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A novel approach to triple-
negative breast cancer molecular
classification reveals a luminal
Immune-positive subgroup with
good prognoses

Guillermo Prado-Vazquez'?, Angelo Gamez-Pozo'?, Lucia Trilla-Fuertes?, Jorge M. Arevalillo®,
Andrea Zapater-Moros?, Maria Ferrer-Gomez?!, Mariana Diaz-Almirén3, Rocio L6pez-Vacas?,
Hilario Navarro*, Paloma Main(®?, Jaime Feli\®’, Pilar Zamora®, Enrique Espinosa®’ &

Juan Angel Fresno Vara(®’

Triple-negative breast cancer is a heterogeneous disease characterized by a lack of hormonal receptors
and HER2 overexpression. It is the only breast cancer subgroup that does not benefit from targeted
therapies, and its prognosis is poor. Several studies have developed specific molecular classifications
for triple-negative breast cancer. However, these molecular subtypes have had little impact in the
clinical setting. Gene expression data and clinical information from 494 triple-negative breast tumors
were obtained from public databases. First, a probabilistic graphical model approach to associate
gene expression profiles was performed. Then, sparse k-means was used to establish a new molecular
classification. Results were then verified in a second database including 153 triple-negative breast
tumors treated with neoadjuvant chemotherapy. Clinical and gene expression data from 494 triple-
negative breast tumors were analyzed. Tumors in the dataset were divided into four subgroups
(luminal-androgen receptor expressing, basal, claudin-low and claudin-high), using the cancer stem
cell hypothesis as reference. These four subgroups were defined and characterized through hierarchical
clustering and probabilistic graphical models and compared with previously defined classifications.

In addition, two subgroups related to immune activity were defined. This immune activity showed
prognostic value in the whole cohort and in the luminal subgroup. The claudin-high subgroup showed
poor response to neoadjuvant chemotherapy. Through a novel analytical approach we proved that
there are at least two independent sources of biological information: cellular and immune. Thus, we
developed two different and overlapping triple-negative breast cancer classifications and showed
that the luminal immune-positive subgroup had better prognoses than the luminal immune-negative.
Finally, this work paves the way for using the defined classifications as predictive features in the
neoadjuvant scenario.

Breast cancer (BC) causes 450,000 deaths every year worldwide'. BC is clinically and genetically heterogeneous?,
and this heterogeneity has led to subdivisions in an attempt to treat patients more efficiently. The classical cate-
gorization considers the expression of hormonal receptors (estrogen receptors [ERs], and progesterone receptors
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[PRs]) and human epidermal growth factor receptor 2 (HER2) expression, because this determines the possibility
of treatment with hormones and anti-HER?2 therapies, respectively.

Triple-negative breast cancer (TNBC) is defined by a lack of ER and PR expression and a lack of HER2 overex-
pression. TNBC comprises a heterogeneous group of tumors. In 2000, Perou et al. proposed a classification of BC
based on gene expression patterns. Most triple-negative tumors are included in the so-called basal-like molecular
subgroup?, although both categories have up to 30% discordance®.

Several studies have developed specific molecular classifications for TNBC. For example, Rody et al. defined
metagenes that distinguished molecular subsets within the group®. Lehmann et al. identified seven molecular
subgroups: unstable; basal-like 1; basal-like 2; immunomodulatory; mesenchymal (MES)-like; mesenchymal
stem-like (MSL); and luminal androgen receptor (LAR)®. The Immunomodulatory and MSL subtypes have
recently been refined’. Burstein et al. applied non-negative matrix factorization and defined four subgroups:
basal-like immune active; basal-like immune suppressed; mesenchymal; and luminal AR®. Other classifications
have also been proposed by Sabatier?, Prat'’, Jézéquel'!, and Milioli'2. Despite these extensive studies, the desig-
nation of TNBC molecular subtypes has had little impact in the clinical setting.

