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Melting in two-dimensional systems: Characterizing continuous and first-order transitions
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The mechanisms underlying the melting process in bidimensional systems have been widely studied by means
of experiments, theory, and simulations since Kosterlitz, Thouless, Halperin, Nelson, and Young elaborated the
KTHNY theory. In the framework of this theory, melting is produced by two continuous transitions mediated
by the unbinding of local defects and the appearance of an intermediate phase between solid and liquid, called
“hexatic.” There are also other competing theories that could explain this process, as, e.g., the formation of
grain boundaries (lines of defects), which lead to a first-order transition. In this paper, simulations of systems
interacting via the Lennard Jones 6–12 and Morse potentials using the Metropolis Monte Carlo method in
the NVT ensemble have been performed to study the effect of the potential shape in the melting process.
Additionally, truncated Morse potentials (with only a repulsive part) have been used to investigate the effect
of the long-range interactions. Transitions from solid to hexatic phases were found to be continuous for all
potentials studied, but transitions from hexatic to liquid phases were found to be either continuous or first order,
depending on the thermodynamic conditions and the potential interaction selected, suggesting that melting can
be triggered by different mechanisms, like grain boundary formation or defect unbinding. We find that the ratio of
defects at the liquid-hexatic or liquid-coexistence phase transitions could determine the nature of these transitions
and the mechanism underlying the melting process. The effect of the interaction of particles with their first- and
second-nearest neighbors is also discussed.
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I. INTRODUCTION

Melting in two dimensions (2D) has attracted attention
through the last decades due to several factors: first of all,
its controversial nature [1–5], but also the development of
low dimensional devices and bidimensional materials with
many potential applications such as graphene layers or carbon
nanotubes [6–8], or the applications in the biological field, like
the description of the crystallization and melting processes of
bacteria colonies in a bidimensional model system [9].

Long-range positional ordering (also called translational
ordering) cannot exist in bidimensional systems, while the
orientational ordering is still possible at long distances, as it
was first argued by Peierls [10] and Landau [11] and finally
demonstrated by Mermin [12]. This fact has been observed
both experimentally [13–16] and in simulations [1–5,17],
showing that positional correlation decays algebraically, but
the orientation can be maintained constant even for long dis-
tances, like in three-dimensional (3D) systems.

With the aim of understanding the phase transitions in
these systems, the Kosterlitz, Thouless, Halperin, Nelson, and
Young (KTHNY) theory [18–20] provides a theoretical ex-
planation for 2D melting. It has been supported by several
experiments performed on different systems: liquid crystals
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[21,22], atoms adsorbed on graphite surfaces [23,24] or in col-
loidal suspensions of charged particles [13] or particles with
magnetic interaction [25,26], as well as by several simulations
(see, e.g., Refs. [1–5]). In the framework of this theory, the
evolution from the solid to the liquid state is produced through
two continuous phase transitions. The first one is a transition
from the solid to an intermediate phase, called hexatic, which
has no analogy in 3D systems. This phase is characterized
by an exponential decay of the positional ordering and an
algebraic decay of the orientational ordering (in both cases
vs distance). Thus, in this phase, the orientation has a quasi-
long-range ordering, but the translational order is no longer
maintained at large distances. The second phase transition
occurs when orientational ordering is also destroyed, evolving
from the hexatic to the liquid phase. In the liquid phase, both
the orientational and positional ordering decay exponentially
with the distance, so only short-range correlations can be
observed.

Therefore, following the 2D KTHNY melting theory, tran-
sitions involved in the melting process are second-order or,
equivalently, continuous transitions. Note that, in both tran-
sitions, the free energy shows a continuous behavior. The
change between the solid and hexatic phase is second order
because the correlation length of the translational order di-
verges in the solid phase, and the hexatic-liquid transition is
also second order, as the correlation length of the orientational
order diverges in the hexatic phase.
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FIG. 1. Schematic representation of different kinds of defects which can be present in a two-dimensional (2D) lattice. Particles with five
and seven nearest neighbors are represented in blue and green, respectively. (a) Isolated disclinations with five and seven nearest neighbors on
the left and right scheme, respectively. (b) Isolated dislocation, formed by two adjacent disclinations with five and seven nearest neighbors,
respectively. Burgers vector of the dislocation is represented in blue. The closed trajectory corresponding to the perfect lattice is represented
in red. (c) Dislocation pair, formed by two adjacent dislocations with opposite Burgers vectors (not shown). Its total Burgers vector is null, as
the closed trajectory around the dislocation pair corresponding to the perfect lattice matches with that of the real lattice.

According to the KTHNY theory, these two transitions are
due to the unbinding of topological defects. It relies on the
assumption that the chemical potential of these defects is large
enough to induce a low concentration of defects [18]. In fact,
the model system of the KTHNY theory is a diluted gas of
defects, so it could fail in reproducing phase transitions for
systems with significant defect concentration [27].

Three different kinds of 2D defects can be considered:
disclinations, dislocations, and dislocation pairs (see Fig. 1).
In a 2D triangular lattice without defects, every particle has six
nearest neighbors. A disclination is a topological defect com-
posed of a single particle with coordination number different
from six, typically five or seven [Fig. 1(a)]. This kind of defect
affects both to the positional and the orientational ordering of
the lattice and is defined by the defect charge, a scalar quantity
which takes values of −1 and +1 for point defects with
seven and five nearest neighbors, respectively. A dislocation
is equivalent to a pair of disclinations, one with five and the
other with seven nearest neighbors [see the case of adjacent
disclinations in Fig. 1(b)]. This second kind of defect affects
only the translational ordering, leaving almost unaltered the
orientation of the lattice. Dislocations are defined by a vector
quantity named the Burgers vector, which is the vector that
completes a closed trajectory around the dislocation, taking
as reference the closed trajectory found for a perfect lattice
without defects (see Fig. 1). The third type of defect is the
dislocation pair, which is composed of two adjacent dislo-
cations with opposite Burgers vectors, so the total Burgers
vector of a dislocation pair is null [see Fig. 1(c) in which
the Burgers vectors are not present for this type of defect].
Thus, a closed trajectory around a defect which presents a
null Burgers vector (as in a perfect lattice) will imply that the
translational ordering is conserved for those kinds of defects,
so this last kind of defect preserves not only the orientational
but also the translational order. As the only kind of these three
topological defects which preserves both types of ordering,
the dislocation pair is the only which could be present in the
solid phase with a representative concentration.

