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Abstract: This paper addresses the projection pursuit problem assuming that the distribution of the
input vector belongs to the flexible and wide family of multivariate scale mixtures of skew normal
distributions. Under this assumption, skewness-based projection pursuit is set out as an eigenvector
problem, described in terms of the third order cumulant matrix, as well as an eigenvector problem
that involves the simultaneous diagonalization of the scatter matrices of the model. Both approaches
lead to dominant eigenvectors proportional to the shape parametric vector, which accounts for the
multivariate asymmetry of the model; they also shed light on the parametric interpretability of the
invariant coordinate selection method and point out some alternatives for estimating the projection
pursuit direction. The theoretical findings are further investigated through a simulation study whose
results provide insights about the usefulness of skewness model-based projection pursuit in the
statistical practice.

Keywords: skewness; scatter matrices; projection pursuit; scale mixtures of skew normal distribution;
eigenvector

1. Introduction

The key idea behind the term “projection pursuit” (PP) is concerned with the search
of “interesting” low-dimensional representations of multivariate data, an idea dating back
to Kruskal’s early work [1], which later on inspired its use as an exploratory data analysis
tool for uncovering hidden patterns and structure in data as described in several of the
foundational works [2–5]. In order to assess the interestingness of a projection, a gamut of
indices have been proposed [3,4,6–12] in combination with proposals for computational
developments and the difficulties posed by the need for efficient optimization routines
that implement the search of the PP solution [5,11–17]. Although PP was born as an
exploratory data analysis technique, the need to enhance progress towards the inferential
arena has motivated the use of skewness and kurtosis, based on third and fourth order
moments, as projection indices in the context of parametric models either in an explicit
way [11,12,18–20] or implicitly [21–23].

This paper revisits the PP problem when the third moment skewness measure is taken
as projection index so that PP reduces to finding the direction that yields the maximal
skewness projection, an idea already studied in the past [24]. We will assume that the
underlying multivariate distribution belongs to the flexible family of scale mixtures of skew
normal (SMSN) distributions so the issue is delimited within the skewness model based
PP framework. Under this assumption, it is shown that skewness PP can be described in
terms of two eigenvector problems: the first problem stems from the third cumulant matrix
of the SMSN distribution and the second problem from the simultaneous diagonalization
of the covariance and scale scatter matrices of the SMSN model; it can be shown that both
approaches have an appealing interpretation in terms of the shape vector that regulates the
asymmetry of the model. The theoretical findings ascertain alternative ways to approach
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the PP problem with important computational implications when estimating the direction
yielding the maximal skewness projection.

The rest of the paper is organized as follows: Section 2 gives an overview about the
SMSN family. Section 3 addresses the eigenvector formulation of PP by exploring the
theoretical ins and outs of the problem when the input vector follows a SMSN distribution;
under this assumption, two eigenvector standpoints—based on third cumulants and on
the scatter matrices of the SMSN model—are used to tackle it. Our findings serve to
contribute to the invariant coordinate selection (ICS) literature shedding light on the
parametric interpretability of this method under the SMSN model; they also give rise to
several theoretical grounded proposals for estimating the PP direction from data, which
are discussed in Section 3.3. The theoretical results and the proposals herein are further
investigated in Section 4 through a simulation study that shows their usefulness when
applied to calculate the PP direction; the performance of the estimations is compared by
assessing their mean squared errors in well-defined population scenarios. Finally, Section 5
provides some summary remarks for concluding the paper.

2. Background
2.1. The Skew Normal and the Scale Mixtures of Skew Normal Distributions

The multivariate skew normal (SN) distribution has become a widely used model
for regulating asymmetry departures from normality. Its study has originated fruit-
ful research [25–30] with incremental works pursuing its enrichment and extension to
wider classes of distributions [31–39]. This paper adopts the formulation from previous
work [25,40] to define the density function of a p-dimensional SN vector with location
vector ξ = (ξ1, . . . , ξp)′ and scale matrix Ω as follows:

f (x; ξ, Ω, α) = 2φp(x− ξ; Ω)Φ(α′ω−1(x− ξ)) : x ∈ Rp, (1)

where φp(·; Ω) is the p-dimensional normal probability density function (pdf) with zero
mean vector and covariance matrix Ω, Φ is the distribution function of a N(0, 1) vari-
able, ω = diag(ω1, . . . , ωp) is a diagonal matrix with non-negative entries such that
Ω = ω−1Ωω−1 is a correlation matrix and α or η = ω−1α is the shape vector that regulates
the asymmetry of the model. We put X ∼ SNp(ξ, Ω, α) to denote that X follows a SN
distribution with pdf (1); note that when α = 0 the normal pdf is recovered.

The SN vector can be represented through the stochastic formulation: X = ξ + ωZ,
where Z is a normalized multivariate skew normal variable with pdf given by

f (z; 0, Ω, α) = 2φp(z; Ω)Φ(α′z). (2)

The previous stochastic representation highlights the natural extension of the SN to
the SMSN family that accounts for asymmetry and tail weight simultaneously [23,41];
due to its analytical tractability, this family has gained increasing interest both from the
theory [21,23,42–45] and the applications, with a few works showing its usefulness in real
data [20,22,46]. Here, we use the formulation in [23] to define the SMSN as follows:

Definition 1. Let Z be a random vector such that Z ∼ SNp(0, Ω, α), with pdf as in (2), and let
S be a non negative scalar variable, independent of Z. The vector X = ξ + ωSZ, where ω is a
diagonal matrix with non-negative entries, is said to follow a multivariate SMSN distribution.

