms, proportional to the measure of its
boundary [5,6]. Interestingly, the GS of a (1+1)D conformal
field is an exception, and the entropy of a block is generically
proportional to the logarithm of its volume, with a prefactor
which is proportional to the associated central charge [7–10].
There are other interesting exceptions, such as random sys-
tems [11–16]. In the strong inhomogeneity limit, the GS of
many random systems can be obtained via the Dasgupta-Ma
procedure [17,18], which can be engineered to obtain a 1D GS
with maximal entanglement between its left and right halves,
known as the rainbow state [19–22]. This violation of the area
law is very robust with respect to the presence of disorder in
the hoppings [23,24].

A physical interpretation of the rainbow state can be pro-
vided by noticing that the Dirac vacuum on a static (1+1)D
metric of optical type can be simulated on a free fermionic
lattice with smoothly varying hopping amplitudes [25,26].
Indeed, the hopping amplitudes which characterize the rain-
bow state can be understood as a (1+1)D anti-de Sitter (AdS)
metric [27–30]. Space is exponentially stretched as we move
away from the center, giving rise to a similar exponential
stretch of the entanglement entropies, transforming the loga-
rithmic law into a volume law. The weak inhomogeneity limit
is determined by a deformation of the conformal law and the
strong inhomogeneity limit is determined by the Dasgupta-Ma
rule, and both fit seamlessly.

Thus it is relevant to ask whether the weak and the strong
inhomogeneity limits will match in all possible situations. We
have introduced a defect in the center of the rainbow system
and considered the entanglement structure as a function of
the defect intensity and the curvature. As we will show, both
the Dasgupta-Ma and the field theory approach that describes
entanglement on a critical chain with a defect [31–34] can be
extended to the curved case in the strong and weak inhomo-
geneity regimes, respectively, providing a complete physical
picture.

This paper is organized as follows. Section II discusses
our model. The strong inhomogeneity limit, studied with the
Dasgupta-Ma RG, is described in detail in Sec. III, while
Sec. IV considers the weak-inhomogeneity regime through a
perturbation of a conformal field theory. We characterize the
entanglement structure via the entropies and the entanglement
spectrum, Hamiltonian and contour. A duplication of the
defect leads the system to a symmetry protected topological
(SPT) phase in coexistence with a trivial dimerized phase,
which are discussed in Sec. V. The paper ends with a brief
discussion of our conclusions and proposals for further work
in Sec. VI.

II. THE MODEL

Let us consider an inhomogeneous XX spin chain with an
even number N = 2L whose Hamiltonian is defined as

HL(h, γ ) = −1

2

L−1∑
m=−L+1

JmS+
m−1/2S−

m+1/2 + H.c., (1)
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FIG. 1. Illustrating the rainbow state, GS of HL (h, 1/2) with
L = 6, for h � 1. Links are indexed by the integer m. The bonds
are established between sites n and −n for n ∈ {±1/2, . . . , ±(L −
1/2)}.

and by performing a Jordan-Wigner transformation, its
fermionic version:

HL(h, γ ) = −1

2

L−1∑
m=−L+1

Jmc†
m−1/2cm+1/2 + H.c., (2)

where cn(c†
n ), with n = ± 1

2 ,± 3
2 · · · ± (L − 1

2 ) are fermionic
annihilation (creation) operators that obey the standard anti-
commutation relations. The hopping parameters Jm are

Jm =
{

e−h|m| if m �= 0,

e−hγ m = 0,
(3)

where h � 0 is the inhomogeneity parameter, and γ ∈ R
parametrizes the value of the central hopping that we shall
interpret as a defect. Notice that sites have half-integer indices,
while links have integer ones. The Hamiltonian presents spa-
tial inversion symmetry around the central bond: Jm = J−m,
which we will label bond-centered symmetry (bcs) [22].

For γ = 1/2, we recover the so-called rainbow Hamilto-
nian, whose ground state is the rainbow state [19–21]. In the
strong-coupling regime (h � 1), the GS of HL(h, 1/2) is a
valence bond solid (VBS) made of bonds connecting opposite
sites of the chain, as is illustrated in Fig. 1. On the other hand,
the weak inhomogeneity limit (h � 1) is characterized by
the free-fermion conformal field theory (CFT) on a different
space-time, provided by the metric

ds2 = −e−2h|x|dt2 + dx2, (4)

thus justifying our claim that the rainbow state, in the weak
inhomogeneity regime, corresponds to the anti de Sitter (AdS)
Dirac vacuum. Using CFT tools, it has been proved that the
GS of Hamiltonian HL(h, 1/2) presents linear entanglement
for all h, with an entropy per site S/N ≈ h/6 (von Neumann
entanglement entropy) [27,28]. We will discuss some of these
properties in detail in the corresponding sections, when con-
sidering how they are modified by the defect.

III. THE STRONG INHOMOGENEITY LIMIT

When the inhomogeneity is large enough, it can be ad-
dressed through renormalization group (RG) schemes. In par-
ticular, we will use the Dasgupta-Ma procedure, also known
as strong-disorder renormalization group (SDRG) [17], that
was originally created to characterize random spin chains,
but can be immediately extended to fermionic chains via
de Jordan-Wigner transformation [15]. At each step of the

RG, four spins are considered: the two spins si and si+1

linked by the strongest coupling (highest absolute value of
Ji) and their nearest neighbors, si−1 and si+2. The two spins
coupled by Ji are integrated out by forming a valence bond
state (VBS) and the two remaining ones are coupled with a
new effective coupling constant that is obtained by means of
second-order perturbation theory. For a free-fermionic chain
with a Hamiltonian such as (2), the effective coupling takes
the expression

J̃i = −Ji−1Ji+1

Ji
, |Ji| � |Ji±1|. (5)

The GS predicted by the SDRG is a valence-bond solid
(VBS), i.e., a tensor product of bonds:

|GS〉 =
L∏

k=1

(
bηk

ik , jk

)†|0〉, (6)

where ηk = ±1 is a phase given by Eq. (5), |0〉 is the Fock
vacuum, and b+

i, j (b−
i, j) are bonding (antibonding) operators

that create a fermionic excitation joining sites i and j.

(b±
i j )

† = 1√
2

(c†
i ± c†

j ). (7)

They satisfy usual canonical anticommutation relations.
Let us consider the GS of Hamiltonian (2) under the light

of the SDRG for h � 1. For simplicity, we will only consider
even L (the case of odd L can be straightforwardly obtained),
as a function of the defect parameter γ . The different phases
will be discussed along the panels of Fig. 2.

The different ground states obtained by means of the
SDRG are presented in Table I, please refer to Appendix A
for the details. All of them are obtained at half filling and it
is important to note that the validity of the SDRG improves
when the renormalized hopping is much stronger than the
surrounding ones, so all the GS that we have found are better
approximations for bigger h (and eventually they are exact for
h → ∞ as they are fixed points of the RG).

We obtain a rainbow phase whose GS is constituted by
concentric bonds, two dimerized phases that are related to the
two phases of the Su-Schrieffer-Heeger (SSH) model [35,36]
and two transition phases whose structure is a blend of the two
previous ones and it shall be understood in what follows.

It is worth noticing the existence of a symmetry between
the cases γ � 0 and γ � 1. Consider a system HL(h, γ <

1). After performing the first RG step, the new system is
described by the renormalized Hamiltonian HL−1(h, 2 − γ ).
If we now subtract one from all the log-hoppings (or equiv-
alently we divide by e−h all the hoppings) the Hamiltonian
becomes ehHL−1(h, 1 − γ ), which describes a system of N −
2 sites and a defect with strength 1 − γ . Hence, the transfor-
mation

γ → γ̃ = 1 − γ , (8)

leaves the structure invariant up to a global constant. Note
that this symmetry can be considered as a local strong-weak
duality of the defects, leaving the γ = 1/2 point invariant.

The aforementioned description, along with the evidences
obtained by the study of the energies, the correlators and the
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5 4 3 2 1 γ 1 2 3 4 5

(a)

5 4 3 2 1 γ 1 2 3 4 5
2 − γ < 2
2 + γ < 3
4 − γ < 4
4 + γ < 5

(b) γ ∈ (0, 1)

5 4 3 2 1 γ 1 2 3 4 5
2 − γ > 2

3 − γ > 2
4 − γ > 4

5 − γ > 4
6 − γ > 6

(c) γ < 0

5 4 3 2 1 γ 1 2 3 4 5
1 + γ > 1

2 + γ > 3
3 + γ > 3

4 + γ > 5

(d) γ > 1

5 4 3 2 1 0 1 2 3 4 5
2

4

(e) γ = 0

5 4 3 2 1 1 1 2 3 4 5

3

5

(f) γ = 1

FIG. 2. (a) Illustration of the rainbow chain with a central defect, showing the log-couplings on each link (see Appendix A); (b) SDRG
procedure in the γ ∈ (0, 1) case, leading to the rainbow phase; (c) SDRG for the γ < 0 case; (d) SDRG for the γ > 1 case, both leading
to dimerized phases; (e) and (f) transition cases, where the SDRG approximation is not valid; the dashed boxes mark the ties between the
couplings, which demand a different RG approach.

entanglement entropy, allow us to claim that the rainbow sys-
tem with a defect presents two entanglement transitions [37]
in the strong inhomogeneity regime.

A. Energies

Let us consider the single-body energy levels Ek (h, γ )
(k ∈ {0, . . . , N − 1}) of HL(h, γ ), obtained by diagonalizing
the corresponding hopping matrix. Due to the particle-hole
symmetry, Ek = −EN−k , we need only consider values up to

L − 1. For large h, these single-body energy levels correspond
to the couplings associated with each valence bond, thus
leading us to propose that the following limits are finite,

lim
h→∞

− ln |Ek (h, γ )|
h

= �k (γ ). (9)

Figure 3 (top) plots these values, �k (γ ) as a function
of γ for L = 12, obtained numerically using h = 15
(for which convergence has been achieved). Notice the

TABLE I. All the possible ground states obtained via the SDRG in terms of the defect amplitude γ .

