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ABSTRACT
The theory of nonlocal isothermal hydrodynamics near a solid object derived microscopically in the study by Camargo et al. [J. Chem.
Phys. 148, 064107 (2018)] is considered under the conditions that the flow fields are of macroscopic character. We show that in the limit
of macroscopic flows, a simple pillbox argument implies that the reversible and irreversible forces that the solid exerts on the fluid can be
represented in terms of boundary conditions. In this way, boundary conditions are derived from the underlying microscopic dynamics of the
fluid-solid system. These boundary conditions are the impenetrability condition and the Navier slip boundary condition. The Green-Kubo
transport coefficients associated with the irreversible forces that the solid exert on the fluid appear naturally in the slip length. The microscopic
expression for the slip length thus obtained is shown to coincide with the one provided originally by Bocquet and Barrat [Phys. Rev. E 49,
3079 (1994)].

Published under license by AIP Publishing. https://doi.org/10.1063/1.5088354

I. INTRODUCTION

Field theories such as hydrodynamics are described with par-
tial differential equations (PDEs) that, from a mathematical point of
view, require for their solution the specification of boundary condi-
tions. The boundary conditions select among the family of solutions
of the PDE those that meet certain requirements that describe the
physical conditions of the system. The boundary conditions are, in
general, compact forms of describing the interaction of the system
with that part of the world beyond the boundaries and which is not
included in the description of the system.

It is obvious that hydrodynamics as a field theory is, in fact,
a coarse-grained representation of fluid systems that at a micro-
scopic level are composed of atoms and/or molecules. In Ref. 1, we
have derived the equations of hydrodynamics from the microscopic
Hamiltonian dynamics with the standard technique of projection
operators.2 A similar derivation for quiescent nonisothermal fluids
has also been considered in Ref. 3. While this program has been
done many times in the past for the case of “unconfined” fluids,4,5

the novelty of Ref. 1 relies on the fact that the interactions with a

solid object are considered explicitly. The resulting hydrodynamic
equations contain additional terms that represent, in a coarse-
grained way, the interaction of the solid with the fluid. These inter-
actions are highly localized near the solid surface and have two com-
ponents. The first component is purely reversible and responsible
for the impenetrability of the solid by the fluid. It can be modeled
with a coarse-grained potential of the hard core type in the free
energy functional. The second component is irreversible and pro-
duces forces on the fluid proportional to both velocity gradients
near the surface of the particle and velocity differences between the
fluid velocity near the surface of the solid and the solid velocity. The
irreversible forces contain transport “coefficients” that are given in
terms of Green-Kubo expressions that can be explicitly computed, in
principle, in molecular dynamic (MD) simulations. This, of course,
requires a suitable discretization of the continuum equations that
will be presented elsewhere.6–9

For situations in which the solid has macroscopic dimensions
(as compared with molecular correlations) and the flow fields vary
accordingly on these length scales, we expect that the coarse-grained
solid-fluid interactions can be represented with boundary conditions
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to be applied on the fluid region, slightly away from the surface of
the solid. The purpose of this paper is to consider the application
of the theory in Ref. 1 to macroscopic situations. Under simplify-
ing symmetry assumptions about the interactions between the solid
sphere and fluid, this leads to a derivation of boundary conditions
for hydrodynamics from microscopic principles.

From a thermodynamic point of view, the issue of bound-
ary conditions as emerging from “Physics” rather than “Numerical
Analysis” has also been considered in the past10–15 (see Ref. 16 for
a review). In a pioneering work, Bedeaux, Albano, and Mazur10

used linear irreversible thermodynamics to derive phenomenolog-
ical equations for fluids with interfacial effects, an approach that
naturally leads to boundary conditions that include in its formula-
tion specific transport coefficients. Brenner17 and Qian et al.14 dis-
cuss the physics underlying boundary conditions and present singu-
lar perturbation methods and scaling arguments that enlighten the
emergence of boundary conditions from a physical perspective. The
above approaches are phenomenological, based on thermodynamic
considerations.

From a statistical mechanics point of view, there has also been
a large body of studies dealing with the problem of derivation of
boundary conditions from either linear response theory18–25 or from
the comparison of measured correlations of hydrodynamic variables
with analytical predictions of continuum hydrodynamics.18,26 We
refer to Ref. 1 for the discussion of this literature.

In this paper, we consider the theory presented in Ref. 1 in
the limit of macroscopic geometries and flows. This allows us to
obtain the boundary conditions to be satisfied by the flow field with
explicit microscopic expressions for the different transport coeffi-
cients entering the slip boundary condition. This approach to obtain
microscopic expressions for transport coefficients is very different
and complementary to either linear response theory or the method
of comparison of equilibrium correlation functions with analytical
results.

This paper is organized as follows: In Sec. II, we advance the
main results of this paper for the sake of clarity. In Sec. III, a sum-
mary of Ref. 1 is given as this is our starting point in the deriva-
tion of boundary conditions. In Sec. IV, we use a pillbox argument
to obtain a mechanical balance condition. In Sec. V, we show that
under the assumption of a linear velocity profile within the pillbox,
the mechanical balance condition leads to the slip boundary con-
dition with explicit expressions for the slip length in microscopic
terms. In Sec. VI, we show that the resulting slip length is identical,
with a suitable redefinition of the wall position, to the microscopic
expression given by Bocquet and Barrat18 (referred to as BB in the
following).

II. SUMMARY
We advance the main results of the present paper, which are the

boundary conditions for the velocity field of a fluid around a non-
rotating solid sphere that has velocity V. The sphere radius is much
larger than molecular dimensions, and around a point rwall near the
atomically fuzzy surface, we consider a very flat pillbox. In the scale
of the pillbox, the surface of the sphere appears flat. It is assumed
that the velocity field inside the pillbox takes a linear form

v(r) = vwall + γ̇ ⋅ (r − rwall), (1)

where γ̇ is the shear rate tensor and vwall is the value of the velocity
field at the point rwall. By using estimates of order of magnitude, a
mechanical balance condition on the pillbox leads to the following
boundary conditions to be satisfied by vwall:

0 = n ⋅ (vwall −V),

η′t1 ⋅ [γ̇ + γ̇T] ⋅ n = γ∣∣t1 ⋅ [vwall −V],

η′t2 ⋅ [γ̇ + γ̇T] ⋅ n = γ∣∣t2 ⋅ [vwall −V],

(2)

where n is a unit vector normal to the solid wall and t1, t2 are the unit
tangent vectors to the sphere surface. The point rwall in Eq. (1) on
which the boundary conditions apply has a microscopic expression
in terms of a Green-Kubo-like formula

rwall =
1
γ∣∣S ∫

∆t

0
dt⟨F̂∣∣(t)∑

ij′
F̂∣∣ij′ri⟩. (3)

In this expression, F̂∣∣ij′ = t ⋅ F̂ij′ is the tangent component (any of
them) of the force that the solid atom j′ exerts on the fluid atom i and
F̂∣∣ = ∑ij′ F̂

∣∣

ij′ , where the sums are over the atoms of the solid sphere
that are within the pillbox. Unprimed indices refer to fluid particles,
while primed indices like j′ refer to any of the N′ atoms in the solid.
The position of the point rwall may be taken as a definition of the
exact location of the “solid wall surface” out of an atomically fuzzy
surface. The friction coefficient in (2) and (3) is defined in terms of
a Green-Kubo formula

γ∣∣ =
1
S ∫

∆t

0
dt⟨F̂∣∣(t)F̂∣∣⟩. (4)

Finally, the modified shear viscosity η′ = η − G(1) is given in terms
of the shear viscosity η defined in terms of the usual Green-Kubo
expression

η =
1

VkBT ∫
∆t

0
dt⟨σ̂∣∣�(t)σ̂∣∣�⟩, (5)

where the bulk stress tensor of the fluid is given as

σ̂ =∑
i
pivi +

1
2∑ij

F̂ijrij (6)

and σ̂∣∣� = t ⋅ σ̂ ⋅n is an off-diagonal component of this tensor. Finally,
the last transport coefficient entering the boundary conditions is

G(1) =
1
S ∫

∆t

0
dt⟨F̂∣∣(t)σ∣∣�⟩. (7)

The upper limit ∆t of the Green-Kubo integrals is not set to infin-
ity in order to avoid the plateau problem. An in-depth discussion
of the plateau problem and its solution is presented in a recent
publication.27

Equations (2) are a set of three conditions that the velocity field
has to satisfy at a point rwall that is “near the solid wall.” The first
equation in (2) is the impenetrability condition, while the second
equation in (2) is the Navier slip boundary conditions in tensorial
form, as was formulated many years ago by Liu and co-workers12
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(see also recent reviews28,29). The tensorial representation allows
one, for example, to compute curvature effects to the slip near a
wall.12

The merit of this paper is not only the derivation of these
boundary conditions from the hydrodynamic equations derived in
Ref. 1 but also, more importantly, the formulation of the microscopic
expressions (3)–(7) for the quantities entering the boundary con-
ditions. Although the boundary conditions (2) have been obtained
for a solid sphere, it is apparent from the arguments in Secs. IV–VI
that they can be extended to any flow geometry, given that such a
geometry is “macroscopic” (i.e., with length scales much larger than
molecular dimensions). In order to compute from equilibrium MD
simulations the microscopic expressions entering the slip boundary
condition on a given atomic surface, the simplest and more conve-
nient geometry is a planar channel. In this case, the pillbox can be
taken as a thin slab covering all the solid-fluid interface and with
area S = LxLy, where Lx, Ly, and Lz are the box dimensions. The vol-
ume V is the volume inside the channel for which the density field is
constant (away from the molecular layering of the density near the
wall).

