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Abstract: Non-normality is a usual fact when dealing with gene expression data. Thus, flexible
models are needed in order to account for the underlying asymmetry and heavy tails of multivariate
gene expression measures. This paper addresses the issue by exploring the projection pursuit
problem under a flexible framework where the underlying model is assumed to follow a multivariate
skew-t distribution. Under this assumption, projection pursuit with skewness and kurtosis indices is
addressed as a natural approach for data reduction. The work examines its properties giving some
theoretical insights and delving into the computational side in regards to the application to real gene
expression data. The results of the theory are illustrated by means of a simulation study; the outputs
of the simulation are used in combination with the theoretical insights to shed light on the usefulness
of skewness-kurtosis projection pursuit for summarizing multivariate gene expression data. The
application to gene expression measures of patients diagnosed with triple-negative breast cancer
gives promising findings that may contribute to explain the heterogeneity of this type of tumors.
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1. Introduction

The development of high-throughput technologies has provided the scenario to si-
multaneously monitor the expression levels of hundreds of genes in an attempt to obtain
insights about the molecular mechanisms of human diseases. Genomic studies usually
involve a vast number of measures quantifying the expression levels of genomic informa-
tion from patients. An issue arising in this scenario is concerned with the data reduction
through the construction of new genomic features that can summarize the expression
levels of a set of genes sharing either a specific clinical characteristic or a well-established
biological function. Standard methods for addressing the issue are based on first and
second order moments indices using averages of expression levels and the first principal
component conveying the largest variability respectively, the latter being an approach
that accounts for gene dependencies provided that gene expression measures fit to the
multivariate normal model. Since gene expression measures usually exhibit asymmetries
and heavy tails, the normality assumption is not realistic [1–4] and dimension reduction
methods based on first and second order moments entail obvious theoretical limitations.
Thus, a dimension reduction approach based on higher moments is a better suited approach
to capture the non-normality of this type of data. This is the motivation for exploring
the skewness-kurtosis-based projection pursuit (PP) problem as a dimension reduction
technique to summarize gene expression data.

This paper revisits the PP problem which in short is concerned with the search of “relevant”
projections in multivariate data through the maximization of a non-normality index [5]. When
the third (fourth) order moment is considered then skewness (kurtosis) is taken as projection
index and the problem reduces to finding the direction that yields the maximal skewness
(kurtosis) projection, an idea early proposed by [6] which has revived increasingly attention
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in an attempt to understand and interpret the derived projections under flexible parametric
models for skewness [7–14] and kurtosis [9,15–18] indices.

The multivariate skew-t (ST) distribution has become a widely used parametric model
in multivariate data analysis, due to its tractability and appealing properties, which allows
the handling of asymmetry and tail weight behavior simultaneously. In this paper we
propose to study the model-based PP problem under the flexible class of multivariate ST
distribution using the skewness-kurtosis projection indices in the context of summarizing
multivariate gene expression measures. The rest of the paper is organized as follows:
Section 2 gives a general theoretical overview about the ST family and presents some
motivation for its use by assessing the multivariate normality of gene expression measures
from breast cancer data. Section 3 discusses the skewness-kurtosis-based PP problem
under the multivariate ST model; we examine the role of the shape vector, which accounts
for the non-normality the model, in the derivation of the PP direction achieving the
maximal skewness-kurtosis. The theoretical results are illustrated by means of a simulation
experiment with synthetic data in Section 4; the simulation experiments reveal important
findings with useful implications for the application to a real gene expression cancer
data set; the application is discussed in Section 5. Finally, Section 6 summarizes the
main findings.

2. Background and Motivation
2.1. The Skew-Normal and Skew-T Distributions

The multivariate skew-normal (SN) distribution has become an increasingly used
model that regulates departures from normality by means of a shape vector dealing with
the multivariate asymmetry; its study has originated fruitful research [19–24]. In this paper
we adopt the formulation given by [19,24,25] to define the density function of a normalized
SN vector Z by

f (z; 0, Ω, α) = 2φp(z; Ω)Φ(α>z) : z ∈ Rp, (1)

where Ω is a p× p correlation matrix, φp(z; Ω) is the density function of a p-dimensional
normal vector with zero mean and covariance matrix Ω, Φ is the distribution function of a
standard N(0, 1) variable and α is a shape p× 1 vector.

To introduce location and scale parameters into this model, it is considered a location
vector ξ = (ξ1, . . . , ξp)> and a diagonal matrix ω = diag(ω1, . . . , ωp) with non-negative
entries which converts the correlation matrix into a scale matrix Ω = ωΩω; as a result, the
vector X = ξ + ωZ has a SN distribution with density function

f (x; ξ, Ω, α) = 2φp(x− ξ; Ω)Φ(α>ω−1(x− ξ)) : x ∈ Rp. (2)

The parameters in the density above are the location ξ, the scale matrix Ω and the
shape vector α, or η = ω−1α, which regulates the multivariate asymmetry of the model.
We write X ∼ SNp(ξ, Ω, α) to denote that X follows a SN distribution with density (2);
note that when α = 0 the multivariate normal density function is recovered.

As we know, the SN vector admits the stochastic representation: X = ξ + ωZ, with
Z following a normalized skew-normal distribution with density (1). The multivariate
ST distribution arises as a generalization of the SN when tail weight is injected into the
model by incorporating a mixing variable S, independent of the vector Z, in the stochastic
representation of the SN vector as follows: X = ξ + ωSZ. The mixing variable is given by
S = V−1/2 with V ∼ χ2

ν/ν [26]; as a result, it can be shown that the density function of X is

f (x; ξ, Ω, α, ν) = 2 tp(x; ν)T1

(
α>ω−1(x− ξ)

(
ν + p

Qx + ν

)1/2
; ν + p

)
: x ∈ Rp (3)

with the quantity Qx above given by Qx = (x− ξ)′Ω−1(x− ξ).
We will write X ∼ STp(ξ, Ω, α, ν), or equivalently X ∼ STp(ξ, Ω, η, ν), to indicate that

X follows a p-dimensional ST distribution with density function (3). Please note that when



Mathematics 2021, 9, 954 3 of 18

ν → ∞ the ST reduces to the SN distribution, i.e., X ∼ SNp(ξ, Ω, α). In addition, when
α = 0, the ST model becomes the p-dimensional t distribution for which the tail weight
parameter ν controls the non-normality of the model.

