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ABSTRACT
We consider the different structures that a magnetic nanowire adsorbed on a surface may adopt under the influence of external magnetic
or electric fields. First, we propose a theoretical framework based on an Ising-like extension of the 1D Frenkel–Kontorova model, which
is analyzed in detail using the transfer matrix formalism, determining a rich phase diagram displaying structural reconstructions at finite
fields and an antiferromagnetic–paramagnetic phase transition of second order. Our conclusions are validated using ab initio calculations
with density functional theory, paving the way for the search of actual materials where this complex phenomenon can be observed in the
laboratory.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0031842., s

I. INTRODUCTION

Surface atoms can behave in a very different way from their
bulk counterparts.1 Their reduced coordination number usually
manifests itself in a change in the effective lattice parameter, which
induces stresses along the surface, which can be relaxed through a
surface reconstruction, i.e., a full change in symmetry of the surface
structure, creating very interesting patterns. Naturally, these recon-
structions are also usual in the case of heteroepitaxial systems, where
film and substrate atoms belong to different species.2–4 Moreover,
the same phenomenon can be considered in nanowires, quasi-1D
atomic structures, adsorbed on surfaces.5–8 In any case, the differ-
ences in energy of the different atomic configurations can be quite
small. Thus, predicting the configuration of minimum energy for a
homo- or heteroepitaxial system is a complex computational prob-
lem, even when the interactions between the film and bulk atoms are
known.1,9

Standard approaches include ab initio calculations such as
density functional theory (DFT), such as the studies of nanowires
of transition metals presented in Refs. 10–12. The large compu-
tational cost demanded by large scale DFT simulations suggests

complementing them with effective statistical mechanics approaches,
such as the Frenkel–Kontorova (FK) model13,14 that has been exten-
sively used to describe the dynamics of adsorbate layers on a rigid
substrate.15 In its original formulation, the FK model represented
the film of adsorbate atoms as point-like masses joined with springs
(i.e., nearest neighbor interactions), sitting on a rigid periodic poten-
tial energy representing the substrate. When the natural length of the
springs and the substrate periodicity differ, the equilibrium configu-
rations can become very rich.6,15,16 Many extensions of the FK model
have been proposed, such as allowing for more realistic film poten-
tials, tiny vertical displacements,17 or even quantum behavior of the
film atoms.18 Interestingly, FK can be complemented with small-
scale DFT calculations in order to fix the form of the interaction,
resulting in accurate predictions both for the equilibrium and the
kinetic effects.9,19

In this work, we explore the possibility of obtaining different
nanowire structures when external fields, either electric or mag-
netic, are applied. If the energetic differences are tiny, external
fields can change notably the electronic configuration, effectively
preventing certain bonds or enhancing others, thus giving rise to
subtle changes in the surface lattice parameters. Indeed, both bulk
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magnetoelastic lattice distortions20,21 and spin–phonon interac-
tions22,23 have attracted considerable interest. Moreover, exam-
ples of magnetization mediated surface reconstructions have been
reported,24,25 and the complementary concept of magnetic recon-
struction, where the surface spins present a different symmetry from
the bulk, has also been discussed in the literature.26–29

In this paper, we propose a theoretical framework, which we
term the Ising–Frenkel–Kontorova (IFK) model, an extension of the
1D FK model where the film atoms possess an Ising-like spin that
can point either up or down. When two neighboring film atoms have
the same spin, their interaction is different from the case in which
they have opposite spins. An external magnetic field, then, can polar-
ize the spins, forcing them to adopt a parallel spin configuration and,
therefore, to change their equilibrium configuration. As tempera-
ture increases, the system undergoes a second-order phase transi-
tion from an anti-ferromagnetic to a paramagnetic configuration,
which we characterize using the transfer operator formalism and
finite-size scaling of the magnetic susceptibility. The results of the
statistical mechanics approach are then tested using ab initio calcu-
lations of chains of H and Fe, showing that the physical predictions
are qualitatively consistent.

This article is organized as follows: In Sec. II, we describe the
IFK model in detail, along with the numerical results about the phase
diagram. The ab initio calculations are carried out in Sec. III. A
unified physical picture, combining the results from the two dif-
ferent approaches, can be found in Sec. IV. The article ends with
a presentation of our conclusions and our proposals for further
work.

