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The generic framework provides a thermodynamically consistent approach to describe the evo-
lution of coarse-grained variables. This framework states that the Markovian dynamic equations
governing the evolution of coarse-grained variables have a universal structure that ensures energy
conservation (First Law) and entropy increase (Second Law). However, the presence of external
time-dependent forces can break the energy conservation law, requiring modifications to the frame-
work’s structure. To address this issue, we start from a rigorous and exact transport equation for
the average of a set of coarse-grained variables derived from a projection operator technique in the
presence of external forces. Under the Markovian approximation, this approach provides the sta-
tistical mechanics underpinning of the generic framework under external forcing conditions. By
doing so, we can account for the effects of external forcing on the system’s evolution while ensuring
thermodynamic consistency.

I. INTRODUCTION

Non-equilibrium statistical mechanics [1–4] is a gen-
eral framework that allows one to obtain the dynamic
equations of a set of coarse-grained (CG) variables from
the underlying Hamiltonian dynamics of the system.
This theory of coarse-graining allows one to represent
a given system with less, but relevant, information. In
this regard, the Mori-Zwanzig (MZ) projection opera-
tor method has been widely employed to achieve this
goal [2, 5, 6]. The MZ method produces rigorous ex-
act integro-differential transport equations for the evolu-
tion of the CG variables. As expected from an exact re-
sult, the equations are formal and, in general, untractable
unless approximations are considered. The extremely
useful Markovian approximation can be taken when the
CG variables display an evolution with two distinct time
scales. In this case, the formally exact integro-differential
equations become ordinary differential equations which
are much more tractable. More importantly, only for
levels of descriptions which are Markovian, a thermo-
dynamic structure emerges. This structure is known as
generic (for General Equation for Non-Equilibrium Re-
versible Irreversible Coupling) and proposes a universal
form for descriptions of systems that obey the First and
Second Laws of thermodynamics [3, 7]. The framework
was introduced phenomenologically [8, 9], while its statis-
tical mechanics foundation was given shortly after [10] by
using the MZ projection operators technique for the case
of isolated systems with time independent Hamiltonians
that conserve the energy. generic unifies virtually all
the different theories and models based on ordinary and
partial differential equations used in the CG description
of matter, ranging from kinetic theory [9, 11], to Navier-
Stokes hydrodynamics [10], colloidal systems [12], poly-
mer physics [13, 14], electrochemical cells [15], viscoplas-
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tic solids [16], relativistic liquids [17], to quantum field
theory [18] to name a few. A comprehensive list of ex-
amples of theories with the generic structure may be
found in [19].
Most of the existing research with the MZ projection

operator approach has primarily focused on systems with
time-independent Hamiltonians, and there has been rela-
tively limited investigation into extending this method to
encompass time-dependent Hamiltonians, which are cru-
cial for describing the system’s interaction with external
fields. Notable recent exceptions are given in Refs. [20–
22]. Observe that Grabert described and solved the prob-
lem of deriving the CG dynamic equations in the presence
of external fields in Sec 6.2 of [1], under the assumption
that the coupling of the external forces with the system
is through the CG variables. te Vrugt and Wittowski [20]
have extended Grabert’s result to the more general case
in which the coupling is not necesarily through the CG
variables. This implies memory functions that depend
on the present t and past t′ times not in the form t− t′,
leading to more complicated dynamic equations. Also re-
cently, Schilling and co-workers [21] have considered the
problem of CG in the presence of time-dependent forc-
ing in a classical setting. They find essentially Grabert’s
result, and offer an interesting alternative interpretation
in terms of an augmented phase space.
In this paper, we consider the problem of coarse-

graining with external forcing, with the primary goal of
establishing a connection with the generic framework.
Although the generic framework has been considered
for externally driven systems in terms of thermody-
namic and geometric arguments [7, 23–25], the statis-
tical mechanics foundation, and the link with the pro-
jection operator framework for externally forced sys-
tems are still lacking. We begin with the formal, ex-
act integro-differential transport equation presented in
Grabert’s textbook for the evolution of CG variables in
the presence of external forces. We then specify the as-
sumptions required to recover the generic framework
in the presence of external fields, and show that all the
generic properties of the building blocks entering the
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dynamic equations are satisfied. The main modifica-
tions to the generic framework for closed systems arise
from the dependence of the energy and friction matrix
on the external forcing. However, the other two build-
ing blocks, namely entropy and the reversible matrix, re-
tain the same form as in the absence of external forcing.
In the case of external forcing, energy is no longer con-
served, and the First Law illustrates how energy increases
as a result of the time-dependent external forces. On the
other hand, entropy consistently increases, reflecting the
Second Law.

In this paper, we also discuss the validity of the
Onsager-Casimir reciprocity [26–28] for the state depen-
dent friction matrix, an issue that was not considered in
Grabert’s textbook. There is large recent interest in un-
derstanding Onsager-Casimir reciprocity in systems very
far from equilibrium [29–36]. We show how the gener-
alized time reversibility conditions discovered by Bonella
et al. for equilibrium transport coefficients [29] are fur-
ther generalized to the state-dependent friction matrix
encountered in the theory of coarse-graining.

The paper is organized as follows. In Sec. II we review
the microscopic Hamiltonian description with external
forcing. In Sec. III we present the exact equation gov-
erining the averages of the CG variables, obtained with
the method of projection operators. In Sec. IV we discuss
the Markovian approximation, while in Sec. V we show
how the Markovian transport equation for the averages
can be written in the generic format, with the usual
generic properties for the different building blocks. In
Sec. VI, we consider the more detailed level of descrip-
tion given by the probability distribution of the CG vari-
ables, and obtain the corresponding Fokker-Planck Equa-
tion that governs its evolution. We investigate in Sec.
VII the role of symmetries on the functional form of the
building blocks, and conclude in Sec VIII.

II. THE MICROSCOPIC LEVEL

In Classical Statistical Mechanics the state of a sys-
tem is given by the microstate z = {qi,pi, i = 1 · · ·N}
comprising all the coordinates and momenta of the N
particles that constitute the system. We assume that the
microscopic evolution of the system is well described with
a Hamiltonian that may depend explicitly on time due to
the action of external forces, this is

Ĥ(z, ϕt) = Ĥ(0)(z)− ϕT
t ·Ĉ(z) (1)

where the unperturbed time-independent Hamiltonian
Ĥ(0)(z) is the sum of the kinetic energy and the poten-
tial energies of interaction between the particles and with
any time-independent external potential. The last term
in (1) represents the action of a time-dependent external
forcing on the system. We will refer to ϕt as the protocol
and Ĉ(z) as the coupling functions. Both ϕt, Ĉ(z) are,
in general, vectors with Nϕ components, and the super-

script T denotes the transpose. We will denote a function
that depends on time in any of the two forms f(t) or ft,
the latter used to alleviate notation.

The evolution of the microstate gives a trajectory zt in
phase space. This trajectory obeys Hamilton’s equations,
that can be written in compact form as

d

dt
zt = J · ∂Ĥ

∂z
(zt, ϕt) (2)

where J is the skew-symmetric symplectic matrix. Alter-
natively, we may write Hamilton’s equations (2) in the
form

d

dt
zt = iL(ϕt)ẑ(zt) (3)

where the time-dependent Liouville operator is

iL(ϕt) = −∂Ĥ

∂z
(z, ϕt)·J ·

∂

∂z
= iLt (4)

This operator is referred to as the p-Liouvillian in [37]
and as the Liouville operator in the Schroedinger picture
in [20]. Operators acting on phase functions are denoted
in this paper with caligraphic symbols iL,U , I, etc. Note
that the Liouville operator is a differential operator that
acts on phase functions, denoted in this paper with cir-
cumflexed symbols like Â(z). In Eq (3), ẑ(z) is the iden-
tity function in phase space, that is, the vector valued
function that takes any microstate z onto itself.

The adjoint O† of an operator O is defined as the op-
erator satisfying∫

dzF̂ (z)O†Ĝ(z) =

∫
dzĜ(z)OF̂ (z) (5)

for arbitrary phase functions F̂ (z), Ĝ(z). The Liouville
operator is anti-adjoint [38], this is∫

dzF̂ (z)iLtĜ(z) = −
∫

dzF̂ (z)iLtĜ(z) (6)

For an arbitrary time independent phase function F̂ (z)

the time derivative of the composed function F̂ (zt) is
given by

d

dt
F̂ (zt) =

∂F̂

∂z
(zt)·

d

dt
zt = iLtF̂ (zt) (7)

where we have used the chain rule and Hamilton’s equa-
tions (2). The action of the Liouville operator on the
Hamiltonian is

iLtĤ(zt, ϕt) = −∂Ĥ

∂z
(zt, ϕt)·J ·

∂Ĥ

∂z
(zt, ϕt) = 0 (8)

because the symplectic matrix J is a skew symmetric
matrix. The explicit time-dependence of the Hamiltonian
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implies that

d

dt
Ĥ(zt, ϕt) = −Ĉ(zt)·

dϕt

dt
(9)

For time-independent Hamiltonians where ϕ̇t = 0, the
Hamiltonian is conserved by the dynamics.

Even though Hamilton’s equations give a unique solu-
tion given an initial condition, the precise specification
of the initial microstate in a system with many degrees
of freedom is impossible in practice. It is necessary to in-
troduce statistical assumption on the initial conditions.
The uncertainty in the initial conditions is described with
a probability distribution ρ0(z) in phase space. The
deterministic evolution of microstates leads to a time-
dependent probability distribution ρt(z) that obeys the
Liouville equation [38]

∂tρt(z) = −iL(ϕt)ρt(z) (10)

that reflects the property of conservation of the volume
in phase space of Hamiltonian systems [38]. We will refer
to the solution ρt(z) of the Liouville equation with initial
condition ρ0(z) as the Liouville ensemble.

III. THE CG LEVEL OF DESCRIPTION

At a CG level of description, the system is represented
with a set of CG variables Â(z) = {Âµ(z), µ = 1 · · ·M},
which are phase functions that characterize grosso modo
the system at the selected level of description. The ob-
jective of the theory of coarse-graining is to obtain closed
equations for the average of the CG variables. The time-
dependent average of the CG variables is defined in terms
of the Liouville ensemble as

at =

∫
dzÂ(z)ρt(z) (11)

The time derivative of the average of the CG variables is
given by

ȧt =

∫
dzρt(z)iLtÂ(z) (12)

where we have used the Liouville’s equation (10) and the
anti-adjoint property (6). Of course, (12) is not a proper
dynamic equation for at because the right hand side is not
a function of at, and this equation is not a closed equation
for the averages. The strategy to close this equation is to
formally express ρt(z) in terms of another ensemble ρt(z),
the relevant ensemble, that it is fully determined by the
averages at. The merit of the projection operator method
is to show that this is possible. The method starts by
noting that one can convert any Liouville ensemble into

a relevant ensemble with the help of an operator P†
t

ρt(z) = P†
t ρt(z) (13)

This operator is defined as [1]

P†
t η(z) = ρt(z)Tr[η] +

∂ρt
∂a(t)

(z)Tr
[
(Â− a(t))η

]
(14)

where η(z) is an arbitrary density in phase space. If
we require that the relevant ensemble ρt(z) provides the
same averages (11) computed with the Liouville ensemble
ρt(z), this is

at =

∫
dzÂ(z)ρt(z) (15)

then P†
t ρt = ρt, and the operator is a projector. Observe

that the time dependence of the projector arises from
the corresponding dependence on the relevant ensemble
which, ultimately, is due to the evolution of the thermo-
dynamic forces λt or averages at. For this reason, we will
also denote the projector with Pλ or P(a), depending on
the context.

We show in Appendix B that the Liouville ensemble
is rigorously expressed in terms of the present and past
values of the relevant ensemble in the form

ρt(z) = ρt(z)−
∫ t

0

dt′G†[t, t′, a, ϕ]Q†
t′iL(ϕt′)ρt′(z) (16)

Here the complementary projector is Q†
t = I − P†

t , and
the adjoint of the projected evolution operator is defined
as

G†[t, t′, a, ϕ] = exp+

{∫ t

t′
dτiL†

τ

}
(17)

The time ordered exponential is defined through the se-
ries expansion

exp+

{∫ t

0

dτiL†
τ

}
≡

∞∑
n=0

∫ t

0

dτ1 · · ·
∫ τn−1

0

dτniL
†
τ1 · · · iL

†
τn

(18)

where the time argument of the operators increases from
right to left. The adjoint of the projected Liouville oper-
ator is defined as

iL†
τ ≡ −Q†(aτ )iL(ϕτ )Q†(aτ ) (19)

A crucial assumption in order to arrive at (16) is that
the initial ensemble ρ0(z) is of the relevant form, i.e.

ρ0(z) = ρ0(z) (20)

This means, in particular, that the initial ensemble is
fully characterized by the value of the averages a0 of the
CG variables at the initial time. This seems a natural
requirement when looking for equations where the initial
values of the CG variables determine the subsequent evo-
lution but, in fact, requires an initial preparation of the
system in a particular way.
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The remarkable equation (16) relates the Liouville en-
semble ρt(z) with the relevant ensemble ρt(z) at present
and past times. Because the relevant ensemble is, in turn,
fully determined by the value of the CG variables, (16)
can be used to obtain a closed equation for the CG vari-
ables themselves. Therefore, the only two assumptions
needed to obtain a closed equation for the averages are:
i) the relevant ensemble gives the correct averages (15),
and ii) the initial ensemble is of the relevant form (20).
The actual form of the relevant ensemble is not specified
yet and this gives, in principle, freedom to obtain differ-
ent closed transport equations. In practice, though, one
aims at representations that will admit simple approx-
imations. We argue that this favours a particular def-
inition of the relevant ensemble through the Maximum
Entropy Principle.

