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Abstract In this paper we define a new skewness ordering that enables stochas-
tic comparisons for vectors that follow a multivariate skew-normal distribu-
tion. The new ordering is based on the canonical transformation associated
with the multivariate skew-normal distribution and on the well-known convex
transform order applied to the only skewed component of such canonical trans-
formation. We examine the connection between the proposed ordering and the
multivariate convex transform order studied by Belzunce et al (2015). Several
standard skewness measures like Mardia’s and Malkovich-Afifi’s indices are re-
visited and interpreted in connection with the new ordering; we also study its
relationship with the J-divergence between skew-normal and normal random
vectors and with the Negentropy. Some artificial data are used in simulation
experiments to illustrate the theoretical discussion; a real data application is
provided as well.
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1 Introduction

Although the normal distribution has appealing properties for modeling mul-
tivariate observations, it has practical limitations since many of the data col-
lected in real life applications do not fit to the normal model. Thus, more
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flexible models that account for the non normality of the data have been de-
veloped in order to get rid of the normality corset; an alternative that has
become increasingly popular for handling departures from normality is the
multivariate skew-normal (SN) distribution defined in Azzalini and Dalla Valle
(1996). The SN model has received attention in many applications where the
collected data at hand exhibit asymmetry departures from normality; they
include finance and risk management (Adcock 2004; Vernic 2006; Adcock et al
2015; Taniguchi et al 2015), genetics (Hardin and Wilson 2009), remote sens-
ing (Zadkarami and Rowhani 2010), and psychiatry and psychology (Counsell
et al 2011), just to name a few representative instances.

In this work we revisit the main properties concerned with skewness for the
family of multivariate SN distributions; we examine the concept in a multivari-
ate fashion by introducing a new ordering that allows to deal with multivariate
stochastic skewness comparisons within this family. The new stochastic order-
ing is defined by application of the well-known Van Zwet’s convex transform
ordering (Van Zwet 1964) to the only skewed variate obtained from the canon-
ical transformation of the SN vector (Loperfido 2010). The idea of using Van
Zwet’s convex transform ordering on scalar variables to define a multivariate
stochastic ordering is not new; it has been utilized previously to establish a
kurtosis ordering for the family of multivariate elliptically contoured distribu-
tions (Wang 2009; Arevalillo and Navarro 2012). In this paper we adopt the
general idea and bring it to the context of asymmetric multivariate models
like the SN family.

Once the stochastic ordering has been introduced, some standard measures
of multivariate skewness like Mardia’s and Malkovich-Afifi’s indices (Mardia
1970; Malkovich and Afifi 1973) are revisited in order to show their role as
indicators compatible with the proposed ordering; we also study how the new
order is related to the J-divergence measure between SN and normal vectors
and to the Negentropy, as a non-normality measure.

The paper is organized as follows: in the next section we review some theo-
retical background regarding the convex transform stochastic ordering between
scalar variables as well as the underpinnings of the multivariate SN distribu-
tion, with an emphasis on specific issues that will be used along the paper.
Section 3 addresses the main results of the paper: a new stochastic ordering is
proposed to enable skewness comparisons between vectors that follow a mul-
tivariate SN distribution; in this section we also deal with the relationship
between the new ordering and some standard skewness indices. Section 4 con-
tains two simulation experiments that shed light on the theoretical discussion
and an application to real data. We finish the paper giving some concluding
remarks and suggestions for future research advances.
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2 Background

2.1 Some background on skewness and the convex transform ordering

Skewness arises in probability theory as a concept to assess departures from
symmetry. An approach for measuring skewness is the use of indices that
quantify it; a great deal of ongoing research with proposals for new skewness
indices has emerged since the pioneer work by Pearson (1895). In spite of the
great deal of measures that allow to quantify the “ departure from symme-
try ” through indices, this is a rather complex concept that needs complex
stochastic ideas to become quantified. Thus, a more flexible alternative, based
on the stochastic comparison of distributions, has been proposed in order to
describe the concept in a more precise manner (Van Zwet 1964; Oja 1981;
MacGillivray 1986); so the larger departures should correspond to the more
skewed distributions in the stochastic order.