According to the KTHNY theory, as the temperature raises,
the first phase transition occurs when these dislocation pairs
found in the solid phase split into two isolated dislocations,
losing the translational, but keeping the orientational ordering
basically unaffected. That leads to the hexatic phase. Then

a second phase transition occurs when these isolated dislo-
cations break into single disclinations, thus ruining both the
positional and orientational organization, and the system be-
comes a liquid.

Within the KTHNY theory, defects mutually interact via
a logarithmic potential, but they also add a contribution to
the energy of the system (named core energy), due to the
increase of energy produced by the distortion of the lattice in
the neighborhood of these defects [18–20]. Thus, the Hamil-
tonian of the dislocations of the system will have two terms:
the first of them represents the interaction energy between
dislocations and the second the core energy of the disloca-
tions. The interaction energy between dislocations depends
on the position and the mutual orientations of the Burgers
vectors of the interacting dislocations. On the other hand, the
Hamiltonian corresponding to the disclination interaction is
analogously described by two terms: the first corresponding
to the interaction between disclinations and the second to
the core energy of the disclinations. The interaction between
disclinations depends on the position and their defect charge.

The interactions among defects being approximately can-
celed because they are distributed with different orientations
to minimize their mutual interaction energy, the existence
of defects is thus mainly influenced by the core energy of
the different kinds of defects formed and by the temperature
and concentration of the system. However, when the core
energy becomes small enough, the concentration of defects
can rapidly grow, leading to a scenario which cannot be fairly
described by the KTHNY theory. In this situation, melting
could be triggered by other mechanisms, and the Hamiltoni-
ans mentioned are no longer valid.

In addition to the KTHNY theory, a melting process in-
volving the formation of grain boundaries was proposed by
Fisher et al. [28] and revised by Chui [29,30] and has been
observed in simulations with significant concentrations of de-
fects [31]. According to the detailed studies of Chui [29,30],
this melting process is characterized by the existence of a
first-order transition between the hexatic and liquid phase
(in contrast with the continuous transitions proposed in the
framework of the KTHNY theory). These two theories for
the 2D melting process have been tested in simulations in
which the core energy of the defects was deliberately modi-
fied [31–33]. For large core energies, simulations show that

094107-2



MELTING IN TWO-DIMENSIONAL SYSTEMS: … PHYSICAL REVIEW B 103, 094107 (2021)

the melting process obtained was continuous, a situation that
could be described by the KTHNY theory, whereas for small
core energies the formation of grain boundaries of disloca-
tions was the most plausible explication for the solid-liquid
transition. The grain boundary theory described by Chui [30]
also establishes a shift from a firm first-order transition from
solid to liquid phase for high core energies to a weak first-
order transition when the core energy of the dislocations is
lower than 2.84 kBT [30]. On the other hand, it has been
observed experimentally that a quasi-2D colloidal system of
hard spheres melts via a mixed scenario, where the hexatic-
solid transition is continuous and the liquid-hexatic one is first
order, showing a coexistence region [34].

Additionally, other melting mechanisms have been pro-
posed, such as the simultaneous unbinding of dislocations and
disclinations, which could occur when the binding energy of
the disclination pairs is small, causing the rapid split of the
disclination pairs after dislocation pairs are separated. This
mechanism yields a single first-order transition between the
solid and liquid phases, without the mediation of an interme-
diate hexatic phase [35,36].

Several computational studies have been performed to de-
termine which of these hypothetical scenarios are obtained
for different simulation conditions as the type of potential
interaction or different temperatures and concentrations (see,
e.g., Refs. [1–3,5,17,37–39]). All simulations confirm that,
when the hexatic phase is present in the melting scenario of a
particular system, it is always obtained via a continuous tran-
sition from the solid phase. However, the nature of the phase
transition from the hexatic to liquid phase depends on both
the potential energy function selected and the thermodynamic
conditions of the system (temperatures and concentrations). It
has been demonstrated that, for systems interacting by hard
disc or repulsive disc potentials with a power law of V ∝ r−n

and n > 6, a first-order transition occurs from the hexatic to
liquid phase [1]. Other potentials, like those with a soft re-
pulsive component (soft-core potentials), show similar results
for temperature or concentration ranges below certain critical
values (Tc and ρc) [5]. In the case of repulsive potential func-
tions with n < 6, this transition is found to be continuous [1],
as for systems with soft core potentials and temperature and
concentration values larger than Tc and ρc. In this power law
repulsive system, density dominates the melting transition, as
temperature has no role due to the lack of a potential energy
scale. Simulations with the usual Lennard Jones (LJ) 6–12
potential have also been carried out [2], leading to similar
conclusions to those using soft core potentials, and obtaining
also analogous critical values of Tc and ρc. However, to the
best of our knowledge, a systematic study of the influence of
the shape (both the presence of an attractive region and its
range) of the potential function has not been performed yet.
In addition, a recent study has discussed the possible role of
the attractive forces [40] which should also be explored.

In this paper, we will discuss the influence of the range
of the interactions and the role of both the repulsive and
the attractive part of the potential energy functions in the
nature of these 2D phase transitions under different thermo-
dynamic conditions, as it has not been clearly determined in
previous works. The nature of the transitions from solid to
hexatic and from hexatic to liquid phase will also be ana-

lyzed for representative cases. To achieve these purposes, we
have performed Metropolis Monte Carlo (MMC) simulations
with about 2562 particles using the well-known LJ 6–12 and
Morse potentials, which can be systematically tuned to vary
the width of the potential (and consequently the range of
the interaction) and the strength of the repulsive part. We
will compare the values of the concentrations at which the
liquid-hexatic transition takes place, for the full and truncated
Morse potential function. With this objective, we will analyze
the position of the neighbors in terms of the different regions
of the selected potential energy function (i.e., the repulsive,
attractive, or equilibrium regions) for the concentration range
where the phase transition occurs. In addition, the possible
mechanisms underlying the melting process obtained for the
different thermodynamic conditions and interactions will be
discussed, and the results will be compared with the existing
theories. Also, the nature of the hexatic-liquid phase transition
is discussed in terms of the ratio of defects.