A. The relevant ensemble from the Maximum Entropy
Principle

Up to now, the only requirement we have about the
relevant ensemble ρt(z) is that it depends on the average
at and that it reproduces the average, see (15). We could
take a pure epistemological approach and pose the follow-
ing question: If the average at is the only information we
have about the relevant ensemble, which is the“best”way
to represent such information? This question is answered
by the Maximum Entropy Principle (MEP) [39, 40] that
maximizes the Gibbs-Jaynes entropy functional

S[ρ] = −kB

∫
dzρ(z) ln

ρ(z)

ρc
(21)

where kB is Boltzmann constant and ρc is a constant that
makes the argument of the logarithm dimensionless, but
is otherwise unimportant. The maximization is done sub-
ject to the constraint (15) and leads, through an standard
calculation [39, 40] to the generalized canonical ensemble

ρλ(z) = ρc
e−λ·Â(z)

Z(λ)
(22)

The Lagrange multipliers λ are also known as conjugate
variables or thermodynamic forces, see below. The nor-
malization of (22) is given by the dimensionless partition
function defined as

Z(λ) ≡
∫

dzρce
−λ·Â(z) (23)

We will denote the average of an arbitrary phase function
Ĝ(z) with respect to the relevant ensemble as

⟨Ĝ⟩λ ≡
∫

dzρλ(z)Ĝ(z) (24)

The conjugate parameters λ are selected in such a way
that the average of the CG variables with the relevant

ensemble is identical to the average with respect to the
Liouville ensemble, this is〈

Â
〉λt

= at (25)

By introducing the dimensionless thermodynamic poten-
tial as1

F (λ) = − lnZ(λ) (26)

we may express the condition (25) as

∂F

∂λ
(λ) = a (27)

Eqs. (27) are a system of M equations that allow to
obtain the M Lagrange multipliers λ as a function of the
M averages a. Note that the solution is unique, this is,
for every a there is one and only one set of Lagrange
multipliers λ. The proof of this reduces to show that the
dimensionless thermodynamic potential (26) is a concave
function of its arguments. [41–43].

The entropy of the level of description given by the CG
variables is defined as the result of evaluating the Gibbs-
Jaynes entropy functional at its maximum value given by
the relevant ensemble. The result is

S(a) ≡ S[ρ] = kB (−F (λ) + λa) (28)

where λ is understood as the function λ(a) of a that
solves (27). Therefore, the entropy at the level of de-
scription determined by the averages of the CG variables
Â is (minus) the Legendre transform of the dimension-
less thermodynamic potential. The derivatives of the en-
tropy, known as thermodynamic forces, are given by the
conjugate variables

∂S

∂a
(a) = kBλ(a) (29)

That the particular definition (28) of the entropy is a
sensible one requires, of course, to show that this entropy
has the properties we expect for it, in particular that it

is subject to the Second Law dS
dt (at) ≥ 0. This will be

shown once the closed equations for the average of the
CG variables are derived.

The relevant ensemble (22) obtained from the MEP
is the best ensemble, from an epistemological point of
view, that captures the macroscopic information. How-
ever, there is an aditional physical argument that makes
the particular form (22) plausible. Observe that the equi-
librium ensemble of a Hamiltonian system with the prop-
erty of mixing is a function of the microstate through the

1 The dimensionless thermodynamic potential is defined without
temperature prefactors as we treat the energy as a CG variable
on an equal footing with the rest of CG variables.
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dynamic invariants of the system [44, 45]. When the only
dynamic invariant is the energy, the equilibrium ensemble
is the microcanonical ensemble. If the CG variables were
truly dynamic invariants of the underlying Hamiltonian
system, the equilibrium ensemble that would be reached
under the mixing assumption would be a microcanonical
ensemble of the form

ρmic
a (z) =

δ(Â(z)− a)

Ω(a)
(30)

Under equivalence of ensembles, this generalized micro-
canonical ensemble gives similar results as the generalized
canonical ensemble (22). In general, the CG variables are
not dynamic invariants of the system, but if its dynamics
is such that they are slowly varying functions, we ex-
pect that the Liouville ensemble will be very similar at
all times to the quasi-equilibrium ensemble (22) of (30).
In other words, the memory term in (16) is expected to
be “small” for “slow” CG variables. This notion of quasi-
equilibrium is at the core of the Markovian approxima-
tion to be considered later on.

B. The exact CG dynamic equation

Susbtitution of (16) with the form of the relevant en-
semble (22) into (12), and a number of manipulations
detailed in Appendix B, leads to the following exact dy-
namic equation for the average at of the CG variables

d

dt
at = v(at, ϕt) +

∫ t

0

dt′d[t, t′, a, ϕ]· ∂S
∂a

(at′) (31)

where the reversible drift v(at, ϕt) and the memory kernel
d[t, t′, a, ϕ] are defined as

v(at, ϕt) ≡
〈
iLtÂ

〉λt

(32)

d[t, t′, a, ϕ] ≡ 1

kB

〈[
G[t, t′, a, ϕ]Qt′iLt′Â

]
Qt′iLt′Â

〉λt′

(33)

where the propagator, adjoint of (17), is

G[t, t′, a, ϕ] = exp−

{∫ t

t′
dτiLτ

}
=

∞∑
n=0

∫ t

t′
dτ1 · · ·

∫ τn−1

t′
dτniLτn · · · iLτ1

(34)

The projected Liouville operator is defined as the adjoint
of (19)

iLτ = Qτ iL(ϕτ )Qτ (35)

As opposed to the Liouville operator iLτ , the projected
Lioville operator iLτ has a time dependence due to both,

the external forcing ϕτ and the average aτ . In fact, the
projector operator is Qt = I − Pt where

PtF̂ (z) =
〈
F̂
〉λt

+
〈
F̂ δtÂ

〉λt

·Σ−1
t ·δtÂ(z)

(36)

is the adjoint operator of (14), where δtÂ(z) = Â(z)− at
denote the fluctuations over the mean at time t, and the
covariance matrix is

Σt =
〈
δtÂδtÂ

〉λt

(37)

The projector (36) is the Kawasaki-Gunton projector [46]
used in Grabert’s textbook, and it is a generalization of
the Mori projector [6] that uses the relevant ensemble in-
stead of the equilibrium ensemble. The projectors Pt,Qt

depend on the average at of the CG variables through
λt = λ(at).

The exact transport equation (31) has two terms. The
first term v(at, ϕt) is a function of the averages at through
the relevant ensemble, and is a function of the external
forcing ϕt through the Liouville operator. The dissipa-
tive memory kernel d[t, t′, a, ϕ] contains the propagator
G[t, t′, a, ϕ] that involves in a rather intrincate way both,
the external field and the projector Qt. As opposed to
the microscopic evolution operator of Hamilton’s equa-
tions that could, in principle, be evaluated through MD
simulations, the evaluation of the propagator G[t, t′, a, ϕ]
is not trivial. Because the projected dynamics involves
the whole history of the averages aτ with t′ ≤ τ ≤ t and
the whole protocol ϕτ , the memory kernel is a functional
of the past history of the external field, and of the aver-
age of the CG variables. The transport equation (31) re-
tains its structure even in the presence of time-dependent
forcing. It closely resembles the equation derived for un-
forced situations [1], with the sole distinction lying in
the explicit dependence of the Liouville operator on the
external force.

We may compute the time derivative of the entropy
when the evolution is given by the exact transport equa-
tion (31). The chain rule gives

dS(t)

dt
= λt ·v(at, ϕt) +

∫ t

0

dt′λt ·d[t, t′, a, ϕ]·λt′ (38)

The first term on the right hand side vanishes because

λt ·v(at, ϕt)
(32)
= −

∫
dziLt′ρt′(z) = 0 (39)

where we use (6). This means that v(at, ϕt) does not
contribute to entropy production and, for this reason,
it is referred to as the reversible part of the dynamics.
Note that the time derivative of the entropy is given by
the memory part of the dynamics. It is not obvious that
dS
dt (t) ≥ 0 from the exact rigorous form (33) for the mem-
ory kernel. However, we will see that under the Marko-
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vian approximation the Second Law is satisfied.

IV. MARKOV APPROXIMATION

The exact integro-differential equation (31) is valid for

any selection of the CG variables Â(z). When the CG
variables evolve as the result of the accumulation of many,
but minuscule contributions (colisions, vibrations), the
integro-differential equation (31) admits a Markovian ap-
proximation in terms of an ordinary differential equation
(ODE) as we now discuss. The time series of such CG
variables are“rough”due to the many small contribution,
in such a way that they have an overall slow evolution
in a typical time scale τmac, and a fast evolution of their
time derivatives in a time scale τmic, with τmic ≪ τmac.
The projected current Qt′iLt′Â involves the time deriva-
tives of the CG variables through the action of the Li-
ouville operator, and are expected to evolve in the fast
time scale τmic. The memory kernel d[t, t′, a, ϕ] defined
in (33) is the correlation of the projected currents and,
therefore, it is expected to decay in the time scale τmic,
this is, d[t′ + τmic, t

′, a, ϕ] is vanishingly small. While the
time derivatives decay in the τmic time scale, the average
of the CG variables a(t) varies in the τmac time scale. Of
course, to mantain this separation of time scales under
external forcing requires that the external forcing must
be “not too fast”. One way to appreciate this issue is
by looking at Linear Response Theory that describes the
evolution close to equilibrium of the averages under ex-
ternal forcing ϕ(t) [38]〈

Â
〉
t
=

〈
Â
〉eq

+

∫ t

0

dt′χ(t− t′)ϕ(t′) (40)

where the χ(t) is the response function. For the sake of
illustration, let us assume a model with an exponentially
decaying response function χ(t) = χ0e

−γ(t−t′) and a si-
nusoidal external forcing ϕ(t) = ϕ0 sinωt

′. In this case,
we have〈

Â
〉
t
=

〈
Â
〉eq

+ χ0ϕ0
ωe−γt + γ sin(tω)− ω cos(tω)

γ2 + ω2

(41)

This shows that the time-scale of variation of the aver-
age is, after an initial decay time, equal to the time-scale
of the external forcing. If the external forcing has a fre-
quency such that ωτmic ∼ 1, then τmac ∼ τmic and we do
not have separation of time scales. Therefore, in order
to have Markovian transport equations in the presence of
external forcing requires the external forcings to be “suf-
ficiently slow”, as compared with the memory of the CG
variables. Although (41) is a result near equilibrium and
for small external fields, it clearly advocates for the case
of using slow external forcing that respect the Markovian
assumption in the more general case.

As the CG variables are slow in the time scale of de-

cay of the memory, we may approximate within the time
integral in (31)

∂S

∂a
(at′) ≃

∂S

∂a
(at) (42)

leading to

d

dt
at = v(at, ϕt) +M [t, a, ϕ]· ∂S

∂a
(at) (43)

where the dissipative or friction matrix is given by

M [t, a, ϕ] =

∫ t

0

dt′d[t, t′, a, ϕ] (44)

Observe that (43) is not yet an ODE, because M [t, a, ϕ]
is still a very complicated functional of the history at′
(and protocol ϕt′). We expect that when t ≫ τmic the
time integral no longer depends on the upper limit of
integration, because for those times the memory kernel
has decayed. Therefore, we may write

M [t, a, ϕ] =

∫ ∆t

0

dt′d[t, t′, a, ϕ] (45)

where the upper limit of integration ∆t is a time subject
to

τmic ≪ ∆t ≪ τmac (46)

short in front of the time scale of evolution of the CG
variables but sufficiently large for the memory to have
faded away. The dependence on t in the friction ma-
trix M [t, a, ϕ] then comes entirely from the integrand. In
addition, during the time τmic in which there is contribu-
tion to the integral, both the history at′ and the protocol
ϕt′ take values which are almost constant and, in prac-
tice, these values can be taken to be at, ϕt, respectively.
Therefore, we are entitled to substitute all the instances
in the memory kernel where a(t′) and ϕt′ occur with a(t)
and ϕt. For example, we may take the approximation
iL(ϕτ ) ≃ iL(ϕt) and Qτ ≃ Qt inside the time-ordered
exponential (34), leading to

G[t, t′, a, ϕ] ≃ eiLt(t−t′) (47)

Under the Markovian approximation we have that (31)
becomes

ȧt ≃ v(at, ϕt) +M(at, ϕt)·
∂S

∂a
(at) (48)
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where we collect the definition of all the building blocks

S(a) = kB

[
ln

∫
dzρce

−λ·Â(z)) + λa

]
(49)

λ(a) =
∂S

∂a
(a) (50)

v(ϕ, a) =
〈
iL(ϕ)Â

〉λ

(51)

M(at, ϕt) =
1

kB

∫ ∆t

0

dτ
〈[

eiLtτQtiLtÂ
]
QtiLtÂ

〉λt

(52)

⟨· · ·⟩λ =

∫
dzρλ(z) · · · (53)

The friction matrix M(at, ϕt) evaluated at at, ϕt is no
longer a functional of the past values of at′ , ϕt′ but rather
a function of the present values at, ϕt. Therefore, (48) is
the closed ODE for the averages at that we were looking
for. The dissipative matrix in terms of a time integral of
a correlation function is known as the Green-Kubo ex-
pression for the friction matrix, which was originally for-
mulated for systems near equilibrium. Observe, though,
that the present theory is not limited to near equilibrium
situations. In particular, the friction matrix depends, in
general, on the state at of the system. Near equilibrium,
where all conjugate variables λt corresponding to con-
served variables take constant values, the friction matrix
has the usual Green-Kubo form in terms of the equilib-
rium canonical ensemble.