The so-called cancer stem cell hypothesis could provide a different way to categorize BC. It theorizes that can-
cer derives from a stem cell compartment that undergoes an abnormal and poorly regulated process of organo-
genesis analogous to many aspects of normal stem cells'*~'°. Depending on the activation point of these cancer
stem cells, tumors will have varying characteristics. Poorly differentiated breast tumors would arise from the
most primitive stem cells'*. This hypothesis contextualizes BC molecular groups' in a development framework.
Moreover, molecular characterization of the claudin (CLDN)-low subtype reveals that these tumors are signifi-
cantly enriched in epithelial-mesenchymal transition and stem cell-like features, while showing a low expression
of luminal and proliferation-associated genes!'®.

In the present study, we applied probabilistic graphical models to a previously published TNBC cohort®. This
technique allows exploring the molecular information from a functional perspective. Our aim was to tackle the
molecular analysis of TNBC from a broad perspective, such as the cancer stem cell hypothesis, to provide a clas-
sification with clearer clinical implications.

Methods

TNBC gene expression and clinical data. Gene expression data from TNBC tumors and available clin-
ical follow-up information were obtained from GSE31519. Gene expression values were magnitude normalized,
and then log, was calculated. The Limma R package!” was applied to avoid the batch effect. Finally, the complete
dataset was mean centered. The probe with the highest variance of each gene within all patients was selected. The
results obtained with the first database were then applied to a second database of patients treated with neoadju-
vant chemotherapy, GSE25066. GSE25066 data was magnitude normalized and log, was calculated just as with
GSE31519.

Probabilistic graphical model analysis. A probabilistic graphical model compatible with a
high-dimensionality approach to associate gene expression profiles, including the most variable 2000 genes, was
performed as previously described'®. Briefly, the resulting network, in which each node represents an individual
gene, was split into several branches to identify functional structures within the network. Then, we used gene
ontology analyses to investigate which function or functions were overrepresented in each branch, using the
functional annotation chart tool provided by DAVID 6.8 beta'. We used “homo sapiens” as a background list and
selected only GOTERM-DIRECT gene ontology categories and Biocarta and KEGG pathways. Functional nodes
were composed of nodes presenting a gene ontology enriched category. To measure the functional activity of each
functional node, the mean expression of all the genes included in one branch related to a concrete function was
calculated. Differences in functional node activity were assessed by class comparison analyses. Finally, metanodes
were defined as groups of related functional nodes using nonsupervised hierarchical clustering analyses.

Sparse k-means classification.  Sparse k-means was used to establish the optimal number of tumor groups.
This method uses the genes included in each node and metanode, as previously described?. Briefly, classification
consistency was tested using random forest. An analysis using the consensus clustering algorithm?! as applied to
the data containing the variables that were selected by the sparse K-means method?? has provided an optimum
classification into two subtypes in previous studies?. In order to transfer the newly defined classification from
the main dataset to other datasets, we constructed centroids for each defined subgroup, using genes included in
various metanodes.

Assignation to groups defined by other molecular classifications. Tumors in the main dataset were
assigned to a single group according to previously defined molecular classifications: PAM50 + CLDN low was
assigned using the single sample predictor!?. Burstein’s four subtypes were assigned using an 80-gene signature®.
The TNBC4 type was performed in two steps: first, Lehmann’s seven subtypes were assigned using centroids con-
structed from 77 tumors included in the dataset that was previously assigned, and then Immunomodulatory and
MSL groups were redefined as previously described’.

Statistical analyses and software suites. Survival curves were estimated using Kaplan-Meier analy-
ses and compared with the log-rank test, using relapse free survival (RES) as the end point. RFS was defined as
the time between the day of surgery and the date of distant relapse or last date of follow-up. Correlations were
assessed using Pearson’s r and linear regression. Differences in functional node activity between groups were
assessed by the Kruskal-Wallis test, and multiple comparisons were assessed using the Dunn’s multiple compar-
isons test. Box-and-whisker plots are Tukey boxplots. All p-values were two-sided, and P < 0.05 was considered
statistically significant. Expression data and network analyses were performed in MeV and Cytoscape software
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Main Dataset | Neoadjuvant dataset | p-value
Number of patients 494 153
Tumor Size
T1 99 (20%) 9 (6%) <0.0001
>T1 276 (56%) 144 (94%)
NA 119 (24%)
Tumor Grade
G1&2 103 (21%) 16 (10%) 0.0001
G3 280 (57%) 124 (81%)
NA 111 (22%)
Lymph node status
No 251 (51%) 37 (24%) <0.0001
N1 68 (14%) 116 (76%)
NA 175 (35%)
Adjuvant Chemotherapy
No 257 (52%)
Yes 71 (14%)
NA 166 (34%)
Pathological Response
RD 95 (62%)
pCR 53 (34%)