2.2. Motivating Example

Cancer patients who are diagnosed with triple-negative breast cancer (TNBC) define
a heterogeneous subtype of breast cancer with a worse prognosis than patients diagnosed
by other cancer subtypes such as the estrogen-receptor positive (ER+) or the HER2-positive.
A data set containing gene expression measures for 494 TNBC patients was collected from
GSE31519. An initial analysis allowed to reduce the original list with 13,146 genes to a new list
containing only 1998 genes with the highest variability in their expression measures. This data
set is used to illustrate the non-normality of multivariate gene expression measures.

To assess the normality assumption, we carry out multivariate normality tests for
groups with p = 2, 5, 10 genes. For each dimension, a subset with p genes is selected at
random and the multivariate normality is assessed by the p-value of the test; the experiment
is repeated 10,000 times for each one of the following tests: Shapiro-Wilk’s test [27,28],
skewness and kurtosis tests implemented in the ICS R package [29], and Mardia’s [30],
Henze-Zirkler’s [31], Doornik-Hansen’s tests [32] implemented in the MVN R package [33].

The results appear in Table 1 which displays the number of rejections for each test
at significance levels: α = 0.005, 0.01, 0.05. We can see that the rejection is higher for the
larger dimensions; overall, we can observe a great deal of rejections, even for the smallest
significance level, so that it can be concluded that the multivariate normal model does
not fit the gene expression measures of TNBC patients. The non-normality issue has been
tackled by previous works which pointed out the cautions and caveats regarding the use
of statistical methods that rely on the normality assumption [1,3].

Table 1. Number of rejections of the multivariate normality assumption.

Test
p = 2 p = 5 p = 10

α = 0.005 α = 0.01 α = 0.05 α = 0.005 α = 0.01 α = 0.05 α = 0.005 α = 0.01 α = 0.05

Shapiro–Wilk’s 7716 8079 8878 9798 9853 9952 9998 9998 10,000
ICS skewness 5503 5944 7090 8583 8830 9363 9867 9904 9969
ICS kurtosis 8327 8546 9082 9934 9946 9982 10,000 10,000 10,000

Mardia skewness 5899 6368 7528 9418 9562 9812 9998 9999 10,000
Mardia kurtosis 8358 8615 9221 9958 9975 9995 10,000 10,000 10,000
Henze–Zirkler 4571 5232 6942 9200 9389 9717 9999 10,000 10,000

Doornik–Hansen 8189 8513 9135 9866 9907 9964 10,000 10,000 10,000

To illustrate the suitability of non-normal multivariate distributions such as the SN and
ST for modeling gene expression measures, we take the following five illustrative genes:
(GNG10, EEF1G, UQCR10, DLST, ZMYM3). The analysis comprises the computation of
the p-value for the normality tests given in Table 1 and the fit of Normal, SN and ST
distributions to their expression measures by maximum likelihood using the selm function
of the sn R package [34]: the p-values are 0.00803 (Shapiro-Wilk’s), 0.00104 (ICS skewness),
0 (ICS kurtosis), 0.02695 (Mardia skewness), 0 (Mardia kurtosis), 0.01596 (Henze-Zirkler)
and 0.00088 (Doornik-Hansen); the PP-plots obtained from the fit are depicted in Figure 1.
The p-values are mostly against normality and the PP-plots show the adequacy of SN and
ST distributions to handle the underlying non-normality of gene expression measures.

The results of our analysis reveal the limitations of the normal distribution for mod-
eling multivariate gene expression data. Thus, we advocate for the use of more flexible
models such as the SN and ST.
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Figure 1. PP-plots for Normal (left), SN (middle) and ST (right) fits.

3. Skewness-Kurtosis Based Projection Pursuit

In this section, we study the skewness and kurtosis model-based projection pursuit
problems with a goal on exploring the directions that yield the maximal skewness and
kurtosis projections for a ST input vector X. From now on, it is assumed that the underlying
model for the multivariate gene expression measures is a ST distribution such that X ∼
STp(ξ, Ω, η, ν) with a density function given by Equation (3). Let us denote by U =

Σ−1/2(X − ξ) its scaled version, with Σ denoting the covariance matrix of the input vector
X. We study the problems for the maximization of skewness and kurtosis separately.

3.1. Skewness Maximization

Now, we consider the scaled version U of the ST input vector. First, we address the
problem of finding the direction c for which the scalar variable Y = c>U attains the maximum

skewness, as defined by the standardized third moment measure: γ1(Y) = E2
(

Y− µY
σY

)3
.

Since γ1 is scale invariant, the search of the direction yielding the maximal skewness
projection can be formulated by the following problem:

max
c∈Sp

γ1(c>U) (4)

where Sp = {c ∈ Rp : c>c = 1}, or equivalently by

max
d∈S∗p

γ1(d>X) (5)

where d = Σ−1/2c and S∗p = {d ∈ Rp : d>Σd = 1}.
The vectors providing the maximal skewness in the previous equivalent problems are

denoted by
λskew,X = arg max

d∈S∗p
γ1(d>X) , λskew,U = arg max

c∈Sp
γ1(c>U) (6)

which satisfy that λskew,X ∝ Σ−1/2λskew,U .
The quantity γD

1,p = max
c∈Sp

γ1(c>U) = max
d∈S∗p

γ1(d>X) is a well-known measure for

assessing multivariate asymmetry in a directional fashion [6]. Hence, the direction driven
by the vector λskew,X can be used as a principal skewness direction that would allow a
summary of multivariate data.