Note that different definitions of the position rwall of the surface
where the boundary condition is considered would give different
forms of the boundary condition and, in particular, to the micro-
scopic definitions of the objects entering it. We will show that the
BB result18 for the slip length based on linear response theory is
obtained from our result (2) by a suitable redefinition of the wall
position. Given the controversy raised in the literature about the
proper definition of the friction coefficient of a fluid near a wall,20–24

this alternative and very different way to obtain the BB result
gives further confidence to the BB result, at least for macroscopic
flows.

III. HYDRODYNAMIC THEORY FOR A SIMPLE LIQUID
SURROUNDING A SOLID SPHERE

In this section, we give a brief summary of Ref. 1 which is
the basis for the present work. By starting from the microscopic
Hamiltonian dynamics of the system, and through the projec-
tion operator method,2 we have derived in Ref. 1 the following
hydrodynamic equations for a fluid surrounding a spherical solid
particle:

∂tρ(r) = −∇ ⋅ g(r),

∂tg(r) = −∇ ⋅ g(r)v(r) − ρ(r)∇
δF

δρ(r)
(r,R), +∇Σ(r) + S(r),

Ṙ = V,

Ṗ = −
∂F
∂R

− ∫ drS(r),

(8)

where ρ(r), g(r) are the mass and momentum density fields of
the fluid, and R, P are the position and momentum of the
solid sphere and V = P/M is the velocity of the sphere. It is
assumed that the whole system of the fluid plus solid sphere is
enclosed in periodic boundary conditions. The fields ρ(r), g(r) are
defined as the nonequilibrium average of the microscopic phase
functions

ρ̂r =
N
∑
i
miδ(r − ri),

ĝr =
N
∑
i
piδ(r − ri).

(9)

The average of the density field defined in terms of the Dirac delta
function may vary over molecular length scales and can resolve, in
principle, the well-known layering of a fluid near a wall.

Other quantities in (8) are the velocity field v(r) = g(r)/ρ(r), and
the fluid stress tensor Σ(r) and the irreversible surface force S(r)
given by

Σαβ
(r) = ∫ dr′ηαβα

′β′

rr′ ∇
β′

r′ v
α′
(r′),

Sα
(r) = −∫ dr′Gαα′β′

rr′ ∇
β′

r′ v
α′
(r′)

+ ∫ dr′(∇β
rH

αβα′

rr′ − γαα
′

rr′ )(v
α′
(r′) −Vα′

).

(10)

Here, α, β, etc., are Cartesian indices. The integrals extend over all
space containing the fluid and the sphere. The nonlocal transport
coefficients are given in terms of Green-Kubo formulae

ηrr′ ≡
1

kBT ∫
∆t

0
dt⟨Qσ̂r(t)Qσ̂r′⟩,

Hrr′ ≡
1

kBT ∫
∆t

0
dt⟨Qσ̂r(t)QF̂r′⟩,

Grr′ ≡
1

kBT ∫
∆t

0
dt⟨QF̂r(t)Qσ̂r′⟩,

γrr′ ≡
1

kBT ∫
∆t

0
dt⟨QF̂r(t)QF̂r′⟩.

(11)

Here, ⟨⋯⟩ denotes an equilibrium ensemble average and the action
of the projector Q is defined explicitly in Ref. 1 and reproduced in
the Appendix. The microscopic force density F̂r that the solid exerts
on the fluid and the microscopic stress tensor σ̂r in (11) are defined
as

F̂r ≡
NN′

∑
ij′

F̂ij′δ(r − ri),

σ̂r ≡
N
∑
i
piviδ(r − ri) +

1
2

N
∑
ij
rijF̂ij ∫

1

0
d�δ(r − ri + �rij),

(12)

where ri, pi are the position and momenta of the ith atom of the fluid
in the system.

Note that the nonlocal transport coefficients Grr′ ,Hrr′ , γrr′
appearing in the surface force (10) and defined in (11) all involve
correlations with the force density F̂r. This force density defined
in (12) vanishes in a molecular scale away from the surface of the
solid because the force F̂ij′ between fluid and solid particles is short
ranged. Therefore, the surface force S(r) is nonzero only in a layer
of a molecular width near the solid surface.

The structure of the dissipative force ∇Σ + S in the momen-
tum equation in Eq. (8) is due to the fact that, at a fundamental
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level, the momentum of the fluid changes because of the action of
forces exerted by the fluid and forces due to the solid. The for-
mer can be expressed in terms of the divergence of a microscopic
stress tensor, but the latter cannot be expressed in terms of a stress
tensor. As a consequence, the dissipative forces ∇Σ that the fluid
exerts on the fluid itself contain second derivatives of the velocity
field (in a local approximation away from the walls, they produce
the usual viscous terms in the Navier-Stokes equations), while the
dissipative forces S that the solid exerts on the fluid in Eq. (10) con-
tain terms that are proportional to the velocity differences between
the fluid and solid (that is, friction forces associated with slip)
and also terms that are proportional to gradients of the velocity
field.

Finally, the free energy functional F[ρ,R] appearing in (8) is
defined microscopically in Ref. 1 and it is a natural generalization of
the usual equilibrium free energy functional familiar in equilibrium
Density Functional Theory (DFT),30 where the effect of the solid
particle is explicitly taken into account. In that sense, Eqs. (8) can
be understood as a generalization of DFT to the dynamic realm for
simple fluids in isothermal situations but not in mechanical equilib-
rium. Note that in the limit of infinite radius, the solid particle can
be understood as a planar wall. Usually, the presence of a wall in
DFT is modeled simply with an “external potential,” which should
be understood as a coarse-grained potential that accounts for all the
eliminated degrees of freedom of the solid, assumed to be very fast
as compared with the solvent degrees of freedom (i.e., there is no
slow elastic response of the solid). A simple model for the free energy
functional is

F[ρ,R] = F[ρ] + ∫ drV(∣r − R∣)ρ(r), (13)

where F[ρ] is the standard free energy functional of the fluid in the
absence of the solid sphere. One particularly simple model for the
coarse-grained effect of the wall is through a hard core model given
by V (r, R) = �(|r − R| − a), where �(r) is a short ranged potential of
mean force describing the effective interaction between the solid and
fluid and a is the effective radius of the solid sphere. For a planar wall,
one may assume that this potential depends only on the distance of
the point r to the wall, thus obviating any roughness effect from the
wall.

Equations (8) govern the evolution of the nonlocal hydrody-
namics of a simple isothermal fluid coupled with the motion of
an immersed structureless solid sphere. The only approximation
that has been taken in the derivation of Eqs. (8) in Ref. 1 is the
Markovian approximation that neglects memory effects in the dis-
sipative part of the dynamics. The reversible part of the dynamics is
exact. We have observed in MD simulations, to be presented else-
where,8 that in the strict continuum limit the Markovian assump-
tion breaks down near solid walls. Only when the hydrodynamic
variables are defined with an intrinsic length scale which is larger
than the radius of the atoms or molecules of the simple liquid, we
recover a Markovian behavior. In the case of MD simulations that
employ bins, the bin width needs to be larger than the molecu-
lar size. The counterpart in the present continuum theory involves
a redefinition of the hydrodynamic fields (9) in terms of a coarse
delta function δ(r − ri) of a bell shaped form with finite support
of molecular dimension.31 With the hydrodynamic fields defined
in terms of the coarse delta function, one can go over the steps in

Ref. 1 and obtain a set of equations identical to (8) for the new,
coarser fields. The resulting Markovian equations should reproduce
correctly the hydrodynamic behavior at scales larger than molecular
dimensions.