Table 1. Clinical features of the main and neoadjuvant datasets. Size data is divided into T1 (<2 cm) and

>T1 (>2cm) tumors; grade is classified as G1&2 (well or moderately differentiated tumors) or G3 (poorly
differentiated tumors); lymph node status represents lymph node invasion (NO: no invasion; N1: invasion or
metastasis); and the adjuvant chemotherapy column comprises patients who had been treated with adjuvant
chemotherapy or not. The pathological response column stands for the response to neoadjuvant treatment (RD:
residual disease; pCR: pathological complete response). The chi-squared test confirmed that both cohorts are
different regarding clinical parameters and treatment.

suites?. The SPSS v16 software package, GraphPad Prism 5.0 and R v2.15.2 (with the Design software package
0.2.3) were used for all the statistical analyses.

Results
Gene expression and clinical data. Gene expression data and clinical information from 579 TNBC tum-
ors were obtained from GSE31519. Some 85 samples were excluded because the patients had been treated with
neoadjuvant chemotherapy or a different platform had been used. As a consequence, the data from 494 TNBC
tumors from GSE31519 were used in subsequent analyses. Gene expression was normalized, the batch effect was
corrected and the most variant probe was selected for each gene. The resulting dataset, including expression val-
ues from 13,146 genes will be referred to as the main dataset from now on.

Gene expression data from 508 breast cancer samples treated with neoadjuvant taxane-anthracycline chemo-
therapy were retrieved from GSE25066. A total 153 of these 508 samples were identified as TNBC.

Clinical features. All available clinical features of the main dataset and the neoadjuvant dataset are presented
in Table 1. The main dataset’s population of tumors tended to be large (>T1 in 56% of the population), poorly dif-
ferentiated (G3 in 57% of the samples), with no node invasion (NO in 51% of the samples) and most of the patients
were not treated with adjuvant chemotherapy (52%). The neoadjuvant dataset’s population of tumors tended to be
T2 (44%) and T3 (32%), poorly differentiated (G3 in 81% of the samples), and N1 (46%) with 32% of the patients
achieving a complete pathological response after neoadjuvant treatment.

Molecular characterization of TNBC. A gene expression-based network, including the 2000 most variant
genes in the development dataset, was constructed using a probabilistic graphical model (PGM) (Fig. 1). The
functional structure of the network was explored using gene ontology analyses, and 26 functional nodes were
defined (Fig. 1 and Sup. File 1). Functional node activity was calculated and relationships between nodes were
assessed using a hierarchical clustering (HCL) analysis (Sup. File 2). Functional node 1 is composed of 34 genes,
including the CLDN3, CLDN4 and CLDN7 genes. On the other hand, functional nodes 15 (chemokine activity),
16 (major histocompatibility complex class II receptor activity), 17 (immune response) and 18 (antigen bind-
ing) were related to various aspects of the immune response and clustered together as an “immune metanode”
in the HCL analysis (Sup. File 2). Additionally, functional node 19 contained genes related to the peroxisome
proliferator-activated receptor (PPAR) signaling pathway, and functional node 24 contained genes involved in
the G1/S transition of mitotic cell cycle (Sup. File 1).

We then used the method described by Rody et al. to assess 15 metagenes (series of genes known to be related to
one specific biological function or characteristic)’. Genes within a given metagene appeared close to each other in our
network. Additionally, related metagenes, i.e., B-cell and IL-8 metagenes, also appeared close to each other (Fig. 2).
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Figure 1. PGM resulting network; each functional node is encoded from 0 to 26. Each box (node) represents
one gene, and lines (edges) connect genes with related expression. Functional nodes are represented by the same
color, and metanodes are presented the same color palette, with basal nodes in red, luminal nodes in blue and
immune nodes in green.