3.2. Kurtosis Maximization

When the focus is on kurtosis maximization the formulation can be established in a
similar way. Now, we must find the vector c (or d) for which the scalar variable Y = c>U
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(or d>X) attains the maximal kurtosis, where U is the scaled version of the input vector
X. Here, the kurtosis (excess) is quantified by the standard fourth order moment measure

defined by γ2(Y) = E
(

Y− µY
σY

)4
− 3.

As in the previous case, due to the scale invariance of γ2, the problem admits the
following two equivalent formulations:

max
c∈Sp

γ2(c>U) (7)

where Sp = {c ∈ Rp : c>c = 1}, or

max
d∈S∗p

γ2(d>X) (8)

where d = Σ−1/2c and S∗p = {d ∈ Rp : d>Σd = 1}.
If λkurt,U and λkurt,X denote the vectors where the maximal kurtosis in expressions

(7) and (8) is attained, respectively, then they satisfy that λkurt,X ∝ Σ−1/2λkurt,U and provide
the maximal kurtosis directions. In fact, the maximal kurtosis measure
γD

2,p = max
c∈Sp

γ2(c>U) = max
d∈S∗p

γ2(d>X) was already introduced in the past to account

for the directional nature of kurtosis [6].
The main theoretical result of this work is provided by Theorem 1. It essentially

states that under the flexible class of multivariate ST distributions, the vectors yielding
the maximal skewness and kurtosis agree and have a simple analytical form related to the
shape vector of the multivariate ST model.

Theorem 1. Let X be a random vector such that X ∼ STp(ξ, Ω, η, ν) with degrees of freedom
ν > 4. Then the maximal skewness-kurtosis projections in (5) and (8) are attained at the direction

of the vector: λskew,X = λkurt,X = η/
√

η>Ση, with Σ the covariance matrix of the vector X.

Proof of Theorem 1. See the Appendix A.

Theorem 1 provides a revealing theoretical finding to summarize multivariate non-
normality through maximal skewness-kurtosis projections; it states that the maximal
non-normality is attained at the direction of the shape vector η of the model since such
direction not only maximizes skewness but kurtosis as well. This is also the case for vectors
following a SN distribution, as stated by [9], who wondered about its validity for the ST
distribution (see Section 6 in [9]). As a result, the shape vector may be interpreted as a
parameter that accounts for the multivariate non-normality of the ST model in a directional
way. The result also points out the parametric interpretation of the skewness-kurtosis-based
PP problem under the ST distribution, a fact enhancing the inferential side of the problem
which in turn poses computational implications when summarizing non-normal gene
expression measures. The next section discusses in detail such computational issues giving
two alternative methods for calculating maximal skewness-kurtosis projections from data.

3.3. Computational Issues

The first approach to compute the maximal non-normality direction comes from a
non-parametric standpoint motivated by the representation of directional skewness as the
maximum of an homogeneous third-order polynomial defined as follows [14]:

γD
1,p = max

c∈Sp
γ1(c>U) = max

c∈Sp
(c⊗ c)>K3(U)c (9)

where K3(U) is the p2× p third cumulant matrix of the scaled version U of the input vector
X and the symbol ⊗ is used to denote the tensor product.
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The problem above involves an iterative numerical algorithm that requires the choice
of a proper initial direction in order to avoid local maxima. The use of the right dominant
eigenvector of the empirical third cumulant matrix is suggested by the higher-order power
method (HOPM) as a good starting direction [35], but without providing a theoretical
justification. Interestingly, when the input vector X follows a ST distribution, it has
been shown that the right dominant eigenvector of the third cumulant matrix appearing

in (9) is proportional to Σ−1/2γ, with γ =
Ωη√

1 + η>Ωη
, and also gives the direction

achieving the maximal skewness projection for the scaled vector U [14]; therefore, the
maximal skewness projection for X lies on the direction of η since Σ−1γ is proportional to
η —see Lemma 1 in [12]. This fact provides theoretical support for the HOPM algorithm
and enhances its parametric interpretation.

The previous argument also provides the theoretical support for a non-parametric
method, based on the empirical third cumulant matrix, which serves to estimate η by
resorting to the maximal skewness principle [14,36] as follows:

Method 1. Estimate the skewness-kurtosis-based PP direction by means of η̂1 = Σ̂
−1/2û, where Σ̂ is

the sample estimate of Σ and û is the right dominant eigenvector of the empirical third cumulant matrix.

A second alternative method to address the skewness-kurtosis PP problem relies on
the ST assumption for the underlying distribution. As Theorem 1 shows, this assumption
brings the problem to the parametric field. Therefore, we can resort to maximum likelihood
(ML) for estimating the shape parameter η using the functionalities of the sn R package [34].
Consequently, in order to compute the maximal non-normality projection we can use the
ML method.

Method 2. Estimate the skewness-kurtosis-based PP direction by means of η̂2 = η̂ with η̂ the ML
estimation of the shape vector.

The next sections describe how both methods are applied. First, their performance is
evaluated in a simulation study with artificial data drawn from scenarios which are de-
signed by varying the characteristics of the underlying ST model and the sampling scheme.
A real data application for the TNBC patients of the genomic experiment that motivated
Section 2.2 is also provided to illustrate how they work to summarize multivariate gene
expression measures.

4. Application to Synthetic Data

In this section, we carry out a simulation study to evaluate the accuracy of estimations
η̂1 and η̂2. The experiments of the simulations are controlled by several sources that
may affect the sampling behavior of the estimators. In addition to the sample size n
and the dimension p of the input vector, some additional parameters ρ, τ, e and the
degrees of freedom ν of the ST are involved in the design of each simulation scenario:
The first one, ρ, is used to define the correlation matrix Ω with a Toeplitz structure as
follows: Ω = (ωi,j)1≤i,j≤p, with ωi,j = ρ|i−j| : 1 ≤ i ≤ j ≤ p, so that the couple (ω, ρ)
determines the scale matrix Ω of the model, where ω must be set in advance using a
well-established criterion explained in a while. Given a direction defined by a unit length
vector e, asymmetry is injected into the multivariate model across the direction e by an
amount τ so that α = τe. It is worthwhile noting that the couple (τ, ν) are non-normality
indices closely related to the asymmetry and tail weight behavior of the multivariate model;
they account for the non-normal features of the multivariate ST model and also determine
the position of the first principal component derived from its covariance matrix. Finally,
for the sake of simplicity location is set at the null vector ξ = 0.

