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Solution to the plateau problem in the Green-Kubo formula
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Transport coefficients appearing in Markovian dynamic equations for coarse-grained variables have micro-
scopic expressions given by Green-Kubo formulas. These formulas may suffer from the well-known plateau
problem. The problem arises because the Green-Kubo running integrals decay as the correlation of the coarse-
grained variables themselves. The usual solution is to resort to an extreme timescale separation, for which the
plateau problem is minor. Within the context of Mori projection operator formulation, we offer an alternative
expression for the transport coefficients that is given by a corrected Green-Kubo expression that has no plateau
problem by construction. The only assumption is that the Markovian approximation is valid in such a way that
transport coefficients can be defined, even in the case that the separation of timescales is not extreme.
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I. INTRODUCTION

One important objective within nonequilibrium statistical
mechanics is the derivation from the microscopic laws of
motion of the atoms of the governing dynamics of a set of
coarse-grained (CG) variables that describe the system at a
mesoscopic or macroscopic level of description [1,2]. In this
quest, the projection operator technique, as described in the
textbook by Grabert [3], has proved to be an extremely useful
tool. As discussed there, there are essentially three different
types of projection operator theories, associated to the names
of Mori [4], Zwanzig [5], and Kawasaki and Gunton [6],
with increasing order of generality [3]. The Kawasaki-Gunton
projection operator allows one to obtain nonlinear closed
equations for the averages of the coarse-grained variables. The
Zwanzig projector is a special case of the Kawasaki-Gunton
projector when the selected variables are, instead of the CG
variables themselves, the distribution of the CG variables.
This results in a governing equation for the probability distri-
bution of CG variables. Finally, a Mori projector is obtained
from Zwanzig projector in near-equilibrium situations [3,7].
The resulting dynamic equations in Mori theory are linear and
allow one to obtain simple equations not only for the averages
of the CG variables but also for their correlation functions.

The projection operator technique provides closed and ex-
act equations for the evolution of the averages or probabilities
of the CG variables with only one assumption about the
initial distribution of microstates, which are assumed to be
distributed with a maximum entropy ensemble [3]. The exact
equations of motion of the CG variables contain a reversible
term which is local in time and an irreversible integrodifferen-
tial term describing memory about the past history of the CG
variables. The memory kernel is defined in microscopic terms
and it involves the so-called projected dynamics which is
different, in general, from the usual unprojected Hamiltonian
dynamics of the system.

When the selected CG variables are such that they display
a clear separation of timescales in its dynamics, then it is
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possible to resort to the Markovian approximation, in which
the memory kernel becomes proportional to a Dirac δ function
in time. Such a separation of timescales happens, in general,
when the evolution of the CG variables is the result of many
minuscule and fast contributions. Under the Markovian ap-
proximation, the resulting governing dynamic equations are
nonlinear differential equations for the nonequilibrium aver-
ages of the CG variables in the Kawasaki-Gunton projector
or stochastic differential equations (SDE) in the Mori and
Zwanzig projectors. Within the Markovian approximation one
obtains the transport coefficients governing the irreversible
part of the dynamics in terms of the time integral of correlation
functions of the time derivatives of the CG variables. These
formulas for transport coefficients are the celebrated Green-
Kubo formulas [8,9].

The time derivatives in the memory kernel evolve under
the projected dynamics. While there are recent attempts to
compute the memory kernels from molecular dynamic (MD)
simulations [10–12], the usual procedure is to approximate
the projected dynamics with the unprojected Hamiltonian
dynamics [5]. This substitution is usually justified in the limit
of very large separation of timescales.

However, one annoying problem with the substitution of
the projected dynamics with the unprojected dynamics is
known as the plateau problem that refers to the fact that
the Green-Kubo running integrals with unprojected dynam-
ics do not have, in general, a well-defined plateau, unless
an extremely large separation of timescales exists [1,13,14],
which is not always the case. This induces a degree of am-
biguity into the calculation of transport coefficients through
MD simulations. In a recent example, Bocquet and Barrat
[15,16] encountered this problem when computing the friction
coefficient entering the slip length in fluid flowing past a solid
wall. We have stumbled upon the plateau problem in our own
research on hydrodynamics near walls and this has led us to
reconsider this problem.