When the density field ρ̂r in Eq. (9) is defined not with the
Dirac delta function but with a coarse delta function, the free
energy F[ρ] is no longer the exact free energy functional of DFT.
The latter would allow one to predict the density layering which
is blurred for the coarse density field. In DFT, there are many
approximate expressions for the density functional F[ρ] of a sim-
ple structured liquid that range from the simplest local approxi-
mation, through the square gradient approximation, to weighted
density approximations.32 For the case of coarse density field in
which correlations are blurred, we expect that a good model for
the resulting free energy functional is given by the local density
approximation

F[ρ] = ∫ drf (ρ(r)), (14)

where f (ρ) is the bulk thermodynamic free energy density of the
fluid. We will assume that the model (13) with (14) for the free
energy functional is sufficiently good at macroscopic length scales,
which are the ones we are concerned in this paper.

Once we assume the free energy model (13) and (14), we may
compute the reversible coupling of the momentum density field with
the motion of the sphere, which is given in Eq. (8) by the term

−ρ(r)∇
δF

δρ(r)
[ρ,R] = −ρ(r)∇[f ′(ρ(r)) + V(r)]

= −∇P(ρ(r)) − n(r)∇V(r), (15)

where we have introduced the number density n(r) = ρ(r)/m and the
usual definition of the pressure of the fluid in terms of the free energy
density

P(ρ) = ρf ′(ρ) − f (ρ), (16)

where the prime denotes derivative. Therefore, the reversible term
−ρ∇ δF

δρ is just the usual pressure gradient in the Navier-Stokes equa-
tions plus the body force exerted by the solid particle on the fluid
through the CG potential V. When the size of the solid sphere is so
small that it becomes comparable to the length scale of the structure
of the fluid, then the local free energy model (14) is not appropriate
and the concept of pressure is not as useful. A different approach is
then required, as we have shown in Ref. 33.

IV. MECHANICAL BALANCE FROM A PILLBOX
ARGUMENT FOR A MACROSCOPIC BODY

The approach that we take in order to formulate boundary
conditions is a pillbox argument for mechanical balance. A more
sophisticated and rigorous singular perturbation theory approach
could be taken, as advocated by Brenner,17 but the present heuristic
arguments are sufficient at present. See also the discussion in Ref. 14
that bears resemblance on the arguments we present in what follows.
As depicted in Fig. 1, the pillbox is a cylinder limited by the surface
Σ = Σ1 + Σ2 + ∆Σ. The area of the lids Σ1 and Σ2 is π�2, while the
area of the lateral surface ∆Σ is 4π∆�, where � is the radius of the
cylinder and 2∆ its height. We assume that the pillbox is very flat,
i.e., 2∆≪ �. We also assume that �≪ λ, where λ is the length scale
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FIG. 1. A pillbox of height 2∆, area S = π�2, and lateral surface ∆Σ = 4π�∆
intersects the surface of the solid sphere at Σ0. The surface Σ1 is inside the solid
and Σ2 is inside the fluid region. The separation between these two surfaces is
2∆. The length scale λ of the flow field is assumed to be of the order of the radius
of the macroscopic sphere. It is assumed that σ0 ≪ 2∆ ≪ � ≪ λ. Finally, the
center of the outer surface Σ2 is located at r0.

of variation of the flow fields, typically of the order of the radius of
the sphere, which is assumed to be macroscopic. In addition, the
height of the cylinder is assumed to be much larger than a molec-
ular diameter σ0. We assume that the planar surface Σ1 is inside the
solid sphere, while the planar surface Σ2 is outside the solid sphere,
beyond the range of interaction between the solid atoms and fluid
atoms, and where the density already has achieved its bulk value.
The center of the circular surface Σ2 is located at r0 within the bulk
region of the fluid. Note that the irreversible surface force S(r),
whose Green-Kubo transport coefficients (11) contain the force Fr
defined in (12), will vanish away from the solid object. Therefore, in
the surface Σ2, the surface forceS(r) vanishes, while the stress tensor
Σ(r) takes the bulk isotropic value. As it is clear, the overall shape of
the macroscopic body (a sphere in this case) is irrelevant in the argu-
ment. For a macroscopic body, the pillbox “sees” the body as a planar
wall.

We will make use of the well-known theorem for the time
derivative of the integral of a function A(r, t) over a time-dependent
volume Ω(t) that has Σ(t) as its moving surface boundary

d
dt ∫Ω(t)

A(r, t)dr = ∫
Ω(t)

∂

∂t
A(r, t)dr + ∫

Σ(t)
dSn ⋅ vΣ(r)A(r, t).

(17)

The first term in the right-hand side exists even if the volume does
not move and accounts for the time dependence of the function
A(r, t). The second term is the variation on the amount of A that is
inside the volume due to the sweeping of the surface Σ(t) as it moves.
In this expression, n is the normal of the surface pointing outwards
and vΣ(r) is the velocity of the surface at the point r on the surface.
We will take as the volumeΩ(t), the volume of the infinitesimal pill-
box that intersects the boundary region between the solid and fluid,
as shown in Fig. 1.

A. Impenetrability condition
When we take the density field ρ(r) as the function A(r) in the

above theorem (17), we obtain

d
dt ∫Ω

ρ(r, t)dr = ∫
Ω

∂

∂t
ρ(r, t)dr + ∫

Σ
dSn ⋅Vρ(r, t), (18)

where, for simplicity, we assume that the sphere does not rotate and,
therefore, the velocity of any point of the sphere’s surface coincides
with the velocity V of the center of the sphere, i.e., vΣ = V. By using
the continuity equation and Gauss’ theorem, we may write (18) as

d
dt ∫Ω

ρ(r, t)dr = ∫
Σ1
dSn ⋅ (v(r, t) −V(t))ρ(r, t)

+ ∫
Σ2
dSn ⋅ (v(r, t) −V(t))ρ(r, t)

+ ∫
∆Σ

dSn ⋅ (v(r, t) −V(t))ρ(r, t). (19)

The left-hand side is approximately given by d
dt ρ(r0, t)π�2∆.

This is of order ∆. The last integral over the lateral surface ∆Σ is
proportional to �∆. The rest of the terms, on the right hand side of
Eq. (19), are of order �2. We may neglect therefore the terms of order
∆ [the lhs of (19) and the integral over ∆Σ]. In addition, there can
be no fluid inside the solid sphere because otherwise infinite forces
would develop. Therefore, the density field evaluated on the surface
Σ1 vanishes. This implies

∫
Σ2
dSn ⋅ (v(r, t) −V(t))ρ(r, t) = 0, (20)

which is approximately given by

π�2n ⋅ (v(r0, t) −V(t))ρ(r0, t) = 0 (21)

because all fields vary little, in the length scale λ ≫ �. The density
field ρ(r0, t) is different from zero, and therefore,

n ⋅ (v(r0, t) −V(t)) = 0, (22)

which is the usual impenetrability boundary condition. While this
boundary condition is perfectly adequate for the macroscopic flows
considered here, it has been questioned for flows of molecular
scale.34,35

B. Mechanical balance condition
Let us move now to the boundary conditions that emerge when

we consider theorem (17) for the momentum density field. We have

d
dt ∫Ω

g(r, t)dr = ∫
Ω

∂

∂t
g(r, t)dr + ∫

Σ
dSn ⋅Vg(r, t). (23)

By using the momentum equation in Eq. (8) and Gauss’ theorem for
the convective part of the equation, one obtains

d
dt ∫Ω

g(r, t)dr = ∫
Ω
dr[−∇P(r) +∇ ⋅ Σ(r)]

+ ∫
Ω
dr[−n(r)∇V(r) + S(r)]

+ ∫
Σ
dSn ⋅ (V − v(r))g(r, t), (24)
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where we have used the local model for the free energy in Eq. (15).
By using the impenetrability condition Eq. (22), we may express (24)
in the form

F = Fl→l + Fs→l, (25)

where F is the total force on the portion of fluid that is within the
pillbox and we have decomposed this force into the forces Fl→ l and
Fs→ l that the fluid and solid exert on this portion, respectively. These
forces are defined as

Fl→l
≡ ∫

Ω
dr[−∇P(r) +∇Σ(r)],

Fs→l
≡ ∫

Ω
dr[−n(r)∇V(r) + S(r)].