Each scenario is designed by setting specific values for the aforementioned parameters.
Two thousand records for the estimations of η̂1 and η̂2 are obtained by drawing samples
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of sizes n = 100, 200 from a ST distribution with the corresponding parameters. Finally,
the mean square error (MSE) is calculated by comparing the unit length vectors obtained
by both estimation methods with the theoretical unit norm shape vector. The simulation
study is accomplished using several facilities of the sn and MaxSkew R packages [34,36].

The next sections provide an overview of the results for the bidimensional case and
when the dimension is greater than two.

4.1. Simulation Study for the Bidimensional Case

Now we consider the bidimensional case; the simulation study is carried out for
several scenarios defined by the following settings: ρ = 0.2, 0.7, ratio ω2/ω1 = 1, 2 with
ω = (ω1, ω2), and values for the non-normality couple (τ, ν) equal to (1, 10), (1, 5), (5, 10),
(5, 5). The results about the accuracy of both estimation methods are shown by the MSEs
appearing in Tables 2, 3 and 4. On the other hand, additional detailed visualizations
are provided by the “clock-plots” depicted in Figure 2 which display the following: the
maximal non-normality direction in black, the unit length vector e represented by the
pendulum, the direction yielding the first principal component of Σ in gray, a cloud of
points and finally the locations of the estimated directions η̂1 (outer locations of the clock-
plot) and η̂2 (inner locations of the clock-plot), with the gray intensity representing in a
visual way the density of directions.

Table 2. MSEs obtained from the bivariate skew-t distribution with shape vector lying on the direction
of the first principal component of the scale matrix Ω.

η̂�(τ, ν) (1, 10) (1, 5) (5, 10) (5, 5) (1, 10) (1, 5) (5, 10) (5, 5)

ρ = 0.2, ω2 = ω1 ρ = 0.2, ω2 = 2ω1

n = 100 η̂1 0.532 0.525 0.064 0.105 0.769 0.761 0.121 0.213
η̂2 0.491 0.368 0.022 0.012 0.789 0.604 0.034 0.031

n = 200 η̂1 0.415 0.403 0.022 0.077 0.671 0.625 0.057 0.144
η̂2 0.341 0.182 0.004 0.004 0.583 0.377 0.013 0.013

ρ = 0.7, ω2 = ω1 ρ = 0.7, ω2 = 2ω1

n = 100 η̂1 0.748 0.687 0.133 0.213 0.809 0.813 0.177 0.296
η̂2 0.736 0.506 0.047 0.035 0.826 0.634 0.053 0.050

n = 200 η̂1 0.547 0.551 0.064 0.154 0.690 0.667 0.096 0.217
η̂2 0.478 0.281 0.012 0.013 0.573 0.422 0.021 0.021

Table 3. MSEs obtained from the bivariate skew-t distribution with shape vector lying on the direction
of the second principal component of the scale matrix Ω.

η̂�(τ, ν) (1, 10) (1, 5) (5, 10) (5, 5) (1, 10) (1, 5) (5, 10) (5, 5)

ρ = 0.2, ω2 = ω1 ρ = 0.2, ω2 = 2ω1

n = 100 η̂1 0.484 0.466 0.057 0.083 0.312 0.269 0.023 0.047
η̂2 0.445 0.341 0.013 0.007 0.296 0.175 0.007 0.004

n = 200 η̂1 0.395 0.362 0.016 0.053 0.245 0.228 0.006 0.023
η̂2 0.352 0.189 0.003 0.003 0.190 0.092 0.001 0.001

ρ = 0.7, ω2 = ω1 ρ = 0.7, ω2 = 2ω1

n = 100 η̂1 NA NA NA NA NA NA NA NA
η̂2 NA NA NA NA NA NA NA NA

n = 200 η̂1 0.320 0.298 0.015 0.039 0.271 0.246 0.007 0.026
η̂2 0.300 0.231 0.002 0.002 0.260 0.148 0.002 0.001
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Table 4. MSEs obtained from the bivariate skew-t distribution with shape vector lying on the direction
of the unit vector e = (0.894, 0.447).

η̂�(τ, ν) (1, 10) (1, 5) (5, 10) (5, 5) (1, 10) (1, 5) (5, 10) (5, 5)

ρ = 0.2, ω2 = ω1 ρ = 0.2, ω2 = 2ω1

n = 100 η̂1 0.553 0.488 0.064 0.113 0.347 0.299 0.034 0.072
η̂2 0.503 0.358 0.020 0.013 0.307 0.210 0.009 0.007

n = 200 η̂1 0.427 0.394 0.021 0.065 0.270 0.254 0.014 0.043(0.026)
η̂2 0.341 0.192 0.004 0.004 0.208 0.117 0.001 0.001(0.001)

ρ = 0.7, ω2 = ω1 ρ = 0.7, ω2 = 2ω1

n = 100 η̂1 0.707 0.652 0.117 0.194 0.427 0.433 0.067 0.132
η̂2 0.607 0.484 0.034 0.029 0.395 0.338 0.011 0.012

n = 200 η̂1 0.521 0.535 0.055 0.148 0.341 0.352 0.031 0.093(0.064)
η̂2 0.409 0.282 0.011 0.011 0.272 0.194 0.004 0.004(0.002)
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Figure 2. Clockplots displaying the locations of the estimated directions in three scenarios: when e
lies on the direction of the first principal component of Ω (top left), on the direction of the second
principal component (top right) and when e = (0.894, 0.447) (bottom).