Functional nodes 5, 6, 7, 8 and 10 in our network had different gene ontologies related to an integral compo-
nent of the plasma membrane, extracellular matrix, desmosomes, keratinization, and extracellular space, respec-
tively. However, these five nodes appeared to correlate in the HCL analysis (Sup. File 2) and included genes from
Rody’s basal-like metagene (Fig. 2). Thus, from now on, these five functional nodes were grouped as the basal
metanode (Fig. 1). In the same way, functional nodes 0, 9, 11, 14, 22 and 23 were related to protein binding, extra-
cellular exosomes, sequence-specific DNA binding, metabolic pathways and nucleosomes, respectively, again
grouped together in the HCL analysis and including genes from Rody’s apocrine/luminal metagene, so they were
defined as the luminal metanode (Fig. 1).

Cellular classification. The sparse k-means method was used to group samples into a limited number of
clusters based on functional nodes and metanodes. Samples from the basal and luminal metanodes and the
CLDN-enriched functional node were each divided into two groups. Mimicking the cancer stem cell hypothesis,
we established the following workflow (Fig. 3): Samples with high luminal metanode activity were classified as
the luminal androgen receptor group (LAR). Tumors showing low luminal metanode activity and high basal
metanode activity from the basal subgroup were classified as basal. Finally, tumors with low activity in both the
basal and luminal metanodes were screened for CLDN-enriched node expression. Samples showing low activity
for the CLDN-enriched functional node were categorized as CLDN-low, whereas samples showing high activity
for CLDN-enriched functional node were labeled as CLDN-high (Fig. 3).

From the 494 samples in the main dataset, the cellular classification defined 91 (18%) LAR, 53 (11%)
CLDN-low, 310 (63%) basal and 40 (8%) CLDN-high samples. Only 7 (1.5%) samples showed high activity in
both the luminal and basal metanodes (Table 2).

Clinical characteristics from the various entities of cellular classification are shown in Table 3. Basal subtype
tumors were mostly small-sized, poorly differentiated and without lymph node infiltration. The CLDN-high sub-
type tumors were large, had poor differentiation and no lymph node infiltration. The CLDN-low as well as the
LAR tumors were large, more differentiated and showed more infiltration than the basal and CLDN-high tumors.
Cellular classification does not show a significant relationship to RFS (Sup. File 3), nor did basal and luminal
metanode activities show prognostic value. CLDN-high tumors showed a trend toward a poorer prognosis than
CLDN:-low, but again, the differences were not significant.

Activity of functional nodes in cellular groups.  The activity of the main functional nodes was assessed
in each cellular group. CLDN-low tumors had lower activity than every other tumor subgroup in the functional
nodes related to alpha-amylase activity and regulation of actin cytoskeleton, and higher activity than the other
subgroups in the haptoglobin binding functional node. CLDN-high tumors had lower activity than basal tumors
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Figure 2. PGM represents the resulting network in which each functional node is encoded from 0 to 26, each
box (node) represents one gene and lines (edges) connect genes with related expression. Genes from Rody’s
metagenes are represented by different colors.
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in the actin binding functional node, higher activity than tumors belonging to any other subgroup in chemok-
ine activity functional node and lower activity than CLDN-low and LAR subtypes in the haptoglobin binding
functional node. Basal tumors had higher activity than any other tumor in the functional nodes related to cell
adhesion and regulation of the actin cytoskeleton. Finally, LAR tumors had lower activity in the nodes related to
cell adhesion, G1/S transition of mitotic cell cycle and chemokine activity (Sup. File 4).