(26)

Let us consider each term in (26) separately. The pressure term
is

∫
Ω
dr∇P(ρ(r)) = ∫

Σ1
dSnP(ρ(r))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∫
Σ2
dSnP(ρ(r))

+ ∫
∆Σ

dSnP(ρ(r))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≃0

. (27)

The first integral in the right-hand side vanishes because Σ1 is inside
the solid sphere, where no fluid exists and the density and pressure
vanish. The third integral over the lateral surface ∆Σ is of order ∆
and negligible in front of the rest of the terms.

The fluid stress contribution in the first equation of Eq. (26) is,
after using Gauss’ theorem,

∫
Ω
dr∇ ⋅ Σ(r) = ∫

Σ1
dSn ⋅ Σ(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+∫
Σ2
dSn ⋅ Σ(r)

+ ∫
∆Σ

dSn ⋅ Σ(r)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≃0

≃ π�2n ⋅ Σ(r0), (28)

where a reasoning similar to that used in Eq. (27) has been followed.
Therefore, the force that the liquid exerts on the fluid in the pillbox
is

Fl→l
≃ π�2n ⋅ (P(ρ(r0))δ + Σ(r0)), (29)

where δ is the identity matrix, P(ρ(r0)) is the bulk pressure near the
solid sphere, and Σ(r0) is the bulk fluid stress tensor near the solid
sphere.

Next, consider the reversible part of the force that the solid
exerts on the fluid

∫
Ω
drn(r)∇V(r) = ∫

Ω
drn(r)nV′

(r)

= π�2n∫
a+∆

a−∆
drn(r)V′

(r). (30)

The integral (30) is not proportional to ∆ because the forces V′(r)
are singular. Therefore, it cannot be neglected. In order to get some
intuition for this term, consider the fluid as an ideal gas, for which
the equilibrium value of the density field takes the barometric form

n(r) = n0e−βV(r), (31)

where n0 is the fluid number density beyond the range of the singular
potential. Therefore, the integral in (30) becomes

∫

a+∆

a−∆
drn(r)V′

(r) = −n0kBT ∫
a+∆

a−∆
dr

d
dr

e−βV(r)

= −n0kBT[e−βV(r)]
a+∆

a−∆

= −n0kBT, (32)

where we have used that inside the solid the potential is infinite and
outside (in Σ2) it vanishes. Therefore, this term gives a finite value
independent of ∆. This argument with the equilibrium profile for the
ideal gas makes it plausible that the singular potential contribution
(30) gives a finite value for the resulting force, independent of ∆,
even for a nonequilibrium nonideal fluid.

Note that the total force F ≃ d
dt g(r0, t)π�2∆ scales as ∆, while

the two forces Fl→ l, Fs→ l scale independently of ∆. This means that
we may neglect the force F and we have a balance between the two
forces Fs→ l + Fl→ l

≃ 0. Such a balance is always satisfied in steady
state situations. Therefore, the condition (25) with (29) and (30)
gives the important mechanical balance relation

− n(P0 + ∆P) + n ⋅ Σ(r0) +
1
π�2 ∫Ω

drS(r) = 0, (33)

where we have introduced

∆P = ∫
a+∆

a−∆
drn(r)V′

(r) (34)

as the contribution to the pressure due to the wall potential. Equa-
tion (33) expresses the mechanical balance between the bulk forces
due to the macroscopic stress tensor −Pδ + Σ near the wall (but
already in the bulk region) and the integrated singular surface
forces.

We will need the normal and tangential components of this
mechanical balance (33). The normal component is given after
multiplication of Eq. (33) with respect to the normal vector n

0 = n ⋅ Fl→l + n ⋅ Fs→l

= −P0 − ∆P + n ⋅ Σ(r0) ⋅ n +
1
S ∫Ω

drn ⋅ S(r), (35)

where S = π�2 is the surface of the pillbox.
The tangential component is obtained by multiplying the

mechanical balance equation (33) with respect to the two mutu-
ally perpendicular tangent unit vectors t1, t2. This leads to the
equation,

n ⋅ Σ(r0) ⋅ ti +
1
S ∫Ω

drti ⋅ S(r) = 0, i = 1, 2. (36)
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C. The total force on the sphere
For completeness, we consider the calculation of the total force

that the fluid exerts on the sphere in the present approximation.
On one hand, the total force on the solid sphere is given by the
last equation of Eq. (8), which has been obtained from microscopic
considerations

Ṗ = −
∂F
∂R

− ∫ drS(r). (37)

With the local model (13) and (14) for the free energy density, this
force becomes

Ṗ = −∫ dr[n(r)
∂

∂R
φ(∣r − R∣ − a) + S(r)], (38)

where we recall that the integral over r extends over the whole peri-
odic domain. Note, though, that the integrand contains functions
that are highly localized in a layer between radii a ± ∆ around the
surface of the solid sphere. For this reason, we may decompose the
integral as follows:

Ṗ = −∫
S0

dS∫
a+∆

a−∆
dr[n(r)

∂

∂R
φ(∣r − R∣ − a) + S(r)], (39)

where S0 is the spherical surface of radius a that contains the solid
particle. By using the mechanical balance (33), we may write the
force on the particle as

Ṗ = −∫
S0

dS[nP0 − n ⋅ Σ(r0)]. (40)

By virtue of Gauss’ theorem, we have

Ṗ = ∫

′

dr∇ ⋅Π, (41)

where Π = −Pδ + Σ is the total bulk stress of the fluid and the
integral is now extended to the volume of the domain exterior
to the solid particle (denoted with a prime). Equation (41) is a
standard fluid dynamics expression for computing the force on
a macroscopic sphere due to the interaction with the fluid. It is
reassuring that it is consistent with the force (37) on the sphere
predicted in the microscopically derived continuum hydrodynamic
theory.

V. THE BOUNDARY CONDITIONS
The key assumption that will convert the mechanical balance

(33) or equivalently expressions (35) and (36) into boundary condi-
tions is that within the pillbox the velocity has an approximate linear
form

v(r) = v0 + γ̇ ⋅ (r − r0), (42)

where v0 is the velocity at the point r0 on the upper lid of the pillbox
and γ̇αβ = ∇αvβ(r0) is the constant velocity gradient within the pill-
box. This assumption is reasonable if the flows change slowly in the
length scale of the pillbox in a way that a first order Taylor expansion
around r0 is appropriate.

A. Symmetries in the stress tensor
The stress tensor in Eq. (36) is evaluated at the point r0 at the

upper lid of the pillbox. By using the velocity profile (42), the stress
tensor in Eq. (10) takes the form

Σαβ
(r) = ηαβα

′β′
(r0)γ̇β′α′ , (43)

where the local viscosity tensor is the integral of the viscosity kernel
tensor

ηαβα
′β′

(r0) ≡ ∫ dr′ηαβα
′β′

r0r′ . (44)

Because r0 is inside the bulk region, the fourth order viscosity tensor
ηαβγδ becomes independent of the position and takes a fully isotropic
form. The isotropic fourth order tensor will be a linear combination
of the tensor product of Kronecker deltas δαβ which is symmetric
with respect to the first two indices and the last two indices and has
the familiar form

ηαβγδ = η[δαγδβδ + δαδδβγ −
2
3
δαβδγδ] + ζδαβδγδ, (45)

where η and ζ are the usual shear and bulk viscosities of the fluid,
respectively. By using (45) into (43), the stress tensor in the bulk is
given by the usual Newtonian viscous stress

Σαβ
(r0) = η(γ̇αβ + γ̇βα

) + (ζ −
2
3
η)δαβTr[γ̇]. (46)

The two components of the stress tensor entering the mechan-
ical balance (35) and (36) become

n ⋅ Σ(r0) ⋅ n = 2ηn ⋅ γ̇ ⋅ n + (ζ −
2
3
η)Tr[γ̇],

n ⋅ Σ(r0) ⋅ ti = ηn ⋅ (γ̇ + γ̇T) ⋅ ti,
(47)

where ti with i = 1, 2 is any of the unit tangents to the solid surface.