II. METHODS

To carry out these simulations, we have developed a spe-
cific code [41]. It uses the MMC method to simulate a
bidimensional system of particles in an NVT ensemble. A
2D simulation box with periodic boundary conditions and
N � 2562 particles has been selected for the simulations.
Changing the size of this simulation box allow us to use dif-
ferent particle concentrations, ρ = N/S, with S being the area
of the box. This number of particles allows us to determine the
long-range behavior of the translational and orientational cor-
relation functions and to visualize the possible Mayer-Wood
loop of coexistence [1,42]. For the desired concentration, a
perfect triangular lattice was chosen for the initial configu-
ration of the system, so the unit cell vectors a and b were
orthogonal. We used a lattice which had 237 × 137 rectan-
gular cells with two particles in each cell (the number of
particles differs less than 1% from 2562), one in the center
and the other in the corner of the cell, distributed over a square
simulation box, yielding a unit cell with |a| = 0.999

√
3b. This

initial configuration was chosen because the melting process
is performed much faster than the solidification process, as the
range of the correlations in the solid phase is much larger than
in the liquid one.

The trial movements of the MMC simulation were evalu-
ated by selecting a randomly chosen distance and orientation,
their values chosen with equal probability in the [0,rmax] and
[0,2π ] ranges, respectively, thus allowing detailed balance
[43]. To accelerate the thermalization process and perform
a more representative sampling, the maximum amplitude of
the trial movements was set in such a way that the rejected
and accepted movements were approximately the same [43].
Thermalization of the system should be achieved when the
value of the global orientational order parameter of the system
(see description below) is fluctuating around a constant value
with no noticeable drift. The values of the amplitude of these
fluctuations strongly depend on the system simulated, obtain-
ing the largest values ∼0.1 (for typical values of the order
parameter ∼0.3–0.5) for systems with coexistence between
the hexatic and the liquid phases, and the lowest values of
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∼2 × 10–3 for solid phase (with typical values for the order
parameter ∼0.7–0.9).

The global orientational order parameter is a vector defined
as: �� = 1

N

∑N
i=1

−→
ψi , where

−→
ψi is the local orientational order

parameter vector corresponding to the particle i. According to
this definition, the direction of �� will define the global orien-
tation of the system, and its module will take values between
1, for perfect oriented lattices, and 0, for nonoriented systems.
In a 2D system with a triangular lattice arrangement, the local
orientational parameter

−→
ψi of each particle is defined by

−→
ψi =

ni∑

j=1

e6iθi j , (1)

where θi j is the angle formed by the vector −→ri j = −→r j − −→ri

(for particles i and j) and an arbitrary direction, which has
been chosen to lay along the x axis, and ni is the number of
nearest neighbors of the particle i. The components of the−→
ψi vector are the real and imaginary parts of Eq. (1), and its
module will take a value of 1 when all the nearest neighbors
are located, forming a perfect triangular lattice. The direction
of this vector

−→
ψi will give us the local orientation of the

nearest neighbors around particle i.
To decide which are the nearest neighbors of each particle,

typically, two kinds of methods have been proposed for these
studies [44]: the use of the Delauney graph (which is the dual
graph of the Voronoi diagram) of the particles and the use of
a cutoff radius, which is typically determined by the exami-
nation of the radial distribution function g(r). In this paper,
the second method has been employed, and only the pairs of
particles separated a distance smaller than the first minimum
of the g(r) function were considered as nearest neighbors. The
existence of a defect was considered when the number of the
nearest neighbors of a particle was different than six.

The radial distribution function g(r) was also used to an-
alyze the translational ordering. As we were interested in the
decay of the translational correlation with the distance, the
behavior of this function was explored in only one direction,
defined by the global orientational order parameter at each
step. As different positional correlation patterns could be ob-
tained depending on the chosen direction, we analyzed g(r, 0)
along the mentioned direction. In addition, and for the sake
of clarity, the translational correlation function was redefined
as C(r, 0) = g(r, 0) − 1, with zero value for noncorrelated
distances, and positive values for correlated distances.

In addition, the local orientation correlation function,
which is defined by Eq. (2), was also analyzed. Assuming a
particle placed at the origin, the local orientational correlation
at a distance r to that particle is given by

η(r) = 〈−→ψi · −→
ψ j δ(r − ri j )〉, (2)

where δ(r − ri j ) stands for the Dirac delta function of the
distance between two particles ri j . This correlation function
will take the value 1 when the orientations of the particles at
a distance r are parallel, and −1 for those distances at which
particles orientations are antiparallel.

The decay rate of these correlation functions can be fairly
analyzed in a logarithmic representation (see the insets of
Fig. 2). If both axes (the correlation function value and the

FIG. 2. Mayer-Wood loop of pressure vs concentration for a
Morse potential with α = 5 and T = 0.5. At the indicated points,
the insets represent the translational C(r, 0) = g(r, 0) − 1 and ori-
entational η(r) correlation functions, in blue and red, respectively.
Both axes (correlation function values vs distance in reduced units)
in the insets are in logarithmic scale, so an algebraic decay of the
correlation is visualized as a straight line with negative slope.

distance) are in logarithmic scale, an algebraic decay will be
depicted as a straight line with a negative slope which defines
the exponent of the decay [see C(r, 0) in the solid phase of
Fig. 2]. Otherwise, if the decay rate is exponential, correlation
functions in the log-log scale will not fit to a straight line, and
they rapidly fall down (as in the case of the liquid phase in
Fig. 2).