Phase Figure 2 Ground state |GS〉
Rainbow phase γ ∈ (0, 1) (b)

∏L−1
i=0

(
bηi

−i−1/2,i+1/2

)†|0〉, ηi = (−1)i

Dimerized phase I γ < 0 (c) (b−
−L+ 1

2 ,L− 1
2

)†
∏ L

2 −1

i=− L
2 +1

(b+
2i− 1

2 ,2i+ 1
2

)†|0〉

Dimerized phase II γ > 1 (d)
∏ L−1

2

i=− L−1
2

(b+
2i− 1

2 ,2i+ 1
2

)†|0〉

Transition phase I γ = 0 (e) (b−
−L+ 1

2 ,L− 1
2

)†
∏ L

4
i=1

(
dηi

2i+ 1
2

)†
(b+

− 1
2 , 1

2
)†|0〉,

Transition phase II γ = 1 (f)
∏ L

2
i=1

(
dηi

2i− 1
2

)†|0〉
where d±

k are operators that create two particles on four fermionic sites (see Appendix C),(
dηi

i

)† = (vηi )†
(
uηi−1

)†|0〉, ηi = (−1)i,

u±
i = 1√

5+√
5
(c−i ± ci ) + 1√

5−√
5
(c−i+1 ± ci−1),

v±
i = 1√

5−√
5
(c−i ± ci ) + 1√

5+√
5
(c−i+1 ± ci−1).
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FIG. 3. (Top) Plot of �k (γ ), obtained numerically for L = 12
and h = 15, see Eq. (9). Each curve matches the renormalized log-
couplings along the SDRG procedure. (Bottom) Ground state energy,
with the lowest single-body energy level removed, as a function of γ

for the same system. (Inset) Energy gap in units of the lowest energy
scale of the system, �E/JL , for L = 12 and L = 13.

clear pattern: for γ > 1, all energy levels are degenerate,
�2k (γ ) = �2k+1(γ ) = 2k + 1 for k ∈ {0, . . . , L/2 − 1},
while for γ < 0 all energy levels are degenerate and constant,
except the first and last which vary exponentially with γ ,
�2k−1(γ ) = �2k (γ ) = 2k for k ∈ {1, . . . , L/2 − 1}. Indeed,
these values correspond to the energies associated to the
successive valence bonds of the dimerized phases. On the
other hand, for γ ∈ (0, 1) the energy levels are not degenerate,
and we can observe the same alternation of the renormalized
log-couplings that we observed in the SDRG description:
�k (γ ) = k + 1/2 + (−1)k (γ − 1/2). Thus the transition
points, γ = 0 and γ = 1, correspond to the points where the
degeneracy starts and ends.

The ground state energy is the sum of the energies of the
occupied orbitals, EGS(h, γ ) = ∑L−1

k=0 Ek (h, γ ). Notice that
for large h and γ > 1, the lowest single-body energy E0(h, γ )
is the main contribution to EGS(h, γ ) as its value grows
exponentially with γ (see the lowest line of the top panel of
Fig. 3), so we have considered instead the quantity

ẼGS(h, γ ) = −EGS(h, γ ) + E0(h, γ ) = −
L−1∑
k=1

Ek (h, γ ).

(10)

The values of ẼGS(h, γ ) are plotted in Fig. 3 (bottom) for the
same system L = 12 and h = 15 in logarithmic scale. Notice

FIG. 4. Dimerization parameter �d (blue curves) and rainbow
parameter �r (red curves) as a function of γ , for a system of
L = 10. As the inhomogeneity parameter h grows, �d approaches
one in the dimerized phases and zero in the rainbow phase, while
�r approaches one in the rainbow phase and zero in the dimerized
phases.

the three regions: for the dimerized phases, ẼGS(h, γ ) stays
constant, while for the rainbow phase it grows exponentially.
Indeed, for h → ∞, the energy curve ln(ẼGS(h, γ ))/h be-
comes nonsmooth at γ = 0 and γ = 1, pointing at a phase
transition.

In addition, the inset of Fig. 3 (bottom) plots the energy gap
�E/JL = (EL − EL−1)/JL, normalized with the lowest energy
scale of the system (the lowest coupling constant). We can see
that it presents two types of behaviors, depending whether the
spectrum has a long range mode [with EL−1(h, γ ) = e−Lh]:
for even L it is close to zero (�E/JL ∼ e−h) for γ < 1, while
for odd L it is close to zero (�E/JL ∼ e−h) for γ > 0. For
γ ∈ [0, 1], it is close to zero for all sizes.

B. Correlations and order parameters

In order to provide further support to our idea that there
is a phase transition at γ = 0 and γ = 1 in the strong
inhomogeneity limit, let us provide two order parameters that
we will call the dimerization parameter �d and the rainbow
parameter �r ,

�d = 1

N

L− 1
2∑

i=−L+ 1
2

|〈ψ |c†
i ci+1|ψ〉|, (11)

�r = 1

L

L− 1
2∑

i=− 1
2

|〈ψ |c†
i c−i|ψ〉|. (12)

Figure 4 shows the behavior of these two order parameters
as a function of γ , for two values of h and L = 10. For large h
(h = 10 in the figure), we see that the rainbow parameter �r

tends to 1 in the rainbow phase [γ ∈ (0, 1)], while it decays
to zero in the dimerized phases. The opposite behavior is true
for the dimerization parameter �d .
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C. Entanglement entropy

Given a system in a pure state, |ψ〉, the entanglement en-
tropy (EE) of a block A is defined as the von Neumann entropy
of its associated reduced density matrix ρA = TrĀ|ψ〉〈ψ |,
where Ā is the complementary of A.

S[ρA] = −TrA ln(ρA), (13)

while the Rényi entropy of order n is defined as

S(n)[ρA] = 1

1 − n
ln Trn

A. (14)

Needless to say, the different entanglement entropies are
determined by the eigenvalues of the reduced density matrix,
also known as entanglement spectrum (ES). There is well
known procedure [38] in order to obtain the ES through the
spectrum of the correlation matrix restricted to the block,
〈c†

i c j〉, with i, j ∈ A. The correlation matrices can be exactly
obtained in the strong inhomogeneity limit, as it is shown in
Appendix D. On the other hand, when the state is a VBS,
we can evaluate the EE just by counting the number of
bonds which are broken when we detach the block from its
environment, and multiplying by ln(2), and the same is true
for all Rényi entropies.

We have considered two different types of blocks: lateral
blocks start from the extreme of the chain, while central
blocks are symmetric with respect to the center. In the next
paragraphs we will describe the behavior of their entangle-
ment.

1. Lateral blocks. Half chain entropies

Lateral blocks A� = {−L + 1
2 , . . . ,−L + 1

2 + �} are con-
tiguous blocks containing one of the extremes of the chain.
Concretely, we will be interested in the EE of the half chain,
S(L) = S[AL] in the strong inhomogeneity regime for differ-
ent values of γ . Let us remind the reader that we will only
consider even L for simplicity, and that the different phases
can be visualized either in Figs. 2 and 6, where the blocks
contain � sites from the upper leg, starting from the right end.

(1) Rainbow phase, γ ∈ (0, 1). The EE (and all other Rényi
entropies) are merely proportional to the length up to � = L,
S[A�]γ∈(0,1) = ln(2) min(�, 2L + 1 − �) .

(2) Dimerized phases, γ < 0 or γ > 1. The lateral
blocks cut either zero or one bonds for γ > 1, S[A�]γ>1 =
ln(2)(1 − (−1)�)/2; yet, for γ < 0 there is always a
long-distance bond joining both ends, thus S[A�]γ<0 =
ln(2)(1 + (1 + (−1)�)/2).

(3) Transition cases, γ = 0 and 1. The state is not a
VBS, so the EE of a block can not be evaluated just by
counting broken bonds. As we can see in the folded view,
Fig. 6, the sites are grouped into plaquettes (except, maybe,
for the extremes and the central link). Cutting one of these
plaquettes horizontally in half contributes a finite amount of
entanglement Sa, which is exactly evaluated in Appendix D
[see Eq. (8)]:

Sa = ln 20 −
4 tanh−1

(
2√
5

)
√

5
≈ 0.4133, (15)

FIG. 5. (Top) Entanglement entropy of blocks of size � using h =
10 for two systems, of size L = 20 and 21, for different values of γ .
(Bottom) EE of the central blocks B� for L = 20 sites and h = 10.
The top horizontal line marks 2 ln 2, and the lower one marks Sb, see
Eq. (16)

we are thus led to exact expressions for the half-chain en-
tropy: S[AL]γ=1 = Sa L/2 ln(2), S[AL]γ=0 = Sa (L/2 − 1) +
2 ln(2).

All these results can be checked in Fig. 5 (top) for two
rainbow chains with L = 20 and 21, using h = 10, where
S[A�] is plotted as a function of � for different values of γ .
We can see that the γ = −0.5 and 1.5 cases show a properly
dimerized behavior, and the γ = 0.5 values correspond to the
rainbow, linear with (maximal) slope ln(2). For the transition
points γ = 0 and 1, we can observe a linear behavior (with
parity oscillations) with a slope Sa.

2. Central blocks

The structure of the different phases can be properly under-
stood if we fold the chain around the central link, as it is shown
in Fig. 6(a), converting the chain into a two-rung ladder where
sites +k and −k face each other [22]. This transformation
converts rainbow bonds into vertical bonds and the remaining
local bonds into horizontal bonds. The lower panels of Fig. 6
present the bond structure as a function of γ .