The friction matrix involves the correlation of the pro-
jected currents, which are phase functions evolving un-

der the projected dynamics eiLtτ , that differs from the
Hamiltonian dynamics generated by eiLtτ . It is usu-
ally argued [1, 5, 20] that, because the CG variables are

“slow”, iLt′Â is a “small” quantity and one can perform a
perturbation to second order. In many occasions, there
is an explicit smallness parameter in the action of the
Liouville operator on the CG variables. For conserved
fields, the projected currents are in the form of a gradi-
ent, which in Fourier space are proportional to the wave
vector k. In the limit k → 0 the long wavelength com-
ponents of the CG variables are really slow [47]. Or we
may have a mass ratio for the dynamics of heavy parti-
cles that can serve as smallness parameter [48, 49]. In
general, however, such a parameter is not explicit [50].
In any case, a formal expansion to second order in the
number of Liouville operators shows that one can ap-
proximate the projected dynamics with the Hamiltonian
dynamics and, for example,

Qte
iLtτ iLtÂ ≃ Qte

iLtτ iLtÂ (54)

in such a way that the friction matrix (52) can be com-
puted, in principle, from MD simulations. The evolution
operator eiLtτ is that of the system under a constant in
time external forcing in which the particular value of the
constant external field is fixed to the value ϕt.

V. THE GENERIC STRUCTURE

In this section, we consider the assumptions that lead
to the generic structure of the dynamic equation. The
generic framework not only provides an elegant ther-
modynamic framework that ensures the First and Sec-
ond Laws of thermodynamics, but it also reveals that
the building blocks in the Markovian dynamic equation
for the averages of the CG variables exhibit a set of prop-
erties. These properties restrict the possible functional
form of the building blocks and, therefore, increase our
modelling power. By focusing only on a few selected
pieces of the building blocks, we can leave the rest fixed
by the framework. Casting known evolution equations
in the generic form has been a fruitfull way to ensure
thermodynamically consistency [3].

A. The CG energy

One of the building blocks in the generic framework
is the energy at the CG level of description. Consider first
the case of no external forcing. The generic structure
emerges when the unperturbed Hamiltonian is a linear
function of the CG variables, this is

Ĥ(0)(z) = cT ·Â(z) (55)

where c is a vector with constant entries. Despite its
apparent simplicity, many examples of CG descriptions
fall in this category. The full Hamiltonian (1) with the
assumption (55) takes the form

Ĥt(z) = cT ·Â(z)− ϕT
t ·Ĉ(z) (56)

The natural candidate for the CG energy is the relevant
ensemble average of the Hamiltonian, this is

E(at, ϕt) ≡
〈
Ĥt

〉λt

(57)

that converts the Hamiltonian into a function of the CG
variables. In fact,

E(at, ϕt) = cT ·at − ϕT
t ·C(at) (58)

where the relevant ensemble average of the coupling func-
tions is

C(at) ≡
〈
Ĉ
〉λt

(59)

While (57) seems a natural way to define the energy at
the CG level, the usefulness of this definition must be
judged from the macroscopic properties that derive from
it.
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B. The reversible drift

When the Hamiltonian is (56), the Liouville operator
(4) acting on the CG variables takes the form

iLtÂ(z) = L̂(z)·c− L̂C(z)·ϕt (60)

where we have introduced the Poisson bracket of the CG
and coupling variables

L̂µν(z) ≡ {Âµ, Âν} =
∂Âµ

∂z
(z)·J · ∂Âν

∂z
(z)

L̂C
µν(z) ≡ {Âµ, Ĉν} =

∂Âµ

∂z
(z)·J · ∂Ĉν

∂z
(z) (61)

The reversible drift (51) becomes, with the help of (60)

v(at, ϕt) = Lt ·c− L
C

t ·ϕt (62)

where,

L(at) ≡
〈
L̂
〉λt

L
C
(at) ≡

〈
L̂C

〉λt

(63)

Observe that the gradient of the energy (58) is

∂E

∂a
(a, ϕ) = c− κt ·ϕt (64)

where the matrix κt is defined as

κt ≡ Σ−1
t ·

〈
δtÂĈT

〉λt

(65)

Therefore, by using (64) we may write the reversible drift
in the form

v(at, ϕt) = L(at)·
∂E

∂a
+
(
L(at)·κt − L

C
(at)

)
·ϕt (66)

The first contribution is in the form of the
generic framework, i.e. an antisymmetric opera-
tor acting on the gradient of the energy. As we see
below, the second contribution vanishes when the
external forcing couples through the CG variables.
Therefore, this second contribution accounts for the fact
that the external forcing does not couple through the
CG variables.

C. The external forces couple through the CG variables

Equation (66) simplifies enormously when the external
force couples with the CG variables themselves. In this
case, Ĉ(z) = Â(z), implying LC

t = Lt and κt = I. The

Hamiltonian (56) becomes

Ĥt(z) = (c− ϕt)
T ·Â(z) (67)

and the CG energy (58) simplifies to

E(at, ϕt) = (c− ϕt)
T ·at, (68)

From (60), the action of the Liouville operator on the CG
variables is

iLtÂ(z) = L̂(z)·(c− ϕt) (69)

while the reversible drift simplifies to

v(at, ϕt) = L(at)·
∂E

∂a
(at, ϕt) (70)

Inserting (70) in (48) we obtain the dynamic equation for
the averages in the form

ȧt = L(at)·
∂E

∂a
(at, ϕt) +M(at, ϕt)

∂S

∂a
(at) (71)

These equations have the generic structure, in which
the reversible part of the dynamics is given by a reversible
operator L acting on the gradient of the energy function,
while the irreversible part of the dynamics is given by
a dissipative operator M acting on the gradient of the
entropy. Of course, to qualify for generic , a number of
properties of the four building blocks need to be fulfilled,
as discussed in the next subsection. Comparison with
the unforced case shows that the reversible matrix L(a)
and the entropy S(a) are unaffected by the presence of
external forcing, while the energy E(a, ϕ) and the friction
matrix M(a, ϕ) pick up a dependence on the external
forcing.

D. Properties of the building blocks

The hallmark of the generic structure is the
reversible-irreversible coupling characterized by the fol-
lowing degeneracy of the reversible and dissipative oper-
ators

L(a)· ∂S
∂a

(a) = 0

M(a, ϕ)· ∂E
∂a

(a, ϕ) = 0 (72)

The first property is easily proved with the definitions
(61),(29), and (24)

L· ∂S
∂a

=

∫
dzρt

∂Â

∂z
·J · ∂Â

∂z
·λ = −

∫
dz

∂Â

∂z
·J · ∂ρt

∂z

=

∫
dzρt

∂2Â

∂z∂z
: J = 0 (73)
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where we have integrated by parts (neglecting phase
space surface terms) and used that the full contraction
of a symmetric and antisymetric matrix vanishes.

The second property in (72) is a consequence of the
orthonormality of the projected current and the gradient
of the energy (

Qte
iLtτ iLtÂ

)
· ∂E
∂a

= 0 (74)

which is easily proved(
Qte

iLtτ iLtÂ
)
· ∂E
∂a

(64)
= Qte

iLtτ iLtÂ·(c− ϕt)

(56)
= Qte

iLtτ iLtĤt
(8)
= 0 (75)

By using (74) in the definition of the friction matrix (52)
leads directly to the degeneracy condition of the friction
matrix in (72).

Concerning the generic symmetries of the reversible
and irreversible operators, it is obvious from the defi-
nition of the reversible operator in terms of a Poisson
bracket that the reversible operator is skew-symmetric

L = −L
T
. There seems to be no reason to think that the

friction matrix M(a, ϕ) is a symmetric matrix, although
it is in many practical situations. The final requirement
in the generic framework is that the symmetric part
of the friction matrix is positive definite. The justifi-
cation for this property is based on plausibility, rather
than a rigorous mathematical proof, and relies on the
clear separation of time scales. Under this assumption,
the conditional ensemble is an approximate stationary
ensemble of the dynamics and, therefore, it is possible to
use the Wiener-Khinchine theorem to show that the fric-
tion matrix is positive definite [1]. Alternatively, one my
rewrite the Einstein-Helfand form of the friction matrix
[51] which, being a mean square “displacement” of CG
variables, is manifestly positive definite, see [52]. The ar-
guments in [1, 52] leading to positive semi-definite charac-
ter of the friction matrix remain unaltered in the presence
of external fields.

Finally, a useful property of the reversible part of
the dynamics is given by the Jacobi identity. Observe
that the reversible part of the dynamics can be writ-
ten as Ȧ = {A,E} with the Poisson bracket given in
terms of the reversible operator L. Applying this to

{A,B} gives ˙{A,B} = {{A,B}, E}. On the other hand,
˙{A,B} = {Ȧ, B}+ {A, Ḃ}. The Jacobi identity guaran-

tees that these two time derivatives of {A,B} are equal
and thus the Poisson bracket remains unchanged during
the time evolution [25]. In the case of purely reversible
coarse-grained dynamics, the Jacobi identity is essential.
However, coarse-grained dynamics derived from the un-
derlying dynamics incorporate irreversible components,
rendering the argument for equality of derivatives invalid.
It seems very difficult to prove the Jacobi identity from
the microscopic definition of the reversible operator L
[3]. At present, the Jacobi identity seems to be a useful

phenomenological restriction.

E. First and Second Laws

By using the properties (72) and the positive semi-
definite character of the friction matrix, the time deriva-
tives of the energy and entropy can be computed with
the chain rule and one obtains

d

dt
E(at, ϕt) = −at ·ϕ̇t (76)

d

dt
S(at) =

∂S

∂a
(at)·M(at, ϕt)·

∂S

∂a
(at) ≥ 0 (77)

The first equation is an expression of the First Law, stat-
ing that the energy changes due to the time-dependence
of the external force. It is reassuring that (76) is com-
patible with the microscopic expression (9) when we as-
sume that the Hamiltonian has the form (55) and the
CG energy is given by (57). The second equation (77) is
an expression of the Second Law, which is satisfied even
in forced situations. It is a consequence of the positive
semidefinite character of the symmetric part of the fric-
tion matrix, while any skew symmetric contribution to
the friction matrix does not contribute to the production
of entropy. We remark that the proof of the Second Law
in the form (77) entirely relies on the Markovian approx-
imation.
When the system is not subjected to any time-

dependent forces, energy is conserved while entropy
steadily increases. As a result, the CG variables, evolv-
ing with (71) and ϕt = 0, move within the submanifold
of constant energy. Over time, they will eventually reach
an equilibrium state within that submanifold, where en-
tropy is maximized. However, in the presence of time-
dependent external forcing, the system typically lacks a
microscopic equilibrium state. In correspondence, the
coarse-grained generic equations (71) do not possess
a definitive equilibrium state, despite the ongoing max-
imization of entropy, because energy is no longer con-
served.

VI. THE STOCHASTIC FLAVOUR UNDER EXTERNAL
FORCING

Up to now we have considered the CG theory in what
could be termed as the average flavour2, which is con-
cerned with the evolution of averages a(t) of CG vari-
ables. The stochastic flavour3 of the theory of CG deals
with the evolution of the probability distribution P (a, t)

that the CG variables Â(z) take particular values a. This

2 The term used by Grabert is “Statistical Thermodynamics” [1].
3 The term used by Grabert is “The Fokker-Planck approach” [1].
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probability distribution of the CG variables is defined by

P (a, t) =

∫
dzρt(z)Ψ̂a(z) (78)

where we have introduced the notation for the Dirac delta
function

Ψ̂a(z) = δ(Â(z)− a) (79)

This notation emphasizes that the probability P (a, t) is
just the average of the distribution (79).

In order to obtain the dynamics for the probability
density P (a, t) we now use as CG variables Â(z) the dis-

tribution function Ψ̂a(z) [1, 2]. All we need to do is
to “translate” all the elements appearing in the dynamic
equation (48) to this new selection of variables. This is
done in Appendix C, where we show that the transport
equation (48) for the CG variables (79) takes the form of
a Fokker-Planck Equation governing the probability dis-
tribution of the CG variables in the presence of external
fields,

∂

∂t
P (a, t) =− ∂

∂a
·
[
V (a, ϕt) +M(a, ϕt)·

∂S

∂a
(a)

]
P (a, t)

+ kB
∂

∂a
·M(a, ϕt)·

∂

∂a
P (a, t) (80)

where we have introduced the reversible drift

V (a, ϕ) ≡
〈
iL(ϕ)Â

〉a

(81)

where the conditional expectation of an arbitrary phase
function F̂ (z) is defined as〈

F̂
〉a

=

∫
dzρmic

a (z)F̂ (z) (82)

where the generalized microcanonical ensemble is given
in (30). The “volume” of phase space compatible with
the macrostate a is

Ω(a) =

∫
dzδ(Â(z)− a) (83)

and the bare entropy is defined as

S(a) = kB lnΩ(a) (84)

The friction matrix is defined as

Mµν(a, ϕ) ≡
1

kB

∫ ∆t

0

dτ
〈(

iL(ϕ)Âν −
〈
iL(ϕ)Âν

〉a)
× eiL(a,ϕ)τ

(
iL(ϕ)Âµ −

〈
iL(ϕ)Âµ

〉a)〉a

(85)

When the external field vanishes ϕt = 0, (80) coincides
with the FPE obtained by Green [53] and Zwanzig [5] for
the unperturbed case. For the unperturbed case, the sys-

tem may reach an equilibrium state. Due to the particu-
lar way in which the friction matrix appears in between
the second derivatives in (80), and the properties of the
building blocks discussed below, it is a simple exercise
to show that the equilibrium solution is given by Ein-
stein’s equilibrium distribution function in the presence
of dynamic invariants [45]

P eq(a) = Φ(E(a)) exp{k−1
B S(a)} (86)

where the functional form of Φ(E) is fixed by the distri-
bution of the energy at the initial time, and the normal-
ization of P eq(a).

