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We characterize the Casimir forces for the Dirac vacuum on free-fermionic chains with smoothly varying hop-
ping amplitudes, which correspond to (1 + 1)-dimensional [(1 + 1)D] curved spacetimes with a static metric in
the continuum limit. The first-order energy potential for an obstacle on that lattice corresponds to the Newtonian
potential associated with the metric, while the finite-size corrections are described by a curved extension of the
conformal field theory predictions, including a suitable boundary term. We show that for weak deformations of
the Minkowski metric, Casimir forces measured by a local observer at the boundary are universal. We provide
numerical evidence for our results on a variety of (1 + 1)D deformations: Minkowski, Rindler, anti–de Sitter
(the so-called rainbow system), and sinusoidal metrics. Moreover, we show that interactions do not preclude our
conclusions, exemplifying this with the deformed Heisenberg chain.
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I. INTRODUCTION

The quantum vacuum on a static spacetime is nothing but
the ground state (GS) of a certain Hamiltonian. Therefore it is
subject to quantum fluctuations which help minimize its en-
ergy. Yet, these fluctuations are clamped near the boundaries,
giving rise to the celebrated Casimir effect [1]; see Ref. [2] for
experimental confirmations. Its relevance extends away from
the quantum realm, with applications to thermal fluctuations
in fluids [3]. Its initial description required two infinite parallel
plates, giving rise to an attractive force between them. In fact,
this attraction was rigorously proved for identical plates by
Kenneth and Klich [4], yet the force can become repulsive
or even cancel out when the boundary conditions do not
match [5]. The special features of fermionic one-dimensional
(1D) systems have also been considered [6,7].

For fields subject to conformal invariance, the Casimir
force is associated with the conformal anomaly, measured
by the central charge in 2D conformal field theory (CFT),
c [8–11]. The expression for the energy contains a nonuni-
versal contribution proportional to the system size, plus
finite-size corrections of order O(1/N ) which are fixed by
conformal invariance. Moreover, conformal invariance is
strong enough to yield an analytical expression for the Casimir
forces in the presence of arbitrarily shaped boundaries [12].

The peculiarities of Casimir forces in curved spacetimes
have been considered by several authors [13]. The problem is
already difficult for static spacetimes and weak gravitational
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fields [14–16]. The Casimir force takes the same form on
weak static gravitational fields at first order, when coordinate
differences are substituted by actual distances, although with
nontrivial second-order corrections. Interestingly, the Casimir
effect has been put forward as a possible explanation of the
cosmological constant, making use of Lifshitz theory [17,18].

Even if our technological abilities do not allow us to access
direct measurements of the Casimir effect in curved space-
times, we are aware of possible strategies to develop quantum
simulators using current technologies, such as ultracold atoms
in optical lattices [19]. Concretely, it has been shown that the
Dirac vacuum on certain static spacetimes can be character-
ized in such a quantum simulator [20], and an application has
been devised to measure the Unruh radiation, including its
nontrivial dimensional dependence [21–23]. The key insight
is the use of curved optical lattices, in which fermionic atoms
are distributed on a flat optical lattice with inhomogeneous
hopping amplitudes, thus simulating a position-dependent in-
dex of refraction or, in other terms, an optical metric.

Dirac vacua in such curved optical lattices present quite
novel properties. When the background metric is negatively
curved, i.e., (1 + 1)D anti–de Sitter (AdS), the entanglement
entropy (EE) may violate maximally the area law [24], form-
ing the so-called rainbow state [25–27]. Interestingly, the
EE of blocks within the GS of a (1 + 1)D system with con-
formal invariance is fixed by CFT [28–31]. Such conformal
arguments can be extended to a statically deformed (1 + 1)D
system, and the EE of the rainbow system was successfully
predicted [32], along with other interesting magnitudes, such
as the entanglement spectrum, entanglement contour, and en-
tanglement Hamiltonian [33,34].

