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An algebraic tail in the Green-Kubo integral for the solid-fluid friction coefficient hampers its use in the
determination of the slip length. A simple theory for discrete nonlocal hydrodynamics near parallel solid
walls with extended friction forces is given. We explain the origin of the algebraic tail and give a solution
of the plateau problem in the Green-Kubo expressions. We derive the slip boundary condition with a
microscopic expression for the slip length and the hydrodynamic wall position, and assess it through
simulations of an unsteady plug flow.
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Hydrodynamics is a field theory described with partial
differential equations that require the specification of
boundary conditions for their solution. The no slip boundary
condition has been successfully applied in the last two
centuries in the solution of macroscopic flows [1]. However,
as the length scale of observation is reduced towards the
micro and nanoscale, a large number of experimental [2,3]
and computer simulation studies [4–11] has shown that the
fluid may actually slip along the container walls, a pos-
sibility first foreseen by Navier [12]. The fundamental
understanding of the emergence of the slip boundary
condition from microscopic principles may give useful
information for the design of new microfluidics and nano-
fluidic devices ranging from water flow in confined carbon
nanotubes (CNT) [13,14] and 2D atomic channels [15], flow
in microarrays [16], and membrane filtration [17].
From the point of view of statistical mechanics, a

boundary condition is just a way to take into account
the effect of the solid walls on the fluid without having
to explicitly describe the actual fluid-solid interactions.
A seminal work by Bocquet and Barrat (BB) [18] showed
that the slip coefficient is a transport coefficient given in
terms of a Green-Kubo (GK) formula [19–25]. However,
the BB GK formula for the friction coefficient does not
display a plateau but decays algebraically, see Fig. 1. The
definition of this transport coefficient is then ambiguous.
In this Letter, we provide a simple theory for the

hydrodynamics of planar flows confined by planar solid
walls. We can describe fluid-surface interactions in a
rigorous way that allows in particular to properly define
hydrodynamics at boundaries at nanoscales and gain
intuition in these systems. We also compute from MD
simulations the ensuing transport kernels, and validate the
theory in nonequilibrium flow situations. The elements of
the theory are the following. (i) The use of discrete
hydrodynamic variables from the outset with a finite
element methodology [26–29]. (ii) An intrinsic built-in

length scale given by the discretization cell size that
determines the level of coarse graining and allows us to
discuss the role of non-Markovian effects. (iii) The effect of
the solid walls appears explicitly as force terms within the
hydrodynamic equations [30–32]. (iv) The hydrodynamic
equations are nonlocal as has been advocated in the field of
nanohydrodynamics [20,25,33–37]. (v) The GK expres-
sions for the nonlocal kernels suffer from the plateau
problem. We explain its hydrodynamic origin, and provide
a solution [38]. (vi) The theory does not need boundary
conditions, as the effect of the solid on the fluid is explicit,
but allows us to derive them. (vii) A microscopic expres-
sion for the slip length and hydrodynamic wall position
emerges. A more extensive account of these results is given
in the accompanying paper [39].
Theory.—We consider a monoatomic fluid confined in

between two parallel solid walls in the x, y directions. The
normal axis z to thewalls is divided inNbin bins separated by
nodal planes. We focus on the shear motion of the fluid and
consider the parallel component ĝxμ of the discrete momen-
tum field defined on each nodal plane μ ¼ 1;…; Nbin.

FIG. 1. The solid-liquid friction coefficient γðτÞ as a function of
the upper limit of integration of the running GK integral defined
in Eq. (10). Inset in log scale shows algebraic decay and absence
of a plateau.
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The microscopic definition of the discrete momentum is
ĝμ ¼

P
N
i piδμðriÞ, where ri, pi are the position and

momentum of the ith atom and δμðrÞ is a one-dimensional
finite element basis function corresponding to the μth nodal
plane [32].
Mori theory [40–42] allows one to obtain exact closed

equations for both the nonequilibrium average gðtÞ of the
discrete momentum density and the equilibrium time-
correlation matrix CðtÞ ¼ hĝðtÞĝTi. The exact equations
govern these quantities in terms of their past history through
a memory kernel. Under a Markovian approximation, the
exact integro-differential equations are approximated with
simple linear ordinary differential equations—with no
memory—of the form [38,39]