A. The generic form of the FPE

The FPE (80) can be written in the generic form.
Once more, the essential approximation lies in the abil-
ity to represent the Hamiltonian as a linear function of
the coarse-grained variables, i.e. (55). When the CG

variables are the distribution Ψ̂a(z), (55) becomes

Ĥ(0)(z) =

∫
daE0(a)Ψ̂a(z) (87)

where we have translated c → E0(a), and the scalar prod-
uct becomes an integral over the “index” a. By perform-
ing the integral over the Dirac delta function in (87) we
obtain

Ĥ(0)(z) = E(0)(Â(z)) (88)

this is, the unperturbed Hamiltonian is a function of the
CG variables Â(z) which, in general, it is non-linear. In
the presence of external fields, we assume that the time-
dependent Hamiltonian can be expressed in terms of the
selected CG variables, this is

Ĥt(z) = E(0)(Â(z)) + E(1)(Â(z), ϕt) (89)

This allows to define the CG energy function as

E(a, t) = E0(a) + E1(a, ϕt) (90)

which is the sum of the energy function E0(a) of the un-
perturbed system and the energy function E1(a, ϕt) de-
scribing the action of the time-dependent external forc-
ing. We will usually assume a forcing of the form

E1(a, ϕt) = −a·ϕt (91)

One consequence of (89) is that the gradient of the Hamil-
tonian in phase space is given from the chain rule as

∂Ĥt

∂z
(z) =

∂E

∂a
(Â(z), ϕt)·

∂Â

∂z
(z) (92)
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This implies that the action of the Liouville operator (4)
on the CG variables is

iL(ϕt)Â(z) =
∂Â

∂z
(z)·J · ∂Ht

∂z
(z)

=
∂Â

∂z
(z)·J · ∂Â

∂z
(z)· ∂E

∂a
(Â(z), ϕt)

(61)
= L̂(z)· ∂E

∂a
(Â(z), ϕt) (93)

By using (93) in the reversible drift (C15), and the fact
that within the conditional expectation we may substi-
tute Â(z) with a, we get the following expression for the

reversible drift

V (a, ϕt) = L(a)· ∂E
∂a

(a, ϕt) (94)

where the reversible operator defined as

L(a) ≡
〈
L̂
〉a

(95)

is the conditional expectation of the Poisson bracket of
the CG variables (61). By using (94) in the FPE (80) we
obtain

∂tP (a, t) = − ∂

∂a
·
[
L(a)· ∂E

∂a
(a, ϕt) +M(a, ϕt)·

∂S

∂a
(a) + kB

∂ ·M
∂a

(a, ϕt)

]
P (a, t) + kB

∂

∂a

∂

∂a
: M(a, ϕt)P (a, t) (96)

The FPE (96), and the microscopic definition of all its
building blocks are the main results of this section. When
the external field vanishes ϕt = 0, this equation coincides
with the FPE obtained by Öttinger [10]. The compari-
son of the FPE (96) with the corresponding unperturbed
FPE reveals that the reversible operator Lµν(a) is un-
modified but the energy picks up the natural dependence
on the time-dependent external field. On the other hand,
the entropy is unmodified by the time-dependent exter-
nal field, but the friction matrix Mµν(a, ϕt) acquires an
implicit dependence on the external field.

Associated to the Fokker-Planck Equation (96) there
is a Stochastic Differential Equation that, in the Ito in-
terpretation [54], has the form

dat = L(a)· ∂E
∂a

(at, ϕt)dt+M(a, ϕt)·
∂S

∂a
(at)dt

+ kB
∂ ·M
∂a

(at, ϕt)dt+ dãt (97)

where the stochastic term dã is a linear combination of
independent increments of the Wiener proces, this is,

dã(t) = B(at)·dW (t) (98)

and the amplitude of the noise is determined by the
Fluctuation-Dissipation theorem in the form

B ·BT = MS (99)

where the superscript S denotes the symmetric part of
the matrix.

B. Properties of the building blocks

The generic properties of the building blocks de-
scribed for the average flavour also hold for the stochastic
flavor, with minor modifications. These properties are
demonstrated in Appendix C 1.

The first property is the reversibility condition

L(a)· ∂S
∂a

(a) + kB
∂

∂a
·L(a) = 0 (100)

that links the functional form of the reversible opera-
tor L(a) with the functional form of the bare entropy
function S(a). The reversibility condition is a strong re-
striction on the functional forms, and it is very helpful
when modelling these building blocks. The reversibility
condition (100) also holds in the unforced case [3, 10].
Note that the entropy function is typically of the order
NkB where N is the (usually very large) number of par-
ticles in the system. Therefore, the first term in (100)
is overwhemly larger than the second one. Under these
conditions, one obtains the approximate, albeit accurate
in most occasions, generic degeneracy condition

L(a)· ∂S
∂a

(a) = 0 (101)

The degeneracy conditions on the friction matrix are

M(a, ϕt)·
∂E

∂a
(a, ϕt) = 0

MT (a, ϕt)·
∂E

∂a
(a, ϕt) = 0 (102)

These degeneracy conditions of the friction matrix
are proved in Appendix C 1. Another important
generic property is that the symmetric part of the fric-
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tion matrix (C20) is positive semi-definite. This is an
automatic consequence of the corresponding property for
the average flavour. As we have mentioned, a rigor-
ous proof that the friction matrix M(a, t) is a positive
semi-definite function seems to be difficult. However, if
it is not, the whole meaning of the Fokker-Planck ap-
proach becomes dubious [10]. We will always assume that
the dissipative matrix is positive semi-definite, where the
semi character is due to the degeneracy (102).

C. The First Law

Consider the average of the energy E(a, ϕt) performed
with the solution P (a, t) of the FPE (96)

Et =

∫
daE(a, ϕt)P (a, t) (103)

The time derivative of the average energy is given by

d

dt
Et =

∫
daP (a, t)

∂E

∂t
(a, ϕt) +

∫
daE(a, ϕt)

∂P

∂t
(a, t)

(104)

The second term turns out to vanish exactly. To see this,
use the FPE (96) and integrate by parts∫

daE(a, ϕt)
∂P

∂t
(a, t)

=

∫
da

∂E

∂a
·
[[

L· ∂E
∂a

+M · ∂S
∂a

]
P −M · ∂

∂a
P

]
= 0 (105)

that vanishes because of the antisymmetry of L and the
degeneracy (100). Therefore, the variation of the total
energy (90),(91) of the system is given by

d

dt
Et =

∫
daP (a, t)a·ϕ̇t = at ·ϕ̇t (106)

If the external forcing is time-independent, then total
energy is conserved. Note that we may be interested not
in the average change of the total energy but only in the
actual change of the energy of the unperturbed system,
discounting the energy due to the coupling, this is, from
(90) 〈

Ĥ(0)
〉
t
=

〈
Ĥt + Â·ϕt

〉
t

(107)

By using (106), the time derivative of this energy is given
by

d

dt

〈
Ĥ(0)

〉
t
= ȧt ·ϕt (108)

The right hand side is interpreted as the work per unit
time done by the external forcing on the system, and it
has the form of “velocity times force”, i.e. power.

D. The Second Law

The entropy of a given level of description is obtained
by inserting the relevant ensemble given by (C5) in the
Appendix into the Gibbs-Jaynes entropy functional (21),
leading to the result

S[Pt] = −kB

∫
daP (a, t) ln

P (a, t)

Ω(a)
(109)

We show that this entropy functional has a time deriva-
tive that is always positive or zero when the probability
distribution P (a, t) obeys the FPE (80). The proof fol-
lows the same steps as the proof of the H-theorem for a
FPE given in [54]. By using the chain rule we have

d

dt
S[Pt] =

∫
da

δS

δP (a, t)
∂tP (a, t)

= −kB

∫
da

[
ln

P (a, t)

Ω(a)
+ 1

]
∂

∂a

×·
[
V (a, ϕt)P (a, t) +M(a, ϕt)Ω(a)·

∂

∂a

P (a, t)

Ω(a)

]
(110)

By integrating by parts (and assuming that any surface
term vanishes), we have

d

dt
S[Pt] = kB

∫
daP (a, t)V (a, ϕt)·

∂

∂a

[
ln

P (a, t)

Ω(a)
+ 1

]
+ kB

∫
daP (a, t)

× ∂

∂a
·
[
ln

P (a, t)

Ω(a)
+ 1

]
M(a, ϕt)·

[
∂

∂a
ln

P (a, t)

Ω(a)

]
(111)

The reversible term does not change the entropy func-
tional because∫

daP (a, t)V (a, ϕt)·
∂

∂a

[
ln

P (a, t)

Ω(a)
+ 1

]
=

∫
daΩ(a)V (a, ϕt)·

∂

∂a

P (a, t)

Ω(a)

= −
∫

da
P (a, t)

Ω(a)

∂

∂a
·V (a, ϕt)Ω(a) = 0 (112)

where in the last equality we have integrated by parts
and have used the reversibility condition (100). The re-
versibility condition (100) receives its name from the fact
that the reversible drift does not contribute to the en-
tropy production, as (112) shows. Therefore, (111) be-
comes

d

dt
S[Pt] = kB

∫
daP (a, t)

×
[
∂

∂a
ln

P (a, t)

Ω(a)

]
·MS(a, ϕt)·

[
∂

∂a
ln

P (a, t)

Ω(a)

]
≥ 0

(113)
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where only the symmetric part of the friction matrix mat-
ters. This time derivative is always positive because the
symmetric part of the friction matrix is positive semi-
definite, and the probability density P (a, t) is also posi-
tive. This means that the entropy functional (109) always
increases.

The entropy functional S[Pt] defined in (109) and the
bare entropy function S(a) defined in (84) are different
objects, and despite names, only the entropy functional is
a monotonously increasing function of time. The evolu-
tion of the bare entropy S(a) (84) is due to the evolution
of the CG variables according to the SDE (97). By using
Ito calculus, we may compute the stochastic increment
of the bare entropy as

dS =
∂S

∂a
·da+

1

2

∂2S

∂a∂a
: dada (114)

and neglecting terms of order higher than dt. By using
the SDE (97) and the Fluctuation-Dissipation theorem
(99), Ito calculus lead to the SDE

dS(t) =
∂S

∂a
·M · ∂S

∂a
dt

+ kB
∂

∂a
·
[
M(a)· ∂S

∂a

]
dt+

∂S

∂a
·dã (115)

The first term satisfies

∂S

∂a
·M · ∂S

∂a
≥ 0 (116)

because the symmetric part of the friction matrix is pos-
itive definite, and shows that S(t) is “typically” growing
in time. However, neither the second term nor the third
stochastic term have definite character and, therefore, the
function S(t) is not ensured to increase monotonously
in time. When fluctuations are negligible, the second
and last terms of (115) are small and, then, the bare
entropy S(a(t)) satisfies approximately a Second Law.
This is consistent with the fact that for small fluctua-
tions, P (a, t) is highly peaked at the average, and the
entropy functional (109) is numerically similar, up to a
constant to the bare entropy function.

E. Comparison of the average and stochastic flavours

We have considered the two flavours of this CG the-
ory, the average flavour concerned with the averages of
the CG variables, and the stochastic flavour concerned
with its probability distribution. The building blocks
have similar structure, but its actual functional depen-
dence on the state is different in general, and that is the
reason of using the notation E,S, L,M in the average
flavour, and E,S, L,M in the stochastic flavour. This is-
sue is known as renormalization of transport coefficients
due to thermal fluctuations [1, 55]. When fluctuations
are very small, i.e the probability distribution is highly

peaked, we have equivalence of the generalized micro-
canonical (30) and canonical (22) ensembles leading to
similar functional forms for the building blocks. Another
way to appreciate this is by looking at the SDE (97). The
width of the probability distribution scales with kB and
the limit of small fluctuations can be taken formally by
neglecting terms of order kB in (97). This convert the
SDE (97) into an ODE identical to the transport equa-
tion (71) for the averages.

VII. SYMMETRIES

The generic properties (72) in the average flavour or
(100),(102) in the stochastic flavour constrain the func-
tional form of the building blocks. Because the build-
ing blocks are state dependent in general, and usually
need to be modelled, the generic properties constitute
a very useful guide to recover thermodynamically con-
sistent models. In addition to the generic properties,
there are a number of additional properties that origi-
nate from the symmetries of the Hamiltonian dynamics,
which are also very helpful when modelling the building
blocks [3]. We consider here two symmetries: time rever-
sal symmetry and orthogonal symmetry. We present the
results here and refer their demonstration to appendices
A 3 and D3, respectively

A. Time reversal symmetry

Time reversal symmetry leads to Onsager-Casimir reci-
procity for the friction matrix. While the original proofs
of Onsager-Casimir reciprocity were given for near equi-
librium situations [26–28], and the demonstration for ar-
bitrary far from equilibrium situations under no external
forcing is given in Grabert’s textbook, we have not been
able to find such a demonstration for the case of i) ar-
bitrary far from equilibrium situations with state depen-
dent friction matrix, ii) under external forcing. For this
reason, we present the derivation in Appendix A 3.