II. THE ISING–FRENKEL–KONTOROVA MODEL
Let us consider a simple extension of the 1D FK model, which

we have termed Ising–Frenkel–Kontorova (IFK), which consists of
adding an Ising spin variable, + or −, to each film atom, representing
its spin polarization along a certain easy axis. We will only con-
sider coherent films, where the number of film and substrate atoms
is the same, and each film atom is always in correspondence with a
substrate atom.

Let ri be the position of the ith atom and si be its spin polariza-
tion. The total Hamiltonian of the model for N atoms is

H =
N

∑
i=1
(Vs(ri) −Hsi) +

N−1

∑
i=1

Vf (∣ri − ri+1∣, sisi+1), (1)

where V s(ri) stands for the (periodic and rigid) substrate potential
felt by each film atom, while V f (d, sisi+1) represents the atom–atom
film interaction, which depends on their distance and their relative
polarization: if the two spins are parallel, the interaction potential
is V f (d, +1), and if they are anti-parallel, it is V f (d, −1). More-
over, H represents the external magnetic field along the chosen axis.
Hamiltonian (1) should be interpreted as possessing open bound-
ary conditions. When we minimize that Hamiltonian, we obtain a
semi-classical configuration: positions plus spin polarization of all
atoms.

Note that neighboring atoms can interact through two
different potential energy functions: a ferro (F) potential,
VF(d) = V f (d, +1), or an anti-ferro (AF) one, VAF(d) = V f (d, −1).

These two potentials can have different equilibrium distances, aF
and aAF . Indeed, in some cases, one of them (typically, the ferro
potential) may not present a minimum at any distance, and aF
cannot be defined.

Let us particularize for the case shown in Fig. 1, where we can
see that VF(d) does not present a minimum, while VAF(d) does, and
let us assume that aAF ≠ as (the lattice parameter of the substrate). Let
us also assume that the lowest energy of the ferro potential exceeds
the value for the antiferro case, as it is usually the case. In the absence
of an external field, there will be a misfit between the substrate and
the film lattice parameters, and if the substrate potential is small
enough, the film atoms can reconstruct.

Yet, when an external magnetic field is applied, at a certain
moment, the ferromagnetic configuration will be preferred ener-
getically. Then, the advantage of reconstruction is lost, and if the
film remains coherent, it will wet the substrate, i.e., it will copy its
structure.

We will choose the following expressions for the three potential
energy interactions:

Vs(r) = Vs,0 cos(2πr/as),

VAF(d) = VAF,0 (1 − e−bAF(d−aAF))
2
− VAF,0,

VF(d) = VF,0 exp(−bFd),

(2)

i.e., a sinusoidal form for the film-substrate potential, a Morse form
for the AF film potential, and an exponential decay for the F film
potential.

In our calculations, we will employ kB = 1, measuring temper-
atures in energy units, which we choose to be eV. The magnetic
field H will also be measured in energy units, by making the Bohr
magneton μB = 1. Thus, H = 1 eV corresponds approximately to
2 ⋅ 104 T when the spin values are Sz = ±h̵/2, which we normalize
to be s = ±1. For the sake of concreteness, we will use the follow-
ing parameters for the effective potentials: as = 1 Å, V s ,0 = 2 eV,
VF ,0 = 4 eV, bF = 2 Å−1, VAF ,0 = 5 eV, bAF = 6 Å−1, and aAF = 0.6 Å,
which constitute a reasonable choice suggested by the ab initio

FIG. 1. Atom–atom film potentials used in our calculations, both in the ferro
(parallel spins) and antiferro (anti-parallel spins) configurations [see Eq. (2)].
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calculations for H chains, as provided in Sec. III. Figure 1 shows the
curves for VAF(d) and VF(d) using these values.

A. Transfer operator approach
The physical properties of the system described by Hamiltonian

(1) in equilibrium at temperature T = β−1 are determined by the
partition function,

Z = ∑
{ri ,si}

exp[−βH({ri, si})]. (3)

Since the system is one-dimensional, we can write this partition
function as a trace over a product of transfer matrices.30 It is con-
venient to introduce new notation to simplify our expressions. Let
xi = {ri, si} denote the multi-index that combines the position and
the spin of the ith atom. Then, the IFK Hamiltonian [Eq. (1)] can be
written as a sum of a one-body and a two-body term,