d
dt

gðtÞ ¼ −Λ�gðtÞ; d
dt

CðtÞ ¼ −Λ�CðtÞ; ð1Þ

where Λ� is a relaxation matrix. Equations (1) describe
exponential decay. Because of time reversibility _Cð0Þ ¼ 0,
leading to the incorrect result 0 ¼ −Λ�Cð0Þ at t ¼ 0.
Therefore, Eqs. (1) are valid only for times t > τ, where τ
is a time larger than the support of the memory kernel.
Note that, according to Eq. (1) the matrix ΛðtÞ≡
−ðd=dtÞCðtÞC−1ðtÞ should have a plateau given by Λ� at
and beyond themolecular time τ, this isΛðτÞ ¼ Λ�. Thiswill
allow us to compute explicitly the relaxation matrix Λ�.
An interesting form for the relaxation matrix is obtained

from the following mathematical identity:

d
dt

CðtÞ ¼ −
Z

t

0

dt0hiLĝðt0ÞiLĝTi ¼ −kBTMðtÞ; ð2Þ

where iL is the Liouville operator and the matrix
MðtÞ is introduced here. As shown in Refs. [32,39],
the momentum density changes as iLĝxμðzÞ ¼ F̂x

μðzÞ−
½ðσ̂xzμ ðzÞ − σ̂xzμ−1ðzÞÞ=Δz�, where F̂μ is the force density that
the solid exerts on the fluid on node μ and σ̂μ is the local
stress tensor of bin μ. In compact matrix form, this is
iLĝ ¼ F̂ þDT σ̂, where the matrix D is the bi-diagonal
forward finite difference operator. This leads in Eq. (2) to
the decomposition

MðtÞ≡DTηðtÞDþGðtÞDþDTHðtÞ þ γðtÞ; ð3Þ
where the Nbin × Nbin matrices ηðtÞ, GðtÞ, HðtÞ, γðtÞ have
as components the following GK running integrals

ημν ¼
Z

t

0

dt0
hσ̂xzμ ðt0Þσ̂xzν i

kBT
; Gμν ¼

Z
t

0

dt0
hF̂x

μðt0Þσ̂xzν i
kBT

;

Hμν ¼
Z

t

0

dt0
hσ̂xzμ ðt0ÞF̂x

νi
kBT

; γμν ¼
Z

t

0

dt0
hF̂x

μðt0ÞF̂x
νi

kBT
: ð4Þ

The matrixH is the transpose of the matrixG as a reflection
of Onsager’s reciprocity. Equations (2) and (3) relate

correlations of momenta with correlations of stresses and
forces. Equations (1), (2) allow us to express the relaxation
matrix as

Λ� ¼ ΛðτÞ ¼ kBTMðτÞC−1ðτÞ; ð5Þ

so Eqs. (1) become

d
dt

CðtÞ ¼ −kBTMðτÞC−1ðτÞCðtÞ; ð6Þ

d
dt

gðtÞ ¼ −MðτÞVv̄ðtÞ; ð7Þ

where we introduce the vector of scaled velocities as
v̄ðtÞ≡ kBTV−1C−1ðτÞgðtÞ, and the diagonal matrix V
contains the volume elements of each bin. The scaled
velocity is a momentum density divided by a mass density.
Equations (6), (7) allow one to predict the dynamics from
the knowledge of the computable GK expressions in
Eqs. (3), (4). Note that MðtÞ in Eq. (2), being proportional
to _CðtÞ decays to zero at long times, and so do the transport
kernels (4). This is the plateau problem [41,43,44] that
hinders the use of the GK formulas (4) to define transport
kernels unambiguously. However, the present derivation of
Eqs. (6), (7) for the discrete hydrodynamics allows us to use
the plateau-problematic GK form (4) in such a way that the
actual value of τ is irrelevant in the dynamics (6) and (7),
provided that we are in the plateau region of ΛðtÞ [38]. The
exact results (2), (3) also explain why the GK nonlocal
transport coefficients decay in a quasi-algebraic way, as this
follows from the hydrodynamic decay of the momentum
correlation matrix itself.
Finally, the discrete Eq. (7) with Eq. (3) can be under-

stood as a finite element discretization of a nonlocal
hydrodynamic continuum equation of the form [31]