We assume that the CG variables have a well-defined
parity under time reversal, this is

Â(ϵ·z) = εT ·Â(z) (117)

The matrix ϵ is diagonal with ±1 in the diagonal, and
it reverses the sign of the momentum, this is, if z =
(q, p) then ϵ·z = (q,−p). The matrix εT is diagonal with
entries ±1 that reflects the time reversal behaviour of
the CG variables. Under assumption (117), we show in
Appendix A 3 that the different building blocks satisfy



14

the properties

E(εT ·a, εT ·ϕ) = E(a, ϕ) (118)

S(εT ·a) = S(a) (119)

L(εT ·a) = −εT ·L(a)·εT (120)

M(εT ·a, εT ·ϕ) = εT ·M
T
(a, ϕ)·εT (121)

Identical symmetry properties hold for the building
blocks E,S, L,M in the stochastic flavour.

The symmetry property (121) of the friction matrix
is the Onsager-Casimir reciprocity that it is here shown
to be valid even for state dependent friction matrices.
These properties limit the functional form of the different
building blocks. A most obvious case is when all the
CG variables are even under time-reversal, so εT is the
identity matrix. In this case, L(a) = 0, i.e. there is no
reversible evolution of the dynamics, while the friction
matrix is symmetric 4.

B. Orthogonal symmetry

When the unperturbed Hamiltonian is invariant under
rotations and inversions, another set of symmetries reflect
in the building blocks. We introduce the notation

R·z = (R·q1, · · · ,R·qN ,R·p1, · · ·R·pN ) (122)

where R is an orthogonal matrix R·RT = 1. This orthogo-
nal matrix may be a rotation (detR = 1) or an improper
rotation (detR = −1). Improper rotations are also re-
ferred to as rotoinversions. Any improper rotation can be
decomposed as the product of a proper rotation around a
unit axis, and a mirror reflection through a plane normal
to the axis and passing through the origin. We assume
that the unperturbed Hamiltonian is invariant under such
a transformation and that the CG variables are vectors
or tensors that transform in the well-known form under
orthogonal transformations, this is

Ĥ(0)(R·z) = Ĥ(0)(z)

Â(R·z) = εR ·Â(z) (123)

where εR is an M ×M constant block matrix whose en-
tries are given by the elements of the orthogonal matrix R
arranged in a convenient form. We show in Appendix D3
that the building blocks satisfy the following symmetry

4 Any skew-symmetric contribution to the friction matrix, if any,
should arise from the presence of CG variables odd under time
reversal.

relations

E(εR ·a, εR ·ϕ) = E(a, ϕ) (124)

S(εR ·a) = S(a) (125)

L(εR ·a) = εR ·L(a)·εTR (126)

M(εR ·a, εR ·ϕ) = εR ·M(a, ϕ)·εTR (127)

Identical symmetry properties hold for the building
blocks E,S, L,M in the stochastic flavour. These sym-
metries limit strongly the functional form of the build-
ing blocks. For example, consider the case that the CG
variables are vectors. In this case, the entropy is a rota-
tionally invariant function that can only depend on the
modulus of the vector. This is a huge simplification, as
it reduces a function of three variables to a function of
only one variable. If the CG variable is a symmetric ten-
sor, the entropy can only depend on the invariants of the
tensor, say its eigenvalues (simplifying from six to three
variables). In the absence of external forcing and for an
isotropic system, the symmetry (127) of the friction ma-
trix leads to Curie’s Principle, that states that variables
of different tensorial character do not couple, as discussed
in detail in [56].

C. Generalized time reversal

There is recent interest in generalizations of Onsager-
Casimir reciprocity [29–36]. In particular, the question
of the validity of Onsager reciprocity in the presence of
broken time-reversal symmetry, as in the case of spa-
tially dependent magnetic fields has been considered in
Ref. [36]. Recall that Casimir [28] generalized Onsager
reciprocity [26, 27] for systems in the presence of exter-
nal magnetic fields, and had to reverse the sign of the
magnetic field to account for the underlying broken time-
reversal symmetry. That this is not necessary, and that
Onsager reciprocity is still valid without reversing the
sign of the magnetic field, was first observed by Bonella
et al. [29]. Following this lead, Carbone and Rondoni
have found the most general symmetry leading to On-
sager symmetry [34]. We show that this general symme-
try is, in fact, a combination of the time reversal symme-
try and the orthogonal symmetry discussed above. The
crucial observation in Appendix A 3 is that the only two
conditions that ensure microscopic reversibility of Hamil-
tonian trajectories are i) the anticommutation of the sym-
plectic matrix J and the time-reversal matrix ϵ, and ii)
the unperturbed Hamiltonian is invariant under time re-
versal. It is possible to generalize the argument leading to
microscopic reversibility by considering the most general
6N × 6N matrix that anticommute with the symplectic
matrix J , this is(

0 1
−1 0

)(
A B
C D

)
+

(
A B
C D

)(
0 1

−1 0

)
=

(
0 0
0 0

)
(128)
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where we have written the unknown matrix in block form.
The condition (128) implies C = B and D = −A, i.e. the
anticommuting matrix has the following block form(

A B
B −A

)
(129)

where A,B are 3N × 3N matrices. The action of this
matrix on positions and momenta is

q′ = A · q + B · p
p′ = B · q − A · p (130)

To leave invariant the kinetic energy of the Hamiltonian,
i.e. (p′)2 = p2 we should have necesarily, B = 0 and
AT · A = 1, implying that the latter is an orthogonal
matrix, with detA = ±1. Therefore, the most general
transformation in phase space that leads to the property
of microscopic reversibility has a matrix with constant
identical 6× 6 blocks of the form(

R 0
0 −R

)
(131)

for an arbitrary orthogonal matrix R. If we introduce
the operators T ,R acting on an arbitrary phase space
function F̂ (z)

T F̂ (z) = F̂ (ϵ·z)
RF̂ (z) = F̂ (R·z), (132)

then the transformation (131) corresponds to T R. The
associated symmetry of the solutions of Hamilton’s equa-
tion is a combination of (A34) and (A45) in Appendix A.
For a time-independent external force with ϕt = ϕ0, this
combination leads to

T ReiL(ϵ·ϵR·ϕ0)t (T R)
−1

= e−iL(ϕ0)t (133)

This operator identity reflects how the solution of Hamil-
ton’s equation behave under a simultaneous inversion of
velocities and rotoinversions of the axis. Notably, the
permutations of the axis are elements of the orthogonal
group O(3), meaning they can be expressed as combina-
tions of rotations and inversions. As a result, the swaps
discussed in Ref. [34] are specific examples of this com-
bined symmetry. The combined symmetry reflects also
on a symmetry of the friction matrix, result from com-
bining (121),(127)

M(εR ·εT ·a, εR ·εT ·ϕ) = εR ·εT ·MT (a, ϕ)·εTT ·εTR (134)

When ϕ is due to an external magnetic field εT ·ϕ = −ϕ.
Of course, we can always find a rotoinversion such that
εR · εT ·ϕ = ϕ, and therefore, the magnetic field will have
the same sign in both sides of (134).

VIII. CONCLUSION

In this paper, we consider the statistical mechanics
foundations of the generic framework in the presence of
external forces. We begin with Grabert’s formulation of
non-equilibrium statistical mechanics, which uses projec-
tion operators to produce exact closed integro-differential
equations for the evolution of the average and probabil-
ity distribution of CG variables. When the equations
neglect memory effects, and only then, they display the
beautiful and powerful generic thermodynamic struc-
ture. We demonstrate that the generic structure, orig-
inally given for isolated systems, is preserved even for
time-dependent external forces, assuming that the exter-
nal forces couple with the Hamiltonian through the CG
variables [1]. Although this assumption is not essential, it
simplifies the resulting dynamics by avoiding additional
terms in the equation of motion. As compared to the
unforced case, we demonstrate that the reversible oper-
ator L and the entropy S are unaffected by the external
forcing, while the irreversible operator M and the energy
E depend on the external forces. In view of the fact that
the generic degeneracy of the friction matrix is man-
tained in the forced case, it is natural that both energy
and friction matrix depend on the external forces. We
also show that the forced dynamics satisfies the Second
Law, with entropy monotonously increasing in time, re-
gardless of the actual time-dependence of the external
forcing. Moreover, the First Law naturally emerges to
account for time-dependent forces. When the forces are
time-independent, the original generic framework with
energy conserving dynamics is recovered [10].

We emphasize the pivotal role of the Markovian ap-
proximation in obtaining this thermodynamic structure.
In particular, the positive character of the friction ma-
trix and its Onsager-Casimir properties can only be jus-
tified in the limit of clear separation of time scales. In
order to not compromise the Markovian approximation,
the present theory is limited to slow external fields, with
time scales comparable or larger than the typical time
scale of evolution of the CG variables. It remains an
open problem to justify a thermodynamic structure for
non-Markovian descriptions. The point of view taken by
generic is that if a description is non-Markovian, one
has to think harder to find additional CG variables that
could lead to a Markovian more detailed description of
the system [3].

The theory is not limited to near equilibrium situa-
tions and, in particular, it displays a state-dependent
friction matrix that goes beyond Linear Irreversible Ther-
modynamics [56]. We show that Onsager-Casimir reci-
procity relations for the state-dependent friction matrix
also hold in the presence of external forces, an issue
not contemplated in Grabert’s textbook. We show that
the combination of the Onsager-Casimir reciprocity with
rotational/mirror symmetries gives the general time re-
versibility conditions discussed recently in the literature
[29–36]. Understanding Onsager-Casimir reciprocity for
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state-dependent friction matrices should have an impact
in the field of stochastic thermodynamics [57–62]. Al-
though the definition of work is straightforward in the
present generic framework, defining heat as it appears
in stochastic thermodynamics requires considering a com-
posite system, which consists of the system of interest in
contact with a thermal bath. The bath is just another
inert large system, which is coarse-grained by taking only
the bath Hamiltonian as the CG variable. Formulating
stochastic thermodynamics in a generic framework ap-
pears to be a promising avenue that could provide all the
generic benefits to the field.
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Appendix A: MICROSCOPIC LEVEL

In this appendix, we review Hamiltonian dynamics in
order to analyze microscopic reversibility, and orthogonal
invariance in the presence of a time-dependent external
force. Although these concepts should be well-known,
presenting them here helps to establish the necessary
notation, and prepares us to examine their implications
within the context of CG descriptions.

1. Formal solution

We introduce the flow map in phase space as

zt = Φ̂[t,ϕ](z) (A1)

that maps any microstate z at time t = 0 with the cor-
responding microstate zt evolved with Hamilton’s equa-
tions under the influence of the protocol ϕt. We use the
detailed notation with square brackets to denote that the
solution of Hamilton’s equations is a functional of the
protocol. The flow map can be understood as a change of
variables that depends on the parameter t. Incompress-
ibility of the Hamiltonian flow in phase space implies that
the Jacobian of this change of variables is unity [38]. Ob-
serve that the property of incompressibility is respected
even when there is an external time-dependent forcing.

We introduce the evolution operator U[t,ϕ], whose effect

on an arbitrary phase function F̂ (z) is to compose the
phase function with the flow map

U[t,ϕ]F̂ (z) = F̂
(
Φ̂[t,ϕ](z)

)
(A2)

in such a way that the solution (A1) of Hamilton’s equa-
tion with initial condition z0 at t = 0 can be written

as

zt = U[t,ϕ]ẑ(z0) (A3)

Here, ẑ(z) is the identity function in phase space, that
is, the vector valued function that takes any microstate
z onto itself. Observe that Hamilton’s equations (3) can
be written in the form

d

dt
zt = U[t,ϕ]iLtẑ(z0) (A4)

which implies the following differential equation for the
evolution operator

∂tU[t,ϕ] = U[t,ϕ]iLt (A5)

with initial condition

U[0,ϕ] = I (A6)

where I is the identity operator. As can be checked by
explicit differentiation, this equation is solved with the
well-known time-ordered exponential defined in terms of
the infinite Dyson series

U[t,ϕ] = exp−

{∫ t

0

dτiL(ϕτ )

}
≡

∞∑
n=0

∫ t

0

dτ1 · · ·
∫ τn−1

0

dτniL(ϕτn) · · · iL(ϕτ1)

(A7)

where 0 ≤ t and all the integration variables are ordered
according to 0 ≤ τn ≤ τn−1 ≤ · · · ≤ τ1 ≤ t. The order
of the operators is such that time decreases from right to
left. In Ref. [20], the time ordered exponential exp− is
denoted as expR. The need to use time ordered exponen-
tials comes from the fact that due to its time-dependence,
the Liouville operator operator does not commute at dif-
ferent times iL(ϕt)iL(ϕt′) ̸= iL(ϕt′)iL(ϕt).