When e is taken so that it lies on the direction of the first principal component of the
scale matrix Ω, the performance of both estimations is summarized by the MSEs shown in
Table 2. Overall, we can observe that the MSE increases with ρ and the ratio ω2/ω1. As
expected, the smaller MSEs are observed for the larger sample size with η̂2 giving more
accurate estimations in nearly all the cases. A revealing phenomenon is that whereas
the closer scenario to multivariate normality (τ, ν) = (1, 10) exhibits the higher errors,
changes in the pair (τ, ν) towards non-normality give rise to remarkably higher error
reductions for η̂2, mainly in scenarios corresponding to (τ, ν) = (5, 10) and (τ, ν) = (5, 5);
taking into account this finding, the most accurate estimations arise for the aforementioned
non-normality couples when ρ = 0.2 and ω1 = ω2. However, the MSE of η̂1 deteriorates
as we inject tail weight: we can see that for η̂2 the MSE decreases when we departure
from normality through changes in (τ, ν), although this is not the case for η̂1 as shown by
the peak of the MSE when (τ, ν) = (5, 5). In short, both estimation methods may exhibit
remarkable differences as it is highlighted by the top left plot displayed in Figure 2.

For the second simulation experiment, a unit length vector e lying on the direction of
the second principal component of Ω is considered. The resulting MSEs obtained from both
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estimation methods appear reported in Table 3, with the cells containing the not available
(NA) cases corresponding to situations where the ML method has failed. The reported
MSEs show a slight decreasing pattern of the error with the ratio ω2/ω1 and an unclear
pattern with respect to ρ. Anyway, the variability of the MSE is smaller than before with
the most accurate estimations obtained for the cases ρ = 0.2 and ρ = 0.7 when ω2 = 2ω1
(details displayed by the top right plot of Figure 2). The other patterns we can observe for
the MSE values agree qualitatively with those reported by Table 2.

Finally, if we consider the direction onto an arbitrary unit length vector given by
e = (0.894, 0.447) we would obtain the results shown by Table 4. As previously, we can
observe the decreasing behavior of the MSE with respect to the ratio ω2/ω1 and its increas-
ing behavior against ρ. Once again, the most accurate estimations arise for the scenarios
(τ, ν) = (5, 10) and (τ, ν) = (5, 5) but now when ρ = 0.2 and ω2 = 2ω1 (see the bottom
plot of Figure 2 for the detailed outcome of this simulation scenario). Other simulations,
not reported here for the sake of space, have shown that the accuracy of the estimations
improves as the ratio ω2/ω1 increases; just as an illustrative reference, Table 4 reports in
parenthesis the MSEs for ω2/ω1 = 3 when (τ, ν) = (5, 5) and n = 200.

In summary, the simulations show that the ML method (η̂2) is more accurate than
the method based on the third cumulant matrix (η̂1). Moreover, the most remarkable
differences are observed as we depart from normality via asymmetry and tail weight
deviations, as assessed by the parameters of the ST model.

4.2. Simulation Study for p > 2

In this section, we address experiments with dimensions p = 5 and p = 10. The
study only considers the settings that led to the smaller MSEs in the previous bivariate
case. Hence, we will analyze the sample size n = 200 and the non-normality couple
(τ, ν) equal to (5, 10) and (5, 5); once again we will take ρ = 0.2, 0.7. In order to set the
simulation framework, we take a first shape vector α lying on the direction of the first
principal component of the scale matrix Ω and another shape vector whose components
are chosen arbitrarily; on the other hand, the entries of the diagonal matrix ω are chosen
either equal to 25 or unequal with values selected at random between the integers from 1
to 35. Therefore, four simulation scenarios are set as follows:

• Scenario 1. The simulation experiments are determined by the following settings:
p = 5, shape vector lying on the direction of the first principal component of
the scale matrix Ω, and matrix ω such that either diag(ω) = (25, 25, 25, 25, 25) or
diag(ω) = (3, 18, 25, 13, 13), with the aforementioned values for (τ, ν) and ρ.

• Scenario 2. It is determined by the settings from the previous scenario but with the
shape vector lying on the direction α = (1, 1/2, 1, 1/2, 1).

• Scenario 3. The simulation experiments are determined using the following settings:
p = 10, shape vector lying on the direction of the first principal component of the scale ma-
trix Ω, and either equal diagonal elements of the matrix ω given by
diag(ω) = (25, 25, . . . , 25) or unequal diagonal elements given by
diag(ω) = (17, 10, 12, 33, 3, 9, 5, 30, 3, 16), with the aforementioned values for (τ, ν) and ρ.

• Scenario 4. It uses the same settings of scenario 3 but now the shape vector lies on the
direction of α = (1, 1/2, 1, 1/2, 1, 1/2, 1, 1/2, 1, 1/2).

Table 5 summarizes the accuracy of the estimations η̂1 and η̂2 for the simulation
experiments settled in the previous scenarios.

The errors in scenario 1 show a similar behavior as in the bivariate case for both
estimation methods but now higher MSEs are obtained. Overall, the higher errors are
observed for the larger ρ and when we take unequal ωi, with better MSE outcomes for η̂2;
additionally, for the heavier tail weight ν = 5 the MSEs of η̂1 estimation increase while the
MSE values of η̂2 decrease slightly. The results from scenario 2, with an arbitrary shape
vector, are similar to those obtained for the bidimensional case; once again, we can see a
change in the behavior of the MSE with respect to the structure of the diagonal matrix ω
(equal versus unequal ωi). On the other hand, as expected, the results deteriorate when
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p = 10 as observed in scenarios 3 and 4: The most remarkable finding about the results
in these scenarios is the high outcomes of the MSE when they are compared with the
highest achievable value: MSE = 2. Once again, we come to a similar performance of both
estimation methods as in the previous scenarios, but now η̂2 does not outperform η̂1 in all
the cases, perhaps due to the impact the higher dimension, p = 10, has on the maximum
likelihood estimation. However, such differences are not so obvious in scenario 4 whose
MSE outcomes still highlight the aforementioned general behavioral pattern.