∂tgðz; tÞ ¼ ∂z

Z
dz0ηzz0∂z0 v̄ðz0; tÞ − ∂z

Z
dz0Gzz0 v̄ðz0; tÞ

−
Z

dz0Hzz0∂z0 v̄ðz0; tÞ −
Z

dz0γzz0 v̄ðz0; tÞ: ð8Þ

The first term in the right-hand side in Eq. (8) involving
second derivatives is a nonlocal viscosity term, while the
other three terms reflect the irreversible force that the solid
wall exerts on the fluid. The interaction with the walls is
not described through boundary conditions but rather in
terms of extended irreversible friction forces that appear
directly in the hydrodynamic equations. This notion has
been considered phenomenologically in Refs. [30,45] and
theoretically in Refs. [31,32,46]. In Refs. [31,32,46] we
disregarded the plateau problem present in the kernels
ηzz0 ; Gzz0 ; Hzz0 ; γzz0 , that is solved here by using the scaled
velocity field v̄ðz0; tÞ. While both the kernels and v̄ depend
on τ, the prediction of Eq. (8) for gðtÞ is independent of τ.
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Simulations.—We conduct MD simulations at equilib-
rium for a Lennard-Jones fluid (LJ) with parameters σ, ϵ in
between two parallel walls [47–50]. A crude modeling of
water with the LJ potential is obtained for σ ¼ 0.27 nm and
ϵ ¼ 4.91 × 10−21 J, m ¼ 30.1 × 10−27 kg, and a time unit
τ ¼ σðm=ϵÞ1=2 ¼ 0.67 ps [51]. The walls are made of
simple cubic lattice crystals of fixed identical Lennard-
Jones particles with lattice spacing a ¼ σ at a distance of
30σ corresponding to a channel width of ∼8 nm. The
thermodynamic point is given by a density in the bulk
of ρ ¼ 0.6 and a temperature kBT ¼ 2.0 in reduced units.
Discrete momentum, forces, and stresses are measured,
and their equilibrium correlations computed to obtain
the correlation matrix CðtÞ and the transport coefficients
Eq. (4).
To confirm that the dynamics is given by the

Markovian Eq. (1), we compute the eigenvalues Λ̃μðtÞ ¼
−ðd=dtÞC̃μðtÞ=C̃μ of ΛðtÞ, where C̃μðtÞ is the μth eigen-
value of the correlation matrix CðtÞ [52]. Figure 2(a) shows
that the eigenvalues Λ̃μðtÞ reach a clear plateau for the
slowest modes. The bin size is Δz ¼ 0.5σ, giving 60 bins
and, therefore, 60 modes Λ̃μðtÞ. At long times both C̃μðtÞ
and its time derivative go to zero and its ratio is affected
with large statistical errors. Therefore, we do not plot data
for Λ̃μðtÞ when C̃μðtÞ < 10−5. Observe that the two fastest
modes have identical eigenvalues C̃μðtÞ with a negative tail
as shown in Fig. 2(b). A negative tail is incompatible with
the exponential prediction of the Markov assumption. The
eigenvectors of these modes are in the inset (c) in Fig. 2
and they describe near wall dynamics. Negative tails are
observed for resolutions corresponding to bin sizes ofΔz ¼
0.5σ andΔz ¼ 1σ. In contrast, for larger bins withΔz ¼ 2σ
all modes decay exponentially [39] and the hydrodynamics
at this coarser resolution is Markovian for times larger than
τ. The physical origin of the non-Markovian behavior near

walls at high space resolution, with bin width smaller than
the crystal lattice spacing, is probably due to a bounce-back
caging effect of fluid molecules against the lattice crystal
[53]. The results presented below are for a supramolecular
bin size of Δz ¼ 2σ that behaves in a fully Markovian way
for t > τ. Better statistics for this bin width allow us to
choose a slightly larger value for the plateau time τ ¼ 0.3 in
reduced units.
The transport matrices ηðτÞ, GðτÞ, γðτÞ are computed in