B. Symmetries in the surface force
Let us now consider the integral over the pillbox volume of the

irreversible surface force S(r) given in (10). We will use the fact that
we are considering a macroscopic sphere and a small pillbox, in such
a way that in the length scales of the pillbox, the surface of the sphere
is planar. We may use, therefore, the particular form of S(r) for a
planar isotropic wall. The tensorial structure of the tensors entering
the irreversible surface force (10) for an isotropic planar wall is given
in the Appendix

Hαβγ
rr′ = G(1)rr′ [n

αTβγ + nβTαγ
] + G(2)rr′ T

αβnγ + G(3)rr′ n
αnβnγ,

Gαβγ
rr′ = G(1)rr′ [T

αβnγ + Tαγnβ
] + G(2)rr′ n

αTβγ + G(3)rr′ n
αnβnγ,

γαβrr′ = γ∣∣rr′T
αβ + γ�rr′n

αnβ,

(48)

where G(i)rr′ , γ
∣∣

rr′ , γ
�

rr′ are given in terms of Green-Kubo expressions
detailed in Eqs. (A17) and (A20) in the Appendix. The tensor T is the
projector on the plane of the wall, given by T = δ − nn = t1t1 + t2t2.
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By inserting (48) into (10) and using the impenetrability condition
(22), we obtain

n ⋅ S(r) = −
2
∑
i
∫ dr′G(2)rr′ ti ⋅∇

′v(r′) ⋅ ti − ∫ dr′G(3)rr′ n ⋅∇
′v(r′) ⋅ n

+
2
∑
i
ti ⋅∇∫ dr′G(1)rr′ ti ⋅ (v(r

′
) −V),

ti ⋅ S(r) = − ∫ dr′G(1)rr′ [n ⋅∇
′v(r′) ⋅ ti + ti ⋅∇′v(r′) ⋅ n]

+ ∫ dr′[n ⋅∇G(1)rr′ − γ∣∣rr′]ti ⋅ (v(r
′
) −V). (49)

Observe that the surface force is a functional of the velocity
field inside the pillbox. We now evaluate the functionals (49) at the
assumed linear flow (42) with the result

n ⋅ S(r) = −G(2)(r)[t1 ⋅ γ̇ ⋅ t1 + t2 ⋅ γ̇ ⋅ t2] −G(3)(r)n ⋅ γ̇ ⋅ n

+
2
∑
i
ti ⋅∇∫ dr′G(1)rr′ (r

′
− r0) ⋅ γ̇ ⋅ ti

+
2
∑
i
ti ⋅∇G(1)(r)ti ⋅ (v0 −V),

ti ⋅ S(r) = −G(1)(r)[n ⋅ γ̇ ⋅ ti + ti ⋅ γ̇ ⋅ n]

+ [n ⋅∇G(1)(r) − γ∣∣(r)]ti ⋅ (v0 −V)

+ n ⋅∇∫ dr′G(1)rr′ (r
′
− r0) ⋅ γ̇ ⋅ ti

− ∫ dr′γ∣∣rr′(r
′
− r0) ⋅ γ̇ ⋅ ti,

(50)

where we have introduced the integrated local transport coefficients

G(i)(r) = ∫ dr′G(i)rr′ , i = 1, 2, 3,

γ∣∣(r) = ∫ dr′γ∣∣rr′ .
(51)

The integral of the surface force (50) on the volume of the pillbox
needed in the mechanical balance equation (36) is given by

1
S ∫Ω

drn ⋅ S(r) = −G(2)[t1 ⋅ γ̇ ⋅ t1 + t2 ⋅ γ̇ ⋅ t2] −G(3)n ⋅ γ̇ ⋅ n

= −G(2)Tr[γ̇] + (G(2) −G(3))n ⋅ γ̇ ⋅ n,

1
S ∫Ω

drt ⋅ S(r) = −G(1)n ⋅ [γ̇ + γ̇T] ⋅ t − γ∣∣t ⋅ (v0 −V)

−
1
S ∫Ω

dr∫ dr′γ∣∣rr′(r
′
− r0) ⋅ γ̇ ⋅ t, (52)

where S = π�2 is the area of the lid of the pillbox, and the total
integrated transport coefficients are defined as

G(i) =
1
S ∫Ω

drG(i)(r), i = 1, 2, 3,

γ∣∣ =
1
S ∫Ω

drγ∣∣(r).
(53)

In Eq. (52), we take into account that

1
S ∫Ω

drn ⋅∇G(1)(r) = 0,

1
S ∫Ω

drt ⋅∇G(1)(r) = 0.
(54)

This is easily seen because G(1)(r) is expected to vary only in the
normal direction, i.e., G(1)(r) = G(1)(r), implying

1
S ∫Ω

drn ⋅∇G(1)(r) =
1
S ∫Ω

dr∂rG(1)(r)

= ∫

a+∆

a−∆
dr∂rG(1)(r)

= G(1)(a + ∆) −G(1)(a − ∆)

= 0. (55)

This quantity vanishes because at r = a + ∆ the force that the solid
exerts on the fluid vanishes, while at r = a − ∆, there is no fluid inside
the solid. A similar argument shows that the third term in the right-
hand side of (50) integrates also to zero.

The last term in (52) can be expressed as

1
S ∫Ω

dr∫ dr′γ∣∣rr′(r
′
− r0) =

1
S ∫

dr′γ∣∣(r′)(r′ − r0) (56)

because γ∣∣rr′ = γ∣∣r′r. Note that the local friction coefficient γ||(r′),
which is given in Eq. (A17) in terms of a Green-Kubo formula
involving the correlations of the force F̂r, vanishes outside the range
of interaction of this force. Therefore, γ||(r′) is different from zero
only in a shell around the solid sphere, of a molecular width. We
introduce the vector

rwall =
∫Ω dr

′γ∣∣(r′)r′

∫Ω dr′γ∣∣(r′)
(57)

whose modulus rwall is a good definition for “the radius of the sur-
face of the solid sphere.” This is an unambiguous way of defining
the location of the surface of the solid sphere, even for an atomically
fuzzy surface. At precisely this location, the velocity field (42) takes
the value vwall given by

vwall ≡ v(rwall) = v0 + γ̇ ⋅ (rwall − r0). (58)

Therefore, by using (56), with the two definitions (57) and (58),
the last two terms in Eq. (52) become

− γ∣∣t ⋅ (v0 −V) −
1
S ∫

dr∫ dr′γ∣∣rr′(r
′
− r0) ⋅ γ̇ ⋅ t

= −γ∣∣t ⋅ (v0 −V) − γ∣∣(rwall − r0) ⋅ γ̇ ⋅ t

= −γ∣∣t ⋅ (vwall −V). (59)

Finally, the tangential component of the force per unit area that the
solid exerts on the fluid slab is given, from (52) and (59), by
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1
S
t ⋅ F =

1
S ∫Ω

drt ⋅ S(r)

= −G(1)n ⋅ [γ̇ + γ̇T] ⋅ t − γ∣∣t ⋅ (vwall −V). (60)

C. The final form of the boundary conditions
Note that in the impenetrability condition (22), we may

approximate

0 = n ⋅ (v0 −V) ≃ n ⋅ (vwall −V) (61)

because the difference between v0 and vwall is of order ∆ and neg-
ligible. By collecting the impenetrability condition (61) and the
mechanical balance equations (35) and (36) with (47), (52), and (60),
we obtain

−P0 − ∆P + An ⋅ γ̇ ⋅ n + BTr[γ̇] = 0,

η′n ⋅ [γ̇ + γ̇T] ⋅ t1 − γ∣∣t1 ⋅ (vwall −V) = 0,

η′n ⋅ [γ̇ + γ̇T] ⋅ t2 − γ∣∣t2 ⋅ (vwall −V) = 0,

n ⋅ (vwall −V) = 0,

(62)

where

A = 2η + G(2) −G(1),

B = ζ −
2
3
η −G(2),

η′ = η −G(1).

(63)

The last three equations in (62) can be understood as conditions on
the three components of the velocity at the surface and are, there-
fore, the boundary conditions to be imposed to the macroscopic
hydrodynamic equations at the wall position defined by (57). The
first equation does not gives an additional condition on the veloc-
ity because the term ∆P defined in (34) contains the integral of the
density profile within the boundary zone which, from a macroscopic
point of view, is unknown. In fact, this equation can be used to
obtain ∆P but does not fix, nor over-determines, the value of the
velocity.