H =
N

∑
i=1

H(1)(xi) +
N−1

∑
i=1

H(2)(xi, xi+1), (4)

with H(1)(xi) = Vs(ri)−Hsi and H(2)(xi, xi+1) = Vf (∣ri−ri+1∣, sisi+1).
Let us consider xi to be restricted to take only a value from a finite
set with ℓ elements. Then, we can define

Vxi ≡ exp(−βH(1)(xi)),

Txi ,xi+1 ≡ exp(−βH(2)(xi, xi+1)),
Mxi ,xi+1 ≡ Txi ,xi+1 Vxi+1 ,

(5)

leaving the dependence on the parameters (β, H, etc.) implied. Now,
V is a vector with ℓ components, and T and M are matrices with
dimension ℓ × ℓ. We can then write

Z = ∑
{xi}

Vx1 Tx1 ,x2 Vx2 Tx2 ,x3 Vx3 , . . . , TxN−1 ,xN VxN

= ∑
{xi}

Vx1 Mx1 ,x2 Mx2 ,x3 , . . . , MxN−1 ,xN ,

and taking into account that all M matrices are equal (which need
not be the case in a more general setting), we have

Z = ∑
x1 ,xN

Vx1 (M)
N−1
x1 ,xN

= VT
(M)N−1 S, (6)

where S = (1, . . ., 1)T . The numerical evaluation of expression (6) is a
standard problem in statistical mechanics, which may be carried out
through the spectral decomposition of M.30

Expectation values are obtained by inserting appropriate oper-
ators in the matrix product. Let us consider ℓ component vectors
Rxi and Sxi , which measure the expectation value of the position and
spin of the ith atom: Rxi = ri and Sxi = si. Then,

⟨ri⟩ =
1
Z ∑{xi}

Vx1 Mx1 ,x2 , . . . , Rxi Mxi ,xi+1 , . . . , MxN−1 ,xN ,

⟨si⟩ =
1
Z ∑{xi}

Vx1 Mx1 ,x2 , . . . , Sxi Mxi ,xi+1 , . . . , MxN−1 ,xN .
(7)

Moreover, the two-point correlators can be found in a similar way,
inserting two operators, e.g., Rxi Sxi . The total magnetization m ≡∑isi
can be obtained more succinctly as

m(β, H) = −
1
β
∂ log Z
∂H

. (8)

We would like to stress the similarity between expression (6)
and a matrix product state (MPS),31 with the different positions of
the particles, ri, playing the role of the ancillary space and the num-
ber ℓ of different positions being the bond dimension. Physically, the
bond dimension of an MPS bounds the amount of information that
we need to keep from the left part of the chain in order to deter-
mine the probability for the configuration of the right part. Thus, in
our case, this information is represented by a continuous variable,
allowing for a richer behavior than in the case of the standard Ising
model.

B. Numerical results
The formalism presented in Sec. II A can be extended easily

to continuous values of ri. Yet, for practical calculations, it is conve-
nient to consider a suitable discretization. A straightforward strategy
would be to consider a length L sufficiently large to hold the full
chain of atoms and to discretize it into small intervals of length Δx,
studying the limit Δx→ 0. Taking spin into account, this would give
a matrix size ℓ = 2L/Δx. In practice, this leads to working with large
matrices.

In this work, we will only consider coherent films, with the
same density as the substrate and with only one film atom per unit
cell. Thus, each ri ∈ [0, as], with i = 1, . . ., ℓ, and the discretization
step must be taken as Δx = as/(ℓ − 1). Thus, the dimensions of the
matrices will always be 2ℓ × 2ℓ.

We have computed exactly the partition function for an open
chain, obtaining the expected positions of the film atoms making
use of Eq. (7). Figure 2 shows these values at a low temperature,
T = 0.2 eV, for both H = 0 eV and H = 5 eV. We can see that for
H = 0 eV, the system dimerizes, i.e., presents an elementary recon-
struction, doubling its unit cell. Indeed, for H = 0, the system is
antiferromagnetic, and becomes ferromagnetic, with almost all its
spins parallel when H ≠ 0 (as clearly seen in Fig. 4).