terms of the GK running integrals (4). All of them decay in
time, and in accord with the identity (2), showing no
plateau. The nonlocal viscosity matrix η is concentrated
along the diagonal and has a width of two bins, signaling
stress correlations on a length scale of∼4σ. The matricesG,
γ are localized near the nodes close to the walls and extend
over distances of the order of two bins, 4σ, implying that
irreversible wall effects are felt relatively far from the
wall. With these transport matrices, we may now test the
predictions (7) of the theory for an initial plug flow. This
unsteady flow is challenging as it is initially discontinuous
and gives large gradients near the walls. It is generated from
an equilibrium atomic configuration by adding a constant
velocity parallel to the walls to all fluid particles and
rescaling to have the desired temperature. This nonequili-
brium initial profile decays towards equilibrium at constant
energy. The average over initial conditions of the momen-
tum profile as a function of time is given in Fig. 3(a) where
the initial plug flow evolves towards a decaying parabolic-
like profile at large times, eventually settling to rest. The
color code gives the error between the measured momen-
tum and the prediction of the nonlocal theory (7). A zoom
reveals disagreement at very short times smaller than the
molecular time τ < 0.3 when the early non-Markovian
effects are appreciable even in the large bin case. However,
the agreement of the nonlocal theory and simulation results
is excellent beyond the molecular time τ.
Slip.—The slip boundary condition is obtained from the

present theory as a mechanical balance. Consider a boun-
dary slab of fluid made of B bins near one of the walls [20].
The total momentum of this slab is Px

B ¼ P
B
μ¼1 Vμĝxμ. By

using Eq. (7), the total force Fx
B on the slab is due to the

combined action of the fluid outside the slab and the solid
wall as [39]

1

S
Fx
B¼

XB
ν¼1

Vν

�
ðηBν−GνÞ

v̄xνþ1− v̄xν
Δz

− ðγν−HBνÞv̄xν
�
: ð9Þ

The local transport coefficients are given by Gν ≡P
μ¼1 VμGμν=S and γν ≡P

μ¼1 Vμγμν=S, where S is the
surface area of the wall. Here, v̄xν are the components of the
vector of scaled velocities v̄ defined after Eq. (7). Assuming
a parametric model for the fluid velocity profile, the
mechanical balance (9) implies a condition on the param-
eters of the model. For a linear model, it implies a linear

(a)
(b) (c)

FIG. 2. (a) Eigenvalues Λ̃μðtÞ of the relaxation matrix ΛðtÞ,
with faster modes in ascending order. One degenerate eigenvalue
C̃μðtÞ, signaled with an arrow and shown in the inset (b), becomes
negative. The two eigenvectors vμ of this eigenvalue in the inset
(c) are highly localized near the walls. The vertical black line
is at τ ¼ 0.2.
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relationship between the velocity and the gradient at the
wall position, leading to the slip boundary condition.
Assume that the scaled velocity field in nodes μ ¼
1;…; B inside the boundary slab is strictly linear and
given by v̄xμ ¼ v̄xwall þ _̄γwallðμΔz − zwallÞ, where v̄xwall is the
velocity at the wall position zwall, and _̄γwall is the shear rate.
Insertion of this linear velocity field in Eq. (9) leads to
ð1=SÞFx

B ¼ η0 _̄γwall − γ0v̄xwall, provided that the wall position
is defined unambiguously from the friction properties of the
wall as zwall≡f½PB

ν Vνðγν−HBνÞνΔz�=½
P

B
ν Vνðγν−HBνÞ�g

[46]. The transport coefficients η0 ¼ η − G and γ0 ¼ γ −H
are given as GK formulas

η ¼
Z

τ

0

dt
hσ̂xzB ðtÞσ̂xzi

kBT
; G ¼

Z
τ

0

dt
hF̂xðtÞσ̂xzi
SkBT

;

H ¼
Z

τ

0

dt
hσ̂xzB ðtÞF̂xi
SkBT

; γ ¼
Z

τ

0

dt
hF̂xðtÞF̂xi
SkBT

; ð10Þ

where F̂ ¼ P
NN0
ij0 F̂ij0 is the total force that the solid exerts

on the fluid and σ̂ ¼ P
N
i pivi þ 1

2

P
N
ij rijF̂ij is the total

stress tensor of the fluid. These expressions emerge from
summing over bins the nonlocal GK expressions (4). The
values of η, G, H, γ, and zwall depend on the width B of the
boundary slab. We observe that beyond B ¼ 2 these
quantities become independent on B due to the finite range
of the nonlocal transport kernels. Therefore, we select
B ¼ 2. For this width of the boundary slab we obtain
η ¼ 0.84; G ¼ 0.54; H ¼ 0.01; γ ¼ 1.00 ½r:u:�. The wall
position zwall is at a distance of 0.65σ from the crystal
plane. The coefficient η coincides with the shear viscosity
of the bulk fluid.
When Fx