Table 5. MSEs obtained for the four scenarios.

η̂�(τ, ν) (5, 10) (5, 5) (5, 10) (5, 5) (5, 10) (5, 5) (5, 10) (5, 5)

p = 5 ρ = 0.2 ρ = 0.2 ρ = 0.7 ρ = 0.7
Equal ωi Unequal ωi Equal ωi Unequal ωi

Scenario 1 η̂1 0.198 0.393 0.650 0.954 0.462 0.784 0.853 1.117
η̂2 0.024 0.018 0.233 0.200 0.102 0.069 0.332 0.270

Scenario 2 η̂1 0.195 0.394 0.186 0.176 0.423 0.724 0.210 0.350
η̂2 0.022 0.018 0.025 0.003 0.098 0.067 0.026 0.012

p = 10 ρ = 0.2 ρ = 0.2 ρ = 0.7 ρ = 0.7
Equal ωi Unequal ωi Equal ωi Unequal ωi

Scenario 3 η̂1 0.691 0.970 1.334 1.607 1.196 1.430 1.400 1.550
η̂2 1.125 0.858 1.563 1.690 1.765 1.730 1.670 1.550

Scenario 4 η̂1 0.708 0.960 0.491 0.680 1.140 1.380 0.829 0.953
η̂2 1.044 0.821 0.130 0.065 1.640 1.600 0.769 0.638

5. Application to Real Genomic Data
5.1. Data Collection

In this section, we return to the genomic study introduced in Section 2. The study
collected the expression measures of 13,146 genes corresponding to 579 individuals diag-
nosed with a TNBC tumor; the data set is available at the Gene Expression Omnibus (GEO)
repository and can be accessed through GSE31519. An amount of 85 patients who received
neoadjuvant chemotherapy is removed from the analysis so that we end up with a data set
containing 13,146 gene expression measures for 494 TNBC tumors samples which, after
data cleaning and the retention of genes with the highest variability, gets reduced to a data
set with 1998 genes and 494 TNBC samples as described in Section 2.

5.2. Application of Skewness-Kurtosis Projection Pursuit

Recent works that aim to summarize the biological underpinning of associations
in genomic data have proved the usefulness of probabilistic graphical modeling (PGM)
to construct association networks that reveal insights about the underlying functional
biological structure responsible for the observed gene expression levels [37,38]. When
applied to this genomic study, PGM gave an association network unraveling the existence of
26 gene nodes which correspond to well-defined functional biological groups as described
by gene ontology [38]. Interestingly, these functional nodes are related to 15 metagenes
previously described by Rody [39]; this fact deserves the construction of metanodes by
grouping similar nodes within the graphical model. Table 6 shows the correspondence
between Rody’s metagenes and the representative genes from the metanodes described
in [38]; note that Hemoglobin and VEGF Rody’s metagenes are excluded because they
contain just a single gene from those described in [38] and here the focus is on multivariate
gene expression measures.
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Table 6. Table of Rody’s metagenes along with the corresponding genes also described in the
metanodes of the probabilistic graphical model from [38].

Rody’s Metagenes Gene Ids

Adipocyte ADIPOQ ADH1B CD36 CHRDL1

Apocrine PIP ALDH3B2 SPDEF FOXA1 MLPH TFAP2B
AGR2 AR HMGCS2 DHRS2 UGT2B28 ALOX15B

B-Cell IGKC IGHM IGL@ IGHG1 IGHD IGH@

Basal-Like KRT23 SOX10 SFRP1 GABRP VGLL1 PLEKHB1 ELF5 KRT14 KRT17
KRT5 MIA KRT16 SERPINB5 S100A2 KRT6B TRIM29 KRT6A FOXC1

CLaudin-CD24 CLDN4 CLDN3 KRT19 KRT7 RAB25 CD24

HOXA HOXA10 HOXA11

Histone H2BFS HIST1H1C HIST1H2AE HIST1H2BG

IFN IFI44L MX1 IFIT1 IFI27

IL-8 IL8 CXCL1 CXCL2

MHC-2 HLA-DRA HLA-DQA1 HLA-DQB1

Proliferation CDCA8 FOXM1 BUB1

Stroma FBN1 POSTN FN1

T-cell GZMK PTPRC CD52

It is well known that when gene expression measures fit the multivariate normal
model, then first and second order moments will suffice to handle data variability; hence,
the first component of a principal component analysis (PCA) could be a natural choice
to summarize the multivariate expression measures for the genes belonging to each func-
tional group of Table 6. However, when their expression measures exhibit departures
from normality, as occurs in this case, higher-order moments will capture the variability
more properly; hence, we argue that the maximal non-normality projection, based on
skewness-kurtosis maximization, may be a better approach to summarizing multivariate
gene expression measures in such a case. The maximal non-normality projections for each
functional group in Table 6 are computed using the estimations η̂1 and η̂2; so we will be
applying a kind of gene feature engineering.

Both approaches, using PCA and skewness-kurtosis PP, provide a list with new gene
features that summarize the multivariate expression measures on the basis of the prior
biological functional knowledge. The derived gene features can be used as inputs for
additional exploratory analysis using methods such as multidimensional scaling (MDS)
which serves to represent and visualize the multivariate expression measures in a 2D
coordinate system; its output gives the representation displayed by Figure 3 which clearly
shows differential TNBC patterns, with an outstanding shape when the MLE method
is applied.
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Figure 3. MDS plots derived from the maximal non-normality gene projections, using the estimations
η̂1 (left) and η̂2 (middle), and from the first PCA projection (right).