The total magnetization curve, m(H), corresponding to a sys-
tem with N = 50 atoms is shown in Fig. 3 for a range of temperatures

FIG. 2. Average atom positions of the IFK model with N = 20 using the parameters
described in the text at a very low temperature, T = 0.2 eV, using zero magnetic
field, H = 0 eV, and a large magnetic field, H = 5 eV. Note that the system dimer-
izes in the absence of magnetic field. The blue line represents the film-substrate
potential.
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FIG. 3. Magnetization curves m(H) for the IFK model with N = 50 using the param-
eters discussed in the text for several temperatures, ranging from T = 0.05 eV to
T = 10 eV.

spanning from T = 0.05 eV to T = 10 eV. We can see that for high
temperatures, the film is completely paramagnetic, with a nearly
constant slope for m(H) even for T = 1 eV. For temperatures below
T = 0.2 eV, we can observe a sharp increase in the magnetization
around Hc ≈ ±2 eV, which could correspond to a paramagnetic–
ferromagnetic transition. When T is below 0.1 eV, there appears
another sharp increase in m(H) around Hc ≈ ±1 eV, with a plateaux
between them. As a result, the critical temperature must be around
T = 0.1 eV.

Yet, the atomic and spin configurations of each film atom for
low temperatures can be rather complex, as we can see in Fig. 4.
The top panel of this figure shows the average magnetization of each
atom, ⟨si⟩, evaluated via Eq. (7) for different values of the external
magnetic field, H, for an IFK model with N = 20 atoms (instead
of N = 50, for easier visualization). For H ∼ 0, the average magne-
tization is close to zero, increasing in amplitude near the borders
but keeping an approximate anti-ferromagnetic pattern. The outer
spins, nonetheless, tends to be parallel to the external magnetic field,
thus explaining the increase in the average magnetization, but hold-
ing a frustrated structure in the interior, because the number of
atoms is even. The local magnetization pattern, as we can see, is com-
plex for intermediate values of the magnetic field, becoming fully
ferromagnetic only for very large values of H.

The bottom panel of Fig. 4 shows the position of each film atom
within the unit cell of the substrate, with x = 0.5 Å denoting its cen-
ter, always assuming T = 0.2 eV and the same values as before for
the external magnetic field. For H ∼ 0, we see the alternating pattern
corresponding to the dimerized reconstruction that we have shown
in Fig. 2. Note that in this case, the position of each alternating atom
shifts about 10% the size of the unit cell. This pattern attenuates near
the center as the magnetic field increases, and for H ∼ 1.5 eV, we can
observe a change in the deformation phase in the right extreme of the
chain due to the fact that the rightmost extreme prefers to be polar-
ized along the direction of the external field. For H ∼ 2 eV, the whole
pattern attenuates substantially, and for large magnetic fields, we can

FIG. 4. Top: average local magnetization of each atom in the open chain with
N = 20 for T = 0.2 eV and different values of the magnetic field (in eV). Bottom:
average position of each film atom within the unit cell of the substrate for the same
values of temperature and magnetic field.

see that the film wets the substrate, copying its structure. Note that
no frustrated structure appears in the interior. In any case, we would
like to stress that a chain with N = 21 atoms will yield the opposite
behavior for both the magnetization and the positions.

In order to obtain a full physical characterization of our sys-
tem, let us consider the behavior of the magnetic susceptibility χ,
defined as

χ =
∂m
∂H
∣
H=0

, (9)

which is plotted in Fig. 5, for different system sizes. We observe that
for low temperatures, the susceptibility χ ≈ 0, which is consistent
with the predicted antiferromagnetic (AF) behavior. At a finite tem-
perature value T ∼ 0.15 eV, we observe a sharp rise, whose peak
height depends on the system size L. Furthermore, beyond the peak,
the susceptibility decays approximately as T−1, corresponding to
the Curie law of paramagnetism. This behavior is consistent with
a second-order phase transition from an antiferromagnetic at low
temperatures toward a paramagnetic behavior. This type of phase
transition is sometimes accompanied by the structural changes in
nature.32,33

The nature of the phase transition and its critical exponents
can be obtained through a finite-size scaling,34 assuming that in the
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FIG. 5. Magnetic susceptibility as a function of the temperatures for different
system sizes. Inset: finite-size collapse of the susceptibility curves following
Eq. (10).

vicinity of the transition, the susceptibility follows the law

χ(T) ≈ Lγ/νF(L1/νt), (10)

where L is the system size (L ∝ N in our case), t = (T − Tc)/Tc is
the reduced temperature, Tc is the critical temperature, and ν and
γ are the critical exponents associated with the correlation length,
ξ ∼ t−ν, and the susceptibility, χ ∼ t−γ. The inset of Fig. 5 shows that
an accurate collapse is obtained through Tc ≈ 0.11 eV, ν ≈ 2.1, and
γ ≈ 2.31.