2. The inverse evolution

By definition, the inverse U−1
[t,ϕ] of the operator U[t,ϕ]

satisfies

U[t,ϕ]U−1
[t,ϕ] = I (A8)

where I is the identity operator. To get a formal expan-
sion of the inverse operator, we first obtain a differential
equation by differentiation of (A8) with respect to t and
rearranging. One arrives at

∂tU−1
[t,ϕ] = −U−1

[t,ϕ]∂tU[t,ϕ]U−1
[t,ϕ] (A9)
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Inserting (A5) in this equation gives the differential equa-
tion

∂tU−1
[t,ϕ] = −iLtU−1

[t,ϕ] (A10)

As can be checked by term-by-term differentiation, the
solution of this differential equation with initial condition
U−1
[0,ϕ] = I is

U−1
[t,ϕ] = exp+

{
−
∫ t

0

dτiLτ

}
≡

∞∑
n=0

(−1)n
∫ t

0

dτ1 · · ·
∫ τn−1

0

dτniL(ϕτ1) · · · iL(ϕτn)

(A11)

where the time argument of the Liouville operator in-
creases from right to left. It can be shown that the action
of the inverse operator on a phase function is

U−1
[t,ϕ]F̂ (z) = F̂

(
Φ̂−1

[t,ϕ](z)
)

(A12)

where the inverse flow map is defined through

Φ̂−1
[t,ϕ]

(
Φ̂[t,ϕ](z)

)
≡ ẑ(z) (A13)

this is, the composition of the inverse flow map with the
flow map gives the identity function. The evolution op-
erator is unitary, this is, its adjoint is the inverse [38].

3. Time reversibility symmetry

We introduce the time reversal operator T which is
defined through its action on an arbitrary function F̂ (z)

T F̂ (z) = F̂ (ϵ·z) (A14)

where the matrix ϵ is diagonal with ±1 in the diagonal,
and that reverse the sign of the momentum. This is, if
z = (q, p) then ϵ·z = (q,−p). The time reversal operator
is an involution T 2 = 1. Note that the time reversal
matrix ϵ and the symplectic matrix J anticommute

ϵ·J = −J ·ϵ (A15)

This simple fact has as a profound consequence that
Hamilton’s equations are invariant under time reversal,
as shown below.

The time reversal operator T and the derivative oper-
ator ∂

∂zj
do not commute because

∂

∂zj
T F̂ (z) =

∂

∂zj
F̂ (ϵ·z) = F̂k(ϵ·z)ϵkj

= ϵjkT F̂k(z) = ϵjkT
∂

∂zk
F̂ (z) (A16)

where we follow the notation F̂k(ϵ · z) for the partial

derivative of F̂ (z) with respect to zk evaluated at ϵ ·z.
Because F̂ (z) is arbitrary, we have

∂

∂zj
T = ϵjkT

∂

∂zk
(A17)

where sum over repeated indices is implied. Therefore,
the operators do not commute due to the presence of ϵjk.

We assume that the coupling functions have well-
defined parity under time inversion, this is

Ĉ(ϵ·z) = εT ·Ĉ(z) (A18)

were εT is a diagonal matrix with ±1 in the diagonal,
according to the parity of the coupling function. This
matrix satisfies ε2T = 1. The unperturbed Hamiltonian

is invariant under the time reversal operator Ĥ(0)(z) =

Ĥ(0)(ϵ ·z) = T Ĥ(0)(z) and, therefore, the Hamiltonian
(1) satisfies

Ĥ(ϵ·z, εT ·ϕt) = Ĥ(z, ϕt) (A19)

that can be written as

T Ĥ(z, ϕt) = Ĥ(z, εT ·ϕt) (A20)

and shows that the action of the time reversal operator
on the Hamiltonian is just to change the time signature
of the external field.

The time reversal behaviour of the derivatives of the
Hamiltonian are easily obtained by applying the operator
∂
∂zi

to both sides of (A19). We have

∂

∂zi
Ĥ(ϵ·z, εT ·ϕt) =

∂

∂zi
Ĥ(z, ϕt)

ϵikĤk(ϵ·z, εT ·ϕt) = Ĥi(z, ϕt) (A21)

where we introduce the notation Ĥi to denote the partial
derivative of the Hamiltonian with respect to the i-th
component of z. In terms of the time reversal operator
the derivatives of the Hamiltonian transform according
to

T Hi(z, ϕt) = ϵijHj(z, εT ·ϕt) (A22)

We now consider the effect of time reversal on the Li-
ouville operator. By applying the Liouville operator on
a time reversed function we have

iLtT F̂ (z) = −Ĥi(z, ϕt)Jij
∂

∂zj
F̂ (ϵ·z)

= −Ĥi(z, ϕt)JijϵjkF̂k(ϵ·z)
= Ĥi(z, ϕt)ϵijJjkF̂k(ϵ·z) (A23)

In the last equality in (A23) we have used the anti-
commutativity (A15). By inserting (A21) into (A23)
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gives

iLtT F̂ (z) = Ĥj(ϵ·z, εT ·ϕt)JjkF̂k(ϵ·z)
= −T iL(εT ·ϕt)F̂ (z) (A24)

Because the function F̂ (z) is arbitrary,

iL(ϕt)T = −T iL(εT ·ϕt) (A25)

This shows that the Liouville operator and the time re-
versal operator anticommute, provided that we change
accordingly the time signature of the protocol. The prop-
erty (A25) is a direct consequence of the anticommuta-
tivity (A15). This anticommutativity is also reflected at
the level of evolution operators. It is easy to show, by
using (A25) and the Dyson expansion (A7) that

exp−

{∫ t

0

dτiL(ϕτ )

}
T F̂ (z)

= T exp−

{
−
∫ t

0

dτiL(ε·ϕτ )

}
F̂ (z) (A26)

In a similar way,

exp+

{∫ t

0

dτiL(ε·ϕτ )

}
T F̂ (z)

= T exp+

{
−
∫ t

0

dτiL(ϕτ )

}
F̂ (z) (A27)

where also the position of the parity matrix ε has
changed.

Next we introduce the reverse protocol as

ϕR(τ) ≡ ε·ϕ(t− τ) (A28)

We include the parity matrix ε that tells how the coupling
functions change under time reversal. Imagine that we
conduct an “experiment” with an initial condition z and
let evolve the system with Hamilton’s equations until t
under this reverse protocol. The corresponding evolution
operator is

U[t,ϕR] = exp−

{∫ t

0

dτiL(ϕR
τ )

}
=

∞∑
n=0

∫ t

0

dτ1 · · ·
∫ τn−1

0

dτniL(ϕR
τn) · · · iL(ϕ

R
τ1)

(A29)

By performing the change of variables τn → τ ′n = t− τn
for all n gives

U[t,ϕR] =

∞∑
n=0

∫ t

0

dτ ′1 · · ·
∫ t

τ ′
n−1

dτ ′niL(ε·ϕτ ′
n
) · · · iL(ε·ϕτ ′

1
)

(A30)

Observe that the times are now in the order t ≥ τ ′1 ≥

FIG. 1: The microstate z evolves forward under the protocol
ϕt starting at t = 0 and reaching at t the microstate z′ =
Φ̂[t,ϕ](z). If we change the sign of the momenta to produce
ϵ·z′ and evolve this microstate forward in time from t = 0 to
t under the reverse protocol ϕR

t we will arrive, according to
microscopic reversibility, at Φ̂[t,ϕR](ϵ·z′) = ϵ·z. If we record on

a film the evolution from z → z′ (the upper trajectory) and
run the film backwards, we will observe the lower trajectory
from ϵ·z′ → ϵ·z.

τ ′2 ≥ · · · ≥ τ ′n ≥ 0. Following a standard procedure,
we swap the order of the variables of integration. For
example, the second order term is∫ t

0

dτ1

∫ t

τ2

dτ2iL(ε·ϕτ2) · · · iL(ε·ϕτ1)

=

∫ t

0

dτ1

∫ τ1

0

dτ2iL(ε·ϕτ2) · · · iL(ε·ϕτ1) (A31)

where a further renaming of dummy variables τ1 → τ2
has been performed. Proceeding in a similar way for all
orders, we conclude that

U[t,ϕR] = exp+

{∫ t

0

dtiL(ε·ϕt)

}
(A32)

where we have taken into account the ordering of the
operators in order to use the definition (A11) for the time
ordered exponential. By comparing (A32) with (A11), we
see the close connection (up to a sign) of U[t,ϕR] with the

inverse operator U−1
[t,ϕ]. In fact, by using (A27) we obtain

U[t,ϕR]T
(A32)
= exp+

{∫ t

0

dtiL(ε·ϕt)

}
T

(A27)
= T exp+

{
−
∫ t

0

dtiLt

}
(A33)

By using (A11) we arrive at the following statement
about time reversibility at the level of the evolution op-
erators

U[t,ϕR]T = T U−1
[t,ϕ] (A34)

This property of time reversibility may be more trans-
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parent in terms of the flow map Φ̂[t,ϕ](z) = U[t,ϕ]ẑ(z),

Φ[t,ϕR](ϵ·z) = ϵ·Φ̂−1
[t,ϕ](z) (A35)

This can also be written as

Φ̂[t,ϕR]

(
ϵ·Φ̂[t,ϕ](z)

)
= ϵ·z (A36)

In Fig. 1 we explain in words the meaning of the micro-
scopic reversibility condition (A36) in the presence of an
external time-depending forcing.

Finally, if the external field is constant in time ϕt = ϕ0,
the microscopic reversibility property (A34) reduces to

eiL(ε·ϕ)T = T e−iL(ϕ) (A37)

4. Orthogonal symmetry

We now discuss what is the effect of rotating or invert-
ing the axis of coordinates on the solutions of Hamilton’s
equation. Introduce the operator R whose action on an
arbitrary phase space function F̂ (z) is

RF̂ (z) = F̂ (R·z) (A38)

where

R·z = (R·q1, · · · ,R·qN ,R·p1, · · ·R·pN ) (A39)

and R is an orthogonal matrix R·RT = 1. This orthogonal
matrix may be a rotation (detR = 1) or an improper ro-
tation (detR = −1). Improper rotations are also referred
to as rotoinversions. We assume that the unperturbed
Hamiltonian is invariant under such a transformation,
this is RĤ(0)(z) = Ĥ(0)(z). In addition, we assume that
the CG variables are vectors or tensors that transform in
the well-known form under rotations, this is

Â(R·z) = εR ·Â(z) (A40)

where εR is an M ×M constant block matrix whose en-
tries are given by the rotation matrix R in a convenient
form. The effect of this operator on the forced Hamilto-
nian is

RĤ(z, ϕt) = R
(
Ĥ(0)(z)− ÂT (z)·ϕt

)
= Ĥ(z, εTR ·ϕt)

(A41)

Observe that the 6N × 6N matrix made of the N blocks(
R 0
0 R

)
(A42)

commutes with the symplectic matrix J . This implies, by
following identical steps as those leading to (A25) that

iL(ϕ)R = RiL(εTR ·ϕ) (A43)

The property (A43) implies the following property of the
Hamiltonian evolution operator

exp−

{∫ t

0

dτiL(ϕτ )

}
RF̂ (z)

= R exp−

{∫ t

0

dτiL(εR ·ϕτ )

}
F̂ (z) (A44)

as can be easily seen by considering the expansion of the
time-ordered exponential. When applied to the identity
function, this implies

exp−

{∫ t

0

dτiL(ϕτ )

}
ẑ(z)

= R exp−

{∫ t

0

dτiL(εTR ·ϕτ )

}
Rẑ(z) (A45)

In words, this means that if we start the dynamics in a
microstate z and evolve it with an external forcing ϕt, the
final microstate is the same as if we start from the rotat-
ed/rotoinverted microstate Rz, evolve it with the exter-
nal forcing εTR ·ϕτ , and then rotate/rotoinvert it. This is
the expected behaviour of the dynamic trajectories when
we rotate/rotoinvert the axis of coordinates.

Appendix B: THE PROJECTION OPERATOR METHOD

In this appendix we derive the relationship (16) be-
tween the Liouville ensemble and the relevant ensemble,
and the exact transport equation (31) for the average of
CG variables given in the main text. This appendix fol-
lows closely Grabert’s textbook [1] and it is reproduced
for the sake of completeness, and notational convenience.

1. The projection and its properties

The method starts by introducing the operator (14)
whose action on arbitrary density η(z) in phase space is

P†
t η(z) = ρt(z)Tr[η] +

∂ρt
∂a(t)

(z)Tr
[
(Â− a(t))η

]
(B1)

Observe that this projector depends on time only through
the time-dependence of the average at, and when neces-
sary we will write

Pt = P(at) (B2)

When applied to the Liouville ensemble, and using (11),
the operator gives

ρt(z) = P†
t ρt(z) (B3)

If we require (15) stating that the relevant ensemble ρt(z)
provides the same averages (11) computed with the Li-
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ouville ensemble ρt(z) then

P†
t ρt(z) = ρt(z) (B4)

An explicit calculation shows that it satisfies

P†
tP

†
t′ = P†

t (B5)

When t = t′ this property shows that P†
t is idempotent.

The operator P†
t also satisfies the commutation property

P†
t ∂tρt(z) = ∂tP†

t ρt(z) (B6)

The adjoint Pt of the operator P†
t is defined through

Tr
[
F̂P†

t η
]
= Tr

[
ηPtF̂

]
(B7)

and has the explicit form

PtF̂ (z) = Tr[ρtF̂ ] + (Â(z)− a(t))Tr

[
∂ρt
∂a(t)

F̂

]
(B8)

An explicit calculation shows that it satisfies

Pt′Pt = Pt (B9)

The complementary projection is defined as

Qt ≡ 1− Pt (B10)

and it satisfies

Qt′Qt = Qt′ (B11)

This projector is self-adjoint with respect to the relevant
ensemble, this is,〈

F̂PtĜ
〉λt

=
〈
ĜPtF̂

〉λt

(B12)

for arbitrary phase functions F̂ (z), Ĝ(z).