The aim of this paper is to extend the aforementioned
(1 + 1)D CFT predictions on curved backgrounds to charac-
terize the Casimir force for the fermionic vacuum on curved
optical lattices. This paper is organized as follows. In Sec. II

2643-1564/2021/3(1)/013062(9) 013062-1 Published by the American Physical Society

https://orcid.org/0000-0002-7798-5421
https://orcid.org/0000-0002-6521-526X
https://orcid.org/0000-0003-2218-7980
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.013062&domain=pdf&date_stamp=2021-01-20
https://doi.org/10.1103/PhysRevResearch.3.013062
https://creativecommons.org/licenses/by/4.0/


MULA, SANTALLA, AND RODRÍGUEZ-LAGUNA PHYSICAL REVIEW RESEARCH 3, 013062 (2021)

Jm

c†m c†m+1

(a)

(b)

FIG. 1. (a) Illustration of an inhomogeneous chain with N = 8
sites. (b) Corresponding positions after the deformed coordinates x̃.

we describe our physical system and summarize the CFT
techniques employed to evaluate the EE on curved back-
grounds, providing some examples. Section III characterizes
the Casimir forces on curved optical lattices, using the same
example backgrounds, emphasizing the role of universality in
the finite-size corrections. The paper closes with a series of
conclusions and proposals for further work.

II. FERMIONS ON CURVED OPTICAL LATTICES

Let us consider an open fermionic chain with (even) N
sites, whose Hilbert space is spanned by creation operators
c†

m, m ∈ {1, . . . , N} following standard anticommutation rela-
tions. We can define an inhomogeneous hopping Hamiltonian,

H (J)N = −
N−1∑
m=1

Jmc†
mcm+1 + H.c., (1)

where J = {Jm}N−1
m=1 are the hopping amplitudes, Jm ∈ R+ re-

ferring to the link between sites m and m + 1; see Fig. 1(a).
In order to obtain some physical intuition, let us remember
that the set of {Jm} constitutes a position-dependent Fermi
velocity; that is, a signal takes a time of order J−1

m to travel
between sites m and m + 1. If the {Jm} are smooth enough,
we can assume Jm = J (xm) for a certain smooth function
J (x), with xm = m�x. Unless otherwise specified, we will use
�x = 1.

It can be proved that Eq. (1) is a discretized version of
the Hamiltonian for a Dirac fermion on a curved (1 + 1)D
spacetime with a static metric of the form [20,27,32]

ds2 = −J2(x)dt2 + dx2, (2)

i.e., a spacetime metric with a position-dependent speed of
light or, equivalently, a modulated index of refraction. Defin-
ing x̃(x) such that

dx̃ = dx

J (x)
, (3)

we have

ds2 = J2(x)(−dt2 + dx̃2), (4)

which is conformally equivalent to the Minkowski metric.
This deformation is illustrated in Fig. 1(b): Sites get closer
when the Jm associated with their link is large, giving rise to a
homogeneous effective hopping amplitude.

Conformal equivalence between metrics (4) and the
Minkowski metric suggests that CFT techniques might de-
scribe the universal properties of low-energy eigenstates of

Hamiltonian (1). Indeed, we will show that this is the case,
once those universal properties have been ascertained.

Some interesting metrics fall into this category. If J (x) =
J0 is a constant, we recover Minkowski spacetime on a finite
spatial interval. The Rindler metric, which is the spacetime
structure perceived by an observer moving with constant ac-
celeration a in a Minkowski metric, is described by

J (x) = J0 + ax. (5)

Notice that it presents a horizon at xh = −J0/a, where the
local speed of light vanishes. Information cannot cross this
point, thus separating spacetime into two Rindler wedges [35].
We will consider some other choices for the hopping ampli-
tudes, such as the sine metric,

J (x) = J0 + A sin(kx), (6)

or a rainbow metric given by

J (x) = J0 exp
(
−h

∣∣∣x − N

2

∣∣∣), (7)

for h � 0, with h = 0 corresponding to the Minkowski case.
This metric has constant negative curvature except at the
center, x = N/2, thus resembling an adS space, and has been
considered recently because its vacuum presents volumet-
ric entanglement [25–27,32–34]. Unless otherwise stated, we
will always assume J0 = 1.