Besides studying the decay of the correlation functions
C(r, 0) and η(r), we can extract information about the nature
of the phase transitions from the pressure vs concentration
(P-V ) curves. Pressure is computed from [43]

P = ρkBT + 1

2S

N∑

i=1

N∑

j>i

�F (ri j ) · �ri j, (3)

where S is the total area of the system, �F (ri j ) is the force
between particles i and j, ρ is the particle concentration,
and T the temperature of the system. For a continuous phase
transition, pressure is revealed as a monotonically increasing
function along the concentration [see Fig. 3(a)], while for a
first-order phase transition, a Mayer-Wood loop must appear
in the P-V curve [17,42] (see Fig. 2). The existence of this
loop can only be explained by the interfacial tension effects of
a phase coexistence in a finite system [42], as a characteristic
imprint of a phase coexistence region. In addition, in the case
of two phases with different densities, the analysis of the
local density distribution can reveal the arising of a phase
coexistence region.

To determine the region in which the phase transitions
occur and their nature, we analyzed the P-V curves and
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FIG. 3. (a) and (c) Pressure vs concentration curves at temperatures T = 1.5 and 0.5, respectively, in Lennard-Jones (LJ) reduced units, for
a system of N � 2562 particles interacting via an LJ 6–12 potential. Red lines represent the pressure obtained from the Maxwell construction in
panel (c) and the transition pressure in panel (a). Colors corresponding to the different phases are the same as in Fig. 2, and the areas resulting
from the Maxwell construction in (c) are highlighted. In panels (b) and (d), the probability distribution function of the local densities obtained
in the simulations performed for the concentration and temperature values marked with a blue point in panels (a) and (c), respectively, are
shown.

the decay of the translational and orientational correlation
functions. When no Mayer-Wood loop is observed on the
P-V curve during a phase transition, the phase boundaries
are specified uniquely by the rate of the decay of the posi-
tional and orientational correlation functions [1]. In return,
if the Mayer-Wood loop exists for a certain temperature, the
boundaries of the coexistence region are determined by the
Maxwell construction [17] [see panel (c) in Fig. 3]. In this
construction, a P-V diagram is depicted, and the first-order
transition is characterized by a constant pressure value. This
pressure value is selected to make the two areas delimited by
this value equal in the P-V curve [see Fig. 3(c)]. The phase
coexistence occurs in the region among the corresponding
initial and final concentration values.

In this paper, two different potential functions are used to
model the particle interaction: an LJ 6–12 and a Morse poten-
tial. We can define the potential interaction in the system by

Veff (r) = V (r) − V (rcut ), (4)

where rcut is the cutoff radius used for the potential
energy calculation and V (r) is modeled by V Morse(r) =
De{[1 − e−α(r−σ )]2} or V LJ(r) = 4De[( σ

r )12 − ( σ
r )6], which

are the functions defining the Morse and LJ 6–12 potentials,
respectively. In these expressions, σ is the equilibrium dis-
tance in the Morse potential or the distance at which the LJ po-
tential becomes zero, De is the depth of the potential well, and

α the parameter that controls the width of the Morse poten-
tial well. The cutoff radius is selected so V (r ∈ [rcut,∞)) <

10−3De, except for the simulations which retain only the
repulsive part the of the Morse potential, where the cutoff
radius is fixed to rcut = σ . To compare the results obtained for
different values of α, we have used the reduced units σ = 1,
De = 1, and kB = 1. Pressure is thus expressed in units of
De/σ

2, and temperature is expressed in units of De. The range
of temperatures in our simulations goes from T = 0.5 to 3.0.

III. RESULTS

In Subsec. A, we will review the phase transitions obtained
with an LJ 6–12 potential at low and high temperatures, which
have been recently studied by Hajibabaei and Kim [2]. Then in
Subsec. B, we will discuss the nature of these transitions when
particles interact via a Morse potential, varying the value of
the potential parameter α. The influence of only considering
the repulsive part of the Morse potential (caused by truncating
the attractive part) will be examined in Subsec. C. Finally, in
Subsec. D, the ratio of defects at the liquid-hexatic transition
will be analyzed.

A. Lennard-Jones potential: A review

Phase transitions of bidimensional systems with LJ 6–12
potential have been recently studied by Hajibabaei and Kim
[2] using the event-chain Monte Carlo algorithm [45]. In this
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FIG. 4. Variation of the positional and orientational correlation
functions [C(r, 0) and η(r)] along the distance in a system of
particles interacting via a Lennard-Jones (LJ) 6–12 potential at tem-
peratures T = 0.5 for (a) and (b) and T = 1.5 for (c) and (d). Double
log axes are selected in both representations, so a straight line rep-
resents an algebraic behavior. In panels (b) and (d), the black lines
represent an algebraic decay with exponent −0.25, corresponding to
the expected behavior of the orientational correlation in the hexatic-
liquid transition predicted by the KTHNY theory.

paper, we have performed an analogous simulation using the
MMC method [41], and the results obtained in both cases are
compared. The results of the LJ 6–12 simulation are used as
a reference to evaluate the changes arising when the Morse
potential is selected. Furthermore, this benchmark simula-
tion helps to estimate the key computational parameters that
should be carefully selected in the MMC method, as the num-
ber of steps needed to accomplish the thermalization process.

When particles interact under an LJ 6–12 potential func-
tion, the evolution from hexatic to liquid phase occurs via a
first-order transition for temperatures lower than the critical
temperature Tc or via a continuous phase transition for tem-
peratures higher than Tc. This has been observed in previous
simulation studies [2], where the critical temperature was
determined to be around Tc = 1.1, in reduced LJ units.

Simulations of two representative cases have been carried
out for temperatures below and over Tc, T = 0.5 and 1.5,
respectively (see Fig. 3). Figure 3 shows that a Mayer-Wood
loop of pressure is present for the phase transition occurring
for temperatures below Tc, for T = 0.5 [panel (c)], but not
when T > Tc, for T = 1.5 [panel (a)], as it was previously
observed in Ref. [2]. This result confirms that the transition
from hexatic to liquid phase can be classified as a first-
order transition at T = 0.5 and as a continuous transition
at T = 1.5.