Finding the mechanism behind these exponents is not an easy
task. Yet, we may conjecture that they may correspond to an Ising
model with long-range interactions,35–38 i.e., a Hamiltonian of the
type

H =∑
i<j

1
∣i − j∣α

sisj, (11)

where α is the decaying exponent for the coupling constants. Indeed,
the critical exponent for this model depends on α. In the range
α ∈ (1, 2), we find values for ν and γ, which are compatible with our
results.37,38

The rich phase diagram of the Frenkel–Kontorova model is
determined by two parameters: the lattice parameter misfit and the
ratio between the film and substrate potentials. In our IFK case,
there are two different film potentials, which give rise to two dif-
ferent possible ratios. Yet, both are simultaneously changed when
the amplitude of the substrate potential is varied. Indeed, a change
in V s ,0 can induce a further phase transition, as we will describe
below.

In Fig. 6 (top), we can see the expected value of the magneti-
zation as a function of the applied magnetic field at very low tem-
perature (T = 0.05) using N = 50 atoms. All the parameters are the
same as in the previous calculations, except for the substrate poten-
tial amplitude, V s ,0, which was varied around its original value of
2 eV. We should pay special attention to the vicinity of the H = 0

FIG. 6. Top: magnetization as a function of the applied field, m(H), using N = 50
and T = 0.05 for different values of Vs ,0 (in Å). For Vs ,0 above a critical value,
all magnetization curves present a finite plateau at H = 0, which is a fingerprint
of the antiferromagnetic phase. Bottom: susceptibility χ (at H = 0) as a function
of Vs ,0 using N = 50 and different values of T (in eV). Note that the susceptibility
falls to zero above the aforementioned critical value unless the temperature is high
enough. The inset shows the susceptibility as a function of Vs ,0 for different system
sizes N using T = 0.05.

value, where we can see a finite plateau for high values of V s ,0 and a
finite slope for low values. This plateau is a fingerprint of the antifer-
romagnetic phase, which can be seen to disappear for weak substrate
potentials (see Fig. 3).

Yet, we cannot simply claim that for low values of V s ,0, the
system reaches a paramagnetic phase. Indeed, the plateau exists for
all values of V s ,0, but it shifts away from H = 0 when the substrate
potential is too weak. In the bottom panel of Fig. 6, we can see the
dependence of the magnetic susceptibility, χ, [defined in Eq. (9)]
with V s ,0 for different temperatures. We can observe a sudden drop
for low temperatures at a value V s ,0 ≈ 1.75 eV, while for high temper-
atures, the system becomes paramagnetic and V s ,0 becomes almost
irrelevant to determine χ. The inset shows how the T = 0.05 eV curve
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FIG. 7. Atomic positions at H = 0 for a chain with N = 20 for easier visualization
using T = 0.05 eV and different values of Vs ,0. Noe that cases Vs ,0 = 1 eV, 1.25
eV, and 1.5 eV collapse nearly exactly because they correspond to the same struc-
tural phase, and the same can be claimed for Vs ,0 = 2 eV and 2.5 eV, where the
antiferromagnetic phase induces dimerization.

changes when we choose different system sizes and allows us to claim
that the jump in χ grows with N.

It is natural to ask whether this new transition has a visible
structural impact in the nanowire. This is indeed the case in Fig. 7,
which shows the positions of the atoms within the unit cell, in sim-
ilarity to Fig. 4 (bottom), for different values of V s ,0 using always
N = 20 (for easier visualization), H = 0, and T = 0.05 eV. Indeed,
the antiferromagnetic phase always corresponds to a nearly per-
fect dimerization. Yet, for weak substrate potentials, V s ,0 < 2 eV,
we observe a large deviation, with a period 3 modulation superim-
posed on a smooth decreasing trend from the boundaries. This plot
shows that the magnetic structure interacts in a very non-trivial way
with the Frenkel–Kontorova degrees of freedom, giving rise to novel
phenomena.

We would like to stress that our calculations always use open
boundaries since they are the most natural setup for an atomic
nanowire. Moreover, the end atoms are always less attached to
the chain and are more susceptible to the action of an external
field. Moreover, the parity of the number of atoms is also rele-
vant. Indeed, if N is even, both end atoms cannot align simultane-
ously with the external field if the effective spin–spin interaction is
antiferromagnetic.