A skewness stochastic ordering between scalar variables can be defined in
a rather intuitive way on the basis of the following simple argument: given a
random variableX with distribution function F , we can inject skewness intoX
by application of an increasing convex transformation Y = ψ(X); this skewing
mechanism leads to a more skewed variable Y . Actually, the transformation
that maps X on Y is given by ψ = G−1F , where G denotes the distribution
function of Y (Marshall and Olkin 2007); whenever G−1F is convex we can
guarantee that F is less skewed to the right than G. This handy idea has
inspired the following definition for a skewness stochastic order (Van Zwet
1964; Oja 1981).

Definition 1 (Convex transform order) Let X and Y be two random
variables with distribution functions F and G respectively. Then we say that
F is less skewed to the right than G, and denote it by F ≤c G or by X ≤c Y ,
if G−1(F (x)) is a convex function for all x belonging to the support of F .

According to Oja (1981), any index S(·) should be compatible with the
previous ordering in order to be considered a measure of skewness. It should
meet the following properties:

1. S(F ) = 0 for any symmetric distribution F .
2. S(a+ bF ) = sign(b)S(F ) for every a, b ∈ R.
3. If F and G are two distribution functions such that F ≤c G then S(F ) ≤
S(G).

The first two properties are natural to the intuition of skewness; the third
one states that S(·) must be compatible with the ≤c ordering. Some indicators
like

E

[

X − E(X)
√

V ar(X)

]2n+1

: n = 1, 2, . . . ,

which can be defined as long as the expectations exist, or the measure defined
in Arnold and Groeneveld (1995) meet these properties. Some others, like
Pearson measure of skewness
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E(X)−Md(X)
√

V ar(X)
,

are not compatible with the convex transform skewness ordering.
Recently, the convex transform order for scalar variables has been extended

to the multivariate setting in order to enable stochastic comparisons between
random vectors (Belzunce et al 2015). The rationale behind this extension can
be summarized as follows.

Let X and Y be p-dimensional vectors having distribution functions F

and G and let us consider the vectors x = (x1, . . . , xp) and u = (u1, . . . , up) ∈
[0.1]p. The approach combines the multivariate quantile transformation, de-
fined by QY (u) =

(

QY ,1(u1), . . . ,QY ,p(u)
)

where QY ,1(u1) = G−1
Y1

(u1)

and QY ,k(u1, . . . , uk) = G−1

(Yk|
⋂k−1

j=1
Yj=Q

Y ,j(u1,...,uj))
(uk) for 2 ≤ k ≤ p, and

the multivariate distributional transformation, which is given by DX(x) =
(DX,1(x1), . . . ,DX,p(x)) with DX,1(x1) = FX1

(x1) and DX,k(x1, . . . , xk) =
F(Xk|

⋂k−1

j=1
Xj=xj)(xk) for 2 ≤ k ≤ p. The multivariate convex transform order

is defined as follows.

Definition 2 (Multivariate convex transform order) We say that vector
X is less skewed than vector Y , and we denote it byX ≤mc Y , if and only if all
the components Φi : i = 1, 2, . . . , p of the transformation Φ(x) = QY (DX(x))
are convex functions in their support.

Note that when p = 1 the multivariate order reduces to the univariate
convex transform order. On the other hand, if the components of X and Y are
independent then the multivariate convex transform order is equivalent to the
scalar convex transform order between their components. This is an interesting
fact which reveals enlightening implications for the SN distribution, as any SN
vector can be transformed into a new one of independent components through
its canonical transformation (Azzalini and Capitanio 1999; Loperfido 2010;
Capitanio 2012). This issue is addressed in detail in the next section.