In summary, under the assumption (42) that near the solid the
velocity field is linear with a constant velocity gradient γ̇, the three
components of the velocity field vwall at the location rwall satisfy the
boundary conditions (2). Equations (2) are one of the main results
of the present paper. They show how boundary conditions emerge
from the theory presented in Ref. 1 which, in turn, derives from
the microscopic dynamics of the system under appropriate condi-
tions. Physically, the first equation of (2) represents impenetrability,
while the second one balances the viscous stress at the wall with
the friction force on the fluid exerted by the wall. The boundary
conditions (2) are the Navier slip boundary conditions in tensorial
form.12

VI. THE MICROSCOPIC EXPRESSION FOR THE SLIP
LENGTH AND ITS EQUIVALENCE WITH BOCQUET
AND BARRAT’S

The benefit of an approach based on microscopically derived
hydrodynamic equations is that the coefficients appearing in the slip

boundary conditions all have microscopic expressions in terms of
Green-Kubo formulae.

The explicit microscopic expression for the viscosity η, for
example, is obtained by averaging (44) over the volume V exterior
to the sphere, which, on due account of (11), gives

η =
1

VkBT ∫
dr0 ∫ dr∫

∆t

0
dt⟨Qσ̂∣∣�r0 (t)Qσ̂∣∣�r ⟩

=
1

VkBT ∫
∆t

0
dt⟨σ̂∣∣�(t)σ̂∣∣�⟩, (64)

where the bulk stress tensor is given by (6). Equation (64) is the
usual Green-Kubo expression for the shear viscosity. Note that, as
explained in the Appendix, the projector Q has no effect on the off-
diagonal components of the stress tensor due to symmetry reasons
and drops out from the expression for the viscosity.

From Eqs. (51) and (53), we obtain that the coefficients G(1), γ∣∣
entering the slip boundary condition (2) are

G(1) =
1
S ∫Ω

dr∫ dr′G(1)rr′ ,

γ∣∣ =
1
S ∫Ω

dr∫ dr′γ∣∣rr′ .
(65)

By inserting in these expressions the Green-Kubo formulae (11),
performing the space integrals over the Dirac delta functions, and
using Eqs. (A17) and (A20) in the Appendix, we finally obtain
the explicit microscopic expressions (4) and (7) for the coefficients
entering the slip boundary condition.

Note that the viscosity η′ appearing in the slip boundary con-
dition (2) is not the fluid viscosity η but rather a corrected vis-
cosity η′ defined in (63). As we will see in the rest of this sec-
tion, whether to correct or not the viscosity depends on the actual
definition of the wall position. In the process of showing this,
we also demonstrate that the microscopic expression for the slip
length obtained from the hydrodynamic theory of Ref. 1 coin-
cides with the expression given by BB18 from linear response
theory.

As a first step, we need to extend our results for a sphere geome-
try to a planar shear flow with planar walls as considered by BB. Our
pillbox derivation can be extended trivially from the sphere geome-
try to this parallel planar wall geometry. For a simple shear flow of
the form v(r) = (v

∣∣

wall + γ̇(z − zwall), 0, 0), the surface force (60) that
the solid exerts on the fluid takes the form

1
S
F∣∣ = −G(1)γ̇ − γ∣∣v∣∣wall, (66)

where, for the sake of simplicity, we assume the wall at rest. For a pla-
nar wall, the position of the wall surface may be defined in a manner
identical to the result (57) valid for a sphere. As the local friction
coefficient γ(r′) will be different from zero only in the region within
the range of interaction of the forces that the solid particles exert on
the fluid particles, a reasonable definition is
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zwall =
∫ dr′γ∣∣(r′)z′

∫ dr′γ∣∣(r′)

=
1

γ∣∣SkBT
∫

t

0
ds⟨F̂∣∣(s)

N
∑
i
ziF̂
∣∣

i ⟩, (67)

where (51) and (11) have been used.
According to the mechanical balance (36), the surface force (66)

is balanced by the force that the fluid exerts on the fluid, which is
given by the stress tensor component

n ⋅ Σ(r0) ⋅ t = ηγ̇. (68)

The tensorial slip boundary condition (2) for the simple shear flow
is given by the balance of (66) and (68), leading to

ηγ̇ = G(1)γ̇ + γ∣∣v∣∣wall, (69)

which is the boundary condition (2) for this flow field, and that can
be written as

δγ̇ = v∣∣wall, (70)

where the slip length is

δ =
η −G(1)

γ∣∣
. (71)

In order to compare with the above results, we now revisit the
linear response calculation of BB18 and express it in a notation as
close as ours as possible. BB consider a planar shear flow with pla-
nar walls and add to the unperturbed Hamiltonian Ĥ0 of the system
(fluid plus solid walls) a perturbation of the form Ĥ1 = −γ̇M̂ with

M̂ =
N
∑
i
(zi − z0)p∣∣i , (72)

where z0 is a parameter, and zi is the vertical coordinate of the fluid
particle i and p∣∣i is a component of its momentum parallel to the
wall. To first order in the perturbation, linear response theory gives
the time dependent average B(t) of any phase function B̂ (with zero
equilibrium average) as36

B(t) =
γ̇

kBT ∫
t

0
ds⟨(iL0M̂)(exp{iL0s}B̂)⟩, (73)

where iL0 is the Liouville operator corresponding to the unperturbed
Hamiltonian (fluid plus solid walls) and ⟨⋯⟩ is the corresponding
canonical equilibrium ensemble average. Note that we may integrate
by parts the Liouville operator inside the equilibrium ensemble and
recognize a time derivative that can be integrated out leading to the
result

B(t) =
γ̇

kBT
[⟨M̂B̂⟩ − ⟨M̂B̂(t)⟩]. (74)

By taking in (74) B̂ equal to the tangential component of the micro-
scopic momentum density field ĝ∣∣r = ∑

N
i p∣∣i δ(r − ri), one easily

arrives at the conclusion that at long times the system develops an
average flow field in the tangential direction given by

g∣∣(z) = ρ(z)γ̇(z − z0), (75)

where ρ(z) is the equilibrium average density field. The velocity field
generated by the perturbation is, therefore,

v∣∣(z) = γ̇(z − z0), (76)

where the parameter z0 in the perturbation (72) is now recognized as
the position of the plane where the velocity field vanishes. Petravic
and Harrowell in Ref. 20 claimed that there was an error in BB when
they assume that the perturbation (72) to the Hamiltonian of a fluid
in contact with solid walls leads to the velocity field (76). The above
argument shows that such an assumption is, in fact, correct. BB then
apply the linear response result (73) to the total force that the solid
exerts on the fluid, i.e., B̂ = F̂∣∣, where

F̂∣∣ =
NN′

∑
ij′

F̂∣∣ij′ . (77)

The result is

F∣∣(t) =
γ̇

kBT ∫
t

0
dt′⟨(iL0Â)F̂

∣∣

(t′)⟩. (78)

The time derivative iL0Â is given by

iL0Â = σ̂∣∣� +
N
∑
i
(zi − z0)F̂

∣∣

i , (79)

where the off-diagonal component of the total fluid stress tensor is
given, from Eq. (12), by

σ̂∣∣� =
N
∑
i
p∣∣i v

�

i +
1
2

N
∑
ij
zijF̂

∣∣

ij. (80)

This is the total stress tensor of the fluid and it depends only on the
coordinates and momenta of fluid particles. Instead of using this nat-
ural definition of the stress tensor, which is the one that enters the
Green-Kubo expression (64) for the viscosity of the fluid, BB use a
different stress tensor, defined as

σ̂BB = σ̂∣∣� +
N
∑
i
ziF̂
∣∣

i , (81)

which includes a “stress” contribution due to the force that the solid
exerts on the liquid. In terms of this stress tensor, the time derivative
(79) is given by

iL0Â = σ̂BB − z0F̂
∣∣. (82)

By inserting (82) into (78), one obtains the BB result for the average
force
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F∣∣(t) = −
γ̇

kBT ∫
t

0
ds⟨F̂∣∣(s)σ̂BB⟩ +

γ̇z0

kBT ∫
t

0
ds⟨F̂∣∣(s)F̂∣∣⟩

= − Sγ∣∣γ̇(zBBwall − z0)

= − Sγ∣∣vBBwall, (83)

where the velocity vBBwall at the effective wall position zBBwall is defined
as

vBBwall = γ̇(zBBwall − z0) (84)

and the effective wall position zBB is defined as

zBBwall =
∫

t
0 ds⟨F̂∣∣(s)σ̂BB⟩

∫
t

0 ds⟨F̂∣∣(s)F̂∣∣⟩
. (85)

Equation (83) is the original expression given by BB for the friction
force on the wall per unit area.