III. AB INITIO CALCULATIONS
In this section, we show proof-of-principle ab initio calcula-

tions for atomic chains (i.e., nanowires) performed with DFT. We
have chosen two different atomic species: on the one hand, we have
considered hydrogen (H) because it gives rise to simple calculations.
Moreover, we have performed computations using iron (Fe) in order
to compare with previous ab initio studies of nanowires of transition
metals.10–12

In both cases, we have built a chain of N = 8 atoms with a
total length L = asN, where as is the substrate lattice parameter,
and assuming periodic boundary conditions. Crucially, the expected
value of the total spin of the chain is fixed. For H, we have con-
sidered the cases of ⟨Sz⟩ = 0, 2h̵, and 4h̵, which, for N = 8 atoms,

correspond to zero, half, and full magnetizations, respectively. On

the other hand, for Fe, we have considered ⟨Sz⟩ = 0, 8h̵,
27
2

h̵, and
16h̵, implying that the total magnetization is a fraction of its maxi-
mal possible value: 0, 0.25, 0.42, or 0.5. In this way, we will be able
to characterize the behavior of the atom–atom film interaction in
the absence of an external magnetic field (zero magnetization) or
in the presence of external fields of given different strengths. In
order to simplify the calculations, the substrate potential is absent
from our calculations, except through the imposed substrate lattice
parameter.

Electronic calculations were performed using the SIESTA
code,39 keeping fixed the chain structure during the calculations,
while the electronic part is relaxed. The exchange and correlation
potential was described using the Perdew, Burke, and Ernzerhof
(PBE) functional.40 This functional was already used in previous
works on H2 adsorption on single and double aluminum clusters
doped with vanadium or rhodium.41–44 The core interactions were
accounted for by means of norm conserving scalar relativistic pseu-
dopotentials45 in their fully nonlocal form,46 generated from the
atomic valence configuration 1s1 for H and 4s23d6 for Fe. The core
radius for the s orbital of H is 1.25 a.u. and for the s and d orbitals
of Fe is 2.0 a.u. The matrix elements of the self-consistent poten-
tial were evaluated by integrating in a uniform grid. The grid fine-
ness is controlled by the energy cutoff of the plane waves that can
be represented in it without aliasing (150 Ry in this work). Flexi-
ble linear combinations of numerical pseudo-atomic orbitals (PAO)
are used as the basis set, allowing for multiple-ζ and polarization
orbitals. To limit the range of PAOs, they were slightly excited by a
common energy shift (0.005 Ry in this work) and truncated at the
resulting radial node, leading to a maximum cutoff radius for the s
orbitals of 6.05 a.u. for H and 7.515 a.u. for Fe. The chain structure
remains fixed during the calculations, while the electronic part is
relaxed.

As commented, in order to make proper comparisons with our
previous results regarding the IFK model and for the sake of saving
computational effort, we have considered two types of calculations
assuming fixed 1D chains (with eight atoms of H or Fe), keeping
constant the expected value of the total spin of the chain, as discussed
above. First, we have evaluated the total energy of the chains as a
function of the varying distance between adjacent atoms. Second, we
have assumed a fixed lattice parameter for the unit cell and evaluated
the energy of dimerized chains for distinct values of the dimerization
parameter.

In the first numerical experiment, we have calculated the total
energy of the chain as a function of the substrate lattice spacing, as,
assuming that the film copies the substrate, for all magnetizations
discussed previously. The results are presented in Fig. 8, where the
top panel presents the results for the H chains and the bottom panel
presents those for the Fe ones. Note that the energy zero has been set
to the (lowest) energy obtained for the largest value of as for a better
visualization. The results are obtained for the selected values of the
magnetization fraction, i.e., the expected value of the total spin of
the chain, ⟨Sz⟩, divided by the maximal possible value, neh̵/2, where
ne is the total number of electrons (8 for H and 64 for Fe). We can
observe a similar behavior to the potentials between the film atoms
in Fig. 1. For hydrogen, we see that in the absence of an external
magnetic field, the system will choose the configuration with zero
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FIG. 8. DFT calculations of the total energy of a H (top) or Fe (bottom) chain of
eight atoms as a function of the lattice spacing, using periodic boundary conditions
for several values of the magnetization fraction, i.e., ⟨Sz⟩ normalized by the maxi-
mal possible magnetization, ne