2.2 Some background on the skew-normal distribution

The multivariate SN distribution was introduced by Azzalini and Dalla Valle
(1996) to regulate departures from normality; it has become a widely used
model to deal with skewness in multivariate data. The study of its theoretical
properties and applications have originated a fruitful research topic (Azzalini
and Capitanio 1999; Capitanio et al 2003; Azzalini 2005; Contreras-Reyes and
Arellano-Valle 2012; Balakrishnan and Scarpa 2012; Balakrishnan et al 2014).

2.2.1 Definition

Here we adopt the notation of the seminal works by Azzalini and Dalla Valle
(1996) and Azzalini and Capitanio (1999) to define the density function of
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a p-dimensional SN variate with location vector ξ = (ξ1, . . . , ξp)
′ and scale

matrix Ω as follows:

f(x; ξ,α,Ω) = 2φp(x− ξ;Ω)Φ(α′ω−1(x− ξ)) : x ∈ R
p. (1)

In the expression above φp(·;Ω) denotes the normal density function of a
p-dimensional normal variable with zero mean and covariance matrix Ω, Φ is
the distribution function of a standard N(0, 1) variable, ω = diag(ω1, . . . , ωp)
is a scale diagonal matrix with non-negative entries such that Ω̄ = ω−1Ωω−1

is a correlation matrix and α is a p-dimensional shape vector. We will write
X ∼ SNp(ξ,Ω,α) to denote that X follows a p-dimensional SN distribution
with density function (1).

The shape vector α regulates the asymmetry of the model in a directional
fashion; it describes a perturbation of the normal model in which skewness
is injected across a direction. Note that when α = 0 we come back to the
multivariate normal distribution with mean ξ and covariance matrix Ω.

As an illustration we can see in Figure 1 the plots of the density function
for the normal and three SN distributions with different shape vectors; the
contour plots for each density are also depicted. We can observe how they
become deformed as the asymmetry is injected into the normal model across
different directions; the deformation depends of the amount of asymmetry
injected as we can see by simple comparison of Figures 1b and 1c, for which
||α|| =

√
2 and ||α|| = 2 respectively.

We can observe that X can be rewritten as X = ξ+ωZ, where Z is a SN
vector with density function

f(z;0,α,Ω) = 2φp(z; Ω̄)Φ(α′z). (2)

The expression in equation (2) gives the density function of a “ normalized ”
version of the multivariate SN variable X (Azzalini and Capitanio 2014); we
will use the normalized version of X to define the new stochastic ordering
between SN vectors.

2.2.2 The canonical transformation of the SN vector

An interesting property of the SN model is concerned with the existence of a
linear combination of the components of X that captures all the asymmetry
of the model. This property is stated by the following proposition.

Proposition 1 (Azzalini and Capitanio (1999)) Let X be a vector such

that X ∼ SNp(ξ,Ω,α), with Z = ω−1(X − ξ) its normalized vector. There

exist a linear transform U = A∗Z such that U ∼ SNp(Ip,α
∗), where Ip is

the p-dimensional identity matrix and α∗ is a skewness vector with at most

one non-zero component. The density function of U is given by

f(u;α∗, Ip) = 2

p
∏

i=1

φ(ui)Φ(α
∗
1u1), (3)
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(a) α′ = (0, 0)
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(b) α′ = (1, 1)
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(c) α′ = (2, 2)
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(d) α′ = (2,−2)

Fig. 1: Density functions of bivariate SN vectors, with location ξ = (0, 0), scale
matrix Ω = I2, for different shape vectors.

where α∗
1 = (α′Ω̄α)1/2 is the only non-zero component of α∗ and φ denotes

the density function of a N(0, 1) random variable.

The matrix A∗ is given by A∗ = (C−1P )′ where C is a matrix verifying
that C ′C = Ω̄, and P is an orthogonal matrix whose first column lies in the
direction of Cα (Azzalini and Capitanio 1999). The transformed vector U is
known as the canonical transformation of the SN model; it can be found using
the constructive procedure introduced by Capitanio (2012) as follows.