In the present paper, we offer a simple nontrivial solution
to the plateau problem by proposing a new corrected Green-
Kubo formula for the transport coefficients based on the
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unprojected dynamics and hence directly computable in MD.
This new expression for the transport coefficients reduces
to the standard Green-Kubo formula in the limit of large
separation of timescales but corrects it in those situations
where the separation of timescales is not extreme but the
Markovian approximation already holds.

The paper is distributed as follows. In Sec. II we review
Mori’s theory that produce the exact generalized Langevin
equation for the evolution of the CG variables. Section III
considers the Markovian approximation and describes the
plateau problem. We give in Sec. IV a solution to the plateau
problem by correcting the unprojected Green-Kubo formula.
Finally, in Sec. V, we summarize the situation and discuss
at the light of the previous arguments some cases where the
unprojected Green-Kubo formula does not suffer from the
plateau problem.

II. MORI’S GENERALIZED LANGEVIN EQUATION

In this section we present a summary of Mori’s theory
[4] in order to set the notation. At a microscopic level of
description we assume that the system is well described
by classical mechanics and that the microscopic state z =
{qi, pi, i = 1, . . . , N} is given by the set of positions and mo-
menta of all the N atoms in the system. Hamilton’s equations
can be written in a very compact form as żt = iLzt , where iL
is the Liouville operator and zt is the trajectory in phase space
with initial condition z0. This set of first-order differential
equations has as a formal solution zt = exp{iLt}z0.

At a macroscopic level, we have the system described
with a set of M coarse-grained (CG) variables that are phase
functions arranged into a column vector Â(z) with compo-
nents Âμ(z), μ = 1, . . . , M. The corresponding row vector is
denoted by ÂT , where T stands for transpose. Without losing
generality, we will assume that the equilibrium average of the
CG variables vanish. By denoting Â(t ) = Â(zt ), the evolution
of these functions in phase space is given by

d

dt
Â(t ) = exp{iLt}iLÂ(z0). (1)

Mori’s exact generalized Langevin equation (GLE) is an
evolution equation for the set of CG variables given by the
following theorem [1,2,4]:

d

dt
Â(t ) = −LC−1(0)Â(t )

−
∫ t

0
dt ′�(t − t ′)C−1(0)Â(t ′) + F+(t ), (2)

where the following matrices have been introduced:

L = 〈ÂiLÂT 〉
C(0) = 〈ÂÂT 〉
�(t ) = 〈F+(t )F+T (0)〉, (3)

where 〈· · · 〉 denotes an equilibrium average,

〈· · · 〉 ≡
∫

dzρeq(z) · · · , (4)

and ρeq(z) is the equilibrium ensemble. The so-called pro-
jected force is given by

F+(t ) = exp{QiLt}QiLÂ. (5)

The projection operator Q is defined as Q = 1 − P , where P
is Mori’s projector whose effect on an arbitrary phase function
F̂ (z) is

PF̂ (z) = 〈F̂ 〉 + 〈F̂ ÂT 〉C−1(0)Â(z). (6)

The Mori projector (6) satisfies that PÂ = Â and transforms
an arbitrary function of phase space into a linear combination
of the CG variables. The projected forces have zero mean and
are uncorrelated from previous values of the CG variables,
that is,

〈F+(t )〉 = 0

〈ÂF+(t )〉 = 0 t � 0. (7)

The equilibrium time correlation matrix of the CG
variables is

C(t ) = 〈Â(t )ÂT 〉. (8)

If we multiply the exact equation (2) with ÂT (z) and average
over the equilibrium ensemble, then we obtain a closed and
exact equation for the correlation matrix of the CG variables,

d

dt
C(t ) = −LC−1(0)C(t )

−
∫ t

0
dt ′�(t − t ′)C−1(0)C(t ′). (9)

The GLE (2) allows one to obtain not only an equation
for the correlation of the CG variables but also an equation
for their averages. If we multiply (2) with an initial ensemble
ρ0(z) and integrate over the microstates z we obtain

d

dt
a(t ) = −LC−1(0)a(t )

−
∫ t

0
dt ′�(t − t ′)C−1(0)a(t ′), (10)

where the time-dependent average of the CG variables is
defined as

a(t ) =
∫

dzρ0(z) exp{iLt}Â(z) (11)

and we have assumed that the average of the projected force
with respect to the initial ensemble vanishes, i.e.,∫

dzρ0(z) exp{QiLt}QiLÂ(z) = 0. (12)

Note that in deriving (2) one assumes that the dynamics is
given by a time-independent Hamiltonian with a well-defined
equilibrium ensemble ρeq(z). Therefore, both (9) and (10)
describe the evolution of correlations and averages toward
their equilibrium values.