A. Free fermions on the lattice

The exact diagonalization of Hamiltonian (1) is a straight-
forward procedure which only involves the solution of the
associated single-body problem. Let us define the hopping
matrix, Ti j = Tji = −Jiδi, j+1, such that

H (J)N = −
∑
i, j

Ti jc
†
i c j ; (8)

then we can diagonalize the hopping matrix, Ti j =∑
k Ui,kεkŪj,k , where εk are the single-body energies and the

columns of Ui,k represent the single-body modes. The GS of
Hamiltonian (1) can be written as |�〉 = ∏N/2

k=1 b†
k|0〉, where

|0〉 is the Fock vacuum and b†
k = ∑

i Ui,kc†
i .

The system presents particle-hole symmetry, εk =
−εN+1−k , with Ui,k = (−1)iUi,N+1−k . At half-filling the
local density is always homogeneous, 〈c†

ncn〉 = 1/2 for all n,
independently of the metric. For the Minkowski metric,

〈c†
ncn+1〉 =

N/2∑
k=1

Ūn,kUn+1,k ≈ c0

2
≡ 1

π
, (9)

plus a correction term presenting parity oscillations, related to
the fact that the Fermi momentum is kF = π/2.

B. CFT and entanglement for curved lattice fermions

Let us provide a cursory summary of the application of
CFT techniques to the characterization of the entanglement
structure of the fermionic vacuum on curved optical lattices.

The von Neumann EE of a block A of a pure state |�〉 is
defined as

SA = −Tr[ρ ln ρA], (10)
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where ρA = TrĀ|�〉〈�| is the reduced density matrix for
block A. In the case of Gaussian states, which follow Wick’s
theorem, this magnitude can be determined from the two-point
correlation function with low computational effort [36]. Fol-
lowing Refs. [30,31], the EE of a lateral block A = {1, . . . , �}
of the GS of a conformal system with central charge c on a
chain with N sites can be written as

S(�) = c

6
ln

[
N

π�x
sin

(
π�

N

)]
+ Snonuniv, (11)

where c = 1 for free fermions, �x is the UV cutoff, and
Snonuniv is a nonuniversal contribution containing a constant
term and parity oscillations which has been explicitly com-
puted for the free-fermionic case [37,38].

Expression (11) has been successfully extended to evaluate
entanglement entropies on the GS of Hamiltonian (1) [32,33].
When Dirac fermions are inserted in a smooth static optical
metric of the type (2), the EE deforms appropriately; that is,
the block lengths must be transformed via Eq. (3),

� → �̃ = x̃(��x) =
∫ ��x

x0

dx

J (x)
≈

�−1∑
p=1

�x

Jp
, (12)

while Ñ = x̃(N�x). We must also take into account the trans-
formation of the UV cutoff,

�x → �x̃(�) = �x

J (�)
. (13)

Thus we obtain

S(�) = c

6
ln

[
Ñ

π�x̃
sin

(
π�̃

Ñ

)]
+ Snonuniv. (14)

Concretely, in Refs. [32,33] the EE for lateral blocks within
the GS of the rainbow Hamiltonian (1) using (7) was obtained
using

�x̃ = e−h|N/2−�|�x, (15)

hÑ = 2(ehN/2 − 1)�x, (16)

h�̃ =
{

(ehN/2 − eh(N/2−�) )�x if � � N/2
(ehN/2 + eh(�−N/2))�x if � � N/2.

(17)

In the limit h� � 1, the EE of a block of size � � N/2
becomes

S(�) ≈ ch

6
� + Snonuniv; (18)

that is, it yields a volume law for entanglement [33], violating
maximally the so-called area law of entanglement [24]. We
can also apply Eq. (14) to the case of the Rindler metric, where
we find

S(�) = 1

6
ln

[
� ln N

π�x
sin

(
π ln(N/�)

ln N

)]
+ Snonuniv. (19)

The validity of these expressions can be checked in Fig. 2,
where we have plotted the entropy SA as a function of the
block size l for three systems using N = 400: the Minkowski
case, Eq. (11), the rainbow case with h = 0.01, Eq. (14)
with (17), and the Rindler case with a = 2, via Eq. (19).
Indeed, the nonuniversal terms are present, which also carry

FIG. 2. Entanglement entropy of the GS of free-fermionic sys-
tems on an optical chain with N = 400 for three different metrics:
Minkowski, rainbow [Eq. (7) with h = 0.01], and Rindler [Eq. (5)
with a = 2], using the procedures of Ref. [36]. The solid lines are
the CFT prediction, given by Eq. (14), with a nonuniversal constant
term added.

parity oscillations, but they are a small correction to the en-
tanglement entropy as predicted by the CFT.