Proposition 2 (Capitanio (2012)) Let X be a p-dimensional vector such

that X ∼ SNp(ξ,Ω,α) and let us define M = Ω−1/2ΣΩ−1/2, with Ω1/2 the

unique square root of Ω and Σ the covariance matrix of X. If Q and Λ denote

the orthogonal and diagonal matrices that provide the spectral decomposition

of M then the transformation U = H ′(X − ξ), with H = Ω−1/2Q, gives the

canonical form of X.

The canonical transformation of Proposition 2 maps the original vector X
into a vector U whose components are mutually independent scalar variables
with one variable, say the first one U1, absorbing all the skewness ofX into the
quantity α∗

1. Hence U can be interpreted as a representation of the SN vector
that isolates the multivariate asymmetry into a single component. Moreover,
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by trivial implication, we see that the linear combination U1 = a′
1Z, where

a′
1 denotes the first row of the matrix H , is a random variable such that
U1 ∼ SN1(0, 1, α

∗
1).

The implications of the canonical form are illustrated in Figure 2 for a

vector X ∼ SN2(ξ,Ω,α) with ξ = (0, 0), α′ = (3, 3) and Ω =

(

3 1
1 2

)

.

The contour plots of the original SN vector and its canonical form show how
all the multivariate skewness gets summarized into the skewness of the first
canonical variate, whereas the second canonical variate follows a standard
normal distribution.

The canonical representation has highlighted an appealing property of the
SN family, which has implications in model-based projection pursuit: it turns
out that the projection yielding the maximum skewness lies on the direction
of vector ω−1α (Loperfido 2010), which is also proportional to the vector a1

that yields the skewed component of the canonical form (Capitanio 2012). This
finding and its connection with Mardia’s and Malkovich-Afifi’s skewness has
allowed to derive their analytical expressions for the family of SN distributions
(Loperfido 2010). Some related work pointing out to the same issue for the
multivariate skew-t family, a model that incorporates both skewness and kur-
tosis parameters to handle non-normality, has been launched more recently by
Arevalillo and Navarro (2015).

3 Main contribution

The canonical representation of Proposition 1 has received increasingly at-
tention in the literature due to its appealing theoretical and applied implica-
tions (Loperfido 2010; Capitanio 2012; Balakrishnan et al 2014; Arevalillo and
Navarro 2015). In this paper we use it to propose a new skewness stochastic
ordering between SN vectors.

3.1 A new skewness ordering for SN vectors

A new skewness stochastic ordering is proposed on the basis of the following
simple idea: the result established by Proposition 1 is utilized to define an
ordering between SN vectors through the convex transform ordering (Van Zwet
1964) of the skewed components in their canonical representations; this idea
is quite natural and obeys to the fact that all the skewness of the SN vector
is absorbed by a single component of the canonical transformation.

The next statement formalizes the definition of the skewness stochastic
ordering for vectors that follow a SN distribution.

Definition 3 (Canonical convex transform order) Let X and Y be two
p-dimensional random vectors, with distribution functions FX and FY , such
that X ∼ SNp(ξX ,ΩX ,αX) and Y ∼ SNp(ξY ,ΩY ,αY ) with normalized
random vectors: ZX = ω−1

X (X − ξX) and ZY = ω−1
Y (Y − ξY ). Let us denote
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Fig. 2: Contour plots for the bivariate SN distribution (top left) and for the
canonical transform (bottom right), as well as density functions for the first
(top right) and second (bottom left) canonical variates.

by U1X = a′
1XZX and U1Y = a′

1Y ZY the skewed components of the canoni-
cal representations (3) of ZX and ZY , having distribution functions FU1X

and
FU1Y

. We say that FX is less skewed to the right than FY in the canonical
convex transform order, and we denote it by FX ≤cc FY or by X ≤cc Y ,
when FU1X

≤c FU1Y
.