In this case, we write X ∼ SMSNp(ξ, Ω, α, H), with H the distribution function of the
mixing variable S, to indicate that X follows a p-dimensiontal SMSN distribution. When
α = 0, the vector X follows a scale mixture of normal distributions. On the other hand,
if H is degenerate at S = 1 then the input vector X has a SNp(ξ, Ω, α) distribution.
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2.2. Examples of SMSN Distributions

There are some well-known multivariate distributions that belong to the SMSN family.
Here, we focus on a few representative instances.

2.2.1. The Multivariate SN Distribution

We have just mentioned that the SN distribution is obtained when S is degenerate at
S = 1. Hence, the only source of non-normality is regulated by the shape vector α.

2.2.2. The Multivariate Skew-t Distribution

The multivariate skew-t (ST) distribution arises when the mixing variable in
Definition 1 is S = V−1/2 with V ∼ χ2

ν/ν. Its pdf [46] is given by

f (x; ξ, Ω, α, ν) = 2 tp(x; ν)T1

(
α′ω−1(x− ξ)

(
ν + p

Qx + ν

)1/2
; ν + p

)
: x ∈ Rp, (3)

with the quantity Qx given by Qx = (x− ξ)′Ω−1(x− ξ), tp(·; ν) the pdf of a p-dimensional
ST variate with ν degrees of freedom and T1(·; ν + p) the distribution function of a scalar
ST variable with ν + p degrees of freedom. We put X ∼ STp(ξ, Ω, α, ν) to indicate that
X follows a ST distribution with pdf as in (3). Note that when ν → ∞ the ST becomes a
p-dimensional SN distribution, i.e., X ∼ SNp(ξ, Ω, α).

2.2.3. The Multivariate Skew-Slash Distribution

Another model that simultaneously tackles asymmetry and tail weight behavior is
the multivariate skew–slash (SSL) distribution [47]. It appears when the mixing variable
is S = U−1/q, with U ∼ U(0, 1) and q a tail weight parameter such that q > 0. We write
X ∼ SSLp(ξ, Ω, α, q) to indicate that X follows a p-dimensional SSL distribution with
location ξ, scale matrix Ω, shape vector α and tail parameter q > 0. When q→ ∞, the SSL
becomes a SN variable, i.e., X ∼ SNp(ξ, Ω, α).

3. Skewness Projection Pursuit

Skewness PP has already been studied for specific models [18,19,48]. Here, we assume
that X ∼ SMSNp(ξ, Ω, α, H); its scaled version is U = Σ−1/2(X − µ), where Σ and µ
are the covariance matrix and mean vector of X, respectively. PP is aimed at finding
the direction c for which the variable c′U attains the maximum skewness, which implies
solving the following problem:

max
c∈Rp

0

γ1(c′U),

with γ1 the standard skewness measure: γ1(Y) = E
(

Y− µY
σY

)3
, and Rp

0 the set of all

non-null p-dimensional vectors.
In order to ensure a unique solution, taking into account the scale invariance of γ1,

the problem can be stated by the following equivalent formulations:

max
c∈Sp

γ1(c′U) , max
d∈S∗p

γ1(d′X) (4)

where Sp = {c ∈ Rp : c′c = 1} and S∗p = {d ∈ Rp : d′Σd = 1} with d = Σ−1/2c. The max-
imal skewness γD

1,p = max
c∈Sp

γ1(c′U) = max
d∈S∗p

γ1(d′X), with the superscript D standing for

directional skewness, is a well-known index of asymmetry [24].
The vectors yielding the maximal skewness projection for X and its scaled version

are denoted by
λX = arg max

d∈S∗p
γ1(d′X) , λU = arg max

c∈Sp
γ1(c′U) (5)
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and satisfy that λX ∝ Σ−1/2λU .
When a simple condition on the moments of the mixing variable is fulfilled, the PP

problem can be brought to the parametric arena [22]. Now, we examine the eigenvector
formulation of the problem; some instrumental results about moments and cumulants of
SMSN vectors are needed in advance [21,49].

Proposition 1. Let X be a vector such that X ∼ SMSNp(ξ, Ω, α, H). Provided that the first
three moments, ck = E(Sk) : k = 1, 2, 3, of the mixing variable exist, the moments of X − ξ up to
the third order are given by

1. M1 = E[(X − ξ)] =

√
2
π

c1γ.

2. M2 = E[(X − ξ)(X − ξ)′] = c2Ω.

3. M3 = E[(X− ξ)⊗ (X− ξ)′⊗ (X− ξ)] =

√
2
π

c3
(
γ⊗Ω+ vec(Ω)γ′+Ω⊗γ−γγ′⊗γ

)
where the symbols vec and ⊗ denote the vectorization and Kronecker operators and γ is a shape

asymmetry vector given by γ =
Ωη√

1 + η′Ωη
.

The next proposition establishes the relationship between cumulants and moments of
multivariate SMSN distributions.

Proposition 2. Let X be a vector such that X ∼ SMSNp(ξ, Ω, α, H). Provided that the first
three moments, ck = E(Sk) : k = 1, 2, 3, of the mixing variable exist, the cumulants of X − ξ up to
the third order are given by

1. K1(X − ξ) = M1.

2. K2(X − ξ) = Σ = c2Ω− 2
π

c2
1γγ′.