BðtÞ ≃ 0 we obtain the Navier slip boundary
condition v̄xwall ¼ δ _̄γwall with the slip length given by the
microscopic expression

δ ¼ η0

γ0
¼ η − G

γ −H
: ð11Þ

This prediction, involving not only stress and force
autocorrelations through η, γ but also stress and force
cross correlations through G, H is formally identical to the
one that we have obtained in Ref. [46] from the continuum
theory presented in Ref. [31]. As shown in Ref. [46], this
microscopic expression for the slip length coincides with
the one provided by BB [18] after a suitable redefinition
of the wall position. The derivation of the microscopic
expression of the slip length here gives, however, an
additional information not evident in the continuum der-
ivation presented in Ref. [46] or even in BB’s derivation
[18]. Note that the transport coefficients G, H, γ defined in
Eq. (10) decay algebraically with τ, as seen in Fig. 1 for γ.
Bocquet and Barrat [21] assumed that the thermodynamic
limit would provide a cure for the plateau problem in the
friction coefficient, but this is not correct. The solid-liquid
friction coefficient γ does not display a plateau even in the
thermodynamic limit [39]. Here, the plateau problem is
solved by using the scaled velocity field v̄xμ, which depends
on τ. Note that the slip boundary condition is predicated on
the scaled velocity field. We observe in Fig. 3(c) that the
slip length δ turns out to be rather insensitive to the actual
value of τ, because this quantity is defined as a ratio of
transport coefficients that decay with time in the same
manner, at least around the time when the relaxation matrix
reaches the plateau. A similar insensitivity is observed for
the hydrodynamic wall position zwall.
To validate the prediction (11) against simulations we

define the time-dependent slip length δðtÞ¼v̄xwallðtÞ= _̄γwallðtÞ,
where v̄xwallðtÞ and _̄γwallðtÞ are measured from a linear fit of
the actual unsteady plug flow velocity profile near the wall.
Figure 3(b) shows themeasured δðtÞ and the prediction (11).
Only after a time ≃5 in reduced units the measured and
predicted values coincide. This implies that the Navier slip

(a) (b) (c)

FIG. 3. (a) The measured discrete momentum gμðtÞ as a function of time for an initial plug flow. Color code denotes the absolute error
of the nonlocal prediction (7). (b) The measured slip length δðtÞ as a function of time. (c) The friction coefficient γ0 ¼ γ −H (dotted
blue), modified viscosity η0 ¼ η − G (dashed green), and slip length δ (solid red), as a function of the upper limit of integration τ. The
horizontal lines in (b), (c) show the predicted slip length δ ¼ η0=γ0 ¼ 0.29 in reduced units.
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boundary condition is not satisfied for the plug flow in the
very initial stages of the flow field shown in Fig. 3(a). This is
because the force Fx

BðtÞ on the boundary slab is nonzero
at the early times 0.3 < t < 2 [inset of Fig. 3(b)]. The
curvature of the flow within the boundary slab explains the
discrepancy for times 2 < t < 5. After this time, good
agreement with the prediction of the slip length is obtained.
Conclusions.—A simple theory for discrete nonlocal

shear hydrodynamics near walls is proposed where the
fluid-solid interaction is accounted for through friction
forces that extend over a supramolecular distance ∼4σ. The
nonlocal transport kernels show algebraic tails and suffer
from the plateau problem. In particular, the solid-fluid
friction coefficient provided by BB is ill defined as it has no
plateau. We use the method of Ref. [38] to solve the plateau
problem in the GK transport kernels. The predictions of an
unsteady plug flow with this nonlocal theory are very
accurate. Also, we show that the slip boundary condition is
not satisfied at the initial stages of an unsteady plug flow.
The observation in this Letter that non-Markov effects in
hydrodynamics are required when resolving flows at scales
where density layering is important has far-reaching
implications in the theoretical treatment of unsteady flows
in confined geometries like CNT, as memory becomes an
important ingredient in the theory. In addition, usual local
descriptions based on the Navier-Stokes equations plus
slip boundary conditions may not be entirely appropriate
when the friction zones of the top and bottom walls
overlap, which in our system is around a channel width
of Lz ∼ 2 nm.
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