Figure 3 displays the contour plots for bidimensional SN vectors with com-

mon location ξ = (0, 0) and scale matrix Ω =

(

1 0.5
0.5 1

)

; their shape vectors

are given by α′ = (0, 0), α′ = (−1, 1) and α′ = (1, 1) respectively. It is worth-
while noting that the distribution functions of their canonical variates are
stochastically dominated with respect to the slant parameter α∗

1 = (α′Ω̄α)1/2

of their scalar SN canonical variates. This is not an unexpected phenomenon;
it arises within the general framework of distributions generated by a pertur-
bation scheme of a symmetric density function when certain mild conditions
are fulfilled for the perturbation (Azzalini and Regoli 2012; Propositions 4-6).
Although the dominance between distribution functions provides a simple way
to introduce a stochastic ordering, our approach focuses on skewness compar-
isons which resort to the convex transform order of Definition 3.
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Fig. 3: Contour plots for three bidimensional SN distributions with shape
parameters α′ = (0, 0) (solid line), α′ = (−1, 1) (dotted line) and α′ = (1, 1)
(dashed line), along with the cumulative distribution functions of their first
canonical variates (bottom right plots).

On the other hand, we can easily see the close connection between the
canonical convex transform order ≤cc and the multivariate convex transform
order ≤mc of the canonical forms derived from the SN vectors. The following
proposition states it explicitly.

Proposition 3 Let X and Y be two p-dimensional random vectors such that

X ∼ SNp(ξX ,ΩX ,αX) and Y ∼ SNp(ξY ,ΩY ,αY ) with normalized random

vectors ZX = ω−1
X (X − ξX) and ZY = ω−1

Y (Y − ξY ). Let us denote by

UX = A∗
XZX and UY = A∗

Y ZY their respective canonical transformations.

Then X ≤cc Y if and only if UX ≤mc UY .

Proof.
It is straightforward from Definition 2, the independence of the components

of vectors UX and UY , and the result of Proposition 1. �
Note that the multivariate convex transform order shown in Proposition 3

follows from the fact that both canonical forms share the copula of indepen-
dence (Belzunce et al 2015). Also note that the result provides a characteriza-
tion for the comparison of skewness of two SN vectors in terms of the mc order.
Moreover, in accordance to Definition 3, a natural way to make sense of the
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idea “ being an indicator of multivariate skewness ” can be described as follows:
since the skewed component of the canonical form absorbs all the asymmetry
of the SN vector, it then stands to reason to say that a functional S(·) is an
indicator of multivariate skewness if it is consistent with the canonical convex
transform order. This fact can be formalized as follows.

Definition 4 (Indicators of multivariate skewness) Let X and Y be
p-dimensional SN random vectors with distribution functions FX and FY . We
say that a measure S(·) is an indicator of multivariate skewness when it fulfills
that if FX ≤cc FY then S(FX) ≤ S(FY ).

For a SNp(ξ,Ω,α) vector X it is straightforward to show that the quan-
tity α∗

1 = (α′Ω̄α)1/2 is an indicator of multivariate skewness in the sense of
Definition 4. This assertion can be proved using a simple argument: we know
that α∗

1 is the shape parameter of the only skewed component in the canoni-
cal form of X, which is a SN1(0, 1, α

∗
1) scalar variable; it can be shown that

α∗
1 is a one to one function of its standardized third order central moment,

which in turn preserves the convex transform order (Van Zwet 1964; Oja 1981;
MacGillivray 1986).

We can also prove the reciprocal, which implies that the ordering ≤cc is a
total multivariate stochastic order for the family of SN multivariate distribu-
tions. The following proposition is essential for the proof.