III. THE MARKOVIAN APPROXIMATION

The Markovian approximation assumes that there exists a
time-independent friction matrix M∗, that contains the trans-
port coefficients of the CG level of description such that the
linear integrodifferential term in Eq. (9) can be approximated
by a memoryless term, also linear in the correlation matrix∫ t

0
dt ′�(t − t ′)C−1(0)C(t ′) � M∗C−1(0)C(t ). (13)
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The Markov approximation (13) in the GLE (2) implies the
following evolution equation for the CG variables:

d

dt
Â(t ) = −�∗Â(t ) + F+(t ), (14)

where the relaxation matrix �∗ is defined as

�∗ ≡ (L + M∗)C−1(0). (15)

The approximation (13) is equivalent to take

�(t ) ≈ M∗δ+(t ), (16)

where the Dirac δ function δ+(t ) is normalized as∫ ∞

0
dtδ+(t ) = 1. (17)

Under the Markovian approximation, Eq. (16) implies that the
projected force is δ correlated in time. As a consequence, the
ordinary differential equation (14) should be interpreted as an
SDE for times larger than the correlation of F+(t ).

By multiplying (14) with an initial ensemble ρ0(z) satisfy-
ing (12) we obtain the following Markovian equation for the
averages:

d

dt
a(t ) = −�∗a(t ). (18)

By multiplying (14) with Â(0) and averaging over initial con-
ditions sampled from the equilibrium ensemble, one obtains
the evolution equation of the correlation matrix under the
Markovian approximation,

d

dt
C(t ) = −�∗C(t ). (19)

The form of (18) and (19) illustrates Onsager’s regression
hypothesis, which states that (correlations of) fluctuations
decay in the same way as the averages. Equations (18) and
(19) show that the transport coefficients that appear in the
transport equation for the averages are the same as the trans-
port coefficients governing the correlations of the fluctuations
in equilibrium.

The solution of (19) is given by the exponential matrix,

C(t ) = exp{−�∗t}C(0). (20)

This is the main prediction of Mori theory that states that for a
linear Markovian theory the only possibility for a correlation
is to decay in an exponential matrix way. This does not mean
that the elements of the correlation matrix C(t ) decay as e−αt ,
because they are, in fact, the sum of many exponential terms
that may lead even to quasialgebraic decays of correlations, as
in the case of hydrodynamics.

We remark that the Markovian Eq. (19) cannot hold at very
short times, because at t = 0 the exact equation (9) implies

d

dt
C(0) = −L, (21)

which is only possible in (19) if M∗ = 0. This paradoxical
result can also be obtained from Eq. (13) because if we set
t = 0 in that equation, then we obtain again M∗ = 0. There-
fore, we expect (19) to hold only after a time t = τ larger than
the decay of the memory kernel. This is a general feature of
the Markovian approximation showing that correlations will

decay in an exponential, Markovian way only after the time τ

beyond which memory is lost. The value of τ should be ex-
plicitly measured in any procedure to validate the Markovian
approximation.

The usual rationale for justifying the Markovian approxi-
mation (13) goes as follows [1,3]. The memory kernel �(t −
t ′) is given in terms of a correlation function that it is assumed
to decay in a typical molecular timescale. On the other hand, it
is assumed that the timescale of evolution of the CG variables
is much larger than this molecular time and, therefore, within
the memory integral C(t ′) does not change appreciably and
we may approximate C(t ′) � C(t ). Therefore, we have∫ t

0
dt ′�(t − t ′)c(t ′) �

∫ t

0
dt ′�(t − t ′)c(t )

= M+(t )c(t ), (22)

where we have introduced the projected Green-Kubo running
integral

M+(t ) ≡
∫ t

0
dt ′�(t ′)

=
∫ t

0
dt ′〈(exp{QiLt}QiLÂ)QiLÂT 〉 (23)

and the normalized correlation matrix as

c(t ) = C−1(0)C(t ) (24)

that at t = 0 becomes the identity matrix. The Markovian
assumption relies on a separation of timescales. For some
model systems (hydrodynamics of unconfined fluids [17] or
Brownian particles [18]), one can justify rigorously such a
separation of timescales as some parameter becomes small
(wavelength or ratio of masses) and then usually the order
of the limits in the parameter, time, and system size plays an
important role. In the present paper, we simply assume that the
Markovian approximation is a sufficiently good one. We will
also consider the unprojected Green-Kubo running integral