We now seek an alternative form for expression (83) given by
BB that makes close contact with our result given by the force (66)
obtained from the hydrodynamic theory. The effective wall position
defined by BB is related to the wall position defined from the friction
coefficient (67) as follows. Consider (85) with (81)

zBBwall =
∫

t
0 ds⟨F̂∣∣(s)(σ̂∣∣� +∑N

i ziF̂
∣∣

i )⟩

∫
t

0 ds⟨F̂∣∣(s)F̂∣∣⟩
. (86)

By using expression (67), we have

zBBwall =
G(1)

γ∣∣
+ zwall. (87)

For a shear flow, the relationship between the velocity vBBwall at zBBwall

and v∣∣wall at zwall is given by

vBBwall = v
∣∣

wall + γ̇(zBBwall − zwall), (88)

which, by using (87) is

vBBwall = v
∣∣

wall + γ̇
G(1)

γ∣∣
. (89)

The combination of (83), (87), and (88) gives

1
S
F∣∣(t) = −γ∣∣v∣∣wall −G(1)γ̇. (90)

The force on the wall given by BB in (83) has the form (90) that coin-
cides with our result (66) obtained from the hydrodynamic theory
of Ref. 1. As the balance of this force with the viscous force gives the
boundary condition, we have shown that our microscopic expres-
sion for the slip length (71) coincides with that of BB, with a suitable
redefinition of the wall position.

VII. CONCLUSIONS
In this paper, we have shown how the theory of hydrody-

namics near solid objects presented in Ref. 1 leads to the usual

slip boundary conditions when applied to situations of macroscopic
flow. The effect of the solid walls is described in the theory through
reversible and irreversible forces located near the “surface” of the
solid. When the flows are macroscopic, the effect of these surface
forces can be reinterpreted in terms of boundary conditions that
express the impenetrability and mechanical balance near the solid
surface. The mechanical balance leads to the usual slip boundary
condition. Because of the microscopic underpinning of the hydro-
dynamics theory, the boundary conditions contain two parameters
(slip length and wall position) that are given in molecular terms
through Green-Kubo formulae. We have shown that the micro-
scopic definition of the slip length obtained by us coincides with the
one given by BB under a suitable redefinition of the wall position.
The validity of the BB expression is confirmed here for flows that are
of macroscopic character in the sense that the pillbox used encloses
any possible density layering near the walls and the velocity profile
is approximately linear within the pillbox.

In a forthcoming series of publications,6–9 we will present a dis-
crete version of the continuum theory in Ref. 1 that allows us to
measure through MD simulations the different nonlocal transport
kernels and compare with predictions for shear flow, thus validating
the present theoretical results under the hypothesis used to derive
them.

As a final remark, we note that the slip of a fluid near a wall
can be looked upon from two different perspectives, as a condi-
tion at the boundary or as a boundary condition.17 In the first per-
spective, one has a phenomenological observation of a linear rela-
tionship between the velocity and the velocity gradient of the fluid
near the wall. The quantification of this observation requires, of
course, to specify the wall position for an atomically fuzzy surface
and to ensure that the gradient is constant “near the wall.” Dif-
ferent wall positions and different ways of defining the gradient
(particularly in unsteady situations) will give different slip lengths.
This phenomenological perspective is the one used in most MD
simulation studies where the slip length, understood as a partic-
ular property of the flow, is measured. The second perspective is
to make use of this linear relationship between the value of the
field and its derivatives at the boundary as a way to specify a
Robin boundary condition in order to solve the partial differen-
tial equations of hydrodynamics. This second perspective, of course,
assumes implicitly that those equations are valid. Only in this sec-
ond perspective, it makes sense to speak about the slip boundary
condition.

For highly confined fluids in between parallel walls, requiring
the use of very thin bins to resolve the density layering near the
wall, nonlocal effects become important. Space nonlocality has been
studied in depth recently in Refs. 37–39. We will show in Ref. 9
that time nonlocality also becomes an issue at the scales that resolve
the density layering. In fact, the hydrodynamic equations are non-
Markovian at these scales. If the theory is non-Markovian, transport
coefficients are meaningless and, instead, memory “kernels” should
be used. As the hydrodynamic equations are non-Markovian at these
scales, the Green-Kubo expression for transport coefficients is then
not very useful. In that case, to find a microscopic expression for the
slip length in terms of Green-Kubo formulae as in the BB result may
not be very fruitful, as the very concept of a boundary condition to
be applied to physically incorrect (at these scales) partial differential
equations becomes futile.
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APPENDIX: ISOTROPIC TRANSPORT KERNELS
In this appendix, we review what tensors of second and third

order are invariant under a rotation R around a given axis n. We
know that the Kronecker tensor δ with components given by the
Kronecker symbol δαβ and the permutation tensor �n of order n

with components given by the Levi-Civita symbol �
α⋯γ
±

n are invari-
ant under an arbitrary rotation. If Rαα′ is the orthogonal matrix that
represents the rotation around a fixed axis, we have

Rαα′nα′
= nα

Rαα′Rββ′δα
′β′

= δαβ

Rαα′Rββ′Rγγ′�α
′β′γ′

= �αβγ

⋮.

(A1)

Here, the first order tensor n (with components nα) is the unit vec-
tor determining the axis of rotation of the rotation matrix R, which
is obviously left invariant under a rotation. Of course, any contrac-
tion of n, δ, �n will produce a tensor that is also invariant under the
rotation R. The only nontrivial contractions are the order m tensors
n(m) with components n(m)α⋯β

= �(m+1)
α⋯βγ n

γ.
In addition to rotations, we may consider the invariance with

respect to a plane. For example, consider the inversion of the axis
x→ −x which is represented by the matrix

I =
⎛
⎜
⎜
⎜
⎝

−1 0 0

0 1 0

0 0 1

⎞
⎟
⎟
⎟
⎠

. (A2)

Clearly, the Kronecker tensor is invariant under plane inversion

Iαα
′

Iββ
′

δα
′β′

= δαβ. (A3)

However, the Levy-Civita symbol changes sign. Let us sketch the
proof by considering the element 1, 2, 3 of the transformed symbol

�′123 ≡ I1α I2βI3γ�αβγ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(I2×I3)α

= −1 = −�123, (A4)

where I2 is the second column vector of the parity matrix.
Therefore, tensors that are invariant under rotations around a

fixed axis and parity around any plane containing the axis will be
combinations of the corresponding tensors formed out of δ and n,
but will not contain any antisymmetric combination involving the
permutation tensor �n of order n.

For future reference, it is convenient to introduce the following
two symmetric second order tensors, which we call tangential and
normal projectors, respectively:

Tαβ
≡ δαβ − nαnβ

Nαβ
≡ nαnβ

(A5)

Recall that the unit tensor may be written as

δ = t1tT1 + t2tT2 + nnT , (A6)

where t1, t2 are unit vectors tangent to the surface and mutually
orthonormal. We take the convention that t1 × t2 = n, t2 × n = t1,
and n × t1 = t2. Therefore, the tangential projector T becomes

Tαβ
= tα1 t

β
1 + tα2 t

β
2 . (A7)

This projector satisfies

TαβTβγ
= Tαγ,

Tαβnα
= 0,

Tαβnβ
= 0,

Tαα
= 2,

TαβTαβ
= 2,

(A8)

where repeated indices are summed over.

1. Second and third order tensors
In order to construct the most general second order tensor that

is invariant around arbitrary rotations around a fixed axis n and par-
ity, we have to construct all possible tensorial products of nα, and
δαβ. The possible combinations that form a second order tensor are

δαβnαnβ. (A9)

In this way, the most general second order tensor A which is
invariant under rotation around the axis n is of the form

A = a1δ + a2nn, (A10)

where a1, a2 are arbitrary coefficients. Instead of the 9 independent
components of a general second order tensor, the invariant ten-
sor has only two independent components. If the tensor is required
to be fully isotropic, it means that it cannot depend on the actual
axis n, and this implies a2 = 0.