Proposition 4 Let X and Y be two SN scalar variables having distribution

functions F and G such that X ∼ SN1(0, 1, α1) and Y ∼ SN1(0, 1, α2) with

0 < α1 < α2. Then it is satisfied that F ≤c G.

Proof.

Since F andG are the distribution functions of SN1(0, 1, α1) and SN1(0, 1, α2)
scalar variables, we know that

F (x) = Φ(x) − 2T (x, α1) and G(x) = Φ(x)− 2T (x, α2),

where T (x, λ) = φ(x)

∫ λ

0

φ(xz)

1 + z2
dz is the Owen’s T function.

We must prove that H(x) = G−1(F (x)) is a convex function. This is equiv-
alent to prove the condition that, for any straight line a + bx, the function
H(x)− (a+ bx) has at most two zeros and whenever it has two zeros it is neg-
ative between them. This condition is straightforward for b ≤ 0 because H is
a non decreasing function such that lim

x→−∞
H(x) = −∞ and lim

x→∞
H(x) = ∞.

In order to prove the previous condition when b > 0, we will define the
function D(x) = Φ(x)− 2T (x, α1)−Φ(a+ bx) + 2T (a+ bx, α2) which has the
same number of zeros as H(x)− (a+ bx). We know that

D′(x) = 2bφ(a+ bx)Φ(α2(a+ bx))
[

em(x) − 1
]

,
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with m(x) the function defined in Lemma 1. Then the number of zeros of m
will give the monotone behavior of D which in turn will allow to determine its
sign pattern, just taking into account the limits:

lim
x→−∞

D(x) = lim
x→∞

D(x) = 0. (4)

Now, we distinguish the following cases:

(i) 0 < b <

√

α2

1
+1

α2

2
+1

. Lemma 1 shows thatD′(x) has two zeros and sign pattern

−+−; so function D has a decreasing - increasing - decreasing monotone
behavior. In addition, taking into account that 0 < α1 < α2 we can assert

that D(x) > 0 when x >
a

1− b
. This fact, together with the monotone

behavior of D and the limits in (4), will necessarily imply that D has only
one zero and sign pattern −+.

(ii)
√

α2

1
+1

α2

2
+1

< b < 1 . Once again we can observe that D(x) > 0 when x >
a

1− b
. In this case we must distinguish two situations: firstly, if m has

three zeros —see item (ii) in Lemma 1— D′ will follow the sign pattern
+ − +− and consequently D has an increasing - decreasing- increasing
- decreasing monotone behavior which, taking into account (4), leads to
either a non-negative D or to a +−+ sign pattern so that D has two zeros
and it is negative between them. Secondly, in case m has only one zero
—see once again item (ii) in Lemma 1— then D will follow and increasing
- decreasing monotone behavior pattern and, taking into account (4), we
obtain a non-negative D.

(iii) b > 1 . In this case we can see that D(x) > 0 when x <
a

1− b
, and from

item (iii) in the previous lemma, we can state that D has an increasing -
decreasing - increasing pattern. This monotone behavior, the limits in (4)

and the fact that D(x) > 0 when x <
a

1− b
imply that D has one zero and

sign pattern +−.
(iv) b = 1 , a > 0 . From item (iv) in Lemma 1 we can conclude that D has

an increasing - decreasing - increasing monotone behavior which, together
with the limits in (4), will imply that it has only one zero and follows the
sign pattern +−.

(v) b = 1 , a < 0 . In this case, taking into account item (v) in Lemma 1, we see
that D′ has only one zero; therefore, D follows an increasing - decreasing
pattern. This monotone behavior and (4) imply that D is non-negative.

(vi) b =
√

α2

1
+1

α2

2
+1
, a > 0 . Taking into account item (vi) of Lemma 1, we obtain

a decreasing - increasing - decreasing monotone behavior pattern for the

function D, with D(x) > 0 when x >
a

1−
√

α2

1
+1

α2

2
+1

. Both facts, along with

the limits in (4), yield a function D with one zero and sign pattern −+.
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(vii) b =
√

α2

1
+1

α2

2
+1
, a < 0 . In this case, taking into account (vii) of Lemma 1 as

well as the argument used to prove (ii) of this lemma, we can conclude that
either D is non-negative or it has two zeros, being negative between them.