M(t ) ≡
∫ t

0
dt ′〈(exp{iLt ′}iLÂ)QiLÂT 〉, (25)

where we distinguish M(t ) from M+(t ) because the former
involves the unprojected Hamiltonian dynamics exp{iLt}Â,
while the later involves the projected dynamics exp{QiLt}Â.
In both M+(t ) and M(t ) we recognize a total time derivative
that allows us to perform the time integral explicitly so we
have the alternative forms

M+(t ) = 〈(exp{QiLt}Â)QiLÂ+T 〉
M(t ) = 〈(exp{iLt}Â)QiLÂ+T 〉. (26)

Because the projected dynamics is in general more difficult to
compute than the unprojected dynamics, one usually resorts
to a large separation of timescales in order to approximate the
projected dynamics with the unprojected one [5,17,18]. For
the Markovian approximation (13) to hold, the matrix M+(t )
in (22) needs to become the time-independent matrix M∗.
Note that M+(t ) vanishes at t = 0 and after a time τ should
plateau to a constant value. If one approximates M+(t ) �
M(t ), then this would require that M(t ) would have a plateau
itself. However, this is not true because, for an ergodic system,
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correlations computed with the unprojected dynamics decay
to zero,

lim
t→∞ M(t ) = lim

t→∞〈(exp{iLt}Â)QiLÂ+T 〉
= 〈Â〉〈QiLÂ+T 〉 = 0. (27)

This problem was recognized by Kirkwood as the so-called
plateau problem [13,14] and limits the use of the unprojected
Green-Kubo formula M(t ) for the calculation of transport
coefficients. While M(t ) does not have a plateau, M+(t ) may
actually have a plateau depending essentially on the spectrum
of the projected evolution operator exp{QiLt}. If |ψ̂μ〉 are the
eigenvectors of corresponding eigenvalues λμ of QiL, then
the operator exp{QiLt} admits the eigendecomposition

exp{QiLt} =
∑

μ

exp{−λμt}|ψ̂μ〉〈ψ̂μ| (28)

in Dirac ket and bra notation, where the inner product is
defined with the equilibrium ensemble. The matrix M+(t )
then has the form

M+(t ) =
∑

μ

exp{−λμt}〈Â|ψ̂μ〉〈ψ̂μ|QiLÂ+T 〉. (29)

Note that the equilibrium eigenvector |ψ0〉 has zero eigen-
value. For the ergodic unprojected dynamics this is the only
eigenvector of null eigenvalue but for the projected dynamics,
the zero eigenvalue may be degenerate. In other words, the
projected dynamics may have other conserved variables in
addition to the Hamiltonian that render the evolution noner-
godic with respect to the equilibrium measure. Assume, for
example, that there is only one eigenvector |ψ1〉 different from
the equilibrium one |ψ0〉 of null eigenvalue. Then the infinite
time limit is

M∗ = lim
t→∞ M+(t ) = 〈Â|ψ̂1〉〈ψ̂1|QiLÂ+T 〉. (30)

This is an expression for the transport coefficients M∗ in terms
of equilibrium averages. Of course, the calculation of the
spectrum of QiL, or the identification of the additional con-
served quantities of the projected dynamics, is not an easy task
in general but it has been carried out for a model system of a
Brownian particle in a double-well potential [19]. Also, under
a perturbation scheme, the time integral of the correlation of
the projected force of a Brownian particle has been carried
out showing a nonvanishing plateau [18]. It is believed that
the projected Green-Kubo matrix M+(t ) has a well-defined
plateau in general. In summary, the projected Green-Kubo
matrix M+(t ) may have a well-defined plateau but it is diffi-
cult to evaluate it in order to get transport coefficients from
direct MD simulations, while the unprojected Green-Kubo
matrix M(t ) is easily obtained from MD simulations but it
usually suffers from the plateau problem giving ambiguous
values for the transport coefficients.

IV. A CORRECTED GREEN-KUBO FORMULA
WITH NO PLATEAU PROBLEM

We now consider a procedure that allows one to obtain the
friction matrix M∗ from a modified version of the Green-Kubo
formula even when no plateau exists, provided the dynamics

is Markovian in such a way that correlations of CG variables
obey (19).