In this section, we consider the EE of central blocks,
symmetrically placed around the center of the chain,

205121-5
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γ

1 2 3 4 5

1 2 3 4 5

(a) (b) γ ∈ (0, 1)

(c) γ < 0 (d) γ > 1

(e) γ = 0 (f) γ = 1

FIG. 6. (a) Folding the rainbow into a two-rung ladder; (b) folded
rainbow structure, obtained for γ ∈ (0, 1); [(c) and (d)] folded dimer-
ized structures, for γ < 0 and γ > 1; [(e) and (f)] folded versions of
the transition points, with the plaquettes marked where operators d†

act, see Eq. (8).

B� = {−� + 1
2 , · · · , � − 1

2 }. See Fig. 6, where the blocks now
include � rungs starting from the left extreme.

(1) Rainbow phase, γ ∈ (0, 1): we always have
S[B�]γ∈(0,1) = 0.

(2) Dimerized phases, γ < 0 or γ > 1: central blocks
either cut zero or two bonds. Always usign even L
we have S[B�]γ<0 = (1 + (−1)�) ln(2) and S[B�]γ>1 = (1 −
(−1)�) ln(2).

(3) Transition phases, γ = 0 or γ = 1: central blocks can
cut plaquettes in half vertically, in the folded view. Each such
cut contributes a finite amount of entanglement, given by [see
Appendix D and Eq. (8)]:

Sb = ln 5 − coth−1(
√

5)√
5

≈ 1.1790, (16)

which leads us to the expressions S[B�]γ=0 = (1 + (−1)�)Sb

and S[B�]γ=1 = (1 − (−1)�)Sb.
All these features can be checked in Fig. 5 (bottom), where

we can see the central blocks entropy S[B�] as a function of
� for different values of γ . Note that the EE of the central
blocks is always bounded, thus obeying the area law. Nonlocal
fermionic excitations of the type bi,−i and di [see Eqs. (7)
and (8)] are made local by the folding operation previously
discussed [22], and allows to describe the system state using
only short range entanglement.

It is important to realize that it is possible to find local
blocks whose EE is zero for all the defect amplitudes (see
Fig. 6). In the previous work [22], it is shown that the bcs
system belongs to a trivial topological phase, as the GS can
be written as a MPS with bond dimension 1 and the EE of the
central blocks is zero. Here we see that the local defect does
not modify this property, meaning that the bcs system with
local defect γ is also in the trivial phase. This is expected, as a
local perturbation cannot change the topology of the system.
On Sec. V, we will discuss the site centered symmetry case,
that presents interesting topological features.

IV. WEAK INHOMOGENEITY: DEFECT ON A DEFORMED
BACKGROUND

It is relevant to ask whether the phases described in the
strong inhomogeneity limit and the corresponding entangle-
ment transitions extend into the weak inhomogeneity regime.
The answer is no, but some relevant traits do.

In Fig. 7, we show the dependence on h of the EE of the
half chain, S(L) = S[AL], for different values of γ . We can
observe a perfect symmetry between γ and 1 − γ , and the
three different trends in the large h limit that we have ex-
plained on the previous section: for γ ∈ (0, 1) the EE reaches
its maximal value; for γ ∈ {0, 1}, it reaches an intermediate
value (SaL/2); for γ �∈ [0, 1], it stays at ln(2). Interestingly,
the behavior is remarkably different for lower values of h, as
we will discuss.

For h = 0, the Hamiltonian (2) becomes the standard
massless free-fermionic chain with open boundary conditions
which can be described at low energies by a conformal field
theory (CFT) with c = 1. It is interesting to discuss first such
a system in presence of a defect.

A. Homogeneous chain with defect

Let us consider an open homogeneous free fermionic chain
and a defect on its central link, parametrized by a coupling
parameter τ ,

Hτ = −τ

2
c†
− 1

2

c 1
2
− 1

2

L−3/2∑
n=1/2

c†
ncn+1 + c†

−nc−n−1 + H.c. (17)

Let us take the continuum limit of (17) and characterize its
low-energy properties by expanding the local operators cn into
slow left/right moving components ψ{L,R} around the Fermi
points, and introducing a physical coordinate x = an, with
lattice constant a → 0, while L → ∞ with L = aL fixed.

cm ≈ √
a(eikF xψL(x) + e−ikF xψR(x)). (18)

FIG. 7. EE of the half system N = 22 as a function of h for
different values of the defect strength γ .
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The boundary conditions satisfied by the fields at the edge
boundaries ψL,R(±L) are obtained by imposing c±(L+ 1

2 ) = 0:

ψL(±L) = eiπ (L± 1
2 )ψR(±L). (19)

In order to characterize the effect of the defect τ , we need to
distinguish between the fields on the left side ψ I

L,R and the
right side ψ II

L,R of the defect, which are related by a transfer
matrix ψ I = T ψ II (see Appendix E):(

ψ I
L

ψ I
R

)
= 1

2τ

(
τ 2 + 1 −i(τ 2 − 1)

i(τ 2 − 1) τ 2 + 1

)(
ψ II

L

ψ II
R

)
. (20)

It is important to realize that T only depends on the defect and
a vicinity of radius a (lattice sites ± 1

2 and ± 3
2 ). Also notice

that for τ = 1, T = I. Following Ref. [39], we can associate
this transfer matrix to the one associated with a massless Dirac
fermion with a δ term associated to a mass m and to a chiral
mass m′,

TD = 1

1 − r2 − r′2

(
1 + r2 + r′2 2(ir + r′)
2(−ir + r′) 1 + r2 + r′2

)
, (21)

where r ∝ m and r′ ∝ m′ are the reflection coefficients asso-
ciated to both terms. If we assume r′ = 0 and compare with
Eq. (20) we find that

r = 1 − τ

τ + 1
. (22)

Hence, the field theory associated to the homogeneous system
in presence of a defect Eq. (17) is a massless Dirac fermion
with a δ potential term that mixes the left and right moving
fermions generating a local mass placed at the center.

The entanglement properties of this system were studied
by Eisler and Peschel [34]. The authors used a conformal
mapping to the isotropic 2D Ising model to show that the EE
of the half chain presents a logarithmic behavior, as predicted
by CFT, but with a coefficient that depends on the strength of
the defect which they called effective central charge:

S(L) = ceff

6
ln L + c′, (23)

with

ceff = 6

π2
I (s), (24)

and I (s) given by (see Eq. (26) of Ref. [34]):

I (s) = − 1
2 [((1 + s) ln(1 + s) + (1 − s) ln(1 − s)) ln s

+ (1 + s)Li2(−s) + (1 − s)Li2(s)],

with s = sin(2 arctan τ ) and Li2(z) is the dilogarithm func-
tion [40].

B. Field theory of the rainbow model with a defect

Let us return to our rainbow model with a defect. In order
to build the field theory describing the low-energy physics of
Hamiltonian (2) in the weak inhomogeneity regime we need to
obtain the transfer matrix Th,γ associated to the defect. Since
the defect is local, we will conjecture that Th,γ is determined

by the defect and its closest vicinity (see Appendix E):

Th,γ = 1

2
eh(γ− 1

2 )

(
e−2h(γ− 1

2 ) + 1 −i(e−2h(γ− 1
2 ) − 1)

i(e−2h(γ− 1
2 ) − 1) e−2h(γ− 1

2 ) + 1

)
.

(25)

Note that Th,γ = T described in Eq. (20) if we define

τ = e−h(γ−1/2). (26)

Notice that the symmetry γ → 1 − γ described in the previ-
ous section is also present in the transfer matrix: Th,1−γ is Th,γ

with opposite signs in the non diagonal terms and that τ = 1
if h = 0 but also if γ = 1

2 . This implies that the defect has no
effect in HL(h, 1

2 ) or, in other terms, we will say that the defect
is absent. Indeed, evaluating the continuum limit of Eq. (18)
over Eq. (2) leads to an effective Hamiltonian [21,27,28]:

H ≈ i
∫ L̃

−L̃
dx̃[ψ̃†

L∂x̃ψ̃L − ψ̃
†
R∂x̃ψ̃R], (27)

where x̃ is given by

x̃ ≡ sign(x)
eh|x| − 1

h
(28)

and

ψ̃{L,R}(x̃) =
(

dx

dx̃

)1/2

ψ{L,R}(x). (29)

Thus our field theory is the free Dirac field on a background
metric given by

ds2 = −e−2h|x|dt2 + dx2, (30)

i.e., a static metric, defined by a local speed of light or local
Fermi velocity vF (x) = e−h|x|.

The metric (30) is Weyl equivalent to the flat metric with
the Weyl factor e−h|x|, equal to the continuum limit of the
hopping amplitudes Eq. (3). Moreover, the metric has a scalar
curvature given by R(x) = 2hδ(x) − h2, i.e., except at the
origin, it is an homogeneous manifold with negative curvature
that can be mapped to the Poincaré metric in the upper half-
plane [26] or the anti-de Sitter (AdS) metric in 1+1D [29]. As
a consequence, the field theory associated to the Hamiltonian
HL(h, γ �= 1

2 ) for low energies should be described by a free
Dirac theory with a local defect—which is analogous to the
one studied in the previous section—but in the background
metric described above. In what follows, we show that this
is the case by studying the entanglement properties such as
the entanglement entropy, the entanglement spectrum, the
entanglement Hamiltonian and the entanglement contour.