The accuracy of the CFT prediction allows us to conjecture
that free Dirac fermions on curved optical lattices can be
characterized by a suitable deformation of a conformal field
theory, expecting that the nonuniversal terms will be small
enough. We will put this conjecture to the test in the next
section.

III. CASIMIR FORCES ON CURVED OPTICAL LATTICES

Let us characterize the Casimir forces on curved optical
lattices in successive approximations. First of all, we will
show that the GS energy of Hamiltonian (1) is proportional
to the sum of the hoppings in first-order perturbation theory.
This will lead us to show that the force felt by a classical ob-
stacle immersed in that state will be similar to the Newtonian
gravitational force in the corresponding metric. Then, we will
reach the main result of this paper: The finite-size corrections
to the Casimir energy are universal, and the corresponding
expressions are a deformed variant of the general CFT form.

A. Potential energy and correlator rigidity

Let us consider a free-fermionic chain of N sites on a
deformed metric, following Eq. (1). The exact vacuum energy
can be written as

EN = −2
N−1∑
p=1

JpRe〈c†
pcp+1〉. (20)

We can estimate this expression via perturbation theory, if we
assume that Jp = J0 + δJp and make use of Eq. (9). The result
at first order is

E0 ≈ −c0SN where SN ≡
N−1∑
p=1

Jp. (21)
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FIG. 3. (a) Check of the bulk prediction for the energy, E0 ≈
−c0SN , for four metrics: Minkowski, Rindler (a = 0.01), sine (A =
0.5, k = π/100), and rainbow (h = 5 × 10−3). Numerical values are
given by symbols, while the theoretical prediction is given by solid
lines. (b) Illustration of the correlator rigidity. Local correlators,
〈c†

pcp+1〉, as a function of the position p for the same four metrics.

The validity of this approximation can be checked in
Fig. 3(a), for four different metrics: Minkowski, Rindler, sine,
and rainbow. The accuracy of our conjecture suggests that
the local correlators in the deformed vacuum are still ho-
mogeneous. In fact, we will make the further claim that the
local correlators are rigid, i.e., 〈c†

pcp+1〉 ≈ c0/2 for a weakly
deformed metric. This claim has been checked independently
in Fig. 3(b), where the local correlators are shown for different
deformations. Indeed, their average values are still very close
to c0 = 2/π , and the only substantial deviation is provided by
the expected parity oscillations, which are well known in the
Minkowski case.

A heuristic argument to understand correlator rigidity
may be as follows. For fermionic fields in Minkowski
spacetime we have 〈ψ (x)ψ (x + �x)〉 ∼ �x−1. After a de-
formation, �x → �x̃ = �x/J (x). Yet, the fields transform
also as ψ̃ (x) = J1/2(x)ψ (x), and the local correlator remains
invariant.

Let us consider a classical particle standing between sites
p and p + 1, which acts like an obstacle inhibiting the local
hopping by a factor γ < 1, Jp → γ Jp. Let us now evaluate the
excess energy of the deformed GS as a function of p, V (p) =
E0(p) − E0, which acts as a potential energy function for the
obstacle. The results are shown in Fig. 4, where we plot V (p)
for the same four different situations, using N = 100 and both
γ = 0.01 and γ = 0.75. As γ approaches 1 the trivial case is
recovered; that is, the potential energy is equivalent to E0.

The first salient feature of Fig. 4 is that the potential energy
V (p) resembles the hopping function J (x), with some strong

0.2
0.3
0.4
0.5
0.6

0.1
0.2
0.3
0.4
0.5
0.6

0.1

0.2

0.3

0.1
0.2
0.3
0.4
0.5
0.6

0 10 20 30 40 50 60 70 80 90 100

V
(p

)

Minkowski γ = 0.01
γ = 0.75

V
(p

)

Rindler γ = 0.01
γ = 0.75

V
(p

)