All the alternatives from (i) to (vii) have resulted in a function D with at
most two zeros, and when it has two zeros D is negative between them. This
fact implies the convexity of the function H and proves that 0 < α1 < α2 is a
sufficient condition for the convex ordering. �

The next theorem states that the canonical convex transform order is a
total order for the family of multivariate SN distributions.

Theorem 1 Let us consider X and Y vectors, with distribution functions FX

and FY , such that X ∼ SNp(ξX ,ΩX ,αX) and Y ∼ SNp(ξY ,ΩY ,αY ), and
let ZX = ω−1

X (X−ξX) and ZY = ω−1
Y (Y −ξY ) be their standardized versions

with Ω̄X = ω−1
X ΩXω−1

X and Ω̄Y = ω−1
Y ΩY ω−1

Y correlation matrices. Then

it is satisfied that FX ≤cc FY if and only if S(FX) ≤ S(FY ), where S(FX) =
(α′

XΩ̄XαX)1/2 and S(FY ) = (α′

Y Ω̄Y αY )1/2.

Proof.
As we have just mentioned the implication FX ≤cc FY ⇒ S(FX) ≤ S(FY )

is straightforward. For the reciprocal implication, taking into account Proposi-
tions 1 and 4, we conclude that FU1X

≤c FU1Y
, where FU1

and FU2
denote the

distribution functions of the SN scalar variates of the corresponding canonical
representations; consequently, FX ≤cc FY as we aimed to prove. �

Next, we are going to review several indices of non-normality in the SN
model and will show how they can be interpreted as indicators of skewness in
accordance to the result established by Theorem 1.

3.2 Non-normality measures and the canonical convex ordering

A classical skewness measure is Mardia’s index (Mardia 1970). It is given by

γM1,p = E[(X − µ)′Σ−1(Y − µ)]3, (5)

where X and Y are independent and identically distributed random vectors
with mean vector µ and covariance matrix Σ.

Another multivariate skewness measure capturing the directional nature of
the concept was proposed by Malkovich and Afifi (1973). It is defined by

γD1,p = sup
c∈R

p
0

γ1(c
′X), (6)

where Rp
0 is the set of all non-null p-dimensional vectors, with γ1 the standard

skewness index for scalar variables given by γ1(Y ) = E2

(

Y − µY

σY

)3

.

We show that both indices, γM1,p and γ
D
1,p, are skewness measures compatible

with the canonical convex ordering for SN vectors.
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Corollary 1 Let X be a vector such that X ∼ SNp(ξ,Ω,α). Then γM1,p and

γD1,p are indicators of multivariate skewness in the sense of Definition 4.

Proof.
The result for Mardia’s measure is straightforward because

γM1,p = 2(4− π)2
[

α′Ω̄α

π + (π − 2)α′Ω̄α

]3

agrees with the standard skewness index of the skewed scalar component in
the canonical form of X (Azzalini and Capitanio 1999; Capitanio 2012). In
order to prove the statement of the corollary for γD1,p, it will suffice to recall

that γD1,p = γM1,p for the SN multivariate distribution (Loperfido 2010). �
Another way to assess departures from normality is resorting to the use

of measures based on distances between distributions. A well- known distance
between vectors X and Y is the J-divergence, which is defined by

J(X ,Y ) = DKL(X ,Y ) +DKL(Y ,X), (7)

where DKL denotes the so called Kullback-Leibler divergence:

DKL(X ,Y ) =

∫

X
f(w) ln

f(w)

g(w)
dw (8)

with f and g the probability density functions of X and Y .
The next statement shows how to it can be interpreted as an indicator of

multivariate skewness compatible with the canonical convex ordering.