C. Entanglement entropy

In the case of absence of defect, γ = 1
2 , the EE can

be evaluated for intervals of the form (−L, x) within a 2D
CFT [7–10], leading to the expression

S(n)
CFT(x) = c

n + 1

12n
ln Y (x), (31)

where

Y (x) = 2L

πε
sin

(
π (L + x)

2L

)
, (32)
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and ε is the UV cutoff. However, the actual entropy of the dis-
crete state is not exactly equal to that because a nonuniversal
term must be added. Its value is exactly known in the case
of the free-fermionic field [14,41] and will not be considered
here. We can compute the universal part of the EE by making
an appropriate use of transformation (28) on expression (31).
Indeed, besides the transformation of L and x, we need to take
into account the transformation of the UV cutoff ε, through
the Weyl factor, ε̃ = eh|x| ε in our metric. We obtain

S(n)
γ= 1

2

(x) = c
n + 1

12n
ln Ỹ (x), (33)

with

Ỹ (x) = e−h|x| ehL − 1

πh
cos

(
π

2

eh|x| − 1

ehL − 1

)
. (34)

The half chain EE scales linearly:

Sγ= 1
2
(L) ≈ c hL

6
. (35)

However, the defect (γ �= 1
2 ) creates a mass and introduces

a scale, breaking the conformal invariance of the system. As
a consequence, the previous formulas can not be applied to
compute the EE. Nevertheless, the EE should follow Eq. (24),
with the modifications associated to the change of back-
ground. Indeed, we should modify Eq. (35) as

Sγ (L) ≈ ceff(τ ) hL

6
. (36)

where τ is given by Eq. (26). In order to check this, we have
obtained the entropy per site, defined for convenience as

s(h, γ ) = lim
L→∞

6S[AL]

L
. (37)

The values of s(h, γ ) are obtained through a linear fit. Figure 8
(top) shows this entropy per site as a function of h for several
values of γ . For very low values of h, all curves seem to
collapse. Yet, for γ �∈ [0, 1], the curve s(h) eventually presents
a maximum and decays to zero. This is a signature that the
system will obey the area law in the strong inhomogeneity
limit. The validity of Eq. (36) can be checked with the
soft continuous lines, which correspond to the theoretical
prediction. Indeed, for low values of h the prediction is very
accurate, losing this accuracy for large inhomogeneity (h ≈
1.5).

Furthermore, Eq. (36) suggests that the entropy per site will
collapse if we plot s(h, γ )/h as a function of a measure of
the defect intensity, h(γ − 1/2). Indeed, this collapse can be
seen in the bottom panel of Fig. 8, showing the universal curve
for ceff(τ ). The high accuracy of this collapse can be checked
in the inset, which shows the same data in logarithmic scale.
Moreover, the circles correspond to the plot of ceff in Eq. (24)
as a function of ln(τ ), for comparison.

D. Phase diagram

In Fig. 9, we show the relative error between the theoretical
prediction and the numerics

δs(h, γ ) = |s(h, γ ) − hceff|
s(h, γ )

, (38)

FIG. 8. (Top) Entropy per site of the rainbow model with a
defect, s(h, γ ) as a function of h, for different values of γ . Soft
continuous lines correspond to the theoretical prediction, Eq. (36).
(Bottom) Entropy per site divided by the inhomogeneity parameter,
as a function of the defect intensity, h(γ − 1/2), showing the col-
lapse predicted by Eq. (36).

in the color intensity. The white lines correspond to the theo-
retical values of the relative maxima of s(h, γ ) as a function
of h, following Eq. (36). Notice that the theoretical prediction
states that, for all γ , the curve s(h) will present a maximum
and decay to zero afterwards. Thus weak inhomogeneity
regime presents a smooth crossover into the three phases of
the strong inhomogeneity regime described in the previous
section or large h lattice effects become dominant and the
universal properties predicted by the field theory approach are
lost.

E. Beyond entanglement entropy

The characterization of entanglement can be improved
with the study of the entanglement spectrum (ES), entan-
glement contour and entanglement Hamiltonian. All these
mathematical objects are associated to the reduced density
matrix of the block, ρA.
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FIG. 9. Phase diagram, absolute error of the EE prediction; the
white lines correspond to the local maximum of the entropy density,
s(h).

1. Entanglement Hamiltonian

The reduced density matrix ρA of a Gaussian fermionic
state can be written in the form

ρA = exp(−2πHA) ≡ exp

(
−2π

∑
p

εpd†
pdp

)
, (39)

for some fermionic operators dp. The εp are called the single-
body entanglement spectrum, but the term single body is
usually dropped. Operator HA is termed the entanglement
Hamiltonian (EH), and it can be shown to be approximately
local for a 1+1D CFT [28]. Indeed, it can be written as

HA ≈
∑

i

βA(i) c†
i ci+1, (40)

where the βA(i) constitute entanglement couplings, and
can be accounted for in CFT providing an extension of
the Bisognano-Wichmann theorem [28,42]. There are also
nonzero terms presenting long-range interactions, but they
are expected to be very small. The estimation of the set
of βi is obtained by minimizing an error function E (β ) ≡∑

i, j∈A (Ci j − Tr(ρA(β )c†
i c j )) using standard optimization

techniques [28].
The numerical values of {β(i)} for the left half (block AL)

of a L = 20 system, using h = 0.5 and different values of γ

are shown in Fig. 10. For γ = 1/2 the EH of the rainbow
system presents flat coefficients β(i) everywhere except near
the physical boundary (left extreme) and near the internal
boundary (right extreme), where it follows the Bisognano-
Wichmann prediction, that they will decay to zero linearly,
with slope 1. Yet, in presence of a defect we observe an
increasing dimerization of the EH.

Let us remind the reader that the flat profile for {β(i)} in
the rainbow case accounts for the fact that the rainbow GS for
all values of h resembles a thermofield double [28], i.e.,

|�〉 ≈
∑

n

exp(−βEn/2)|n〉L ⊗ |n〉R, (41)

where En and |n〉{L,R} are the energies and eigenstates of
the homogeneous free Hamiltonian on the left/right with
open boundaries. Thus we are led to the following claim: in
presence of a defect, the ground state of Hamiltonian (2) is

0
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β
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i

γ = −2
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γ = 1/2
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FIG. 10. Entanglement Hamiltonian coefficients {β(i)} for the
left half of a L = 20 rainbow with a defect, using h = 0.5. Notice
that, for γ = 1/2, the bulk is flat, as expected, but for the other values
the Hamiltonian coefficients present dimerization, which changes the
high and low values when we change γ for 1 − γ .

still approximately a thermofield double, but of a dimerized
Hamiltonian, with dimerization parameter associated to the
defect strength γ . We would like to stress that the cases of γ

and 1 − γ are extremely similar, only interchanging the higher
and lower values of the dimerization pattern.

2. Entanglement spectrum

For free systems, the entanglement spectrum (ES) {εk}L
k=1

of a block A is the single-body spectrum of the reduced density
matrix ρA [43]. In terms of the ES, the eigenvalues {νk}L

k=1 of
the block correlator matrix are written [38] as

νk = 1

eεk + 1
. (42)

The ES contains more physical information than the entangle-
ment entropy. In some cases, its low part can be regarded as
the energy spectrum of a boundary CFT [44].

We have considered the full ES of the left half block, AL,
for different values of γ . As it can be expected, the defect
preserves the particle-hole symmetry. The most salient feature
is that the ES shows a finite gap �ε whose width grows
with γ , as can be seen in Fig. 11 (top). For a CFT system,
the entanglement gap, �ε ∼ 1/ ln(L), but for a deformed
system such as the rainbow we should consider instead �ε ∼
1/ ln(L̃) ∼ 1/L. Indeed, for low h the gap decays linearly with
the system size, as we can see on the bottom panel of Fig. 11
for h = 0.015, but it seems to reach a finite value for h = 0.32.

3. Entanglement contour

The entanglement contour [45] attempts to answer the
question about where is the entanglement entropy located. The
entanglement entropy of a block is decomposed

SA =
∑
i∈A

σA(i), (43)

with σA(i) � 0. Although the entanglement contour is
not uniquely defined, different candidate definitions have
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FIG. 11. (Top) Entanglement spectrum εk of the left block of a
system with L = 150 and different values of γ : (top) h = 0.32 and
(bottom) 0.015. (Bottom) Scaling of the ES gap �ε with size 2L for
different values of γ : (top) h = 0.32 and (bottom) 0.015.

provided very similar values [28,46,47], thus pointing at the
existence of a deeper contour which would have the current
candidates as approximations. Since the rainbow system is
defined here for a free-fermionic system, we will employ the
approach given in [45].

Figure 12 shows the curve of the entanglement contour for
the left block of the rainbow GS using L = 40 and h = 0.5, for
different values of γ , scaled with the entropy density predicted
in Eq. (36). The collapse is very clear in the bulk region,
which presents universal features, and a little bit less near
the boundary, where it does not. Importantly, notice that the
entanglement contour does not present any oscillations related
to dimerization, with a constant entropy per site in the bulk.

V. DEFECT IN A SYMMETRY PROTECTED
TOPOLOGICAL PHASE

The system considered so far, Eq. (2), presents bond
centered symmetry, i.e., the center of symmetry is in the
middle point of the central link. However, many different
properties arise when we consider site centered symmetric
(scs) systems [22], where the center of symmetry corresponds
to a site. Let us consider a system defined on a chain with

0.01

0.1

0 5 10 15 20 25 30 35 40

σ
A
(i

)/
s(

h
(γ

−
1/

2)
)

i

γ = 1/2
γ = 1
γ = 2
γ = 3

γ = 4
γ = 5
γ = 6

FIG. 12. Entanglement contour of the left half (the left edge is
the physical boundary while the right one is originated by the block)
of the rainbow model with a defect using L = 40 and h = 0.5, scaled
with the entropy per site predicted in Eq. (36), for different values
of γ .

N = 2L sites, whose Hamiltonian is

HN (h, γ )scs = −1

2

N∑
m=1

Jmc†
mcm+1 + H.c., (44)

where the fermions are now placed on integer positions and
there are two equal central hoppings depending on γ :

Jm =
{

e−h(|m−(L+ 1
2 )|− 1

2 ) if m �= L, L + 1,

e−hγ if m ∈ {L, L + 1}, (45)

i.e., the log-couplings (see Eq. (A1)) present the pattern
{. . . , 3, 2, 1, γ , γ , 1, 2, 3, . . . }. The site-centered symmetry
manifests itself through the invariance of the hoppings under
an inversion around the central site L + 1: Jn = JL+1−n. Notice
that the new notation is different from the bond centered
symmetry case, Eq. (2), which is now convenient due to the
different type of symmetry.