3. K3(X − ξ) = M3 −M2 ⊗M1 −M1 ⊗M2 − vec(M2)M ′1 + 2M1 ⊗M ′1 ⊗M1.

3.1. Projection Pursuit from the Third Cumulant Matrix

Now, skewness PP is revisited using an eigenvector approach from the third cumulant
matrix of the scaled input vector U = Σ−1/2(X − µ). The approach is motivated by the
formulation of directional skewness as the maximum of an homogeneous third-order
polynomial obtained from the third cumulant matrix as follows [11]:

γD
1,p = max

c∈Sp
γ1(c′U) = max

c∈Sp
(c⊗ c)′K3(U)c. (6)

This formulation inspires the eigenvector approach, based on the third-cumulant tensor,
and the use of the higher-order power method (HOPM) to implement the computation [14].
The problem admits a simplification for skew-t vectors, which in turn provides the the-
oretical grounds and interpretation for the choice of the initial direction in the HOPM
algorithm ([11] Proposition 2). Theorem 1 below enriches the interpretation by extending
the result to the family of SMSN distributions.

Firstly, we recall the definitions of left and right singular vectors of the third cumulant
matrix of a vector U: We say that the vector v is a right singular vector of the p2 × p third
cumulant matrix K3(U) if K′3(U)K3(U)v is proportional to v. On the other hand, the vec
operator can be used to define a left singular vector of K3(U) as the p2 × 1 vectorized
matrix, w = vec(W) with W a p × p matrix, such that K3(U)K′3(U)w gives a vector
proportional to w.

Theorem 1. Let X be a vector such that X ∼ SMSNp(ξ, Ω, α, H), with mixing variable having

finite second order moment satisfying the condition
4
π

c2
1 > c2, and let U be the scaled version of
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the input vector having third cumulant matrix K3(U). Then, it holds that the right dominant
eigenvector of K3(U) is given by λ = Σ−1/2γ.

Proof. Putting together the results from Propositions 1 and 2, we can write:

K3(X) =

√
2
π

c3
(
γ⊗Ω + vec(Ω)γ′ + Ω⊗ γ− γγ′ ⊗ γ

)
−
√

2
π

c1c2Ω⊗ γ

−
√

2
π

c1c2γ⊗Ω−
√

2
π

c1c2 vec(Ω)γ′ + 2

√
2
π

2
π

c3
1γ⊗ γ′ ⊗ γ.

Taking into account the expression for the covariance matrix provided in the second
item of Proposition 2, we obtain that

Ω⊗ γ =
1
c2

Σ⊗ γ +
2
π

c2
1

c2
γ⊗ γ′ ⊗ γ. (7)

γ⊗Ω =
1
c2

γ⊗ Σ +
2
π

c2
1

c2
γ⊗ γ′ ⊗ γ. (8)

vec(Ω)γ′ =
1
c2

vec(Σ)γ′ +
2
π

c2
1

c2
γ⊗ γ′ ⊗ γ. (9)

When these quantities are inserted into the previous expression for K3(X), we obtain

K3(X) = rΣ⊗ γ + rγ⊗ Σ + r vec(Σ)γ′ + sγ⊗ γ′ ⊗ γ, (10)

where r =

√
2
π

(
c3

c2
− c1

)
and s =

√
2
π

2
π

1
c2

(
3c2

1c3 − c3
1c2 −

π

2
c2c3

)
. Now, taking into

account that K3(U) =
(

Σ−1/2 ⊗ Σ−1/2
)

K3(X)Σ−1/2 [50], an analogous argument as the
one used in [11] leads to

K3(U) = r
[
Ip ⊗ λ + λ⊗ Ip + vec(Ip)λ

′]+ sλ⊗ λ′ ⊗ λ.

On the other hand, using the standard properties of the kronecker product, the follow-
ing mathematical relationships can be derived after simple calculations:

(Ip ⊗ λ′)K3(U) = (λ′ ⊗ Ip)K3(U) = rλ′λIp + (2r + λ′λs)(λλ′),

λ vec(Ip)
′K3(U) = (r(p + 2) + λ′λs)(λλ′),

(λ′ ⊗ λ⊗ λ′)K3(U) = (λ′λ)(3r + λ′λs)(λλ′),

from which we obtain

K′3(U)K3(U) = 2r2(λ′λ)Ip + [r2(p + 6) + 6rs(λ′λ) + s2(λ′λ)2]λλ′,

and as a result: K′3(U)K3(U)λ = ρλλ, where ρλ = λ′λ[r2(p + 8) + 6rsλ′λ + s2(λ′λ)2].
This finding implies that λ is an eigenvector of K′3(U)K3(U) with ρλ its associated eigen-
value. Hence, λ is a right singular vector of K3(U).

From the well-known moment inequality c3 ≥ c1c2 we conclude that r ≥ 0. Thus,
taking into account the condition for the moments of the mixing variable of the statement,
we can assert that
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s =

√
2
π

1
c2

(
6
π

c2
1c3 −

2
π

c3
1c2 − c2c3

)
≥
√

2
π

1
c2

(
6
π

c2
1c3 −

2
π

c3
1c2 −

4
π

c2
1c3

)
=

=

√
2
π

1
c2

2
π

c2
1(c3 − c1c2) ≥ 0,

which implies that ρλ ≥ 0.
It can also be shown that λ is the right dominant eigenvector of K3(U) using the follow-

ing simple argument: If v is another right eigenvector orthogonal to λ then K′3(U)K3(U)v =
2r2(λ′λ)v with 2r2(λ′λ) < ρλ. Therefore, λ is the right dominant eigenvector of K3(U).