Immune metanode activity: Immune characteristics. On the other hand, taking the immune metan-
ode into account, tumors were split according to their immune (IM) activity. High/low immune activity was
defined with the sparse K-means method using genes included in the IM metanode. Some 259 (52%) samples were
included in the IM-positive (IM+) group and 235 (48%) were included in the IM-negative (IM—) group (Table 4).
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High | 40 (43%) CLDN-High | 40 (8%)
93 (23%)
Low |53(57%) |11% CLDN-Low | 53 (11%)
— 403 (82%)
High 245 (79%) | 50%
+ 310 (77%) Basal 310 (63%)
Low |65(21%) |13%
High |[79(94%) |16%
— 84 (92%)
Low | 5(6%) 1%
+ 91 (18%) LAR 91 (18%)
High |7(100%) |1%
+ 7 (8%)
Low 0 0%

Table 2. Number of tumors classified in each metanode sparse k-means group and in the cellular classification.

Basal 76 (32%) | 163(68%) | 0.169 45(18%) | 199 (82%) 0015 | 168(83%) |35(17%) | 0.262
CLDN-High 2(7%) 27(93%) | 0.023 5(14%) | 31(86%) 0.110 19(83%) | 4(17%) | 0.795
CLDN-Low 10 (24%) | 32(76%) | 0.853 20 (49%) | 21(51%) 0.005 28(72%) | 11(28%) | 0313
LAR 11(17%) | 54(83%) | 0.121 33(53%) | 29(47%) | <0.001 36 (67%) |18 (33%) | 0.056
Total 99 (26%) | 276 (74%) — 103 (27%) | 280 (73%) — 251(79%) | 68 (21%) —

Table 3. Number of tumors with clinical characteristics. T1: tumor smaller than 2 cm; >T1: tumor larger than
2cm; G3: grade 3; G1 or G2: grade 1 or grade 2; Nodal (N0): no node infiltration; N1: node infiltration. % is
calculated using the total amount of a row for each clinical characteristic. Fisher exact test were performed
between each group of the cellular classification and the total population (significant p-value = 0.05).

Basal 159 68% | Basal 151 58%
CLDN-Low 23 10% | CLDN-Low 30 12%
LAR 42 18% | LAR 49 19%
CLDN-High 11 5% | CLDN-High 29 11%

Table 4. Immune characteristic interaction with cellular classification. According to the chi-squared test, IM
characteristics and cellular classification are dependent.

IM+ tumors had a better prognosis than IM- tumors (hazard ratio [HR], 0.7286; 95% confidence interval
[CI] 0.5329-0.9961; P < 0.05) (Fig. 4A). In addition, the immune metanode activity had a prognostic impact on
the groups defined by the cellular classification. Patients with IM+/LAR subtype tumors had a better progno-
sis than those with IM—/LAR tumors (HR, 0.3474; 95% CI 0.1657-0.7284; P < 0.05). Also, patients with IM+/
CLDN-high tumors had a better prognosis than those with IM—/CLDN—, although these differences did not
reach statistical significance (HR, 0.3556; 95% CI 0.04115-0.9828; P =0.057). IM activity had no impact on the
prognosis of the basal and CLDN-low subtypes (Fig. 4B).

Comparison between Cellular classification and PAM50, TNBC4-type and Burstein’s classifica-
tions. Cellular classification and previous classifications were compared (Fig. 5). The basal subtype is highly
enriched in basal-like immune suppressed (BLIS) and basal-like immune associated (BLIA) (Burstein 2015),
basal (PAM50+ CLDN-low) and M (Lehmann 2016) subtypes, and it is poorly represented in the LAR subtypes
from the Burstein and Lehmann classifications. The CLDN-high subtype is highly enriched in BLIA (Burstein
2015) and BL2 (Lehmann 2016). The CLDN-low subtype is highly enriched in MES (Burstein 2015), LumA
(PAMS50 + CLDN-low) and BL2 (Lehmann 2016). The LAR subtype is highly enriched in LAR (Burstein 2015),
LumA (PAM50 + CLDN-low) and LAR (Lehmann 2016). The LAR subtype is not present in Basal (PAM50) and
BL1 (Lehmann) assignations (Fig. 5 and Table 5).