5.3. Discussion and Interpretation of Results

To elucidate whether there may exist hidden groups in data, which may throw clues
and insights about the genetic heterogeneity of TNBC patients, Gaussian mixture modeling
with the BIC criterion for model selection is carried out [40,41]. The BIC criterion led to
a four group model for the skewness-kurtosis PP gene features, while it resulted in three
groups when PCA is used to summarize the gene expression measures. For the sake of
comparison, model-based clustering with three groups for the skewness-kurtosis gene
features is finally considered, with a small acceptable loss in the BIC, as provided by the
model selection capabilities of the mclust R package [41]. The underlying classes have been
colored by the blue, red and green colors on the display of the previous MDS visualization
plots (see Figure 4). It is worthwhile noting that the skewness-kurtosis MLE projection
seems to highlight a better defined class structure in data as shown in the middle plot of
Figure 4.
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Figure 4. Groups obtained from model-based clustering when applied on the maximal non-normality
projections estimated by η̂1 (left) and η̂2 (middle), and on the first PCA projection (right).

Additional biological interpretation about the subgroups derived from the new MLE
skewness-kurtosis PP gene features can be obtained using an exploratory classification
tree approach to ascertain whether the resulting groups can be fully profiled through rules
determined by different expression levels from the new skewness-kurtosis metagenes.
The conditional inference tree method is a standard and widely used approach to achieve
this goal [42,43]; an easy to use algorithm implementing the approach is provided by the
partykit R package [44]. When applied to the MLE data projections, using the resulting
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groups as the class label for the output variable of the tree model, we obtain the tree
structure displayed by Figure 5 which in turn provides a set of rules that characterize the
underlying groups; it also contributes to their interpretation in terms of thresholds that
highlight different over-expression conditions, shedding a flash of light in the study of the
heterogeneity of TNBC patients.

Group profiles obtained by ctree algorithm

Apocrine

p < 0.001

1

≤ 8.407 > 8.407

Claudin

p < 0.001

2

≤ 3.074 > 3.074

T.Cell

p < 0.001

3

≤ 2.465 > 2.465

Node 4 (n = 326)

1 2 3

0

0.2

0.4

0.6

0.8

1

Node 5 (n = 31)

1 2 3

0

0.2

0.4

0.6

0.8

1
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1 2 3
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0.8

1

IL8

p < 0.001
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1

Node 9 (n = 15)
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0
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0.4

0.6

0.8

1

Figure 5. Gene expression profiles for the groups obtained by model-based clustering using the
skewness-kurtosis MLE projections.

It is worth noting the following revealing findings: there are two well-defined ho-
mogeneous subtypes; the first one corresponds the red group at terminal nodes 8 and 9
of the tree, the other one is the blue group which mostly appears at its terminal node 4.
Thus, the first TNBC subtype would be characterized by an Apocrine over-expression as
defined by the 8.407 cutoff of the MLE Apocrine metagene; whereas, the second subtype
would be characterized by an absence of over-expression in the Apocrine, Claudin and
T.Cell skewness-kurtosis MLE metagenes, which is determined by expression levels under
the cutoffs 8.407, 3.074 and 2.465 respectively. Regarding the third TNBC subtype (green
color), it can be observed that it appears mostly at the terminal nodes 5 and 6 of the tree;
this finding is consistent with its heterogeneity as previously highlighted by the middle
MDS plot of Figure 4. Please note that this TNBC subtype can be profiled by the absence of
Apocrine over-expression and either a Claudin over-expression, associated with expression
levels greater than the 3.074 cutoff, or a T.Cell over-expression, associated with expression
levels greater than the 2.465 cutoff.

6. Concluding Remarks

This work has explored the projection pursuit problem within the framework of ana-
lyzing and summarizing gene expression data. The multivariate ST distribution arises as a
flexible model for tackling the non-normality of this type of data since it can handle multi-
variate skewness and tail weight behavior simultaneously. In addition, projection pursuit
has theoretical appealing implications when standard third and fourth moment skewness
and kurtosis measures are employed as projection indices provided that the underlying
model follows a multivariate ST distribution. Our theoretical findings have shown that
the maximal skewness-kurtosis projection lies on the direction of the shape vector the ST
distribution. As a result, two estimation methods, based on the empirical cumulant matrix
(Method 1) and on the maximum likelihood approach (Method 2), have been proposed
for computing such non-normality projection; their performance is evaluated through a
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simulation study whose outcomes show the superiority of the ML method, especially in a
low-dimensional framework.

When applied to gene expression data from TNBC patients, the resulting projection
pursuit directions define new gene features which contribute to reveal outstanding bi-
ological insights about the genomic heterogeneity of this type of breast cancer. More
precisely, the maximal skewness-kurtosis projections help to unravel meaningful TNBC
subtypes when the MLE estimation method is applied in combination with prior biological
knowledge. The new skewness-kurtosis MLE gene features helped to identify three TNBC
subtypes which are expected to guide pathologists, oncologists and biochemists to decipher
the heterogeneity of TNBC tumors and to progress in the clinical practice accordingly.

A limitation of the skewness-kurtosis model-based projection pursuit approach is
concerned with its poor performance as the dimension increases; this limitation would
merit to investigate how sparse projection pursuit [45] or the graphical lasso approach to
estimate the precision matrix [46–48] can be adapted and applied within this framework.
Finally, from a theoretical standpoint, the extension of the results derived in this work to
other flexible parametric families such as scale mixtures of skew-normal distributions [49]
or generalized skew-normal distributions [8] may deserve further investigation; another
problem for future research would lie in investigating whether it could be established a con-
nection between previous work on multivariate skewness and kurtosis convex transform
orderings [50–52] and the skewness-kurtosis PP problem.
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Appendix A

Appendix A.1. Proof of Theorem 1 for Skewness Maximization

As the skewness maximization problem has already been touched in previous works [11,12],
here we just provide a brief outline of the proof.

From the results on skewness maximization under scale mixtures of skew-normal

(SMSN) distributions [12], we can assert that λskew,X =
Σ−1γ√
γ>Σ−1γ

with γ =
Ωη√

1 + η>Ωη
.