The result given by Theorem 1 gives rise to the following meaningful remarks:
First of all, we known that the direction attaining the maximal skewness projection for

the scaled vector U is proportional to λ [22]; henceforth, the vector driving the maximal
skewness projection for X is Σ−1γ which in turn lies on the direction of η, being also an
eigenvector of Σ−1Ω ([22] Lemma 1). This fact enhances the role of η as a shape vector that
regulates the asymmetry of the multivariate model in a directional fashion. Furthermore,
the previous disquisition also provides a grounded theoretical basis for the choice of the
right dominant eigenvector of K3(U) to set the initial direction of the HOPM algorithm,
an issue advocated by De Lathauwer et al. [14] without theoretical justification.

Secondly, we can also note that the expression

K′3(U)K3(U) = 2r2(λ′λ)Ip + [r2(p + 6) + 6rs(λ′λ) + s2(λ′λ)2]λλ′,

from which the right dominant singular vector of K3(U) is derived, reduces to that one
found by (Loperfido [11] Proposition 2) for the case of the multivariate skew-t distribution
when the moments of the skew-t are inserted into the quantities r and s above. Actually,
our result is an extension of (Loperfido [11] Theorem 2) to the SMSN family.

Thirdly, coming back to expression Equation (6), recall that a unit length vector
v satisfies γD

1,p(X) = γ1(v′U) if and only if K′3(U)(v ⊗ v) = ρv with ρ the largest

eigenvalue [11,51]. Thus, we can put v = λ/
√

λ′λ, with λ = Σ−1/2γ from Theorem 1,
to show that

K′3(U)(v⊗ v) = [3r(λ′λ) + s(λ′λ)2]
1√
λ′λ

v.

Therefore, γD
1,p(X) = v′K′3(U)(v ⊗ v) =

3r(λ′λ) + s(λ′λ)2
√

λ′λ
which, taking into ac-

count that λ′λ = γ′Σ−1γ with Σ−1γ =
Ω−1γ

c2 − 2
π c2

1γ′Ω−1γ
, reduces to the expression de-

rived by [22] using another approach. Moreover, for the case of a SN vector we know

that S is degenerate at S = 1; so r = 0, s =

√
2
π

(
4
π
− 1
)

and λ′λ =
η′Ωη

1 +
(
1− 2

π

)
η′Ωη

,

which gives [γD
1,p(X)]2 = s2(λ′λ)3 = 2(4− π)2

(
η′Ωη

π + (π − 2)η′Ωη

)3

as previously stated

by [18].
Finally, it is worthwhile noting that the moment condition given in the statement of

Theorem 1 is fulfilled by the most popular subfamilies of SMSN distributions such as those
described in Section 2.2.

3.2. Projection Pursuit from Scatter Matrices

In the previous section, projection pursuit under SMSN multivariate distributions is
formulated as an eigenvector problem which stems from the third order cumulant matrix.
In this section, the approach is formulated through an eigenvector problem concerned with
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the simultaneous diagonalization of the scatter matrices Σ and Ω; in fact, such formulation
is related to the canonical transformation of an SMSN vector [23]. The next theorem
provides the theoretical foundation for the approach.

Theorem 2. Let X be a vector such that X ∼ SMSNp(ξ, Ω, α, H) with mixing variable having
finite first and second order moments. Then, η is the dominant eigenvector of Σ−1Ω.

Proof. The proof follows pieces of previous work [22,23], so we sketch it. From (Arevalillo
and Navarro [22] [Lemma 1]), we know that the shape vector η is an eigenvector of Σ−1Ω;
it is straightforward to show that it has eigenvalue

ρ =
1

c2 − 2
π c2

1
η′Ωη

1+η′Ωη

=
1

c2 − 2
π c2

1γ′Ω−1γ
.

Now, let us consider another eigenvector u of Σ−1Ω. Then, it holds that

c2Σ−1Ωu = u +
ηη′Ωu/(1 + η′Ωη)

π
2

c2
c2

1
− γ′Ω−1γ

= u,

since the vector u is orthogonal to γ [23]. As a result, u has associated eigenvalue equal to
1/c2 which satisfies that 1/c2 ≤ ρ; hence, we conclude that η is the dominant eigenvector
of Σ−1Ω.

Theorem 2 establishes that the dominant eigenvector of Σ−1Ω lies on the direction of η,
which in turn gives the direction at which the maximal skewness projection is attained [22];
this finding points out the parametric interpretation of the dominant eigenvector of Σ−1Ω

under SMSN distributions as a shape parameter accounting for the directional asymmetry
of the model. On the other hand, it is well-known that the canonical transformation
of a SMSN vector can be derived by the simultaneous diagonalization of the pair of
scatter matrices (Σ, Ω), with the only skewed canonical variate being obtained by the
projection onto the direction of the shape vector η [23]; therefore, the computation of the
skewness-based PP under the SMSN family would only require the estimation of both
scatter matrices. Another alternative to derive the canonical transformation relies on
the pair of scatter matrices (Σ,K), where K is the scatter kurtosis matrix given by K =
E[((X − µ)′Σ−1(X − µ))(X − µ)(X − µ)′] [52]; such alternative has appealing properties
for SMSN distributions [23]. Hence, we can work with either (Σ, Ω) or (Σ,K), in order to
derive the canonical form of a SMSN vector, and compute the corresponding dominant
eigenvectors in their simultaneous diagonalizations to get the vector driving the projection
pursuit direction.