In Ref. [22], it was shown that after performing a folding
operation around the central site, the system becomes an
inhomogeneous realization of the SSH model, thus belonging
to the BDI class of topological phases [48–55]. Since the
topological nature of the state is highlighted after removing
the local entanglement [54], it is better to study the system in
the strong inhomogeneity regime. The fermionic excitations
are not spread along the whole system as it is the case in the
weak inhomogeneity limit. Hence, we will study the system
in the strong coupling regime HN (h � 1, γ )scs by means of
renormalization schemes that depend on the value of γ (see
details in Appendix F).

Let us start by considering the case γ � 1. The dominant
interaction involves the three central sites, L, L + 1, and L +
2. With a real-space first-order perturbation theory RG [22].
On each step, three fermions are truncated into one which
participates on the next step (unlike the RG of the systems
with bcs symmetry, where the fermions are integrated out on
each step and hence are decoupled from the system) leading to
a topological ground state with non removable entanglement
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FIG. 13. Entanglement entropy of the system with Hamiltonian
H46(15, γ )scs partitioned with central blocks B� for different values
of γ . The entropy is S[B�] = 3 ln 2 if � < �γ � and it is S[B�] =
ln 2 if � > �γ �. If γ ∈ N, S[B�=γ ] takes another value which is a
consequence of the quadruple tie that we have discussed in the text.

that belongs to the BDI class [22,49]. The case with γ = 1
differs only on the first step of the RG where five spins
(instead of three) are truncated to one.

On the other hand, the case γ > 1 is again different.
Starting from HN (h, γ )scs, the dominant interactions are two
non consecutive log-couplings 1 which allows the use of
the Dasgupta-Ma RG (A2), leading to an effective system
whose Hamiltonian is HN−4(h, 1 + γ )scs. If 1 + γ happens to
be the dominant interaction, three fermions are involved so
the Dasgupta-Ma Rg is not applicable anymore and the way
of procedure is described in the previous paragraph. On the
contrary, if the log-couplings 2 are the dominant interaction,
the Dasgupta-Ma RG can be applied again leading to a new
Hamiltonian HN−8(h, 2 + γ )scs. Hence, the same dichotomy
is present in the next step. The procedure iterates and unless
γ > L − 1 the RG flows eventually to a dominant interaction
which involves three fermions.

Therefore we see that the GS of the Hamiltonian
HN (h, γ > 1)scs is obtained via the application of two kinds
of renormalization group schemes. As a consequence, the
ground state of this Hamiltonian has two different phases that
coexist: a dimerized phase around the defect and the BDI
phase away from it. This coexistence is well captured by
considering the EE of central blocks B� = {L − �, L + 2 + �},
with � ∈ {0, . . . , (L − 1)}. Since the system is topologically
nontrivial, there is entanglement that cannot be removed (the
EE in bounded by ln 2 for all B�) and for blocks B� with � ∈
{0, . . . , (L − 1)} as can be seen in Fig. 13. � < �γ �, SB� =
3 ln 2 due to the fact that there are two fermionic excitations
b†

L−2(�−1),L−2(�−1)−1|0〉 and b†
L+2�,L+2�+1|0〉 that are not fully

contained in the block B�. Furthermore, the dimerized phase
appears only in the strong inhomogeneity limit h → ∞ while
the BDI phase is independent of the inhomogeneity parameter.
This fact can be checked by considering the behavior of
the single body entanglement spectrum εk , see Fig. 14 and
Eq. (42). There is a zero mode ε0 = 0 for all h that gives
rise to a double degeneracy of the many-body entanglement
spectrum and it is a signature of the topological nature of the
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FIG. 14. Single body entanglement spectrum εk of a block B11 of
a system described by the Hamiltonian H46(h, 17

2 )scs as a function of
h. Notice the topological zero mode, which does not depend on h.

state. There are also two additional zero modes due to the
presence of the defect but they are not topological, since they
depend on the inhomogeneity.

VI. CONCLUSIONS AND FURTHER WORK

In this work, we have characterized a lattice model of Dirac
fermions on a negatively curved background in presence of
a local defect. The unperturbed lattice model is the so-called
rainbow model, which is a free-fermionic chain with hoppings
which decay exponentially from the center. Its ground state
presents linear growth of the entanglement, with an entropy
per site proportional to the inhomogeneity parameter h in
the weak inhomogeneity regime, which is described by a
geometrical deformation of the free-fermionic conformal field
theory, associated to a hyperbolic space-time metric. The
strong inhomogeneity limit is described as a valence bond
state with concentric bonds around the center, as it can be
established using the Dasgupta-Ma renormalization group.

The presence of a defect in the center of the chain can
induce an entanglement transition in the strong inhomogene-
ity limit, characterized by a rainbow phase of linear scaling
of entanglement for intermediate defect strengths, and two
dimerized phases, with alternate dimerizations in similarity
with the SSH model. Further hints of the transition are pro-
vided by the ground state energy, the single-body orbitals, the
energy gap (rescaled with the minimum coupling) and two-
order parameters: the average dimerization and the rainbow
order parameter, which measures the average occupation of
the concentric bonds.

In the weak inhomogeneity limit, the transition gets
blurred, and the ground state always presents linear entangle-
ment, with an entropy per site that can be effectively described
by a geometric deformation of the entanglement entropy of a
homogeneous fermionic chain with a central defect. Analysis
of the entanglement gap and the entanglement Hamiltonian
allow us to claim that the system behaves as a thermofield
double, as in the rainbow case, but with a dimerized Hamilto-
nian instead of a homogeneous one.
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Interestingly, the rainbow system presents nontrivial topo-
logical properties when it is centered on a site instead of a link.
In presence of a defect, the ground state presents an interesting
coexistence of a symmetry-protected topological phase near
the ends and a dimerized region near the center, whose size
grows as the defect intensity goes to zero.

Our work opens up several interesting questions related to
the presence of geometric defects on the vacuum structure of
a quantum field theory. It is interesting to ask whether such a
deep modification of the entanglement properties can be found
in other cases.
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APPENDIX A: DETAILS OF THE APPLICATION
OF THE SDRG

In this Appendix, we detail the obtention of the ground
states by using the SDRG. For our purposes, it is convenient to
define the log-couplings [23] of the original couplings Ji (3):

ti = − ln
|Ji|
h

, (A1)

where h is the inhomogeneity parameter that is included for
later convenience. In this language, the two fermionic sites
that are integrated out on each step of the RG are those
connected by the lowest ti and the effective coupling Eq. (5)
is computed in additive way:

t̃i = ti−1 − ti + ti+1. (A2)

Interestingly, Eq. (A2) can be generalized for this type of
models: whenever a bond is established between sites p and q
(with p + q even), the renormalized log-coupling is given by
the sum rule [24]:

t̃[p,q] =
q−p−1∑

j=0

(−1) jtp+ j, (A3)

or, in other words: the renormalized log-coupling can be
obtained summing all log-coupling between the two extremes,
with alternating signs.

(1) The rainbow phase: γ ∈ (0, 1), see Fig. 2(b). The
strongest link (lowest log-coupling) is the central one. Thus a
valence bond is established on top (b+

−1/2,+1/2) and an effective
log-coupling appears between its neighbors, of magnitude t̃ =
2 − γ < 2. Thus the central link is again the strongest one, so
we can put a valence bond on top of it (b−

−3/2,+3/2), leading
to an effective log-coupling of magnitude t̃ = 2 + γ < 3. We
can see that the procedure iterates, giving rise to the rainbow

state.

|GS〉γ∈(0,1) =
L−1∏
i=0

(
bηi

−i−1/2,i+1/2

)†|0〉, ηi = (−1)i. (A4)

(2) The dimerized phase (I): γ < 0, see Fig. 2(c). The
dominant interaction is again the central one, leading us to
establish a valence bond on top. Yet, the renormalized log-
coupling, t̃ = 2 − γ > 2 is not the strongest (lowest value)
at the next SDRG iteration. On the other hand, we are led
to establish two valence bonds on top of the links with log-
couplings equal to 2, in any order. The renormalized central
log-coupling after these two bonds have been established is
t̃ = 4 − γ > 4 [see Eq. (A3)], so we are led to the same
situation, where the lateral links are always stronger than the
central one, leading to a dimerized state. Yet, the last SDRG
step leaves us with the two extreme sites of the chain, leading
to a final bond connecting them. The ground state can be
written as

|GS〉γ<0 = (b−
−L+ 1

2 ,L− 1
2
)†

L
2 −1∏

i=− L
2 +1

(b+
2i− 1

2 ,2i+ 1
2
)†|0〉. (A5)

Notice that the last bond is only present for even L, while it is
absent for odd L.