2. The Liouville ensemble in terms of the relevant ensemble

We start by writting the Liouville ensemble in terms
of the relevant ensemble

ρt(z) = ρt(z) + δρt(z) (B13)

where δρt(z) is the so called irrelevant part of the ensem-
ble and is defined through this equation. The objective
is now to express the irrelevant part δρt(z) in terms of
the relevant part ρt(z). From (B3), (B10), the irrelevant
part of the ensemble is

δρt(z) = Q†
tρt(z) (B14)

We can now follow the standard derivation in which one
obtains two equations, one for the time derivatives of the
relevant part

∂tρt(z) = ∂tP†
t ρt = −P†

t iL(ϕt)ρt

= −P†
t iL(ϕt)(P†

t +Q†
t)ρt

= −P†
t iL(ϕt)ρt − P†

t iL(ϕt)δρt (B15)

and a similar equation for the irrelevant part

∂tδρt(z) = ∂tQ†
tρt = −Q†

t iL(ϕt)ρt

= −Q†
t iL(ϕt)(P†

t +Q†
t)ρt

= −Q†
t iL(ϕt)ρt −Q†

t iL(ϕt)δρt (B16)

The formal solution of the differential equation (B16) is
given by

δρt(z) = G†[t, 0, a, ϕ]δρ0(z)

−
∫ t

0

dt′G†[t, t′, a, ϕ]Q†
t′iLt′ρt′ (B17)

where the adjoint of the projected evolution operator is
defined in (17). As mentioned in the main text, we as-
sume that the initial ensemble is of the relevant form and,
therefore, δρ0(z) = 0. Then (B17) becomes

ρt(z) = ρt(z)−
∫ t

0

dt′G†[t, t′, a, ϕ]Q†
t′iLt′ρt′ (B18)

which is equation (16) in the main text.

3. When the relevant ensemble is the generalized canonical
ensemble

The result (B17) does not depend on the explicit form
of the relevant ensemble. In particular the projector
(B1), (B8) are general. When we use, however, the gen-
eralized canonical ensemble (22) the projectors becomes

P†
t η(z) = ρt(z)

(
Tr[η] + δtÂ(z)·Σ−1

t Tr
[
δtÂη

])
PtF̂ (z) =

〈
F̂
〉λt

+
〈
F̂ δtÂ

〉λt

·Σ−1
t ·δtÂ(z) (B19)

where δtÂ(z) = Â(z) − at denote the fluctuations over
the mean at time t, and the covariance matrix is

Σt =
〈
δtÂδtÂ

〉λt

(B20)

The projector (B19) is the Kawasaki-Gunton projector
used in Grabert’s textbook, and it is a generalization
of the Mori projector that uses the relevant ensemble
instead of the equilibrium ensemble. Observe that the
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following property is satisfied for the projectors (B19)

P†
t

(
ρt(z)F̂ (z)

)
= ρt(z)PtF̂ (z) (B21)

We will need the action of the projection operator and Liouville operator on the relevant ensemble, this is

− P†
t′iLt′ρt′(z)

(22)
= P†

t′

(
ρt′(z)iLt′Â

)
·λt′

(B19)
= ρt′(z)

(
Tr

[
ρt′iLt′Â

]
·λt′ + δt′Â(z)·Σ−1

t Tr
[
ρt′δtÂiLt′Â

]
·λt′

)
= ρt′(z)

(
−Tr [iLt′ρt′ ]− δt′Â(z)·Σ−1

t Tr
[
δtÂiLt′ρt′

])
= ρt′(z)δt′Â(z)·Σ−1

t Tr
[
ρt′iLt′Â

]
= ρt′(z)δt′Â(z)·Σ−1

t ·vt′ (B22)

The effect of the complementary projector is

Q†
t′iLt′ρt′(z) = iLt′ρt′(z)− P†

t′iLt′ρt′(z) = −ρt′(z)iLt′Â(z)·λt′ + ρt′(z)δt′Â(z)·Σ−1
t ·vt′ (B23)

Inserting this result in (B18) leads to

ρt(z) = ρt(z) +

∫ t

0

dt′G†[t, t′, a, ϕ]
(
ρt′(z)

(
Qt′iLt′Â

))
·λt′ (B24)

We can now use this expression for the Liouville ensemble in the definition (11) of the average of the CG variables.
By using Liouville’s theorem (10) and an integration by parts, we obtain

d

dt
at =

∫
dzρt(z)iLtÂ(z) =

〈
iLtÂ

〉λt

+

∫ t

0

dt′
〈(

G[t, t′, a, ϕ]iLtÂ
)(

Qt′iLt′Â
)〉λt′

·λt′ (B25)

where the operator G[t, t′, a, ϕ] is the adjoint of G†[t, t′, a, ϕ] and it is given by

G[t, t′, a, ϕ] = exp−

{∫ t

t′
dτiLτQτ

}
(B26)

This is (31) in the main text.

Appendix C: FROM THE AVERAGE FLAVOUR TO THE
STOCHASTIC FLAVOUR

In this appendix, we consider explicitly the derivation
of the stochastic flavour, which is obtained from the aver-
age flavour when we use the distribution function Ψ̂a(z)
as CG variable. The time-dependent average of this dis-
tribution is the probability P (a, t). First, the relevant

ensemble ρt appearing in the average ⟨·⟩λt is given by
(22) that now takes the form

ρt(z) =
ρc
Z[λ]

e−
∫
daλa(t)Ψ̂a(z) (C1)

where Z[λ] is the normalization

Z[λ] =

∫
dzρce

−
∫
daλa(t)Ψ̂a(z) (C2)

and it is a functional of the Lagrange multipliers λa(t)

conjugate to Ψ̂a(z). By performing the integral over a

over the Dirac delta function Ψ̂a(z) we obtain

ρt(z) =
ρc
Z[λ]

exp
{
−λÂ(z)(t)

}
(C3)

The Lagrange multipliers are fixed by the requirement
that the relevant ensemble average of Ψa(z) is the known
probability P (a, t). This gives the condition

P (a, t) =
Ω(a)

Z[λ]
exp {−λa(t)} (C4)

and the relevant ensemble (C3) in the stochastic flavour
becomes

ρt(z) = ρc
P (Â(z), t)

Ω(Â(z))
(C5)

The entropy is defined as the result of evaluating the
Gibbs-Jaynes entropy functional (21) at the relevant en-
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semble (C5) which now takes the form

S[Pt] = −kB

∫
daP (a, t) ln

P (a, t)

Ω(a)
(C6)

and the conjugate variable (29), is now

λa(t) =
1

kB

δS[Pt]

δP (a, t)
= − ln

P (a, t)

Ω(a)
− 1 (C7)

The average with the relevant ensemble (C5) becomes〈
F̂
〉λt

=

∫
daP (a, t)

〈
F̂
〉a

(C8)

where we introduce the conditional expectation as〈
F̂
〉a

=
1

Ω(a)

∫
dzΨ̂a(z)F̂ (z) (C9)

Let us go now for the projector Qt = 1 − Pt, where
the projector is given by (36). The average ⟨(Âν −
aν(t))F̂ ⟩λ(t) in the projector (36) is

⟨(Ψ̂a − P (a, t))F̂ ⟩λ(t)

=

∫
da′′

P (a′′, t)

Ω(a′′)

∫
dzΨ̂a′′(z)(Ψ̂a(z)− P (a, t))F̂ (z)

=

∫
da′′P (a′′, t)

[
δaa′′

〈
F̂
〉a′′

−
〈
F̂
〉a′′

P (a, t)

]
= (P (a, t)− P (a, t))

〈
F̂
〉a′′

= 0 (C10)

where we have denoted the Dirac delta with δaa′′ = δ(a−
a′′). Therefore, the projector (36) takes the form

PtF̂ (z) =

∫
daP (a, t)⟨F̂ ⟩a (C11)

Finally, let us consider the form of the time derivatives
when Âµ → Ψ̂a(z). By using the chain rule, we have

iLtΨ̂a(z) = − ∂

∂a
Ψ̂a(z)·iLtÂ(z) (C12)

and the action of the projector on the time derivative is

QtiLtΨ̂a(z)−
∂

∂a
Ψ̂a(z)·

[
iLtÂ(z)−

〈
iLtÂ

〉a]
(C13)

The reversible term (51) will take the form

v(at, ϕt)
(C12)
= −

〈
∂

∂a
Ψ̂a(z)·iLtÂ(z)

〉λ(t)

(C8)
= − ∂

∂a
·
∫

da′P (a′, t)
〈
Ψ̂aiLtÂ

〉a′

= − ∂

∂a
·V (at, ϕt)P (a, t) (C14)

where

V (a, ϕ) ≡
〈
iL(ϕ)Â

〉a

(C15)

The friction matrix (52) becomes, after substituting Âµ with Ψ̂a and using (C12)

daa′(at, ϕt) =
∂

∂a′ν

∂

∂aµ

∫
da′′

1

kB

∫ ∆t

0

dτ

〈
Ψ̂a

(
iLtÂν −

〈
iLtÂν

〉a′)
eiLtτ Ψ̂aiLtÂµ

〉a′′

P (a′′, t) (C16)

Under the Markovian approximation, in which the CG variables hardly change during the decay time of the memory
kernel, we may “drag Ψ̂a outside the evolution operator”

eiLtτ Ψ̂a′iLtÂµ ≃ Ψ̂a′eiLtτ iLtÂµ (C17)

and then

Maa′(at, ϕt) =
∂

∂a′ν

∂

∂aµ

∫
da′′

1

kB

∫ ∆t

0

dτ
〈
Ψ̂aΨ̂a′

(
iLtÂν −

〈
iLtÂν

〉a)
eiLtτ iLtÂµ

〉a′′

P (a′′, t)

=
∂

∂aν

∂

∂a′µ

∫
da′′δaa′′δa′a′′Mµν(ϕt, a

′′)P (a′′, t) =
∂

∂aν
kBMµν(a, ϕt)P (a, t)

(
∂

∂a′µ
δaa′

)
(C18)

where we have introduced the friction matrix

Mµν(a, ϕ) ≡
1

kB

∫ ∆t

0

dτ
〈(

iL(ϕ)Âν −
〈
iL(ϕ)Âν

〉a)
eiL(a,ϕ)τ iL(ϕ)Âµ

〉a

(C19)
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This can be cast in terms of an auto-correlation matrix

Mµν(a, ϕ) ≡
1

kB

∫ ∆t

0

dτ
〈(

iL(ϕ)Âν −
〈
iL(ϕ)Âν

〉a)
eiL(a,ϕ)τ

(
iL(ϕ)Âµ −

〈
iL(ϕ)Âµ

〉a)〉a

(C20)

The irreversible part Mµνλν of the dynamics in (48) when we use the friction matrix (C18) and the conjugate
variables (C7) takes the form

−
∫

da′
∂

∂aν
kBMµν(a, ϕt)P (a, t)

(
∂

∂a′µ
δaa′

)[
ln

P (a′, t)

Ω(a′)
− 1

]
=

∂

∂aν
kBMµν(a, ϕt)P (a, t)

∂

∂aµ

[
ln

P (a′, t)

Ω(a′)
− 1

]
=

∂

∂aν
kBMµν(a, ϕt)

∂

∂aµ
P (a, t)− ∂

∂aν
Mµν(a, ϕt)P (a, t)

∂S

∂aµ
(a) (C21)

where the bare entropy S(a) is defined as

S(a) ≡ kB lnΩ(a) (C22)

By collecting the reversible (C14) and irreversible (C21) parts of the dynamics (48) we end up with the FPE (80) in
the main text.

1. Properties of building blocks in the stochastic flavour

While the properties of the building blocks in the stochastic flavour are inherited from those in the average flavour,
it is worth detailing them to highlight some differences. The reversibility condition (100) is a consequence of the
following sequence of identities

0
(6)
= Tr[iLtΨ̂a]

ch.rule
= − ∂

∂a
·Tr[Ψ̂aiLtÂ]

(C15)
= − ∂

∂a
·V (a, ϕt)Ω(a)

(84)
=

1

kB

[
kB

∂

∂a
·V (a, ϕt) + V (a, ϕt)·

∂S

∂a

]
(C23)

This condition links the form of the reversible drift with the form of the thermodynamic forces given by the derivatives
of entropy. This condition helps in practice to evaluate parts of the drift term in terms of the thermodynamic forces.

From this reversibility condition we may get the degeneracy condition in generic

0
(94),(C23)

=
1

kB

[
kB

∂

∂a
·L· ∂E

∂a
+

∂S

∂a
·L· ∂E

∂a

]
=

1

kB

[
kB

∂

∂a
·L+

∂S

∂a
·L

]
· ∂E
∂a

(C24)

which holds if

L(a)· ∂S
∂a

(a) + kB
∂

∂a
·L(a) = 0 (C25)

The first degeneracy of the friction matrix (102) is proved as follows

Mµν(a, ϕt)
∂E

∂aν
(a, ϕt)

(C20)
=

∂E

∂aν
(a, ϕt)

1

kB

∫ ∆t

0

dτ
〈(

eiLtτQiLtÂµ

)
QiLtÂν

〉a

=
1

kB

∫ ∆t

0

dτ

〈(
eiLtτQiLtÂµ

)
QiLtÂν

∂E

∂aν
(Â, ϕt)

〉a
(92)
=

1

kB

∫ ∆t

0

dτ
〈(

eiLtτQiLtÂµ

)
QiLtĤ

〉a

(8)
= 0 (C26)

where we have used in the second identity that the conditional expectation (82) of a function of CG variables satisfies



24〈
F (Â)

〉a

= F (a). The second degeneracy condition in (102) can be proved as follows

∂E

∂aµ
(a, ϕt)Mµν(a, ϕt) =

∂E

∂aµ
(a, ϕt)

1

kB

∫ ∆t

0

dτ
〈(

eiLtτQiLtÂµ

)
QiLtÂν

〉a

=
1

kB

∫ ∆t

0

dτ

〈
∂E

∂aµ
(Â, ϕt)

(
eiLtτQiLtÂµ

)
QiLtÂν

〉a

≃ 1

kB

∫ ∆t

0

dτ

〈(
eiLtτQiLtÂµ

∂E

∂aµ
(Â, ϕt)

)
QiLtÂν

〉a

=
1

kB

∫ ∆t

0

dτ
〈(

eiLtt
′
QiLtĤ

)
QiLtÂν

〉a (8)
= 0 (C27)

where in the third line we have assumed that within the time-scale of the memory kernel, the gradient of the energy
is almost constant, and can go inside the evolution operator.