It is worthwhile noting that the ideas behind the canonical form of SMSN vectors are
inspired in the ICS method for representing multivariate data through the comparison
of two scatter matrices [53]. Although the choice of the scatter pair is of key relevance,
(Σ,K) has become a standard choice which works well in the statistical practice. The idea
behind the ICS method is the search of a new representation coordinate system of the

data by sequential maximization of the quotient κ1(a) =
a′Ka
a′Σa

. For SMSN distributions,

a natural alternative is the scatter pair (Σ, Ω), given by the covariance and scale matrices

of the model; therefore, the projection index for maximization would be κ2(a) =
a′Ωa
a′Σa

.
The study and comparison of projection pursuit and the ICS method has been previously
discussed in the literature ascertaining the problem of which method is better suited to
uncover structure in multivariate data [54–56]; the SMSN family is a flexible and wide
class of distributions that allows to settle the problem within a parametric framework so
that we can deep dive into the investigation by means of a simulation study at controlled
parametric scenarios.
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The next section tackles several issues concerned with the estimation of the dominant
eigenvector from the formulations we have studied so far: on the one hand, the PP from the
third cumulant matrix and, on the other hand, the projection pursuit from scatter matrices
with the indices κ1 and κ2.

3.3. Estimation and Computational Issues

The previous theoretical material has outstanding practical implications, as they point
to different estimation methods for computing the skewness PP direction for SMSN vectors.
In this section, we discuss the computational side of the issue.

Let us denote by Xn the n× p data matrix and let S be the regular covariance matrix.
Furthermore, let Un = (Xn − 1n x̄′)S−1/2 be the scaled data matrix, where 1n is a n× 1
vector, x̄ is the p× 1 sample mean vector and S−1/2 the symmetric positive definite square

root of S−1. Then, the third cumulant matrix K3(U) can be estimated by K̂3,n =
1
n

n

∑
i=1

ui ⊗

u′i ⊗ ui, where u′i is the i-th row of Un.
The result given by Theorem 1 gives theoretical support for the empirical conjecture

that proposes the right dominant eigenvector of the cumulant matrix K̂3,n as the starting
direction of the HOPM iterative method [14], an issue also ascertained by Loperfido [11,
Proposition 1] under the rank-one assumption for the left dominant singular vector of the
third cumulant matrix, as well as in the context of the multivariate skew-t distribution
with a reference to Arevalillo and Navarro [19]. When the input vector X follows a
SMSN distribution, we know that the vector Σ−1/2λ = Σ−1γ, with λ = Σ−1/2γ the
right dominant eigenvector of K3(U), is proportional to the shape vector η that yields the
maximal skewness projection [22]. Then, it stands to reason that the skewness PP direction
can be estimated by êcum = S−1/2ê1,K , where ê1,K is the right dominant eigenvector of K̂3,n;
therefore, the first method we propose to obtain the maximal skewness direction for SMSN
vectors is non-parametric in nature and relies on the computation of the right dominant
eigenvector of the third cumulant sample matrix.

Method 1 (M1). Estimate the skewness PP direction by êcum = S−1/2ê1,K .

Another approach to compute the PP direction arises from the scatter matrices Σ and
K which can also be estimated from data. In this case the PP direction can be derived by
computing the dominant eigenvector of the matrix S−1K̂, where K̂ is a sample estimate
of the population kurtosis matrix K. The ICS R package [57] has functionalities for the
estimation of K and the computation of the dominant eigenvector as a result. Hence,
the second approach could be stated as follows.

Method 2 (M2). Estimate the skewness PP direction by the dominant eigenvector, ê1,K, of S−1K̂.

Theorem 2 suggests an alternative approach to the problem, which brings it to the
parametric arena: Let us denote by Σ̂ and Ω̂ the maximum likelihood estimators of Σ and Ω;
then the dominant eigenvector of Σ̂

−1
Ω̂ is the estimator of the shape vector η derived from

the maximum likelihood (ML) method. The ML approach has obvious practical limitations
as it requires knowing in advance the multivariate distribution of the underlying model
that generated the data. In order to overcome this limitation, we propose an approach
aimed at balancing the accuracy and the computational cost of the estimation procedure;
a varied bunch of simulation assays—not reported here for the sake of space—suggests,
as a good tradeoff, the estimation of the dominant eigenvector of Σ−1Ω by the dominant
eigenvector of S−1Ω̃SN , where S is the regular covariance matrix and Ω̃SN is the estimation
of the scale matrix Ω, calculated by the ML method under the multivariate SN model.
The proposal can be stated as follows:
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Method 3 (M3). Estimate the skewness PP direction by ê1,SN which is the dominant
eigenvector of S−1Ω̃SN .

In the next section, a simulation study with artificial data is carried out in order to
investigate the performance of the proposed methods.