(3) The dimerized phase (II): γ > 1, see Fig. 2(d). In this
case, the dominant interaction is not the central one, but their
neighbors, with t±1 = 1. Hence, we must establish first these
two valence bonds, leading to a renormalized log-coupling
between their extremes of t̃ = 2 + γ > 3 [see Eq. (A3)]. Thus
we have the same situation, in which the central link is not the
strongest. In this case, no long-range bond is established at the
end of the procedure, and we obtain

|GS〉γ>1 =
L−1

2∏
i=− L−1

2

(b+
2i− 1

2 ,2i+ 1
2
)†|0〉. (A6)

(4) The transition points: γ = 1 and γ = 0, see Figs. 2(e)
and 2(f). Let us start with γ = 1 [Fig. 2(e)]. The first SDRG
step fails, because the strongest coupling is not unique. On the
other hand, we obtain a triple tie in the three central links, with
t0,±1 = 1. In Appendix B, we have developed an extension of
the SDRG for the free-fermion model when a block with 2�

sites is integrated out, yielding the renormalized log-coupling
given by the sum rule, Eq. (A3). Thus the renormalized log-
coupling between sites −5/2 and +5/2 is t̃ = 3, leading to a
new triple tie, which propagates further along the chain. For
γ = 0, on the other hand, the strongest link is the central one,
thus receiving a valence bond. But, on the next SDRG step, we
can see that the effective central log-coupling is t̃ = 2, equal
to its neighbors in a new triple tie, forcing us to recourse to the
extended SDRG. From that moment on, all SDRG steps lead
to triple ties. The GS can be written exactly in these two cases
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(see details in Appendix C)

|GS〉γ=0 = (b−
−L+ 1

2 ,L− 1
2
)†

L
4∏

i=1

(dηi

2i+ 1
2

)†(b+
− 1

2 , 1
2
)†|0〉, (A7)

|GS〉γ=1 =
L
2∏

i=1

(dηi

2i− 1
2

)†|0〉, (A8)

where d±
k is operators creating two particles on four fermionic

sites,

(dηi
i )† = (vηi )†(uηi−1 )†|0〉, ηi = (−1)i, (A9)

u±
i = 1√

5+√
5
(c−i ± ci ) + 1√

5−√
5
(c−i+1 ± ci−1), (A10)

v±
i = 1√

5−√
5
(c−i ± ci ) + 1√

5+√
5
(c−i+1 ± ci−1). (A11)

APPENDIX B: DASGUPTA-MA RG EXTENSION FOR
FREE FERMIONS

In this Appendix, we describe a generalization of the
Dasgupta-Ma RG for inhomogeneous free fermionic chains

that can be applied to systems that have an homogeneous
subchain of N = 2L sites embedded. The Hamiltonian H0 that
describes this subchain is given by

H0 = −J

2

N−1∑
i=1

c†
i ci+1 + c†

i+1ci, (B1)

and its interactions with the nearest neighbours is given by Hlr

Hlr = −Jl c
†
l c1 − Jrc†

N cr + H.c. (B2)

Assuming that Jl � J and Jl
Jr

≈ 1, the whole system
can be study by means of degenerate perturbation the-
ory. The ground state of H0 is given in the previ-
ous Appendix C |ψ0〉 = ∏L

m=1 φ̂
†
km

|0〉 with energy E0 =∑L
m=1 εkm = −2

∑L
m=1 cos ( mπ

N+1 ). The first-order correction
〈ψ0; l ′, r′|Hlr |ψ0; l, r〉 (where |ψi; l, r〉 = |ψi〉 ⊗ |l〉 ⊗ |r〉)
vanishes. The matrix element Bl,r;l ′r′ of the degenerate second
order contribution is given by

Bl,r;l ′r′ =
∑
i �=0

∑
l ′′r′′

〈ψ0; l, r|Hlr |ψi; l ′′, r′′〉〈ψi; l ′′, r′′|Hlr |ψ0; l ′, r′〉
E0 − Ei

. (B3)

Expanding this product and taking into account that
∑

l ′′r′′ |l ′′, r′′〉〈l ′′, r′′| = I, we have

Bl,r;l ′r′ = J2
l

(
〈l, r|c†

l cl |l ′, r′〉
N∑

i=1

〈ψ0|c1|ψi〉〈ψi|c†
1|ψ0〉 + 〈ψ0|c†

1|ψi〉〈ψi|c1|ψ0〉
εki

−
N∑

i=1

〈ψ0|c†
1|ψi〉〈ψi|c1|ψ0〉

εki

)

+ J2
r

(
〈l, r|c†

r cr |l ′, r′〉
N∑

i=1

〈ψ0|cN |ψi〉〈ψi|c†
N |ψ0〉 + 〈ψ0|c†

N |ψi〉〈ψi|cN |ψ0〉
εki

−
N∑

i=1

〈ψ0|c†
N |ψi〉〈ψi|cN |ψ0〉

εki

)

+ Jl Jr

(
〈l, r|c†

l cr |l ′, r′〉
N∑

i=1

〈ψ0|c1|ψi〉〈ψi|c†
N |ψ0〉 + 〈ψ0|c†

N |ψi〉〈ψi|c1|ψ0〉
εki

+〈l, r|c†
r cl |l ′, r′〉

N∑
i=1

〈ψ0|cN |ψi〉〈ψi|c†
1|ψ0〉 + 〈ψ0|c†

1|ψi〉〈ψi|cN |ψ0〉
εki

)
, (B4)

where the nonvanishing contributions are given by the excited states whose particle number differs by one with respect to |ψ0〉:
〈ψi|c†

i |ψ0〉 �= 0 if |ψi〉 = φ̂ki |ψ0〉, Ei = E0 − εki , (B5)

〈ψi|ci|ψ0〉 �= 0 if |ψi〉 = φ̂
†
ki
|ψ0〉, Ei = E0 + εki . (B6)

Given that ci = ∑N
m=1 f ∗

imφ̂km , we reach

Bl,r;l ′r′ = J2
l

(
〈l, r|c†

l cl |l ′, r′〉
N∑

i=1

| f1m|2
εkm

+
L∑

i=1

| f1m|2
εkm

)
+ J2

r

(
〈l, r|c†

r cr |l ′, r′〉
N∑

i=1

| fNm|2
εkm

+
L∑

i=1

| fNm|2
εkm

)

+ Jl Jr

(
〈l, r|c†

l cr |l ′, r′〉
N∑

i=1

f ∗
1m fmN

εkm

+ 〈l, r|c†
r cl |l ′, r′〉

N∑
i=1

f ∗
Nm fm1

εkm

)
.

Now, particularizing for the functions Eq. (C1) we obtain that the renormalized Hamiltonian B is (up to an additive constant):

Heff = −Jl Jr

J
(c†

l cr + H.c), (B7)

which is the expression used to renormalize the systems with strength defects γ = 0 and γ = 1.
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APPENDIX C: THE TRANSITION BLOCKS: γ = 1 AND
γ = 0.

In this Appendix, we derive Eq. (8). Consider an homoge-
neous system of N = 2L sites with open boundary conditions
whose Hamiltonian is given by Eq. (B1). Solving the time
independent Schrödinger equation H0|φk〉 = εk|φk〉, we arrive
at

εkm = −J cos

(
mπ

N + 1

)
,

|φkm〉 = φ̂
†
km

|0〉 =
N∑

i=1

f ∗
mic

†
i |0〉,

within f ∗
mi =

√
2

N + 1
sin

(
mπ i

N + 1

)
. (C1)

Taking N = 4, the many body ground state |ψ〉 at half filling
is obtained by occupying the single body levels with energies
−J cos π

5 and −J cos 2π
5 .

|ψ0〉 = d†|0〉 = v†u†|0〉 = φ̂
†
k2
φ̂

†
k1
|0〉. (C2)

APPENDIX D: CORRELATION MATRICES AND
ENTANGLEMENT ENTROPY

The correlation matrices C for the ground states Eqs. (A4)–
(A8) are given by

Ci j = 〈GS|c†
i cj|GS〉 =

L∑
m,m′=1

fi,mf∗
m′,j〈GS|φ̂†

mφ̂m′ |GS〉

=
L∑

m=1

fi,m f ∗
m, j, (D1)

where we consider half filling and φ̂m are the fermionic
excitations of each system [bi, j Eq. (7) and di Eq. (8) in our
case] and fi,k is a unitary matrix.

The EE entropy of a block A� is given by [38]

S(A�) = −
�∑

k=1

νk ln νk + (1 − νk ) ln (1 − νk ), (D2)

where the {νk} are the set of eigenvalues of the correlation
matrix restricted to the block A�. We shall next describe the
correlation matrices as a function of the defect parameter γ .
All the matrices are symmetric Ci, j = Cj,i and present left-
right symmetry Ci, j = CN+1− j,N+1−i. All the computations are
done with L even.

(1) γ < 0: ⎧⎪⎨
⎪⎩

Ci,i = 1
2 , i = 1, . . . , L,

C1,N = − 1
2 ,

C2i,2i+1 = 1
2 , i = 1, . . . L

2 .

(D3)

(2) γ = 0:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1,N = − 1
2 , CL,L+1 = 1

2

Ci,i = 1
2 , i = 1, . . . , L

Ci,N+1−i = (−1)i 1
2
√

5
, i = 2, . . . , L − 1

C2i,2i+1 = 1√
5
, i = 1, . . . L

2 .

(D4)

(3) γ ∈ (0, 1):

Ci, j = 1
2δi,i + (−1)i 1

2δi,N+1−i. (D5)

(4) γ = 1:⎧⎪⎨
⎪⎩

Ci,i = 1
2 , i = 1, . . . , L,

Ci,N+1−i = (−1)i 1
2
√

5
, i = 1, . . . , L,

C2i−1,2i = 1√
5
, i = 1, . . . L

2 .

(D6)

(5) γ > 1: {
Ci,i = 1

2 , i = 1, . . . , L,

C2i−1,2i = 1
2 , i = 1, . . . L

2 .
(D7)

The correlation matrix of the four sites that are integrated
out in the same step whose ground state is given by Eq. (8) is

C4 =

⎛
⎜⎜⎜⎜⎝

1
2

1√
5

0 − 1
2
√

5
1√
5

1
2

1
2
√

5
0

0 1
2
√

5
1
2

1√
5

− 1
2
√

5
0 1√

5
1
2

⎞
⎟⎟⎟⎟⎠. (D8)

The most simple non trivial lateral block is

A2 =
(

1
2

1√
5

1√
5

1
2

)
, (D9)

whose eigenvalues are ν1 = 1
10 (2

√
5 + 5), ν2 =

1
10 (5 − 2

√
5). The value of Sa, given in Eq. (15), is obtained

applying Eq. (D2). Furthermore Sb, given in Eq. (16), is
obtained from the central block

B1 =
(

1
2

1
2
√

5
1

2
√

5
1
2

)
, (D10)

whose eigenvalues are ν1 = 1
10 (

√
5 + 5), ν2 = 1

10 (5 − √
5).

It can be shown that larger central blocks have also these
nontrivial eigenvalues and the rest are 0 and 1 which don’t
contribute to the EE.