The action of Mori projector operator on the phase function
iLÂ is

QiLÂ = iLÂ − 〈iLÂÂT 〉〈ÂÂT 〉−1Â

= iLÂ + LC−1(0)Â (31)

and, therefore, the unprojected Green-Kubo matrix (25) be-
comes

M(t ) =
∫ t

0
dt ′〈iLÂ(t ′)iLÂT 〉

+ LC−1(0)
∫ t

0
dt ′〈Â(t ′)iLÂT 〉. (32)

By using the identity d
dt Â(zt ) = iLÂ(zt ) and the fact that the

Liouville operator satisfies 〈Â(t )iLÂT 〉 = −〈iLÂ(t )ÂT 〉 we
obtain

M(t ) =
∫ t

0
dt ′ d

dt ′ 〈Â(t ′)iLÂT 〉

− LC−1(0)
∫ t

0
dt ′ d

dt ′ 〈Â(t ′)ÂT 〉. (33)

We may integrate the time derivatives, obtaining

M(t ) = 〈Â(t )iLÂT 〉 − 〈Â(0)iLÂT 〉
− LC−1(0)〈Â(t )ÂT 〉 + LC−1(0)〈Â(0)ÂT 〉. (34)

The second and fourth terms in the right-hand side cancel each
other and we finally obtain

M(t ) = − d

dt
C(t ) − Lc(t ), (35)

where the normalized correlation matrix c(t ) is defined in
(24). This is a mathematical identity that relates the unpro-
jected Green-Kubo matrix M(t ) with the correlation matrix
C(t ) of the CG variables. It shows that M(t ) cannot have a
plateau for an ergodic system where limt→∞ C(t ) = 0.

If we now assume that the correlation function C(t ) obeys
the Markovian dynamics (19) with (15), then Eq. (35) be-
comes

M(τ ) � M∗ · c(τ ). (36)

This expression shows that the unprojected Green-Kubo ma-
trix decays as the correlation of the CG variables. Although
the time integral in the left-hand side of (36) has no plateauit
is still possible to infer the friction matrix M∗ by multiplying
(36) with the inverse of the normalized correlation, leading to

M∗ =
∫ τ

0
dt〈QiLÂ(t )iLÂT 〉c−1(τ ). (37)

This new corrected Green-Kubo formula (37) allows one to
calculate the friction matrix M∗ from MD simulations and
does not suffer from the plateau problem by construction,
provided the dynamic is Markovian. Equation (37) is the
main result of the present paper. Equation (37) is conceptu-
ally pleasing as it displays in very graphical terms why the
unprojected Green-Kubo integral (25) has no plateau—in fact,
it decays as the correlation matrix itself. It is obvious that
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(37) cannot be true at τ = 0 as this would imply M∗ = 0.
However, after a time in the molecular timescales, the right-
hand side of Eq. (37) should be time independent provided
that the Markovian description (19) is valid. In the limit of
very large separation of timescales, when M(t ) has a “fast-up,
slow-down” structure, we may assume that the normalized
correlation matrix is very close to its value at t = 0 which
is just the identity matrix, that is, c−1(τ ) � 1. In this case, we
recover from (37) the unprojected Green-Kubo prescription
(25) for the transport coefficients.

In summary, Eq. (37) shows a way to infer the friction
matrix M∗ in the Markovian equation (14) from a time integral
even when it is not possible to identify a well-defined plateau
in the unprojected Green-Kubo formula (25).

The mathematics behind the derivation of (37) should not
obscure the essential procedure that we have followed here.
We have inferred M∗ from the fact that the correlation matrix
C(t ) obeys the Markovian equation (19). In this respect, an
alternative, entirely equivalent, and perhaps simpler way to
obtain the friction matrix M∗ is by introducing the time-
dependent matrix

�(t ) ≡ − d

dt
C(t )C−1(t ). (38)

From Eq. (19), if the Markov assumption is correct, then, after
a molecular time τ , �(t ) should become a time-independent
matrix �∗,

lim
t→∞ �(t ) = �∗. (39)

Therefore, from (15) we can obtain the friction matrix as

M∗ = −L + �∗C(0). (40)

In some situations, however, it is preferable to obtain the
friction matrix M∗ from the corrected Green-Kubo expres-
sion (37) than from (40) because the Green-Kubo expression
involves the time derivative iLÂ that may induce special
structure to the matrix M∗. This is the case of hydrodynamics
near walls that we discuss elsewhere.