Rainbow γ = 0.01
γ = 0.75

V
(p

)
p

Sine γ = 0.01
γ = 0.75

FIG. 4. Potential energy V (p) obtained by inhibiting the pth hop-
ping by a factor γ , Jp → γ Jp, for four different metrics: Minkowski,
Rindler (a = 0.01), rainbow (h = 0.04), and sinusoidal (A = 0.5,
k = 2π/50), always using N = 100 and two values of γ = 0.01 and
0.75. The solid lines plot J (x) multiplied by a factor which only
depends on γ .

parity oscillations. We are thus led to conjecture that a clas-
sical particle moving on a static metric in (1 + 1)D would be
dragged by a force similar to the gravitational pull. Making
use of the Hellmann-Feynman theorem, we see that

V (p) ≈ −2JpRe〈c†
pcp+1〉 ≈ −2Jpc0. (22)

B. Finite-size corrections

The GS of a finite open chain of N sites in Minkowski
spacetime is given by Cardy’s expression [8–11]

EN = −c0(N − 1) − cB − cπvF

24N
+ O(N−2), (23)

where c is the associated central charge, vF is the Fermi
velocity, and c0 and cB are nonuniversal constants, which
correspond to the bulk energy per link and the boundary
energy. Notice that the last term is universal, since its form
is fixed by conformal invariance [8–11], but the bulk and
boundary terms are not. The GS energy of Hamiltonian (1)
with Jn = 1 follows Eq. (23) very accurately, using c = 1 for
Dirac fermions, vF = 2, c0 = 2/π , and cB = 4/π − 1.

Our main target is to generalize expression (23) to the
case of deformed backgrounds. Indeed, we may follow the
guidelines of Sec. II B and attempt a substitution x → x̃, such
that dx̃/dx = J (x)−1, but it will not work for the bulk and
boundary terms. In that case, the bulk energy would become
proportional to Ñ . Thus, in the rainbow case, we should obtain
an energy term which grows exponentially with N for any
fixed h > 0, which is not found. Indeed, as we will show, that
transformation is only relevant for the universal term.
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Let us propose an extension of Eq. (23) to curved back-
grounds based on physical arguments, term by term.

(i) The term c0(N − 1) stands for the bulk energy, which
should be replaced by c0SN , i.e., the sum of the N − 1 first
hopping amplitudes, multiplied by the local correlator term.

(ii) The boundary term cB should be proportional to the
terminal hoppings, thus generalizing to cB(J1 + JN−1)/2.

(iii) The conformal correction is universal. Thus it must
be naturally deformed, changing N−1 into Ñ−1, where Ñ is
the effective length in deformed coordinates, given by Ñ =∑N−1

i=1 J−1
i (we let �x = 1).

Thus we claim that the correct generalization of Eq. (23) to
curved optical lattices is given by

EN = −c0SN − cB

2
(J1 + JN−1) − cπvF

24Ñ
+ O(N−2). (24)

This expression can be more rigorously justified through
a careful analysis of the conformal field theory origin of
Eq. (23), and this is discussed in Appendix A.

The inverse of the deformed length Ñ−1 can be given an
interesting physical interpretation. Indeed, it is easy to recog-
nize (N − 1)Ñ−1 as the harmonic average of the local speeds
of light, which can be understood as an effective Fermi veloc-
ity, v̄F . Yet, for small deformations, the harmonic average is
similar (and lower than) the arithmetical average. Thus, for
the sake of simplicity, we approximate v̄F ≈ 2SN/(N − 1).
Thus we may provide an approximate version of Eq. (24) for
a weakly deformed (1 + 1)D lattice,

EN ≈ −c0SN − cB

2
(J1 + JN−1) − πSN

12N2
. (25)

C. Universality of Casimir forces in curved backgrounds

Numerical checks of Eqs. (24) or (25) must be subtle,
because the finite-size correction is typically much smaller
than the bulk energy term. Let us consider an alternative
observable: the Casimir force measured by a local observer
located at the boundary. Since energy is associated with
a frequency, local energy measurements at site x will be
given by

E (x) = EN

g1/2
00 (x)

= EN

JN
. (26)

Such an observer will measure a force given by the co-
variant spatial derivative of F = −DxE (x); taking the lattice
spacing �x = 1 (see Appendix B for details) and changing
the sign for convenience, we define