4. Simulation Experiment

Here, we consider the multivariate ST and SSL models; for the sake of simplicity, we
take ξ = 0 for the location vector. The assays of the simulation study are carried out by
drawing 1000 samples from a multivariate ST or SSL distribution under the experimental
sampling conditions specified as follows. The dimension of the input vector is set at
the values p = 2, 4, 8; the parameters of the underlying model are determined by the
following settings: the correlation matrix is defined by a Toeplitz matrix Ω = (wi,j)1≤i,j≤p,
where wi,j = ρ|i−j| : 1 ≤ i ≤ j ≤ p, with ρ = 0.25, 0.75, and the entries of the diagonal
matrix ω are generated at random from the set of integer values between 5 and 25; the
shape vector is given by α = τe with e a unit-norm vector chosen at random and τ
the magnitude, which is set at the values τ = 2, 5, 10; the tail weight parameters are
set at the values ν = 5, 10 for the ST model and q = 4, 10 for the SSL model. Finally,
the sample size is taken in accordance with the dimension of the input vector at the
values n = 60, 120, 240. Under these experimental settings, the accuracy of the proposed
estimation methods is assessed using the mean square error (MSE), which is computed
through the comparison of the unit-norm vectors corresponding to the directions estimated
by each method with the exact theoretical direction of the multivariate model, using the
square of the Euclidean distance.

The next section gives the results of the simulations for the bidimensional case, they
are illustrated by fancy plots of directions; on the other hand, Section 4.2 shows the results
when the dimension is p > 2.

4.1. Simulation Study for Bidimensional SMSN Distributions

This section addresses the bidimensional case; the outputs of the simulations are
summarized by means of plots of directions arranged in tables of figures that display the
following information: the red and black lines represent the directions of the theoretical
shape vectors η and α, respectively. On the other hand, the points in the coloured circular
crowns correspond to the locations of the directions estimated by the proposed estimation
methods, with the blue crown showing the estimations provided by M1, the red crown by
M2 and the green crown by M3; their MSE values are displayed at the bottom right legend
of each figure. Finally, the clouds of points for the observations obtained by the simulations
are also depicted for completeness.

In order to assess the performance of the estimation methods for the bidimensional
case, the simulation assays are carried out taking a sample size n = 60 which may be a
representative choice of the small data sets arising in real studies. The plots depicted in
Table 1 show the MSEs obtained for samples coming from a ST distribution when ρ = 0.25.
Overall, we can observe that methods M1 and M3 are more accurate than M2. The outputs
show that the errors are quite similar for all the methods in the scenario closer to the normal
model, provided by the pair (τ, ν) = (2, 10); starting from this scenario, we can see that,
as we inject asymmetry into the multivariate model, M1 outperforms methods M2 and M3
but its accuracy gets worse when we move to the heavy tail scenarios for ν = 5; in such a
case, M3 provides the most accurate results (MSE = 0.495, 0.167, 0.080). On the other hand,
the results displayed by the plots in Table 2 for the coefficient ρ = 0.75 show that M3 is the
most accurate method in all the situations, with its best performance (MSE = 0.036) in the
scenario which is furthest away from the normal distribution.

The results of the simulations under the SSL distribution are given by the plots
displayed in Tables 3 and 4. In this case, the accuracy of the estimation methods presents
similar patterns as those ones observed under the ST model, with the exceptions of the
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non-normality pair (τ, q) = (10, 10) at the bottom right corner, where M3 outperforms
M1 and M2, and the pair (τ, q) = (2, 4), at the top right corner, where M2 and M3 are
outperformed by M1. When the coefficient ρ is equal to 0.75 (see Table 4), we can observe
once again that M3 gives more accurate results than M1 and M2.

We have deployed additional experiments for other sample sizes, not reported here
for the sake of space. In order to illustrate their results, we provide a representative case
when n = 200 for the scenario with the highest asymmetry and tail weight under both
multivariate models ST and SSL. The results are displayed by the plots appearing in the
figures of Table 5; they show the remarkably superiority of method M3.

Table 1. Plots with the theoretical and estimated directions under the bidimensional ST distribution when ρ = 0.25.

τ = 2 τ = 5 τ = 10

ν = 5

n = 60

ρ = 0.25

ν = 5

τ = 2

mse(1) = 0.612

mse(2) = 0.82

mse(3) = 0.495

n = 60

ρ = 0.25

ν = 5

τ = 5

mse(1) = 0.287

mse(2) = 0.609

mse(3) = 0.167

n = 60

ρ = 0.25

ν = 5

τ = 10

mse(1) = 0.119

mse(2) = 0.381

mse(3) = 0.08

ν = 10

n = 60

ρ = 0.25

ν = 10

τ = 2

mse(1) = 0.174

mse(2) = 0.298

mse(3) = 0.296

n = 60

ρ = 0.25

ν = 10

τ = 5

mse(1) = 0.131

mse(2) = 0.464

mse(3) = 0.213

n = 60

ρ = 0.25

ν = 10

τ = 10

mse(1) = 0.048

mse(2) = 0.244

mse(3) = 0.249

Table 2. Plots with the theoretical and estimated directions under the bidimensional ST distribution when ρ = 0.75.