The assumption of isotropy around a normal axis implies that
the second order friction tensor γrr′ is a linear combination of the
unit tensor δ and the dyadic nnT , or, alternatively, of T, N, that is,

γrr′ = γ∣∣rr′T + γ�rr′N (A11)

Next, let us consider the most general third order tensor that
is invariant around parity and arbitrary rotations around a fixed
axis n, we have to construct all possible tensorial products of nα, and
δαβ giving third order tensors. These are

δαβnγ, δαγnβ, δβγnα, nαnβnγ. (A12)
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Any linear combination of the above tensors will produce a third
order tensor that is invariant under rotation around a fixed axis. In
this way, such a tensor, instead of having 27 independent compo-
nents, has only 4. Instead of the above tensors, it is more convenient
to use the tangential tensor

Tαβnγ, Tαγnβ, Tβγnα, nαnβnγ. (A13)

Now consider a third order tensor G that is symmetric with
respect to its last two indices, i.e., Gαβγ = Gαγβ. The most general
third order tensor invariant with respect to rotations around n and
with the above index symmetry has the following structure (we do
not display the dependence on r, r′):

Gαβγ
= G(1)[Tαβnγ + Tαγnβ

] + G(2)nαTβγ + G(3)nαnβnγ. (A14)

Similarly, a third order tensor H that is symmetric with respect to
its first two indices, i.e., Hαβγ = Hβαγ, and which is invariant with
respect to rotations around n should have the following form:

Hαβγ
= H(1)[nαTβγ + nβTαγ

] + H(2)Tαβnγ + H(3)nαnβnγ. (A15)

2. The Green-Kubo expressions
In this isotropic approximation, from the nine components of

the friction tensor only two of them are independent and different
from zero. The Green-Kubo expressions for these independent and
nonzero components γ�rr′ , γ

∣∣

rr′ of the friction tensor are obtained by
multiplying the tensor γrr′ with T and N and by taking its trace. We
obtain

γ�rr′ = n ⋅ γrr′ ⋅ n,

γ∣∣rr′ =
1
2
[t1 ⋅ γrr′ ⋅ t1 + t2 ⋅ γrr′ ⋅ t2].

(A16)

As we know the Green-Kubo expression for γrr′ given in (11), the
above expressions provide the corresponding molecular expressions
for γ�rr′ , γ

∣∣

rr′

γ�rr′ =
1

kBT ∫
∆t

0
dt⟨QF̂�r (t)QF̂�r′⟩,

γ∣∣rr′ =
1

kBT ∫
∆t

0
dt⟨QF̂∣∣r(t)QF̂∣∣r′⟩,

(A17)

where we have defined

F̂∣∣ ≡ t ⋅ F̂,

F̂� ≡ n ⋅ F̂,
(A18)

and t is any of the two t1, t2.
The kernels G(1), G(2), and G(3) in (A14) can be obtained from

full contractions of the third order tensor G with n, T

TαβGαβγnγ
= 2G(1),

nαGαβγTβγ
= 2G(2),

nαGαβγnβnγ
= G(3).

(A19)

We may now use Eq. (11) in order to find Green-Kubo expressions
for these kernels

G(1)rr′ =
1

kBT ∫
∆t

0
dt⟨QF̂∣∣r(t)Qσ̂∣∣�r′ ⟩,

G(2)rr′ =
1

kBT ∫
∆t

0
dt⟨QF̂�r (t)Qσ̂∣∣∣∣r′ ⟩,

G(3)rr′ =
1

kBT ∫
∆t

0
dt⟨QF̂�r (t)Qσ̂��r′ ⟩,

(A20)

where we have defined

σ̂∣∣∣∣ ≡ t ⋅ σ̂ ⋅ t,

σ̂∣∣� ≡ t ⋅ σ̂ ⋅ n,

σ̂�� ≡ n ⋅ σ̂ ⋅ n.

(A21)

We may also construct the contractions

nαHαβγTβγ
= 2H(1),

TαβHαβγnγ
= 2H(2),

nαnβHαβγnγ
= H(3).

(A22)

From Eq. (11), these kernels can be expressed as Green-Kubo expres-
sions as follows:

H(1)rr′ =
1

kBT ∫
∆t

0
dt⟨Qσ̂∣∣�r (t)QF̂∣∣r′⟩ = G(1)r′r ,

H(2)rr′ =
1

kBT ∫
∆t

0
dt⟨(Qσ̂∣∣∣∣r (t)F̂�r′⟩ = G(2)r′r ,

H(3)rr′ =
1

kBT ∫
∆t

0
dt⟨Qσ̂��r (t)QF̂�r′⟩ = G(3)r′r ,

(A23)

where the identification of the H kernels with the transpose of the G
kernels is due to Onsager reciprocity.

The explicit form of the projected force and stress tensor has
been given in Eq. (B17) of Ref. 1 and reproduced here

QF̂r = F̂r − ⟨F̂r⟩

− ∫ dr′ ∫ dr″(ρ̂r′ − ρeq(r′))⟨δρ̂r′δρ̂r″⟩−1
⟨δρ̂r″ F̂r⟩,

Qσ̂αβr = σ̂αβr − ⟨σ̂αβr ⟩

− ∫ dr′ ∫ dr″(ρ̂r′ − ρeq(r′))⟨δρ̂r′δρ̂r″⟩−1
⟨δρ̂r″ σ̂

αβ
r ⟩.

(A24)
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Note that the equilibrium averages involving the tangential compo-
nent of the force vanish and therefore

QF̂∣∣r = F̂∣∣r . (A25)

The reason is that for every value of the tangent force within the
equilibrium average, there is another value of equal magnitude and
opposite sign, leading to a vanishing average. In a similar way, the
equilibrium averages involving the shear components of the stress
tensor also vanish and therefore

Qσ̂∣∣�r = σ̂∣∣�r . (A26)

REFERENCES
1D. Camargo, J. A. de la Torre, D. Duque-Zumajo, P. Español, R. Delgado-
Buscalioni, and F. Chejne, J. Chem. Phys. 148, 064107 (2018).
2H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical
Mechanics (Springer, 1982).
3J. G. Anero, P. Español, and P. Tarazona, J. Chem. Phys. 139, 034106 (2013).
4J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950).
5R. Piccirelli, Phys. Rev. 175, 77 (1968).
6D. Duque-Zumajo, D. Camargo, J. A. de la Torre, F. Chejne, P. Español, “Discrete
hydrodynamics near solid planar walls” (unpublished).
7D. Duque-Zumajo, J. A. de la Torre, and P. Español, “Slip and non-Markovian
effects in nanohydrodynamics” (unpublished).
8D. Duque-Zumajo, D. Camargo, J. A. de la Torre, F. Chejne, and P. Español, “Dis-
crete hydrodynamics near solid walls: Slip and non-Markovian effects” (unpub-
lished).
9D. Duque-Zumajo, D. Camargo, J. A. de la Torre, F. Chejne, and P. Español,
“Space and time locality for discrete hydrodynamics in unconfined fluids” (unpub-
lished).
10D. Bedeaux, A. Albano, and P. Mazur, Physica A 82, 438 (1976).
11D. Bedeaux, Advances in Chemical Physics (Wiley & Sons, 1986), Vol. LXIV,
p. 47.
12D. Einzel, P. Panzer, and M. Liu, Phys. Rev. Lett. 64, 2269 (1990).
13P. Sheng, T. Qian, and X. Wang, Int. J. Mod. Phys. B 21, 4131 (2007).
14T. Qian, C. Qiu, and P. Sheng, J. Fluid Mech. 611, 333–364 (2008).

15H. C. Öttinger, J. Non-Newtonian Fluid Mech. 152, 66 (2008).
16L. Sagis, Rev. Mod. Phys. 83, 1367 (2011).
17H. Brenner and V. Ganesan, Phys. Rev. E 61, 6879 (2000).
18L. Bocquet and J.-L. Barrat, Phys. Rev. E 49, 3079 (1994).
19J. Barrat and F. Chiaruttini, Mol. Phys. 101(11), 1605 (2003).
20J. Petravic and P. Harrowell, J. Chem. Phys. 127, 174706 (2007).
21J. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev. E 84, 016313 (2011).
22S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, J. Chem. Phys. 135,
144701 (2011).
23K. Huang and I. Szlufarska, Phys. Rev. E 89, 032119 (2014).
24B. Ramos-Alvarado, S. Kumar, and G. P. Peterson, Phys. Rev. E 93, 023101
(2016).
25P. Daivis and B. Todd, Processes 6, 144 (2018).
26S. Chen, H. Wang, T. Qian, and P. Sheng, Phys. Rev. E 92, 043007 (2015).
27P. Español, J. de la Torre, and D. Duque-Zumajo, Phys. Rev. E 99, 022126
(2018).
28W. Chen, R. Zhang, and J. Koplik, Phys. Rev. E 89, 023005 (2014).
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