For T = 1.5, the Mayer-Wood loop is not present [see
Fig. 3(a)], so no phase-coexistence region is expected in this
transition at this temperature. By inspection of the local den-
sity profile in the hexatic/liquid transition, a single maximum
[see Fig. 3(b)] is observed, which supports this hypothesis.
On the other hand, by inspection of the decay rate of the cor-
relation functions C(r, 0) and η(r) at different concentration
values [see panels (a) and (b) of Fig. 4], the phase transi-
tion concentration values can be directly estimated at this

temperature, ρsol−hex = 0.945 and ρhex−liq = 0.927, which are
very close to those obtained in Ref. [2] ρsol−hex = 0.938 and
ρhex−liq = 0.926.

When T = 0.5, by means of the inspection of the Maxwell
construction [see Fig. 3(c)], we can also estimate that the
range of concentration values for the coexistence region is
approximately ρcoex ∈ (0.800, 0.847), which are very close
to the range of values found with the event-chain simulation
method ρcoex ∈ (0.810, 0.842) [2]. In addition, it can be ob-
served in Fig. 3(d) that the local density profile is bimodal
(it presents two peaks) in the coexistence region, which is in
fact another hint of the coexistence of two well-differentiated
phases at these thermodynamic conditions. Note how a small
variation in the concentration value (from ρ = 0.86 to 0.85),
triggers a noticeable qualitative change in the decay rate of
the translational correlation function, C(r, 0) [Fig. 4(c)]. This
dramatic change corresponds to the solid/hexatic transition
region. An approximately algebraic decay is obtained for a
concentration of ρ = 0.86, corresponding to the expected be-
havior in the solid phase, but for slightly lower concentration
values (just for ρ = 0.85), the trend of the translational cor-
relation function can be now fitted to an exponential decay,
which is related to a short-range positional order. However,
in panel (d) of Fig. 4, it can be noted that the orientational
order is lost at lower concentrations (below ρ = 0.82), so
there is a narrow region where translational order is absent
while the orientational order is preserved (between ρ = 0.82
and 0.85), indicating the existence of a hexatic phase in this
transition. It can also be appreciated in panel (b) of Fig. 4
that the transition from an algebraic to an exponential decay
of the orientational order appears when the exponent of the
algebraic decay is approximately −0.25, as predicted by the
KTHNY theory. At this temperature (T = 0.5), the obtained
concentration value for the transition from hexatic to solid
phase, where the translational correlation undergoes a drastic
change for long distances, is about ρsol−hex = 0.855 [see panel
(c) of Fig. 4]. This result is also very similar to that found in
previous studies ρsol−hex = 0.848 [2].

Finally, we would like to mention that the thermalization
of the system was achieved after a maximum of 107 MMC
steps for all simulations, where each step consists of a trial
movement on each particle. When we choose concentration-
temperature values far from the phase transition points (for
solid and liquid phases), the thermalization is achieved almost
instantaneously, but when regions near the transition points or
in the coexistence interval are explored, this process required
much larger computational times.

B. Full Morse potential

In this section, we present the results obtained when the
Morse potential is selected. We will use different values of the
parameter α, which controls the width of the potential well.
Previous simulations were performed in the NPT ensemble
within the molecular dynamic approximation [39]. This paper
completes those previous analyses by performing simulations
within the NVT ensemble in larger systems, thus reducing
finite size effects. We have followed a procedure like that
used for the LJ 6–12 potential, but now the particles interact
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FIG. 5. Potential energy functions modeled by full and truncated
Morse potentials [see Eq. (4)] for different values of the α parameter,
where the energy scales for the full Veff and truncated V tr

eff potentials
are represented in the left and right axes, respectively.

through a Morse potential, with the following values of the α

parameter: α = 3, 5, and 7 (see Fig. 5).
As it can be seen in Fig. 5, smaller values of α yield a

longer range of interaction and softer repulsive potentials,
while the opposite occurs for higher values of α, which give
potentials with a harder repulsion component and shorter
ranges of attractive interaction.

By simple inspection of the P-V results depicted in Fig. 6,
it can be observed that, for α = 3, the Mayer-Wood loop is
absent even at the lowest temperature of the simulation T =
0.5. Consequently, the transition between the solid and the
hexatic phases is expected to be continuous for temperatures
>0.5 when this soft-core and long-range potential function
is acting. No further simulations at higher temperatures were
carried out. For the other values of α, phase transitions for
three different temperatures have been simulated (see Fig. 6).
Larger values of α yield higher critical temperature Tc values
because of the persistence of the Mayer-Wood loop for higher
temperatures. In addition, for the same temperature values,
consistently wider coexistence regions ρcoex ∈ (ρliq, ρhex) are

FIG. 6. Variation of pressure along the concentration for different values of α and temperature for a Morse potential. Concentration
boundaries for each phase are marked with discontinuous or dotted lines for first-order or continuous transitions, respectively. Liquid,
coexistence, hexatic, and solid phases are colored in blue, pink, green, and yellow, respectively.
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FIG. 7. Local density distributions in the phase transitions from liquid to hexatic phase for particles interacting via a Morse potential with
α = 7 at T = 0.5 and α = 5 at T = 3.0 in panels (a) and (b), respectively. The liquid, hexatic, and solid phases are depicted with solid blue,
green, and black lines, respectively, and phase coexistence is represented by the dotted red curve.

found for larger values of α (see Fig. 6). As shown in Fig. 7,
the curve profiles of the local density distribution support also
the existence of a coexistence region when the Mayer-Wood
loop is present, showing a single peak distribution for those
concentration-temperature values in which no Mayer-Wood
loop is found, whereas several peaks appear for values inside
the range of the coexistence region, in which a Mayer-Wood
loop is obtained. In the curves of the local density distribu-
tion shown in Fig. 7(a), we observe that, within the range
of concentrations where the system presents phase coexis-
tence [ρ ∈ (0.97, 1.06)], a strong broadening of local density
distribution is obtained. That reveals an existence of areas
with a notable difference in the local density values. On the
contrary, in Fig. 7(b), we can see how, in the vicinity of the
phase transition between the liquid and hexatic phases, these
curves undergo only a small broadening, showing that a more
uniform local density distribution is achieved.