Immune characteristics and previous classifications. The Mesenchymal subtype from the TNBC4
type” was highly enriched in IM- samples (148 samples of 187, 80% of all M subtype samples). Also, BL2 was
enriched in IM+ samples (135 samples of 185, 72% of all BL2 subtype samples). The IM+ and IM- groups showed
no prognostic value for the BL1, BL2 and M groups (Fig. 6). However, patients with IM+ tumors had better prog-
nosis than those with IM— in the LAR group (HR, 0.2896; 95% CI 0.1125-0.7273; P < 0.05).

The IM+ and IM- subgroups were evenly distributed in the subtypes defined by PAM50 and CLDN-low, with
the exception of the HER2 subtype, which was enriched in IM+ (Table 6).
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Figure 4. Kaplan-Meier survival curves represent the survival rate of immune-positive and immune-negative
tumors in the whole cohort (A) and in the four cellular subgroups (B).
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Figure 5. Various molecular classifications compared with the cellular classification. From top to bottom,
cellular, PAM50 + CLDN-low, Lehmann 2016 TNBC4 type, immune and Burstein’s classifications are presented.

BLIA 104 |34% | BLIA 23 | 58% | BLIA 11 |21% |BLIA 2 2%
BLIS 149 | 48% | BLIS 3 1% BLIS 3 6% BLIS 1 1%
LAR 4 1% LAR 4 1% LAR 3 6% LAR 76 | 84%
MES 53 17% | MES 10 | 25% | MES 36 | 68% | MES 12 | 13%
PAMS50+ CLDN—Low N % PAM50 + CLDN—Low N | % PAMS50 + CLDN—Low N | % PAM50+ CLDN—Low N | %
Basal 125 | 40% | Basal 13 | 33% | Basal 5 | 9% | Basal 0 (0%
CLDN-Low 76 25% | CLDN-Low 9 23% | CLDN-Low 44 | 83% | CLDN-Low 13 | 14%
Her2 23 7% Her2 6 15% | Her2 1 2% Her2 8 9%
LumA 25 8% LumA 7 18% | LumA 1 2% | LumA 52 | 57%
LumB 27 9% LumB 4 10% | LumB 4 4% LumB 16 | 18%
Normal 34 11% | Normal 1 |3% | Normal 0 | 0% | Normal 2 2%
TNBC4 type N |% |TNBC4atype N |% |TNBC4type N |% |TNBC4type N |%
BL1 57 18% | BL1 8 20% | BL1 1 2% BL1 0 0%
BL2 81 26% | BL2 29 |73% | BL2 47 | 89% | BL2 28 | 31%
LAR 3 1% LAR 0 0% LAR 1 2% LAR 52 | 57%
M 169 [55% |M 3 8% M 4 8% M 11 | 12%

Table 5. Shows comparisons between Cellular classification and PAM50, Lehmann’s and Burstein’s
classifications.
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Figure 6. Kaplan-Meier survival curves represent the survival rate of immune-positive and immune-negative
tumors in the TNBC4-type subgroups.

Basal 69 (48%) 74 (52%)
CLDN-low 62 (44%) 80 (56%)
Her2 10 (26%) 28 (74%)
LumA 43 (51%) 42 (49%)
LumB 27 (55%) 22 (57%)
Normal 24 (65%) 13 (35%)

Table 6. Shows immune characteristics in the PAM50+CLDN-low subgroups.

LumA immune-positive tumors had a better prognosis than immune-negative tumors (HR, 2.638; 95% CI
1.098-6.341; P < 0.05). Basal Immune and normal-like immune-positive tumors also showed a trend toward a
better prognosis than immunenegative, but the differences were not statistically significant. Finally CLDN-low,
LumB and HER2 tumors showed no differences in prognosis related to their immune status (Fig. 7).

Finally, the Burstein subtype BLIA was highly enriched in the IM+ (106 samples of 140, 75%) and the BLIS
was highly enriched in the IM- tumors (119 samples of 156, 76%).

Immune-positive and immune-negative tumors had different outcomes in each of the Burstein’s subgroups.
BLIA, BLIS and LAR immune-positive tumors as well as MES immune-negative tumors had a better prognosis,
although the differences were not statistically significant (Fig. 8).