̵h/2. In the case of Fe, note the complex pattern of
energy curves. Indeed, the optimal magnetization is non-zero for a range of values
of as, while it may be zero for as ∈ (2.8, 3.5) Å.

magnetization, with an energy minimum around a value as ≈ 1 Å.
As the magnetic field increases, the magnetic contribution to the
total energy will eventually favor the upper curves, corresponding to
higher total spin. For Fe, on the other hand, for no magnetic field,
the preferred magnetization is ⟨Sz⟩ ≠ 0, and the behavior of the
energy curves are sufficiently different to suggest that the presence
of external magnetic fields will give rise to different film interaction
potentials. The results for H (top panel of Fig. 8) inspired our choice
of values of the physical parameters of the IFK model discussed in
Sec. II.

For the second computer experiment, we fix the lattice param-
eter of the substrate to the minimum obtained in Fig. 8 (as = 1.0 Å
for H and as = 2.3 Å for Fe) and we impose a dimerization on the
atomic positions of the chain, according to the rule

rn = nas + (−1)nδ. (12)

By varying the dimerization parameter δ, we get the results shown in
Fig. 9, with the top panel again devoted to H and the bottom panel
to Fe, as in Fig. 8. Note that for better comparison, we have dis-
placed vertically the energies for each magnetization by Eδ=0(⟨Sz⟩),
labeled as E0(⟨Sz⟩). As we can see, in the case of zero magnetization,
the H energy presents a minimum at a dimerization parameter δ ≈
0.21 Å, thus confirming our conjecture: the film will reconstruct in
this case if the substrate potential is not too strong. On the other
hand, for half and full magnetization, we can see that the energy
tends to a minimum for zero dimerization, showing that, at least,
this reconstruction scheme does not reduce the total energy. Thus,
we are allowed to conjecture, based on the presented data, that this
system will show different structures for zero and for high magnetic
fields.

This phenomenon is even more salient for Fe, as we can see in
the bottom panel of Fig. 9. The equilibrium value of the dimerization
parameter is strongly dependent on the magnetization. Thus, we are
led to conjecture that the imposition of a strong external magnetic
field may induce structural changes.

FIG. 9. Energy of the same chains as in Fig. 8 when allowed to dimerize, as a
function of the dimerization parameter δ, using as = 1.0 Å for H (top) and as = 2.3 Å
for Fe (bottom), for the same values of the magnetization ⟨Sz⟩, as in Fig. 8. The
curves are vertically shifted a quantity Eδ=0(⟨Sz⟩) for a better comparison.
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IV. PHYSICAL PICTURE
The combination of ab initio calculations and statistical

mechanics provides a unified physical picture of the complex phys-
ical behavior of absorbed nanowires in the presence of external
magnetic fields.

The simplest scenario corresponds to hydrogen atoms on an
inert and rigid substrate, as shown using both the IFK model and
DFT calculations. In the absence of an external field and for weak
substrate potentials, the chain will reconstruct while presenting an
antiferromagnetic structure. This reconstruction can be avoided by
three different routes: increasing the temperature, increasing the
external magnetic field, or diminishing the ratio between the film
and the substrate potentials. The antiferromagnetic to paramagnetic
transition presents the usual features associated with a long-range
Ising model.

We should ask about the ranges for the temperature and the
magnetic fields for which the phenomena discussed in this article
will take place. In Sec. II, we have employed numerical values for
the physical parameters chosen to resemble the effective potentials
in the H chain. In that case, we can see that the critical temperature
Tc ∼ 0.1 eV ∼1200 K and the magnetic field H ∼ 1 eV ∼2 ⋅ 104 T,
which is simply too large for any practical purposes. In general
terms, if the film is composed of atoms or molecules with a large
magnetic moment, the necessary magnetic field will be reduced by
the same factor. Yet, the complexity of the energy curves in mul-
tielectronic atoms can play in our favor, as it may be the case of
Fe. As we see in Fig. 8 (bottom), the energy curve for zero mag-
netization shows the lowest values of the energies for as in a range
from 2.8 Å to 3.5 Å. Choosing an appropriate as, the energy differ-
ence between the curves corresponding to different magnetization
levels can be made arbitrarily low, thus allowing a small external
magnetic field to provide the necessary difference to induce a phase
transition.