The translational and orientational correlation functions
(see Fig. 8) are very similar to those of the LJ 6–12 potential
(see Fig. 4), revealing that the hexatic phase is always found
in all temperatures explored. Again, in agreement with the
predictions of the KTHNY theory, the transition from the
hexatic to the liquid phase is obtained when the exponent of
the algebraic decay is around −0.25 [see panel (b) of Fig. 8].
It can be also remarked that, for values of α for which a

coexistence region between hexatic and liquid phases exits
(i.e., for α = 5 and 7), this region occupies a larger concen-
tration range at lower temperatures (see discussion below).

C. Repulsive Morse potential

To understand the influence in the melting process of each
part of the Morse potential function, both the attractive tail and
the repulsive region, we have performed simulations for the
same temperatures and α values as in the previous sections but
using only the repulsive part of the potential function, which
is equivalent to fix the cutoff radius value at rcut = σ = 1 in
Eq. (4).

The phase transitions have been studied by analyzing the
decay of the correlation functions. A notable result obtained
in these simulations is that the Mayer-Wood loop of pressure
is absent for all α and temperature values, as shown in Fig. 9.
Consequently, when we only use the repulsive part of the
Morse potential, and for the temperature values explored, the
melting process is consistent with the KTHNY scenario, and
it is mediated by two continuous phase transitions.

Figure 9 also indicates that, for the same temperature, the
phase transition regions appear now at different concentration
values with respect to those obtained with the full Morse
potential function (Fig. 6). These shifts of the concentration

FIG. 8. Variation of the translational and orientational correlation functions C(r, 0) and η(r) along the distance in panels (a) and (b),
respectively. Simulations were carried out with a full Morse potential with α = 5 and temperature T = 3.0. Black solid line in panel (b)
represents an algebraic decay with exponent −0.25, corresponding to the expected behavior in the hexatic-liquid transition in the framework
of the KTHNY theory.
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FIG. 9. Pressure vs concentration curves obtained for different α and temperature values for a system of particles interacting with only the
repulsive part of the Morse potential function. The colors of the different phases are the same as in Fig. 6.

where the phase transition occurs can be to higher or lower
values (see the Discussion section below).

D. Ratio of defects

The ratio of defects, which can be defined as the number
of defects divided by the total number of particles N , has
arisen in our simulations as a key parameter during the phase
transition and could indicate which mechanisms are triggering
the melting process (e.g., KTHNY, which assumes a low de-
fect concentration, or the grain boundary theory, which is still
suitable for a wider range of defect concentration). We plot
in Fig. 10 the ratio of defects obtained in the liquid-hexatic
transition for a given temperature.

A high ratio of defects yields first-order transitions (e.g.,
for α = 7 for the full Morse potential, black line in Fig. 10),
while the transitions become continuous for low enough ratio
of defects (e.g., the case of α = 5 for the truncated Morse
potential, the orange line in Fig. 10). The critical defect
concentration value between continuous and first-order tran-
sitions can be established at ∼0.2, as can be appreciated in
Fig. 10. Transitions at T = 0.5 and α = 3 (results not shown)
lead also to values of the ratio of defects values <0.2, in
concordance with the previous observation. In addition, the

coexistence region becomes wider when higher ratios of de-
fects are obtained (e.g., at T = 0.5 and α = 5 or 7 for the full
Morse potential), indicating a stronger first-order transition.

FIG. 10. Ratio of defects obtained in the phase transition from
liquid to hexatic phase.
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On the other hand, transitions occurring at values of ratios of
defects slightly >0.2 (T = 3.0 and α = 7 for the full Morse
potential), show a weak first-order behavior, with narrower
coexistence regions.

IV. DISCUSSION

Three aspects of the results of our simulations are now
presented. First, we will discuss the two different melting
processes obtained depending on the thermodynamic condi-
tions and the potential functions selected. Then differences
between the results obtained with the full and truncated Morse
potential will be analyzed. We tried to elucidate which are the
mechanisms underlying the different melting processes and
why they depend on the system conditions and on the particle
interaction function.

A. Continuous and first-order transitions

Two different kinds of melting processes have been ob-
tained in our simulations, which could include first-order
or continuous transitions. However, both processes always
involve the existence of a hexatic phase, observed between
the solid and liquid phases. The transition from the solid to
the hexatic phase is always continuous for all the potential
functions that we have employed (LJ 6–12, full Morse, and re-
pulsive Morse potentials). The existence of this hexatic phase
is supported by the fact that, in a small range of densities
between the solid and the liquid phases (where the hexatic
phase takes place), orientational correlation functions decay
algebraically along the distance, while translational correla-
tion functions decay exponentially. In the liquid phase, both
orientational and translational correlation functions decay ex-
ponentially, and in the solid phase, a long-range orientational
correlation and an algebraic decay in the translational corre-
lation is observed (see Fig. 1). The absence of a Mayer-Wood
loop of pressure in the vicinity of the concentration range
of the transition from the solid to the hexatic phase supports
the conclusion that this transition is always continuous. Fur-
thermore, the local density distributions appear to always be
unimodal in the range of concentrations around this transition
point, so no phase coexistence is expected.

However, as observed in previous works [1,2], we obtain
that transitions between the hexatic and liquid phases are first
order in some cases and continuous in others, depending on
the potential function and thermodynamic conditions selected
in the simulation. This can be extracted by inspection of the
evolution of the P-V curves at selected temperatures (Figs. 3
and 6).