APPENDIX E: RELATION WITH DIRAC EQUATION WITH
δ POTENTIAL

Consider an inhomogeneous free-fermion chain with a
central hopping defect and bond centered symmetry described
by the Hamiltonian:

H (τ ) = −τ

2
c†
− 1

2

c 1
2
− 1

2

L− 3
2∑

m= 1
2

Jm(c†
mcm+1 + c†

−mc−m+1).

(E1)

The single body spectrum is obtained by diagonalizing the
hopping matrix. The eigenvalue equations at the center of the
chain are

αφ− 3
2
+ τφ 1

2
= εφ− 1

2
, (E2)

τφ− 1
2
+ αφ 3

2
= εφ 1

2
, (E3)

where ε is the single body energy and φm is the amplitude
associated with the fermionic operator cm and J 1

2
= α. The
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expansion of the local operators cm in terms of its right and left
moving components around the Fermi points [see Eq. (18)]
leads to the equations

τ
(
ψ II

L − iψ II
R

) = (−iε + α)ψ I
L + (ε − iα)ψ I

R, (E4)

τ
(
ψ I

L + iψ I
R

) = (iε + α)ψ II
L + (ε + iα)ψ II

R , (E5)

with

lim
a→0

ψL,R
( − 3

2 a
) = lim

a→0
ψL,R

( − 1
2 a

) = ψ I
L,R, (E6)

lim
a→0

ψL,R
(

3
2 a

) = lim
a→0

ψL,R
(

1
2 a

) = ψ II
L,R, (E7)

Solving for ψ I
L in Eq. (E4) and putting it into Eq. (E5), we

have

ψ I
R = 1

2ατ

(
i(τ 2 − α2 − ε2)ψ II

L + (τ 2 − (ε + iα)2)ψ II
R

)
.

(E8)

Inserting this expression into Eq. (E4), we arrive at

ψ I
L = 1

2ατ

(
(τ 2 + (α + iε)2)ψ II

L − i(τ 2 − α2 + ε2)ψ II
R

)
.

(E9)

We can express these two equations as ψ I = T ψ II , where T
is a transfer matrix:(

ψ I
L

ψ I
R

)
= 1

2ατ

(
τ 2 + (α + iε)2 −i(τ 2 − α2 + ε2)
i(τ 2 − α2 − ε2) τ 2 − (ε + iα)2

)

×
(

ψ II
L

ψ II
R

)
. (E10)

Furthermore, at half filling we have that ε −−−→
L→∞

0 and the

transfer matrix simplifies to

T = 1

2ατ

(
τ 2 + α2 −i(τ 2 − α2)

i(τ 2 − α2) τ 2 + α2

)
. (E11)

Note that this can be also written as

T = 1

2τ̃

(
τ̃ 2 + 1 −i(τ̃ 2 − 1)

i(τ̃ 2 − 1) τ̃ 2 + 1

)
, (E12)

where τ̃ = τ
α

. Substituting τ = e−hγ and α = e− h
2 we have the

expression Eq. (25).

APPENDIX F: DETAILS OF THE RG APPLIED TO THE
SCS SYSTEM

In this Appendix, we derive the ground state of the Hamil-
tonian

HN (h, γ )scs = −1

2

N∑
m=1

Jmc†
mcm+1 + H.c., with

Jm =
{

e−h(|m−(L+ 1
2 )|− 1

2 ) if m �= L, L + 1,

e−hγ if m ∈ {L, L + 1}.
(F1)

We use the RG scheme explained in the main text. There
are three cases to be considered.

(1) Case γ < 1. The couplings present a double tie at the
center, so that the dominant interaction involves the three cen-
tral sites, L, L + 1 and L + 2. The Dasgupta-Ma prescription
Eq. (A2) and the sum rule Eq. (A3) are not valid in this
situation. We must perform a first-order perturbation approach
to renormalize three fermionic sites into an effective site (see
Appendix A of Ref. [22]), leading to a system with N − 2
sites. The next RG step involves the effective fermion mode
created on the previous one and its two nearest neighbours.
Iterating this procedure one obtains the GS:

|GS〉γ<1 = (
gξ

L

)†
L−2∏
m=1

(
f sm
m

)†
(g+

0 )†|0〉, (F2)

where sm = (−1)m, ξ = (−1)
L
2 and

g±
m = 1√

2
(cL+1 + b±

L−2m,L+2(m+1)), (F3)

g±
L = 1√

2
(c1 + b±

2,2L ), (F4)

f ±
n = 1√

2
(b±

L+1−n,L+1+n + b±
L−n,L+2+n), (F5)

with b±
i, j defined in Eq. (7).

(2) Case γ = 1. The system presents a quadruple tie at the
center. The five central sites involved are renormalized into an
effective site on a system with N − 4 sites. At this point the
situation is equivalent to the γ < 1 case and further RG steps
are the same as the ones discussed in the previous item.

(3) Case γ > 1. In this situation, the dominant interactions
are two nonconsecutive log-couplings 1, which couple respec-
tively the sites L − 1 and L, and the sites L + 2 and L + 3.
Although the sum rule (A3) is not valid, the Dasgupta-Ma
equation (A2) can be applied sequentially twice, yielding
two fermionic excitations with the same energy and parity,
b+

L−1,L and b+
L+2,L+3, and leading to a effective system whose

Hamiltonian is HN−4(h, 1 + γ )scs. The next decimation step is
not univocal.

(i) If γ ∈ (1, 2) the dominant interaction involves the three
central sites L − 2, L and L + 4 of the original chain and the

γ ∈ (2, 3)

1 + γ > 3
1 + γ > 3

4 < 2 + γ < 5
4 < 2 + γ < 5

5 4 3 2 1 γ γ 1 2 3 4 5

FIG. 15. RG procedure for a system HN (h, γ )scs with h � 1 and
γ ∈ (2, 3). The system admits two Dasgupta-Ma RG steps, above
links with log-coupling 1, and after those the renormalized system
shows a double tie of lowest log-couplings, with the two central
log-couplings equal to 1 + γ (which must be larger than 3). At this
moment, we apply the same RG procedure than for γ < 1.
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situation is the same as the one described originally for γ < 1,
with the double tie (1).

(ii) If γ = 2 there is a quadruple tie, same as (2).
(iii) If γ ∈ (2, 3) the dominant interactions are the two

links with log-coupling 3, which is similar to the situation
described in item (3). At the end of this step there are two
fermionic excitations more, b+

L−3,L−2 and b+
L+4,L+5, and the

Hamiltonian of the decimated system is HN−8(h, 2 + γ )scs.
We show in Fig. 15 this situation.

Note that unless γ > L − 1 the RG flows towards the
double tie situation and, if γ ∈ N, the decimated system of

the γ th step will present a quadruple tie. Hence, the GS is

|GS〉γ>1 = (g−
L )†

L−2(1+�γ �)∏
k=1

(
f ηk

k+2�γ �
)†

(g−
�γ �)†

×
�γ �∏
m=1

(b+
L−2(m−1),L−2(m−1)−1)†(b+

L+2m,L+2m+1)†|0〉,

(F6)

where �� is the floor function, ηk = (−1)k+1, χk = (−1)k−�γ �.

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement
in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[2] N. Laflorencie, Quantum entanglement in condensed matter
systems, Phys. Rep. 646, 1 (2016).

[3] M. B. Hastings, Solving gapped Hamiltonians locally, Phys.
Rev. B 73, 085115 (2006).

[4] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Area
Laws in Quantum Systems: Mutual Information and Correla-
tions, Phys. Rev. Lett. 100, 070502 (2008).

[5] M. Sredniki, Entropy and Area, Phys. Rev. Lett. 71, 666 (1993).
[6] J. Eisert, M. Cramer, and M. B. Plenio, Area-laws for the en-

tanglement entropy: a review, Rev. Mod. Phys. 82, 277 (2010).
[7] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renor-

malized entropy in conformal field theory, Nucl. Phys. B 424,
443 (1994).

[8] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003).

[9] P. Calabrese and J. L. Cardy, Entanglement entropy and quan-
tum field theory, J. Stat. Mech. (2004) P06002.

[10] P. Calabrese and J. Cardy, Entanglement entropy and conformal
field theory, J. Phys. A 42, 504005 (2009).

[11] G. Refael and J. E. Moore, Entanglement Entropy of Random
Quantum Critical Points in One Dimension, Phys. Rev. Lett. 93,
260602 (2004).

[12] G. Refael and J. E. Moore, Criticality and entanglement in
random quantum systems, J. Phys. A 42, 504010 (2009).

[13] N. Laflorencie, Scaling of entanglement entropy in the random
singlet phase, Phys. Rev. B 72, 140408(R) (2005).

[14] M. Fagotti, P. Calabrese, and J. E. Moore, Entanglement spec-
trum of random-singlet quantum critical points, Phys. Rev. B
83, 045110 (2011).

[15] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, Entanglement
in low-energy states of the random coupling model, JSTAT 2014
(2014) P07003.

[16] P. Ruggiero, V. Alba, and P. Calabrese, The entanglement
negativity in random spin chains, Phys. Rev. B 94, 035152
(2016).

[17] C. Dasgupta and S.-K. Ma, Low-temperature properties of the
random Heisenberg antiferromagnetic chain, Phys. Rev. B 22,
1305 (1980).

[18] D. S. Fisher, Critical behavior of random transverse-field Ising
spin chains, Phys. Rev. B 51, 6411 (1995).

[19] G. Vitagliano, A. Riera, and J. I. Latorre, Volume-law scaling
for the entanglement entropy in spin 1/2 chains, New J. Phys.
12, 113049 (2010).

[20] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, From confor-
mal to volume-law for the entanglement entropy in exponen-
tially deformed critical spin 1/2 chains, J. Stat. Mech. (2014)
P10004.

[21] G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, Entanglement
over the rainbow, J. Stat. Mech. (2015) P06002.

[22] N. Samos Sáenz de Buruaga, S. N. Santalla, J. Rodríguez-
Laguna, and G. Sierra, Symmetry protected phases in inhomo-
geneous spin chains, J. Stat. Mech. (2019) 093102.