τ = 2 τ = 5 τ = 10

ν = 5

n = 60

ρ = 0.75

ν = 5

τ = 2

mse(1) = 0.662

mse(2) = 0.959

mse(3) = 0.442

n = 60

ρ = 0.75

ν = 5

τ = 5

mse(1) = 0.203

mse(2) = 0.44

mse(3) = 0.126

n = 60

ρ = 0.75

ν = 5

τ = 10

mse(1) = 0.154

mse(2) = 0.32

mse(3) = 0.036

ν = 10

n = 60

ρ = 0.75

ν = 10

τ = 2

mse(1) = 0.49

mse(2) = 0.694

mse(3) = 0.436

n = 60

ρ = 0.75

ν = 10

τ = 5

mse(1) = 0.586

mse(2) = 1.025

mse(3) = 0.353

n = 60

ρ = 0.75

ν = 10

τ = 10

mse(1) = 0.194

mse(2) = 0.591

mse(3) = 0.058
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Table 3. Plots with the theoretical and estimated directions under the bidimensional SSL distribution when ρ = 0.25.

τ = 2 τ = 5 τ = 10

q = 4

n = 60
ρ = 0.25

q = 4

τ = 2

mse(1) = 0.205

mse(2) = 0.275

mse(3) = 0.347

n = 60
ρ = 0.25

q = 4

τ = 5

mse(1) = 0.235

mse(2) = 0.53

mse(3) = 0.183

n = 60
ρ = 0.25

q = 4

τ = 10

mse(1) = 0.139

mse(2) = 0.398

mse(3) = 0.063

q = 10

n = 60
ρ = 0.25

q = 10

τ = 2

mse(1) = 0.302

mse(2) = 0.517

mse(3) = 0.491

n = 60
ρ = 0.25

q = 10

τ = 5

mse(1) = 0.102

mse(2) = 0.357

mse(3) = 0.357

n = 60
ρ = 0.25

q = 10

τ = 10

mse(1) = 0.149

mse(2) = 0.544

mse(3) = 0.067

Table 4. Plots with the theoretical and estimated directions under the bidimensional SSL distribution when ρ = 0.75.

τ = 2 τ = 5 τ = 10

q = 4

n = 60
ρ = 0.75

q = 4

τ = 2

mse(1) = 0.318

mse(2) = 0.45

mse(3) = 0.298

n = 60
ρ = 0.75

q = 4

τ = 5

mse(1) = 0.305

mse(2) = 0.665

mse(3) = 0.158

n = 60
ρ = 0.75

q = 4

τ = 10

mse(1) = 0.301

mse(2) = 0.686

mse(3) = 0.075

q = 10

n = 60
ρ = 0.75

q = 10

τ = 2

mse(1) = 0.298

mse(2) = 0.444

mse(3) = 0.346

n = 60
ρ = 0.75

q = 10

τ = 5

mse(1) = 0.24

mse(2) = 0.627

mse(3) = 0.173

n = 60
ρ = 0.75

q = 10

τ = 10

mse(1) = 0.082

mse(2) = 0.303

mse(3) = 0.082
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Table 5. Plots with the theoretical and estimated directions under the bidimensional ST (left) and SSL
(right) distributions for the highest asymmetry and tail weight levels when ρ = 0.75.

(τ, ν) = (10, 5) (τ, q) = (10, 4)
n = 200

ρ = 0.75

ν = 5

τ = 10

mse(1) = 0.154

mse(2) = 0.544

mse(3) = 0.011

n = 200
ρ = 0.75

q = 4

τ = 10

mse(1) = 0.19

mse(2) = 0.54

mse(3) = 0.014

4.2. Simulation Study for SMSN Distributions when p > 2

We have carried out a wide range of experimental trials for dimensions greater than
two. Here, we just provide the results obtained from a few simulation assays—for dimen-
sions p = 4, 8 and sample sizes n = 60, 120, 240—which summarize and illustrate our main
findings (see Tables 6 and 7). As could be expected, we observe that, as the dimension
increases, the accuracy of all the estimation methods deteriorates, with M3 being the most
resistant method to the curse of dimensionality.

Table 6. Results under the ST distribution. For each non-normality pair (τ, ν), dimensions of the data
frame (p, n) and coefficient ρ, the cells contain the MSEs given by method 1 (first row), method 2
(second row) and method 3 (third row).

(p, n) (4, 60) (4, 120) (8, 120) (8, 240)

ρ 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75

(τ, ν)

(2, 5)
0.646 0.916 0.500 0.584 1.306 1.090 1.284 1.472
0.772 0.975 0.677 0.675 1.383 1.155 1.521 1.632
0.654 0.875 0.435 0.528 1.090 0.931 0.826 0.903

(2, 10)
0.610 0.932 0.518 0.553 0.873 1.182 1.195 1.280
0.760 1.075 0.865 0.665 1.029 1.260 1.525 1.580
0.668 0.831 0.542 0.579 0.938 1.097 0.888 0.838

(5, 5)
0.258 0.581 0.402 0.403 0.757 1.303 0.634 0.768
0.443 0.801 0.794 0.629 0.956 1.413 0.971 1.048
0.338 0.355 0.167 0.105 0.640 0.526 0.244 0.187

(5, 10)
0.362 0.738 0.299 0.477 0.536 0.918 0.369 0.550
0.622 1.048 0.769 0.953 0.733 1.157 0.854 1.107
0.469 0.428 0.198 0.195 0.557 0.785 0.227 0.254

(10, 5)
0.382 0.496 0.456 0.573 0.696 0.749 0.632 0.944
0.618 0.725 0.894 0.977 0.938 0.899 0.987 1.263
0.305 0.333 0.128 0.067 0.550 0.315 0.101 0.107

(10, 10)
0.495 0.549 0.167 0.644 0.657 0.731 0.265 0.460
0.776 0.888 0.620 1.165 1.006 0.950 0.837 0.966
0.426 0.319 0.118 0.179 0.656 0.453 0.145 0.106
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Table 7. Results under the SSL distribution. For each non-normality pair (τ, q), dimensions of the
data frame (p, n) and coefficient ρ, the cells contain the MSEs given by method 1 (first row), method
2 (second row) and method 3 (third row).