When the LJ 6–12 potential is acting, a Mayer-Wood
loop of pressure is obtained for low temperatures and con-
centrations (Fig. 3), indicating the existence of a first-order
transition with a region of coexistence of both phases. For
high temperature and concentration values, this loop vanishes,
suggesting a mechanism that includes a continuous phase
transition. These results, which agree with those of Ref. [2],
have been recently questioned [40], arguing that, for repulsive
discs with a potential energy function V (r) = r−12, it has been
previously demonstrated that the hexatic-liquid transition is
first order [1]. However, if we compare the potential function

FIG. 11. The radial distribution function g(r) obtained for the
Lennard-Jones (LJ) 6–12 potential at T = 1.5 and ρ = 0.925 is plot-
ted together with the LJ 6–12 potential energy function in reduced
LJ units. The repulsive part of the LJ 6–12 potential energy function
V (r) = 4r−12 is also represented.

shape of the full LJ 6–12 potential with that of the repulsive
r−12 part of this potential (see Fig. 11), in the region where
the first neighbors are more probably found (for T = 1.5 and
ρ = 0.925), both potential energy function shapes are very
different. For much higher temperatures, where the melting
process is obtained at lower concentrations, the effect of the
attractive part of the potential could be disregarded, but this is
far from being achieved in the range we have studied.

An analogous result is observed (see Fig. 6) for the full
Morse potential when the value of α is large enough (α � 5),
i.e., for short-ranged interactions and hard-core potentials.
A first-order transition from hexatic to liquid phases is ob-
served at low concentration and temperature values, whereas
a continuous transition appears for larger concentrations and
temperatures. In this case, the concentration range of the
coexistence region becomes smaller when the temperature
is raised. For temperatures larger than a certain Tc, this re-
gion completely disappears, and the melting process becomes
continuous. The observed value of Tc is lower for smaller α

values, which causes that the melting process becomes contin-
uous even at very low temperatures for low enough α values,
i.e., for long-ranged interactions and soft-core potentials (see
Fig. 6). When the Morse potential is truncated, the simulations
reveal that the Mayer-Wood loop of pressure is absent for all
values explored (see Fig. 9), so the melting process occurs
always by a continuous transition in these cases.

B. Role of first and second-nearest neighbors in the melting
process

Three different trends can be extracted by observing the
changes in the concentration values where the phase transition
(from liquid to hexatic or liquid to coexistence) takes place for
the full and truncated Morse potentials. When our simulations
are performed with the full Morse potential and the results
reveal phase transitions occurring at low concentration val-
ues, equivalent simulations, but using the truncated potential,
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FIG. 12. The radial distribution function g(r) obtained for different Morse potential energy functions Veff (r) and thermodynamic conditions
is represented along the distance with the potential energy function selected. In panel (a), a low concentration system with ρ = 0.97 is depicted,
where the distance of the first peak, corresponding to the nearest neighbors, coincides with the potential energy minimum. In panel (b), the
radial distribution function of a system with intermediate concentration ρ = 1.605 is depicted, where the nearest neighbors lay in the repulsion
part of the potential. In panel (c), which corresponds to the radial distribution function of a system with high concentration ρ = 1.93, we can
see that, again, the nearest neighbors lay in the repulsive part of the potential, but now the second-nearest neighbors are located in a region
with a still attractive enough part of the potential, which leads to forces which cannot be neglected.

yield phase transitions at higher concentration values. On the
contrary, when the simulations using the full Morse yield high
concentration values for the liquid-hexatic transition, the con-
centrations obtained for the truncated Morse remain at similar
or even lower values.

When the liquid-hexatic transition occurs at low con-
centration values (∼1.0–1.3), the distance between nearest
neighbors is quite close to the position of the minimum of the
energy potential function [see Fig. 12(a)], and the transition
point obtained with the truncated potential is shifted to higher
concentrations. This can be explained by the fact that the
full Morse potential leads to more ordered systems, as the
first neighbors are mostly confined in the potential well [see
Fig. 12(a)], being necessary to perform a larger decompres-
sion to melt the hexatic.

If we analyze systems in which the liquid-hexatic transition
occurs at high density values, the nearest neighbors are no
longer in the region of the energy minimum of the poten-
tial function (in fact they are in the repulsive region of the
potential). In these cases, for the truncated Morse potential,
similar or even lower concentration values at the transition
are obtained, compared with those with the full Morse poten-
tial. This can be explained by analyzing the position of the
nearest and second-nearest neighbors. At high concentrations,
the nearest neighbors are located in the repulsive region of
the Morse potential [see Figs. 12(b) and 12(c)], leading to
equivalent interactions between nearest neighbors for the full
and truncated potentials.

However, now the interaction with the second-nearest
neighbors can play a crucial role in the melting process, as
they are placed at distances for which the resulting interac-
tion is no longer negligible [see Fig. 12(c) where α = 3 and
T = 0.5]. Notice that the interactions with second-nearest
neighbors occur in a direction different than those with the
nearest neighbors, so they may cause a destabilization in
the system. Therefore, these interactions (and the associated
destabilization) occur only in the case of the full Morse poten-
tial, and the phase transitions for the truncated potential will
require a further decompression than that yielded with the full
potential, as shown by the simulations.

In addition, there are intermediate cases in which the con-
centration values at the transitions are similar in both the full
and truncated Morse potentials. This occurs for α and concen-
tration values for which the first neighbors are no longer in
the minimum energy of the potential and the second-nearest
neighbors do not play a significant role [see Fig. 12(b)]. This
situation occurs for intermediate values of the α parameter,
with a shorter range in the attraction tail and with harder
repulsion, as in the case for α = 5 and T = 3.0.

C. Defects: core energies and ratio of defects

For the LJ 6–12 and full Morse potentials, two different
scenarios for the liquid-hexatic transition are obtained: we
find a first-order (or a continuous) transition when concen-
tration is below (or above) a certain critical value. The first
scenario can be associated with the melting caused by the
grain boundary formation, as the phase transition from hexatic
to liquid obtained by this mechanism is discontinuous. The
second scenario could be explained by the KTHNY theory,
which predicts a continuous transition between hexatic and
liquid phases.

As grain boundary theory applies when a high concentra-
tion of defects is present, they might occur in systems where
the core energy of the defects is low enough and defects will
be ubiquitous. For systems with low particle concentration, we
expect to have lower core energies, enabling the emergence of
many defects which could merge to form grain boundaries,
and thus finally leading to first-order transitions.