FN ≡ EN − EN−2

JN−1 + JN−2
. (27)

Assuming smoothly varying hopping amplitudes, we ob-
tain

FN ≡ −c0 − cB

2

(
J ′

N

JN

)
− π

12N2
+ πSN

6JN N3
. (28)

Let us consider the terms individually. The first, c0 = 2/π ,
is simply associated with the bulk energy. The second is a
boundary force, which is absent from the homogeneous case,
and will take a leading role in some cases. For very weak
deformations (JN ≈ J0 + δJN is a small deformation), we can

assume that SN ≈ NJN , and we obtain

FN ≈ −c0 − cB

2

(
J ′

N

JN

)
+ π

12N2
. (29)

Thus we are led to the following claim: Casimir forces
on a weakly curved background are metric independent when
measured by a local observer at the boundary. Indeed, consider
an observer on a classical obstacle located at site p. It will
be subject both to a left and a right Casimir force. The bulk
and boundary parts will cancel out, and only the universal
finite-size correction will survive, yielding

F (p) = FN−p − Fp = π

12

(
1

(N − p)2
− 1

p2

)
. (30)

The validity of expression (29) can be checked in Fig. 5.
In all cases, the black solid line is the theoretical prediction,
Eq. (29). Figure 5(a) shows the forces FN + c0 as a function
of N for Rindler metrics of different sizes, varying both J0

and the acceleration a. We have included the Minkowski case,
which corresponds to J0 = 1 and a = 0, as one of the limits.
We notice that FN + c0 can be both positive and negative,
depending on the values of J0 and the acceleration a. This
behavior is explained through our expression (29): The bound-
ary term scales as N−1, and it is always negative. Meanwhile,
the universal conformal term scales as N−2 and is always
positive. Thus the prevalence of one or the other explains the
global behavior, but for large enough N the boundary term
is always dominant. This trade-off can be visualized in the
inset of Fig. 5(a), where we plot the absolute value |FN + c0|
as a function of N in log-log scale. For Minkowski, J0 = 1
and a = 0, the 1/N2 behavior extends for all sizes, but as
soon as a > 0 we observe a small-N behavior like N−2 which
performs a crossover into the dominant N−1 term beyond a
finite size which scales as (J0/a)1/2.

Figure 5(b) shows the case of the Casimir forces in the rain-
bow state, for which the boundary term is constant: J ′

N/JN =
−h for all N . Thus the behavior of FN + c0 corresponds
merely to the CFT term, Eq. (23) with a constant additive cor-
rection. This behavior is further clarified when this constant is
removed, and we observe the nearly perfect collapse of all the
forces in the inset of Fig. 5(b).

We have also considered the sinusoidal metric, Eq. (6),
where the boundary term dominates the force for large N ,
while the CFT term dominates for low N , as we can see in
Fig. 5(c). There, we can observe the behavior of the hoppings
(in pale pink), along with the forces and their fit to expres-
sion (29). Indeed, the force behaves like the derivative of the
hopping function. In order to highlight this behavior, we have
considered yet another metric, given by

JN = 1 + A sin(kN2), (31)

i.e., a modulated frequency sinusoidal. The results are shown
in Fig. 5(c), showing again an excellent agreement between
the theory and the numerical experiments.

IV. CASIMIR FORCE IN THE INHOMOGENEOUS
HEISENBERG MODEL

We may wonder whether these results are only valid for
free fermions or if, instead, they can be applied to other CFTs.
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FIG. 5. Casimir forces, FN + c0, for different metrics. (a) Rindler
metric. Inset: log-log plot of |FN + c0| as a function of N , in log-log
scale. Notice that most small systems are dominated by the CFT
correction, while for larger sizes the boundary term N−1 dominates.
(b) Rainbow metric. We observe that F + c0 tends to εBh. Inset:
log-log plot of FN + c0 − εBh. (c) Top: sinusoidal metric. Bottom:
modulated frequency metric.

Thus we have considered one of the simplest critical interact-
ing systems, the (inhomogeneous) spin-1/2 Heisenberg model
in 1D, defined by

H = −
L−1∑
i=1

Ji �Si · �Si+1, (32)
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+
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|

N

J0 = 0, a = 10−2

J0 = 1, a = 10−2

J0 = 1, a = 10−3

J0 = 1, a = 10−4
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FIG. 6. Casimir forces for the spin-1/2 Heisenberg chain with
Rindler couplings. The black lines correspond to the theoretical
prediction, given by Eq. (34). Compare with the inset of Fig. 5(a).