[23] J. Rodríguez-Laguna, S. N. Santalla, G. Ramírez, and G.
Sierra, Entanglement in correlated random spin chains, RNA
folding and kinetic roughening, New J. Phys. 18, 073025
(2016).

[24] V. Alba, S. N. Santalla, P. Ruggiero, J. Rodríguez-Laguna, P.
Calabrese, and G. Sierra, Unsual area-law violation in random
inhomogeneous systems, J. Stat. Mech. (2019) 023105.

[25] O. Boada, A. Celi, J. I. Latorre, and M. Lewenstein, Dirac
equation for cold atoms in artificial curved spacetimes, New J.
Phys. 13, 035002 (2011).

[26] J. Rodríguez-Laguna, L. Tarruell, M. Lewenstein, and A. Celi,
Synthetic Unruh effect in cold atoms, Phys. Rev. A 95, 013627
(2017).

[27] J. Rodríguez-Laguna, J. Dubaîl, G. Ramírez, P. Calabrese, and
G. Sierra, More on the rainbow chain: entanglement, space-time
geometry and thermal states, J. Phys. A 50, 164001 (2017).

[28] E. Tonni, J. Rodríguez-Laguna, and G. Sierra, Entanglement
hamiltonian and entanglement contour in inhomogeneous 1D
critical systems, J. Stat. Mech. (2018) 043105.

[29] I. MacCormack, A. L. Liu, M. Nozaki, and S. Ryu, Holographic
duals of inhomogeneous systems: The rainbow chain and the
sine-square deformation model, J. Phys. A: Math. Theor. 52
505401 (2019).

[30] R. N. Alexander, A. Ahmadain, Z. Zhang and I. Klich, Holo-
graphic rainbow networks for colorful Motzkin and Fredkin
spin chains, Phys. Rev. B 100, 214430 (2019).

[31] G. C. Levine, Entanglement Entropy in a Boundary Defect
Model, Phys. Rev. Lett. 93, 266402 (2004).

[32] I. Peschel, Entanglement entropy with interface defects, J. Phys.
A: Math. Gen. 38, 4327 (2005).

[33] F. Iglói, Z. Szatmári, and Y.-C. Lin, Entanglement entropy
with localized and extended defects, Phys. Rev. B 80, 024405
(2009).

[34] V. Eisler and I. Peschel, Entanglement in fermionic chains with
interface defects, Ann. Phys. (Berlin) 522, 679 (2010).

[35] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

205121-16

https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1016/j.physrep.2016.06.008
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1103/PhysRevB.73.085115
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/PhysRevLett.71.666
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1103/PhysRevLett.93.260602
https://doi.org/10.1103/PhysRevLett.93.260602
https://doi.org/10.1103/PhysRevLett.93.260602
https://doi.org/10.1103/PhysRevLett.93.260602
https://doi.org/10.1088/1751-8113/42/50/504010
https://doi.org/10.1088/1751-8113/42/50/504010
https://doi.org/10.1088/1751-8113/42/50/504010
https://doi.org/10.1088/1751-8113/42/50/504010
https://doi.org/10.1103/PhysRevB.72.140408
https://doi.org/10.1103/PhysRevB.72.140408
https://doi.org/10.1103/PhysRevB.72.140408
https://doi.org/10.1103/PhysRevB.72.140408
https://doi.org/10.1103/PhysRevB.83.045110
https://doi.org/10.1103/PhysRevB.83.045110
https://doi.org/10.1103/PhysRevB.83.045110
https://doi.org/10.1103/PhysRevB.83.045110
https://doi.org/10.1088/1742-5468/2014/07/P07003
https://doi.org/10.1088/1742-5468/2014/07/P07003
https://doi.org/10.1088/1742-5468/2014/07/P07003
https://doi.org/10.1088/1742-5468/2014/07/P07003
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1103/PhysRevB.94.035152
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.22.1305
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1103/PhysRevB.51.6411
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1367-2630/12/11/113049
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2014/10/P10004
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1742-5468/2015/06/P06002
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1742-5468/ab3192
https://doi.org/10.1088/1367-2630/18/7/073025
https://doi.org/10.1088/1367-2630/18/7/073025
https://doi.org/10.1088/1367-2630/18/7/073025
https://doi.org/10.1088/1367-2630/18/7/073025
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1742-5468/ab02df
https://doi.org/10.1088/1367-2630/13/3/035002
https://doi.org/10.1088/1367-2630/13/3/035002
https://doi.org/10.1088/1367-2630/13/3/035002
https://doi.org/10.1088/1367-2630/13/3/035002
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1751-8121/aa6268
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1742-5468/aab67d
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1088/1751-8121/ab3944
https://doi.org/10.1103/PhysRevB.100.214430
https://doi.org/10.1103/PhysRevB.100.214430
https://doi.org/10.1103/PhysRevB.100.214430
https://doi.org/10.1103/PhysRevB.100.214430
https://doi.org/10.1103/PhysRevLett.93.266402
https://doi.org/10.1103/PhysRevLett.93.266402
https://doi.org/10.1103/PhysRevLett.93.266402
https://doi.org/10.1103/PhysRevLett.93.266402
https://doi.org/10.1088/0305-4470/38/20/002
https://doi.org/10.1088/0305-4470/38/20/002
https://doi.org/10.1088/0305-4470/38/20/002
https://doi.org/10.1088/0305-4470/38/20/002
https://doi.org/10.1103/PhysRevB.80.024405
https://doi.org/10.1103/PhysRevB.80.024405
https://doi.org/10.1103/PhysRevB.80.024405
https://doi.org/10.1103/PhysRevB.80.024405
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevLett.42.1698


PIERCING THE RAINBOW STATE: ENTANGLEMENT ON … PHYSICAL REVIEW B 101, 205121 (2020)

[36] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su,
Solitons in conducting polymers, Rev. Mod. Phys. 60, 781
(1988).

[37] R. Vasseur, A. C. Potter, Yi-Zhuang, and A. W. W. Ludwig,
Entanglement transitions from holographic random tensor net-
works, Phys. Rev. B 100, 134203 (2019).

[38] I. Peschel, Calculation of reduced density matrices from corre-
lation functions, J. Phys. A: Math. Gen. 36, L205 (2003).

[39] G. Sierra, The Riemann zeros as energy levels of a Dirac
fermion in a potential built from the prime numbers in Rindler
spacetime, J. Phys. A: Math. Theor. 47, 325204 (2014).

[40] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
Applied Mathematics Series - 49 (US Department of Com-
merce, National Bureau of Standards, 1948), p. 1004

[41] B.-Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz
determinants and the Fisher–Hartwig conjecture, J. Stat. Phys.
116, 79 (2004).

[42] J. Cardy and E. Tonni, Entanglement Hamiltonians in two-
dimensional conformal field theory, J. Stat. Mech. (2016)
123103.

[43] H. Li and F. D. M. Haldane, Entanglement Spectrum as a Gen-
eralization of Entanglement Entropy: Identification of Topo-
logical Order in Non-Abelian Fractional Quantum Hall Effect
States, Phys. Rev. Lett. 101, 010504 (2008).

[44] A. M. Läuchli, Operator content of real-space entanglement
spectra at conformal critical points, arXiv:1303.0741v1

[45] Y. Chen and G. Vidal, Entanglement contour, J. Stat. Mech.
(2014) P10011.

[46] A. Coser, C. de Nobili, E. Tonni, A contour for the entangle-
ment entropies in harmonic lattices, J. Phys. A: Math. Theor.
50, 314001 (2017).

[47] S. Singha Roy, S. N. Santalla, J. Rodríguez-Laguna, and G.
Sierra, Entanglement as geometry and flow, arXiv:1906.05146.

[48] T. Kennedy and H. Tasaki, Hidden symmetry breaking and the
haldane phase in s = 1 quantum spin chains, Commun. Math.
Phys. 147, 431 (1992).

[49] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes
in mesoscopic normal-superconducting hybrid structures, Phys.
Rev. B 55, 1142 (1997).

[50] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, En-
tanglement spectrum of a topological phase in one dimension,
Phys. Rev. B 81, 064439 (2010).

[51] L. Fidkowski and A. Kitaev, Topological phases of
fermions in one dimension, Phys. Rev. B 83, 075103
(2011).

[52] A. M. Turner, F. Pollmann and E. Berg, Topological phases
of one-dimensional fermions: An entanglement point of view,
Phys. Rev. B 83, 075102 (2011).

[53] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of Gapped
Symmetric Phases in 1D Spin Systems, Phys. Rev. B 83,
035107 (2011).

[54] X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of
1D gapped quantum phases in interacting spin systems, Phys.
Rev. B 84, 235128 (2011).

[55] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Symme-
try protection of topological order in one-dimensional quantum
spin systems, Phys. Rev. B 85, 075125 (2012).

205121-17

https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/RevModPhys.60.781
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.1103/PhysRevB.100.134203
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/1751-8113/47/32/325204
https://doi.org/10.1088/1751-8113/47/32/325204
https://doi.org/10.1088/1751-8113/47/32/325204
https://doi.org/10.1088/1751-8113/47/32/325204
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1023/B:JOSS.0000037230.37166.42
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1088/1742-5468/2016/12/123103
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
https://doi.org/10.1103/PhysRevLett.101.010504
http://arxiv.org/abs/arXiv:1303.0741v1
https://doi.org/10.1088/1742-5468/2014/10/P10011
https://doi.org/10.1088/1742-5468/2014/10/P10011
https://doi.org/10.1088/1742-5468/2014/10/P10011
https://doi.org/10.1088/1751-8121/aa7902
https://doi.org/10.1088/1751-8121/aa7902
https://doi.org/10.1088/1751-8121/aa7902
https://doi.org/10.1088/1751-8121/aa7902
http://arxiv.org/abs/arXiv:1906.05146
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1007/BF02097239
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.075102
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125