For systems with a larger core energy for the defects, its
number will be scarcer, and a model based on a diluted gas of
defects (as is implied in the KTHNY theory) should be more
appropriate to describe this situation. For systems with higher
particle concentrations, higher defect core energies should be
expected, disabling its massive production, and thus inhibiting
the formation of grain boundaries. In this case, a theory based
on a diluted gas of defects could be appropriate to describe the
system, in which a continuous transition should be observed,
in agreement with the KTHNY melting mechanism. Conse-
quently, the core energy of the defects could determine the
nature of the melting process.
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This hypothesis is supported by the values of the ratio of
defects obtained in our simulations around the liquid-hexatic
or liquid-coexistence transition. When the transition takes
place at high values of the ratio of defects, it has been observed
that it is always first order, while continuous transitions have
been obtained when this ratio is smaller at the transition point.
The critical value of the ratio of defects, which separates the
first-order and the continuous transitions, has been estimated
to be ∼0.2 for the kind of systems studied (see Fig. 10).
This critical value could depend on the potential shape and
deserves to be studied in further works.

This analysis is also consistent with the absence of the
Mayer-Wood loop in the simulations performed with the trun-
cated Morse potential, as the maximum concentration values
at which the pure liquid phase is observed (for given tempera-
ture and α) are larger than those obtained with the full Morse
potential, thus producing an increase in the defect core energy
and a subsequent decrease in the ratio of defects (always
<0.2). On the other hand, previous simulations performed
with repulsive discs acting with power law potentials give a
continuous hexatic to liquid phase transition for high concen-
tration values, while it turns discontinuous when the transition
is produced at smaller ones [1].

Also, we want to highlight that when nonequilibrium
molecular dynamics (NEMD) simulations [46,47] are used to
describe the melting process induced by mechanical effects,
such as shear and stress, the same sequence of phases (solid-
hexatic-hexatic/liquid coexistence-liquid) as those obtained in
our simulations in the low concentration regime is found.
In these NEMD simulations, shear induces the formation of
grain boundaries, and consequently, mechanical-induced 2D
melting follows similar mechanisms to those yielded by ther-
mal effects for low concentrations.

V. CONCLUSIONS

Our results of the MMC simulations carried out with the LJ
6–12 potential are in very good agreement with those previ-
ously obtained with the event-chain method [2]. Discrepancies
between our results obtained with the LJ 6–12 potential and
those previously obtained with the repulsive discs modeled by
the power law potential V (r) ∝ r−12 [2] are explained in terms
of the difference between both potential shapes in the region
where the first neighbors are more probably placed.

In our simulations, we have always obtained a continuous
liquid-hexatic transition when using the repulsive Morse po-
tential. If the full Morse potential is employed (i.e., including
the attractive part), this phase transition could become first
order. If the value of α is decreased for constant temperature
values, the coexistence region, if present, becomes narrower
and finally disappears. The repulsive part of the potential be-
comes harder for larger α values and yields less concentrated
systems at the transition point. For these low concentrations,
the number of defects increases, so grain boundaries could be
more easily formed.

Moreover, in the case of the full Morse potential, we have
shown the relevant role of both the nearest and second-nearest
neighbors in the concentration values at which the liquid-
hexatic transition appears. These shifts in the concentration

where this transition takes place can trigger the change in
the main mechanism of the melting process. As an example,
we have found that, when removing the attractive part of the
potential, the transition can turn from first order to continuous.
This change can be explained by this shift in the concentration
at the phase transition point. According to the results obtained
in Ref. [2], we have observed that the introduction of an at-
tractive potential well can induce a change from a continuous
to a first-order transition. We have also shown the important
effect of considering the second-nearest neighbors, as they
can induce a destabilization of the system, which possibly
gives light for understanding the transition for long-ranged
attractive potentials.

In our simulations, an hexatic phase is always obtained
in the melting process, so a hypothetical melting mechanism
involving a simultaneous dissociation of both dislocation and
disclination pairs can be disregarded. On the other hand,
both theories, KTHNY and the grain boundary formation,
are needed to explain the two different kinds of transitions
observed in our results.

We have found that the ratio of defects can be responsible
for triggering the different mechanisms underlying the tran-
sition. Systems with low particle concentration, with lower
defect core energies, and many defects which could form
grain boundaries, lead to first-order hexatic-liquid transitions.
Systems with high particle concentrations will have a small
ratio of defects, which could not form grain boundaries and
a diluted gas of defects could describe the system, leading to
continuous hexatic-liquid transitions, in agreement with the
KTHNY theory. Moreover, we have characterized a critical
ratio of defects ∼0.2 to obtain whether the liquid-hexatic
transition is continuous or first order for defect ratios below or
above that critical value, respectively. On the other hand, when
the particle concentration at this transition shifts to higher
values, the ratio of defects is found to decrease, yielding a
narrower coexistence region.

In addition, our hypothesis could be compared favorably
with experiments which characterize the freezing transition of
monolayers of xenon adsorbed on a graphite substrate [24].
A first-order transition was observed for low coverages of
0.84–0.86 monolayers of xenon atoms, while it became a
continuous transition when the coverage was augmented to
about 1 monolayer. Low coverages can be associated with the
low concentration scenario of our simulations, while the high
coverage of about 1 monolayer could correspond to the high
concentration scenario.

We conclude that the concentration of the system at the
transition seems to be the main factor which determines the
mechanism of the melting process. Excluding the hard discs
potentials, for which temperature is irrelevant, the concentra-
tion at which the transition occurs always increases when the
temperature is raised. Consequently, the melting mechanism
changes from the grain boundary formation to a KTHNY-
like melting. This dependence on the concentration can be
ascribed to the change in the core energy of the defects formed
in the system, as higher (lower) particle concentrations lead
to higher (lower) core energies and lower (higher) ratio of
defects, and a continuous (first order) hexatic-liquid phase
transition is expected.
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