(p, n) (4, 60) (4, 120) (8, 120) (8, 240)

ρ 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75

(τ, q)

(2, 4)
0.817 0.854 0.963 1.104 1.406 1.553 0.893 1.528
0.929 0.900 1.209 1.332 1.491 1.632 1.020 1.652
0.732 0.796 0.735 0.748 1.144 1.039 0.741 0.933

(2, 10)
0.739 0.776 0.678 0.843 1.306 1.410 1.039 1.249
0.851 0.844 1.026 1.279 1.458 1.595 1.423 1.625
0.852 0.803 0.698 0.604 1.273 1.246 0.956 0.988

(5, 4)
0.347 0.667 0.225 0.567 1.243 1.510 1.078 1.356
0.516 0.841 0.462 0.763 1.402 1.634 1.351 1.582
0.455 0.439 0.232 0.254 0.767 0.676 0.347 0.328

(5, 10)
0.413 0.650 0.125 0.289 1.057 1.284 0.598 0.738
0.784 1.005 0.439 0.813 1.455 1.579 1.379 1.516
0.655 0.648 0.162 0.200 0.804 0.889 0.392 0.293

(10, 4)
0.383 0.720 0.392 0.463 1.209 1.439 1.104 1.275
0.574 0.941 0.735 0.830 1.396 1.564 1.420 1.572
0.401 0.332 0.162 0.103 0.565 0.574 0.260 0.160

(10, 10)
0.222 0.588 0.163 0.207 0.905 1.202 0.550 0.902
0.524 1.004 0.657 0.826 1.379 1.598 1.391 1.500
0.430 0.452 0.318 0.131 0.537 0.775 0.224 0.280

Under the ST distribution, the results of Table 6 report the following findings: when
p = 4 and ρ = 0.25, the estimations given by methods M1 and M3 show similar competitive
accuracies provided that n = 60, whereas the superiority of M3 can be observed for the
sample size n = 120, especially in the case of a heavier tail weight ν = 5. When we
take ρ = 0.75, the superiority of M3 becomes more remarkable, as M1 tends to get worse
while M3 gains in accuracy, with the lowest MSE appearing when n = 120 in the furthest
scenario from the normal model (τ, ν) = (10, 5). When we move to the higher dimension
p = 8, the errors increase to values greater than 1 in many cases, specifically in the
scenarios closer to the normality; we can also see that, as the asymmetry and tail weight
increase, the accuracy of M1 and M3 improves, with the latter giving acceptable errors
(MSE = 0.101, 0.107) at the sample size n = 240.

For the SSL distribution, the general patterns reported for the case of the ST model
come up once again: all the estimation methods give similar accuracies in the scenarios
close to normality, M1 and M3 have a good performance as the asymmetry increases, with a
better behavior of M3 for the heavier tail weight; note that this pattern becomes more
remarkable for the larger coefficient ρ = 0.75. Nevertheless, in this case, we can observe the
negative impact of the dimension on the performance of M1, and particularly M2, methods
which in most cases yield very large MSEs. Unlike them, M3 gives very good estimations
with the minimum errors ranging in the interval (0.150, 0.300).

Finally, we would like to stress that the curse of dimensionality has a smaller impact
on the performance of method M3 than some other simulation experiments, not reported
here for the sake of space, have shown. Here, we provide an illustrative example: when
we consider a ST vector with dimension p = 15 and parametric settings given by ρ = 0.25
and (τ, ν) = (10, 5), the values of the MSE for the sample size n = 200 are 1.587 (M1), 1.684
(M2) and 0.615 (M3).
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5. Summary and Concluding Remarks

This paper has addressed the skewness-based PP problem when the underlying
multivariate distribution of the input vector belongs to the family of SMSN distributions.
We have presented skewness PP as an eigenvector problem based on either the third order
cumulant matrix or well-known scatter matrices of the model; the connection between
the resulting dominant eigenvectors and the shape vector that regulates the asymmetry
of the multivariate model has been established, such a connection also sheds light on
the interpretability of PP and the ICS method when approached from the parametric
framework. The theoretical results point out three methods for estimating the skewness PP
direction; the application to artificial data has allowed us to evaluate their performance
and has also provided useful insights for comparing them.

This paper has also gone through the role played by the shape vector of the model
to assess the multivariate asymmetry in a directional way. However, it is not clear to us
how the tail weight and shape vector of the SMSN distribution act together to account
for the multivariate non-normality. We conjecture that the issue should be addressed by
examining the role of both parameters as indicators of non-normality in accordance to
well-defined multivariate stochastic orderings along the lines of previous work [58–60].
To the best of the authors’ knowledge, the issue is still unexplored and may deserve future
theoretical research to achieve a deeper understanding about their role as non-normality
indicators in the SMSN family.
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