On the other hand, taking into account that Σ = E(S2)Ω− 2
π

E2(S)γγ′ with E(S) and E(S2)

the first and second moments of the mixing variable, similarly as in Lemma 1 from [12] we
obtain that

Σ−1γ =
Ω−1γ

E(S2)− 2
π E2(S)γ>Ω−1γ

=
η/
√

1 + η>Ωη

E(S2)− 2
π E2(S) η>Ωη

1+η>Ωη

,

https://www.ncbi.nlm.nih.gov/geo
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γ>Σ−1γ =
η>Ωη/

√
1 + η>Ωη

E(S2)− 2
π E2(S) η>Ωη

1+η>Ωη

which implies that

λskew,X =
Σ−1γ√
γ>Σ−1γ

=
η/
√

1 + η>Ωη√
E(S2)− 2

π E2(S) η>Ωη

1+η>Ωη

√
1 + η>Ωη√

η>Ωη
=

η√
η>Ωη

1√
m

with m = E(S2)− (2/π)E(S)2γ>Ω−1γ and
√

mη>Ωη =
√

η>Ση as we aimed to prove.

Appendix A.2. Proof of Theorem 1 for Kurtosis Maximization

Since γ2 invariant under location, we can assume that ξ = 0. Using the stochastic
representation of the ST input vector X, we can put the projection on the direction d as
a scalar variable Y = d>X = SZ, where S and Z are independent variables such that
S = V−1/2 with V ∼ χ2

ν/ν and Z = d>ωZ with a SN distribution. Taking into account
(5.42)–(5.44) from [24], we can assert that the scale and shape parameters of the SN variable
Z are ωd = d>Ωd and

αZ =
d>γ√

d>Ωd− (d>γ)2
=

d>Ωη√
d>Ωd(1 + η>Ωη)− (d>Ωη)2

.

Consequently, ω−1/2
d Z ∼ SN1(0, 1, λ) with λ =

d>Ωη√
1 + η>Ωη− (d>Ωη)2

; so, we

obtain that U = ω−1/2
d Y is a skew-t variable such that U ∼ ST1(0, 1, λ, ν). Hence, the

kurtosis for the projection on any direction, γ2(Y) = γ2(U), corresponds to the kurtosis of
a ST scalar variable, which is given by

γ2(U) =
1

σ4
U

[
3ν2

(ν− 2)(ν− 4)
− 4b2

ννδ(3− δ)

ν− 3
+

6b2
νδν

ν− 2
− 3b4

νδ2
]
− 3, (A1)

provided that ν > 4 [24]. The quantities bν, σ2
U and δ, involved in this expression, are given

by bν =

√
νΓ
(

ν−1
2

)
√

πΓ
(

ν
2
) , σ2

U =
ν

ν− 2
− b2

νδ and δ =
λ2

1 + λ2 = (d>γ)2.

On the other hand, from the general form of the moments of the mixing variable,

E(Sk) = E(V−k/2) =
(ν/2)k/2Γ

(
ν−k

2

)
Γ
(

ν
2
) , we get E(S) =

(ν/2)1/2Γ
(

ν−1
2

)
Γ
(

ν
2
) , bν =

√
2
π

E(S),

E(S2) =
ν

ν− 2
, E(S3) =

ν

ν− 3
E(S), E(S4) =

ν2

(ν− 2)(ν− 4)
and σ2

U = E(S2)− (2/π)E(S)2δ.

Therefore, the kurtosis on the direction of vector d can be rewritten as follows:

γ2(Y) = γ2(U) =
8
(
ω1δ2 − 3ω2δ + 3π

8 ω3
)

πσ4
U

, (A2)

with the quantities ω1, ω2 and ω3 above given by ω1 = E(S)E(S3) − 3
π

E(S)4,

ω2 = E(S)E(S3)− E(S2)E(S)2 and ω3 = E(S4)− E(S2)2.
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For each ν, the first derivative of γ2(Y) with respect to δ is

∂γ2(Y)
∂δ

=
8(aδ− 3b)

πσ6
U

, (A3)

where a = 2ω1E(S2) − 6
π

ω2E(S)2 = 2E(S)E(S3)[E(S2) − 3
π

E(S)2]

and b = ω2E(S2)− 1
2

ω3E(S)2 = E(S)E(S2)E(S3)− 1
2

E(S2)2E(S)2 − 1
2

E(S4)E(S)2.
It is clear that a ≥ 0. On the other hand, some simple calculations lead to

b =
ν2E(S)2

(ν− 2)(ν− 3)
− 1

2
ν2E(S)2

(ν− 2)2 −
1
2

ν2E(S)2

(ν− 2)(ν− 4)
=

−ν2E(S)2

(ν− 2)2(ν− 3)(ν− 4)
< 0

which implies that γ2(Y) is a non-decreasing function of δ.
Taking into account that

λ2 =
(d>Ωη)2

1 + η>Ωη− (d>Ωη)2
=

(d>γ)2

1− (d>γ)2
with γ =

Ωη√
1 + η>Ωη

,

we conclude that γ2(Y) is non-decreasing in δ =
λ2

1 + λ2 = (d>γ)2. Hence, the maximal

kurtosis is attained at the direction giving the maximum of (d>γ)2.
Sinced = Σ−1/2cwith c ∈ Sp,wecanfollowtheproofofTheorem1inArevalillo and Navarro [12]

to show that the maximum of (d>γ)2 is attained at the direction of the vector Σ−1/2γ. There-

fore, we get λkurt,U =
Σ−1/2γ√
γ>Σ−1γ

, which implies that

λkurt,X =
Σ−1γ√
γ>Σ−1γ

. On the other hand, we also know that Σ−1γ =
1
m

η√
1 + η>Ωη

with m = E(S2)− (2/π)E(S)2γ>Ω−1γ; hence, as a result γ>Σ−1γ =
1
m

η>Ωη

1 + η>Ωη
. In-

serting these quantities into the previous expression for λkurt,X , we conclude the kurtosis
statement of Theorem 1.
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