Appendix D: TIME REVERSIBILITY AT THE CG LEVEL

1. Time reversibility in the average flavour

Let us discuss the effect of time reversibility on the
different terms of the transport equation (48). We will
assume that the CG variables have a well-defined parity
under time reversal, this is

T Â(z) = Â(ϵ·z) = εT ·Â(z) (D1)

were εT is a diagonal matrix with ±1 in the diagonal,
according to the parity of each CG variable.

We start with the time reversal properties of the par-
tition function

Z(λ)
(23)
=

∫
dzρce

−λT ·Â(ϵ·z)

(D1)
=

∫
dzρce

−λT ·εT·Â(z) = Z(εT ·λ) (D2)

where in the first equality we have considered the change
of variables z → ϵ ·z that has unit Jacobian. According
to (26), (27), the averages with respect to the relevant
ensemble are obtained as

a(λ) = −∂ lnZ(λ)

∂λ
(D3)

and, therefore, they satisfy the following symmetry

a(εT ·λ) = εT ·a(λ) (D4)

that just reflects the parity (D1) of the CG variables.
As a consequence of all the above, the relevant ensemble
satisfies

ρλ(ϵ·z) =
ρc

Z(λ)
e−λT·Â(ϵ·z) =

ρc
Z(εT ·λ)

e−λT·εT·Â(z) = ρεT·a(z)

(D5)

The CG energy function is defined in (57)

E(at, ϕt) =

∫
dzρλt

(z)Ĥ(z, ϕt) =

∫
dzρλt

(ϵ·z)Ĥ(ϵz, ϕt)

(D5)(A19)
=

∫
dzρεT·λt

(z)Ĥ(z, εT ·ϕt)

= E(εT ·at, εT ·ϕt) (D6)

The entropy, which is just the result of evaluating the
Gibbs-Jaynes entropy at the relevant ensemble, will in-
herit the parity property from the relevant ensemble

S(εT ·a) = S(a) (D7)

and the conjugate variables satisfy

kBλ(εT ·a) =
∂

∂a
S(εT ·a) = εT ·

∂S

∂a
(a) = kBεT ·λ(a)

(D8)

which could also be inferred from (D4).

The reversible drift term defined in (32), when evalu-
ated at εT ·a and εT ·ϕt is

v(εT ·a, εT ·ϕt)
(32)
=

∫
dzρεT·a(z)iL(εT ·ϕt)Â(z)

(D5)
=

∫
dzρa(ϵ·z)iL(εT ·ϕt)Â(z) (D9)

We may perform the change of variables from z to ϵ ·z
that has unit Jacobian to get

v(εT ·a, εT ·ϕt) =

∫
dzρa(z)iL(εT ·ϕt)Â(ϵ·z)

(A25)
= −εT ·

∫
dzρa(z)iL(ϕt)Â(z)

(32)
= −εT ·v(a, ϕt) (D10)
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From (D6) and (D10) we have

−εT ·v(a, ϕ) = −εT ·L(a, ϕ)
∂E

∂a
(a, ϕ) (D11)

which implies that the reversible operator should trans-
form as

L(εT ·a, εT ·ϕ) = −εT ·L(a, ϕ)·εT (D12)

By using the same change of variables, the relevant en-
semble average of an arbitrary function F̂ transforms as〈

F̂
〉λ

=
〈
T F̂

〉εT·λ
(D13)

The property (D13) together with the anticommutativ-
ity (A25) show that the time-reversal operator and the
projector satisfy a sort of commutativity condition

T Q(a) = Q(εT ·a)T (D14)

while the action of the time-reversal operator on the pro-
jected Liouville operator (19) gives, thanks to (A25),

T iL(at, ϕt) = −iL(εT ·at, εT ·ϕt)T (D15)

These two properties imply

T Q(a)iL(at, ϕt)Q(a) = −iQ(εT ·a)L(εT ·at, εT ·ϕt)Q(εT ·at)T
(D16)

and, consequently, the action of the time-reversal opera-
tor on the projected dynamics is

T eiL(εT·at,εT·ϕt)τ = e−iL(at,ϕt)τT (D17)

as can be easily shown by using the Taylor series of the ex-
ponential. The microscopic reversibility of the projected
dynamics is to be compared with the corresponding one
for the Hamiltonian dynamics under a constant external
force (A37).

The parity of the friction matrix (52) is obtained from

Mµν(εT ·at, εT ·ϕt) =
1

kB

∫ ∆t

0

dτ
〈[

eiL(εT·at,εT·ϕt)τQ(εT ·at)iL(εT ·ϕt)Âµ

]
Q(εT ·at)iL(εT ·ϕt)Âν

〉εT·λt

(D13)
=

1

kB

∫ ∆t

0

dτ

∫
dzρλt

(z)T
([

eiL(εT·at,εT·ϕt)τQ(εT ·at)iL(εT ·ϕt)Âµ(z)
]
Q(εT ·at)iL(εT ·ϕt)Âν(z)

)
(D17)
=

1

kB

∫ ∆t

0

dτ

∫
dzρλt

(z)
[
e−iL(at,ϕt)τQ(at)iL(ϕt)T Âµ(z)

]
Q(at)iL(ϕt)T Âν(z)

(D1)
= εTµµ′

1

kB

∫ ∆t

0

dτ

∫
dzρλt

(z)
[
e−iL(at,ϕt)τQ(at)iL(ϕt)Âµ′(z)

]
Q(at)iL(ϕt)Âν′(z)εTνν′

(D1)
= εTµµ′

1

kB

∫ ∆t

0

dτ

∫
dzQ(at)iL(ϕt)Âµ′(z)

[
e−iL(at,ϕt)τ

]†
ρλt

(z)Q(at)iL(ϕt)Âν′(z)εTν′ν (D18)

The action of the adjoint operator is[
e−iL(at,ϕt)τ

]†
ρλt

(z)Q(at)iL(ϕt)Âν(z) =
∑
n=0

(−1)n

n!
[L(at, ϕt)τ ]

n†ρλt
(z)Q(at)iL(ϕt)Âν(z)

=
∑
n=0

τn

n!
[Q†(at)L(ϕt)Q†]nρλt

(z)Q(at)iL(ϕt)Âν(z)

=
∑
n=0

τn

n!
[Q†(at)L(ϕt)Q†]nρλt

(z)Q(at)iL(ϕt)Âν(z) (D19)

If we assume that the relevant ensemble does not change appreciably in the time scale of the memory

iL(ϕt)ρλt
≃ 0 (D20)

and use the property (B21), we have[
e−iL(at,ϕt)τ

]†
ρλt

(z)Q(at)iL(ϕt)Âν(z) ≃ ρλt
(z)

[
eiL(at,ϕt)τ

]
Q(at)iL(ϕt)Âν(z) (D21)
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Using this result in (D18) we conclude

Mµν(εT ·at, εT ·ϕt) = εTµµ′Mνµ(at, ϕt)εTν′ν′ (D22)

or in matrix form

M(εT ·at, εT ·ϕt) = εT ·M
T
(at, ϕt)·εT (D23)

where the superscript T stands for transpose. This is the Onsager-Casimir reciprocity theorem, which is valid under
the Markovian assumption.

2. Time reversibility in the stochastic flavour

We consider in this section the time-reversal properties of the diferent objects appearing in the FPE (96). Consider
the measure Ω(a) and evaluate

Ω(εT ·a) =
∫

dzδ
(
Â(z)− εT ·a

)
=

∫
dzδ

(
εT ·Â(z)− a

)
=

∫
dzδ

(
Â(ϵ·z)− a

)
= Ω(a) (D24)

where in the last equation we have performed a change of variable z′ = ϵ ·z with unit Jacobian. The conditional
expectations transform according to〈

F̂
〉εT·a

=
1

Ω(εT ·a)

∫
dzδ

(
Â(z)− εT ·a

)
F̂ (z) =

1

Ω(a)

∫
dzδ

(
Â(ϵ·z)− a

)
F̂ (z) =

〈
T F̂

〉a

(D25)

The projector and time reversibility operators commute

T PF̂ (z)
(C11)
= T

∫
dz′

δ(Â(z)− Â(z′))

Ω(Â(z))
F̂ (z′)

(A14)
=

∫
dz′

δ(Â(ϵ·z)− Â(z′))

Ω(Â(ϵ·z))
F̂ (z′)

(D1)
=

∫
dz′

δ(εT ·Â(z)− Â(z′))

Ω(Â(z))
F̂ (z′)

=

∫
dz′

δ(Â(z)− εT ·Â(z′))

Ω(Â(z))
F̂ (z′)

(D1)
=

∫
dz′

δ(Â(z)− Â(ϵ·z′))
Ω(Â(z))

F̂ (z′) =

∫
dz′

δ(Â(z)− Â(z′))

Ω(Â(z))
F̂ (ϵ·z′)

(A14)
= PT F̂ (z) (D26)

The reversible matrix Lµν(a) defined in (95) transforms according to

L(εT ·a)
(D25),(61)

=
〈
T
{
Â, Â

}〉a

= −εT ·L(a)·εT (D27)

where we have made use of the anticommutativity of ϵ and the symplectic matrix J appearing in the Poisson bracket.

The drift term satisfies

V (εT ·a, εT ·ϕt) =
〈
iL(εT ·ϕt)Â

〉εT·a (D25)
=

〈
T iL(εT ·ϕt)Â

〉a (A25)
= −

〈
iL(ϕt)T Â

〉a (D1)
= −εT ·V (a, ϕt) (D28)

Consider the memory kernel (C20), evaluated at the time-reversed variables

Mµν(εT ·at, εT ·ϕt) ≡
1

kB

∫ ∆t

0

dτ
〈(

iL(εT ·ϕt)Âν −
〈
iL(εT ·ϕt)Âν

〉εT·a)
eiL(εT·a,εT·ϕt)τ iL(εT ·ϕt)Âµ

〉εT·a
(D29)

Note that

iL(εT ·ϕt)Â
(A25)
= −T iL(ϕt)T Â

(D1)
= −εT ·T iL(ϕt)Â (D30)

This implies [
iL(εT ·ϕt)Â− V (εT ·a, εT ·ϕt)

]
(D30)(D28)

= −εTT
[
iL(ϕt)Â− V (a, ϕt)

]
(D31)
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Inserting this result back into (D29) gives

Mµν(εT ·at, εT ·ϕt) ≡ εTµµ′εTνν′
1

kB

∫ ∆t

0

dτ
〈
T
(
iLtÂν′ −

〈
iLtÂν′

〉a)
eiL(εT·a,εT·ϕt)τT iLtÂµ′

〉εT·a
(D32)

Using (D25) in this expression gives

Mµν(εT ·at, εT ·ϕt) ≡ εTµµ′εTνν′
1

kB

∫ ∆t

0

dτ
〈(

iLtÂν′ −
〈
iLtÂν′

〉a)
T eiL(a,εT·ϕt)τT iLtÂµ′

〉a

(D33)

Because of the anticommutativity (A25) and the commutativity (D26), the efect of the time reversal operator T on
the evolution operator is

T eiL(at,εT·ϕt)τT = e−iL(at,ϕt)τ (D34)

as can be seen from the Taylor series expansion of the exponential. Using this result in (D33) gives

Mµν(εT ·at, εT ·ϕt) = εTµµ′εTνν′
1

kB

∫ ∆t

0

dτ

∫
dzρmic

a (z)
(
iLtÂν′ −

〈
iLtÂν′

〉a)
e−iL(at,ϕt)τ iLtÂµ′

(5)
= εTµµ′εTνν′

1

kB

∫ ∆t

0

dτ

∫
dziLtÂµ′

[
e−iL(at,ϕt)τ

]†
ρmic
a (z)

(
iLtÂν′ −

〈
iLtÂν′

〉a)
(D35)

By following analogous steps as those in (D19)-(D21) adapted to the stochastic flavour, we may write (D33) in the
form

M(εT ·a, εT ·ϕ) = εT ·MT (a, ϕ)·εTT (D36)

This is the Onsager-Casimir reciprocity for the stochastic flavour.

3. Orthogonal symmetry at the CG level

Properties (A40) and (A43) reflecting orthogonal invariance have also consequences on the functional form of the
different building blocks entering the transport equations (71) and (97). We consider here the stochastic flavour, and
similar results hold for the average flavour. Following very similar reasoning as those leading to (D24)-(D28) we now
obtain (124)-(126) in the main text. Choosing εR instead of ε in the steps from (D29) to (D36) and mutatis mutandi
by taking into account that now we have the commutativity (A43) instead of the anticommutativity (A25), we arrive
at the property (127) of the friction matrix.
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[9] H. C. Öttinger and M. Grmela, Physical Review E 56

(1997).
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[18] H. Öttinger, A Philosophical Approach to Quantum Field
Theory (Cambridge University Press, 2017).
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