The method to obtain the matrix �∗ from the plateau of
�(t ) in (38) needs high-quality statistics for C(t ) and d

dt C(t ).
The same is true for the new Green-Kubo formulas (37). In
fact, C(t ) is an exponentially decaying matrix, and C−1(t )
is an exponentially growing matrix. At very large times, any
statistical error will be exponentially amplified. This means
also that τ should be, in practice, as small as possible in order
to detect a plateau value for �(t ) and for which statistical
errors have not yet been amplified to a catastrophic level.

V. DISCUSSION

In this work, we have addressed the plateau problem that
appears in the expression of transport coefficient in terms
of the unprojected Green-Kubo running integrals. When the
dynamic of the CG variables is Markovian, but with no
extreme separation of timescales, the decay of the unprojected
Green-Kubo running integral does not allow us to determine
unambiguously the value of the transport coefficients. We
have proposed a correction to the unprojected Green-Kubo
expression that does has a well-defined infinite time limit and

allows one to directly measure transport coefficients from MD
simulations.

As a final remark, we note that there are situations in which
the unprojected Green-Kubo running integral indeed displays
a well-defined plateau. This can only happen if some of the
assumptions made in the argument based on the mathematical
identity (35) do not hold.

For example, if we take as CG variable the position r(t )
of a tagged particle in a fluid, then we have the well-known
mathematical identity

1

2

d

dt
〈(r(t ) − r(0))2〉 =

∫ t

0
dt ′〈v(t ) · v〉, (41)

where v(t ) is the velocity of the particle. This equation would
correspond to (35). It is clear that because the root-mean-
square displacement is a “correlation” that does not decay to
zero, the infinite time integral of the right-hand side does not
need to decay to zero. It actually gives a nonzero value given
by the self-diffusion coefficient.

Another example can be found whenever we consider a
conserved quantity. Consider, for example, the momentum
density correlation function in an infinite system in Fourier
space,

ĝk =
N∑
i

pi exp{ik · ri}. (42)

The correlation matrix function is

C(k, t ) = 〈ĝk(t )ĝ−k〉. (43)

Equation (35) now becomes

∂tC(k, t ) = −
∫ t

0
dt ′〈iLĝk(t )iLĝ−k〉. (44)

The action of the Liouville operator is well known,

iLĝk = −ik · σ̂k, (45)

where σ̂k is the Fourier transform of the Irving-Kirkwood
stress tensor. Therefore, we have

∂tC(k, t ) = k · �(k, t ) · k, (46)

where the fourth-order viscosity tensor is defined as the time
integral of the stress correlation function

�(k, t ) =
∫ t

0
dt ′〈σk(t )σ−k〉. (47)

Equation (46) is what corresponds now to (35) and the ar-
gument is that because the correlation C(k, t ) decays, the
viscosity tensor �(k, t ) must decay toward zero. This is true
in general but fails for the very special value of k = 0. At this
value, we see that the left-hand side is zero because, for k = 0,
ĝk=0 is the total momentum of the system. As we assume that
the equilibrium average of the CG variables vanish, we are
implicitly assuming that we are in the center-of-mass refer-
ence frame of the fluid, for which total momentum vanishes.
Therefore, the right-hand side of (46) vanishes at k = 0. At
the same time, for k = 0 the Irwing-Kirkwood stress tensor
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becomes the total stress tensor of the fluid

σ̂
αβ

k=0 =
∑

i

pivi + 1

2

∑
i j

ri jFi j, (48)

and the isotropic fourth-order viscosity tensor �(0, t ) has
only two independent components given by the unprojected
Green-Kubo expressions for the shear and bulk viscosities.
Therefore, for k = 0, Eq. (46) takes the trivial form 0 =
0 · �(0, t ) · 0 and �(0, t ) is no longer constrained to decay
to zero anymore and may display a well-defined plateau, as
it is observed empirically. However, for values of k �= 0, the
resulting unprojected Green-Kubo formula for the (nonlocal)
viscosities suffer necessarily from the plateau problem and

require the correction presented in this paper for its actual
evaluation. In forthcoming publications we will show how
nonlocal transport coefficients for discrete hydrodynamics
with and without confining walls can be unambiguously mea-
sured by using the new corrected Green-Kubo formula.
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