The nanowire of Fe atoms deserves further attention. The
potential energy curves shown in the bottom panels of Figs. 8 and 9
suggest that the IFK model should be extended in order to provide
a full physical explanation of this case. The straightforward proce-
dure would be to fit the VF and VAF potentials to the numerical data
obtained from DFT, but it is easy to understand that this will not be
enough. The intricate behavior of iron atoms cannot be accounted
for using classical Ising spins (Sz = ±1). A classical statistical model
would require, at least, the use of Heisenberg spins.30

Our calculations have shown that the general mechanism pro-
vided in this article can work in real materials. Of course, these
calculations are only a proof-of-principle, using simple geometries.
Indeed, it is natural for atomic chains to dimerize due to Peierls
instability,47 although the dimerization in our case has a different
origin. Further calculations, using more realistic materials, are still
needed in order to make any experimental proposal to observe the
predicted reconstruction effects. We should remark that our results
are in line with those of previous works,11,12 which provide some the-
oretical evidence of magnetic crossovers in transition atoms, as the
preferred magnetization varies as a function of the atomic distances.
In some cases, the chains are more stable when displayed along a
zig-zag geometry.11

An interesting experimental route may be provided by the use
of ultracold atoms in optical lattices since most parameters can be

easily engineered, and thus, the different transitions can be observed
just tuning the intensities of the laser beams.48,49

V. CONCLUSIONS AND FURTHER WORK
We have put forward the following question: can nanowires

reconstruct differently in the presence of external magnetic (or elec-
tric) fields? After our calculations, we can conjecture that this can
indeed be the case. We have performed illustrative ab initio calcula-
tions using DFT, showing that this possibility exists for two types of
atoms: hydrogen and iron.

Furthermore, we have proposed a statistical mechanical model,
which is an Ising-like extension of the Frenkel–Kontorova model,
the IFK model, in which film atoms interact differently when their
spin variables are the same or opposite. We have extracted some
salient physical consequences in the 1D case, using reasonable forms
for the film potentials and a sinusoidal form for the interaction with
the substrate, showing a rich behavior with an antiferromagnetic–
paramagnetic second-order phase transition at a finite value of the
temperature. It is relevant to discuss how an Ising-like model can
give rise to a phase transition at finite temperature in 1D since they
are forbidden for short-ranged Ising models due to entropic consid-
erations.50 The reason is as follows: we may integrate out the spatial
degrees of freedom, giving rise to an effective Ising model for the
spins presenting long-range interactions. Indeed, the critical expo-
nents that we have found allow us to conjecture that, indeed, our
model behaves as a long-range Ising model in 1D.

The mechanism described in this paper bears some similarity
with colossal magnetoresistance (CMR), where metallic ferromag-
netic regions co-exists with insulating antiferromagnetic ones due
to the presence of quenched disorder.51 An external magnetic field
will favor the ferromagnetic regions, thus allowing them to reach the
percolation threshold and decrease the effects of the disorder and the
resistance dramatically.

It is likely that as we increase the magnetic field, the anti-
ferromagnetic configuration will not become directly unstable, but
metastable. In other terms, the transition may be of first order. This
implies that as one cycles over a range of magnetic fields, we will
obtain a hysteresis cycle.

Throughout this article, we have used a magnetic field to force
the change in reconstruction. In principle, electric fields can also be
used in the case of film atoms or molecules with a permanent electric
dipole.

In order to proceed with this line of research, there are several
complementary routes. First of all, it will be very interesting to con-
sider how some characteristic features of the FK model extend to the
IFK case, such as the commensurate–incommensurate transition or
the presence of defects (e.g., kinks). Moreover, it is worth developing
further the statistical mechanics of the IFK, both in 1D and 2D,
where the physical properties should be richer and reconstruction
would be more experimentally feasible. In order to obtain experi-
mental confirmation of our results, the choice of the correct materi-
als is of paramount importance. We can obtain some guidance from
numerical simulations combining DFT and statistical mechanical
tools in order to select those which will present a critical magnetic
field within the experimental range. In this case, more complicated
potential curves will be required, as it is shown by the DFT results for
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Fe, which may be correctly described using, e.g., Heisenberg spins.
After some suitable materials have been chosen and characterized,
we intend to make a concrete experimental proposal.
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