Using the Jordan-Wigner transformation, we may rewrite it in
fermionic language as

H = −
L−1∑
i=1

Ji(c
†
i ci+1 + H.c.) + 2

L∑
i=1

Ji nini+1, (33)

where we can see that fermionic particles at nearby sites
repel each other, making it impossible to use free-fermion
techniques. Yet, the GS energy of this Hamiltonian can be
accurately obtained using the density matrix renormalization
group (DMRG) algorithm [39–41]. The results for the Rindler
couplings, Eq. (5) are shown in Fig. 6. The maximal size that
we have reached is lower than in the previous case, N = 100,
because the numerical computation is more demanding. Yet,
the results show that a straightforward extension of Eq. (29)
predicts the force values with a remarkable accuracy using
c0 = 0.4431, cB = 0.2618, and vF = 1.319, through

FN ≈ −c0 − cB

2

(
J ′

N

JN

)
+ πvF

24N2
. (34)

Figure 6 shows |FN + c0| in logarithmic scale as a function
of N for different Rindler deformations of the Heisenberg
Hamiltonian, along with the theoretical prediction, Eq. (29).
These plots can be compared with the inset of Fig. 5(a).

V. CONCLUSIONS AND FURTHER WORK

We have derived an expression for the ground-state energy
of the discretized version of the Dirac equation in a deformed
(1 + 1)D medium, which corresponds to the vacuum state
in static curved metrics. We can model a classical particle
navigating through the system depressing a local hopping,
and then it can be readily checked that the classical particle
moves approximately in a potential which corresponds to the
classical gravitational potential associated with the metric.
The quantum corrections to this semiclassical result can be
obtained by suitably deforming the predictions of conformal
field theory (CFT). Indeed, we have checked that the finite-
size corrections are dominated by two terms: a boundary term
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related to the derivative of the local hopping amplitude at the
edge of the system, and a naturally deformed version of the
CFT force, where the central charge is preserved. The confor-
mal correction can be interpreted in two complementary ways:
Either the Fermi velocity is substituted by the (harmonic)
average value of the hopping terms, or the system size is
transformed by its deformed value.

In any case, we should emphasize that the finite-size
corrections to the vacuum energy are, indeed, universal.
Moreover, we have shown that an observer at a boundary mea-
suring the Casimir forces will obtain a metric-independent
value.

It is relevant to ask whether our results extend to other
conformal field theories, both interacting, such as Heisenberg,
or noninteracting, such as the Ising model in a transverse
field. Even more challenging will be to extend these results
to (2 + 1)D field theories and to consider nonstatic metrics,
where the dynamical effects will be relevant, linking them
to the dynamical Casimir effect [42]. Even if the energy is
not defined in those cases, a force can still be found acting
on classical particles. It is also interesting to consider chains
under strong inhomogeneity or randomness [43–46].

As a natural next step, we intend also to develop pro-
tocols in order to confirm these results in the laboratory
employing ultracold atoms in optical lattices, where similar
curved-metric problems have been addressed in the past, such
as the measurement of the Unruh effect [20,21].
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APPENDIX A: CFT DERIVATION OF THE CASIMIR
ENERGY IN CURVED BACKGROUNDS

Let us provide a theoretical justification for our deformed
extension of expression (23), given in Eq. (24). The two
first terms are nonuniversal: c0(N − 1) �→ c0SN , while cB �→
(cB/2)(J1 + JN ) are just a consequence of first-order pertur-
bation theory. Yet, the finite-size correction term (cπvF /24N)
is universal, i.e., fixed by conformal invariance, and requires
further explanation. In what follows we will assume that the
Fermi velocity (the speed of light) is vF = 1.