Implications of the cellular classification and the immune characteristic in response to neoad-
juvant treatment. Cellular classification was transferred using genes from the basal and luminal metanodes
and the CLDN-enriched functional node. Of 153 triple-negative breast cancer tumors, 79 were assigned to the
basal subgroup (51%), 8 were assigned to the CLDN-high subgroup (5%), 19 were assigned to the CLDN-low
subgroup (12%) and 47 were assigned to the LAR subgroup (31%). The immune characteristic was transferred
using genes from the immune metanode. Some 80 samples were immune-negative (52%) and 73 samples were
assigned to the immune-positive subgroup (47%) (Table 7).

The CLDN-high subgroup presented the poorest prognosis among the cellular classification subgroups.
Immune-positive tumors had a better prognosis (Fig. 9).
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Figure 7. Kaplan-Meier survival curves represent the survival rate of immune-positive and immune-negative
tumors in the PAM50 + CLDN-low subgroups.
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Figure 8. Kaplan-Meier survival curves represent the survival rate of immune-positive and immune-negative
tumors in the Burstein’s subgroups.

Discussion

TNBC constitutes a heterogeneous disease with various molecular entities. The study of this heterogeneity has
thus far not conferred significant advances in the treatment of patients. The application of probabilistic graphical
models (PGMs) provides deep insight into high-throughput data'®. In the present study, we used PGMs to unravel

SCIENTIFICREPORTS| (2019) 9:1538 | https://doi.org/10.1038/s41598-018-38364-y 9


https://doi.org/10.1038/s41598-018-38364-y

www.nature.com/scientificreports/

IM— 41 52%
Basal 79 (52%)

M+ 38 48%

IM— 2 25%
CLDN-High 8 (5%)

M+ 6 75%

IM— 12 63%
CLDN-Low 19 (12%)

M+ 7 37%

IM— 25 53%
LAR 47 (31%)

M+ 22 47%

Table 7. Shows the cellular classification and the immune characteristic in the neoadjuvant dataset.

Survival proportions Cellular Classification Survival proportions TNBC4type
. Pvalue ] 0.1012 ool P value | 0.0006
i

—— Basal = BL1

o ]
: —— CLDN-Low ; —— AR
= 507 = LAR = %07 —_
0 T T T 1 ] T T T 1
0 2 4 6 8 0 2 4 6 8
drfs_even_time_years drfs_even_time_years
Subjectsatrisk | Oyears | 2years | 5years | 8years Subjectsatrisk | Oyears | 2years | 5years | 8years
Basal 79 43 9 1 BL1 42 23 4 1
CLDN-High 8 4 2 1 BL2 30 15 2 1
CLDN-low 19 11 2 1 LAR 23 16 4 1
LAR 47 28 6 1 M 33 17 3 1

Figure 9. Kaplan-Meier survival curves represent the distant relapse-free survival rate of the cellular and the
TNBC4-type subgroups in the GSE25066 series.

specific molecular information concerning various biological entities, such as the immune status or the develop-
mental point when the breast stem cell turns carcinogenic.

Previous studies used differences in gene expression to define TNBC subtypes>®-#1°. Subtypes emerged from
clustering methods such as HCL or non-negative matrix factorization, which group genes around specific func-
tions. On the contrary, we hereby applied an unsupervised analysis, without knowledge of the functions of the
genes selected in each step of the process. We ultimately identified the genes involved in 26 different molecular
functions, which agreed with the metagenes described by Rody et al.®. This approach provides two different clas-
sifications (immune and cellular), each related to particular genes and functions.

Once the PGM functional structure was established, we defined four subgroups: CLDN-low, CLDN-high,
basal-like and LAR, agreeing with the cancer stem cell hypothesis®!*-!°. These four groups identify the point
of the differentiation process where the stem cell becomes carcinogenic: the less differentiated tumors will be
CLDN-low, and the most differentiated tumors will be LAR.