According to CFT, the variation of the energy-momentum
tensor T under a local conformal transformation, z → w(z),
in flat spacetime is given by [10]

T ′(w) =
(

dw

dz

)−2[
T (z) − c

12
{w; z}

]
, (A1)

where c is the central charge of the CFT and {w; z} is the
Schwarzian derivative,

{w; z} = d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

. (A2)

Let us consider a CFT defined on the whole complex plane,
with vanishing energy density 〈T (z)〉 ∼ 0. Now, we would
like to map it into a strip of width L, using

z → w = L

π
ln z. (A3)

This yields a nonzero vacuum energy density on the strip

〈Tstrip(w)〉 = − cπ2

24 L2
. (A4)

Now, the energy density can be evaluated {check Eq. (5.40)
of Ref. [10]},

〈T 00〉 = 〈Tzz〉 + 〈Tz̄z̄〉 = − 1

π
〈T 〉 = πc

24L2
, (A5)

which corresponds to the universal term in Eq. (23). Yet, our
z variable is composed of a deformed space variable and time,
z = x̃ + it , so the length appearing in this expression is, in
fact, L̃, as required.

Let us provide an alternative derivation, only valid for
infinitesimal deformations of the metric, gμν �→ gμν + δgμν .
The free energy density of a conformal system, F , varies as

δF = −1

2

∫
d2x

√
gδgμν〈T μν〉, (A6)

where
√

g = det (gμν )1/2 is required by the invariance of the
spacetime integration measure. Let us consider the Minkowski
energy density, given by

T 00 = πc

24L2
, (A7)

and deform the metric, mapping g00 = −1 to g00 + δg00 =
−J2(x) ≈ −1 − 2δJ (x). This leads to a new free energy,

δF =
∫

d2x δJ (x)
πc

24L2
, (A8)

where the integration must be performed on a strip [0, L] ×
R, where the vertical direction is trivial. The total energy is
given by the new free energy per unit length (in the transverse
direction),

E = FL + δFL =
(

1

L

∫ L

0
dx[1 + δJ (x)]

)
πc

24L
; (A9)

that is, the energy gets corrected by a new Fermi velocity,
which is equal to the average value of J (x) in the interval.
This is the main result of Eq. (25).

Of course, this result is only valid for very small defor-
mations, J (x) ≈ 1 + δJ (x). The full expression (24) can be
obtained by integrating it, F = ∫

δF . We may parametrize the
change from g00 = −1 to g00 = −J2(x) in a continuous way,
considering a one-parameter metric family, g00(s) = J2(x, s)
such that J2(x, 0) = −1 and J2(x, 1) = J2(x), so that the final
energy correction takes the form

�F =
∫ 1

0
ds

∫
dx

√
g(s)

(
πc

24L(s)2

)
∂J (x, s)

∂s
, (A10)
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where L(s) and
√

g(s) correspond to the effective length and
the volume factor, respectively, at each stage of the deforma-
tion process.

APPENDIX B: CASIMIR FORCE MEASURED BY
A LOCAL OBSERVER

Let E be the Casimir energy for the whole system. When
it is measured by a local observer at site x, it will be given
by E (x) = E/g00(x)1/2 = E/J (x), following Eq. (26). Let us
remember that the energy is not a scalar, but a vector pointing
along the time axis: (E (x), 0). The force is defined as the
spatial component of the covariant derivative of the energy,

F (x) = −DxE (x), (B1)

where the covariant derivative of a vector is defined as

DμV α = ∂μV α + �α
μνV ν, (B2)

where the �α
μν are the Christoffel symbols, given by

�α
μν = 1

2 gαβ (gβμ,ν + gβν,μ − gμν,β ). (B3)

for the metric connection. In the case of an optical metric,
Eq. (2), the only relevant Christoffel symbol is

�0
10 = J ′(x)

J (x)
. (B4)

Thus we can find the force

F (x) = −∂xE (x)

J (x)
+ J ′(x)

J (x)
E (x) − J ′(x)

J (x)
E (x) = −∂xE (x)

J (x)
.

(B5)

From this equation we can find a possible definition of the
Casimir force felt by a local observer at the boundary,

FN ≈ −EN − EN−1

JN�x
, (B6)

where we set �x = 1, since it is arbitrary. Yet, the strong
parity oscillations suggest that a better alternative is to take
the discrete derivative over two lattice spacings,

FN ≡ − EN − EN−2

JN−2 + JN−1
. (B7)
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