Functional node activities confirm that there are differences among cellular subgroups, and some of these
differences could have therapeutic utility. For example, the activity of node 19 (PPAR signaling pathway) showed
meaningful differences between the CLDN-low subgroup and the other three, suggesting that PPAR-directed
therapies might have a different effect on the CLDN-low subgroup. Finally, we observed that cellular subgroups
had different clinical features.

On the other hand, the immune layer was described in this study as a compendium of functional nodes, each
of which related to a specific immune function. However, when taking all these nodes together as a metanode we
were able to establish an immune classification with prognostic value among all the series.

The immune and cellular classifications reflected unrelated biological identities. As shown in Fig. 4, the LAR
and CLDN-high subgroups presented different prognoses when split by the immune layer. LAR immune-negative
tumors were associated with a 30% 5-year survival rate compared with 70% in the LAR immune-positive group.
The immune-based subtype might also influence the response to immunotherapy. Ongoing trials are evaluating
anti-PD1 antibodies in breast cancer, particularly in triple-negative disease®*. It would be interesting to assess the
efficacy of anti-PD1 therapy in subtypes defined by immune layer.

We also compared the cellular classification with other classifications previously described”®!°. LAR is over-
represented in every luminal subgroup regardless of the classification, which demonstrates that this is a homo-
geneous and reproducible group. Similarly, the basal cellular subgroup is overrepresented in basal subgroups
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across classifications. There is also a high correlation (83%) in the CLDN-low cellular groups, which confirms the
existence of a CLDN-low subgroup independent of the expression of ER, PR and HER?2, as previously suggested'.

Our results show that immune features appear across different subtypes. Interestingly, the luminal
immune-positive group did much better than the luminal immune-negative group. Regardless of the classifica-
tion”®1%, the immune layer added prognostic information to the luminal subtypes. The immune layer had been
previously defined as a separate group in these classifications, but it appears to intersect with other biological
features, providing additional prognostic value.

With regard to the cellular classification, our CLDN-low cellular subgroup had an 89% concordance with the
basal-like 2 Lehmann’s subgroup, which puts BL2 in the stem cell hypothesis context, suggesting that basal-like
2 tumors might be caused by early differentiated carcinogenic stem cells. The CLDN-high subgroup does not
appear in other classifications, which suggests that this is an intermediate group between CLDN-low tumors
(stem cell not yet expressing CLDN genes) and basal tumors. It might be difficult to draw the line between groups
in this continuous, cellular differentiation-based classification, although Burnstein’s basal-like immune-active
corresponded to the CLDN-high immune-negative in our classification. Regardless of the classification, there was
always a luminal subgroup, one or two basal subgroups and some mesenchymal or CLDN subgroup.

Our classification could also provide some predictive information. CLDN-high tumors had a poor response
to neoadjuvant chemotherapy. Much effort has been devoted to the prediction of response to chemotherapy in
TNBC. Cell-free DNA%, tumor-infiltrating lymphocytes®®, microRNA signatures” and proteomics®, among oth-
ers, have recently been proposed as useful methods in this regard. Further research is needed before the cellular
classification described in the present paper could be considered in the selection of therapy.

This study has some limitations. The 2010 American Society of Clinical Oncology guidelines established the
1% threshold for the expression of PR and ER*; however, our tumor series was assessed before that date, so we
cannot ensure that all the TNBC tumors fulfilled this criterion. Another limitation to our study is that the cellular
classification is based on a continuum, which makes it difficult to set categories. Finally, these results should be
validated in additional cohorts to evaluate the robustness of our cellular and immune classification. However, we
believe that our findings serve as an important hypothesis in generating findings that can be explored in future
studies.

Conclusion

In conclusion, the use of probabilistic graphical models in TNBC suggests that there are at least two independent
biological layers, cellular and immune. We propose a new way to characterize TNBC taking these two dimensions
into account, and leading to the result that the luminal immune-positive subgroup had a better prognosis than
the luminal immune-negative.

Availability of Data and Material

The datasets analyzed during the current study, GSE31519 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc = GSE31519], and GSE25066 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgitacc = GSE25066], are
available in the GEO Datasets repository.
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