Corollary 2 Let X and X0 be random vectors such that X ∼ SNp(ξ,Ω,α)
and X0 ∼ Np(ξ,Ω). Then the J-divergence, J(X,X0), between X and X0

is an indicator of multivariate skewness in the sense of Definition 4.

Proof.
From Contreras-Reyes and Arellano-Valle (2012) we know that

J(X ,X0) = E[logΦ(α∗
1W )]− E[logΦ(α∗

1W0)],

where W is a scalar variable such that W ∼ SN1(0, 1, α
∗
1) and W0 is another

scalar variable such that W0 ∼ N(0, 1). Now, some simple calculus leads to

J(X ,X0) =

∫ ∞

0

[2Φ(α∗
1w) − 1] log

(

1− Φ(α∗
1w)

Φ(α∗
1w)

)

φ(w) dw.

Taking into account that the quantity above is non decreasing with respect to
α∗
1 (Contreras-Reyes and Arellano-Valle 2012), we can conclude the result of

the statement. �
Another measure that quantifies the non-normality of a multivariate ran-

dom vector X is the Negentropy (Contreras-Reyes and Arellano-Valle 2012),
which is defined by
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HN (X) = H(X0)−H(X), (9)

with H(X) the entropy of X and H(X0) the entropy of a normal random
vector having the same covariance matrix as X.

In the next corollary we show that the Negentropy is a non-normality mea-
sure compatible with the proposed canonical convex order. The key issue for
proving the corollary is found in writing the Negentropy HN as a function of
the slant parameter α∗

1.

Corollary 3 Let X be a vector such that X ∼ SNp(ξ,Ω,α). The Negentropy

HN (X) is also an indicator of multivariate skewness.

Proof.
From Azzalini and Capitanio (1999; 2014) we know that the covariance ma-

trix of X is given by Σ = var(X) = Ω− 2

π
ωδδ′ω, where δ =

Ω̄α

(1 +α′Ω̄α)1/2
.

Then some simple calculus shows that H(X0) in (9) is

H(X0) =
1

2
log{(2πe)p|Σ|} =

1

2
log{(2πe)p|Ω|}+ 1

2
log

(

1− 2

π

α∗2
1

1 + α∗2
1

)

.

On the other hand, using the expression of the density function (1) of the
SN distribution, the entropy of vector X can be calculated as follows:

H(X) = −E{f(X; ξ,α,Ω)} =
1

2
[log{(2π)p|Ω|}+ E{(X − ξ)′Ω−1(X − ξ)}]

−E{log{2Φ(Y )}} =
1

2
log{(2πe)p|Ω|} − E{log{2Φ(Y )}},

with Y = α′ω−1(X − ξ) a scalar variable. Taking into account Azzalini and
Capitanio (2014; Section 5.1.6) we can assert that Y ∼ SN1(0, α

∗2
1 , α

∗
1) or

equivalently Y = α∗
1W with W ∼ SN1(0, 1, α

∗
1); consequently

H(X) =
1

2
log{(2πe)p|Ω|} − E{log{2Φ(α∗

1W )}},

from which we get

HN (X) = H(X0)−H(X) =
1

2
log

(

1− 2

π

α∗2
1

1 + α∗2
1

)

+ E{log{2Φ(α∗
1W )}}.

This is a non decreasing function of α∗
1 (see Figure 4 obtained by simula-

tion), which implies the assertion of the statement. �
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Fig. 4: Plot of HN (X) against the slant parameter for α∗
1 ∈ [0, 100]

4 Examples

Our findings have shown that the slant parameter α∗2
1 = α′Ω̄α is an indicator

that can be used to make stochastic skewness comparisons between vectors
that follow a SN distribution. This section provides some examples, using
both artificial and real data, that illustrate the theoretical results.

4.1 Simulation examples with artificial data

It is well-known that Mardia’s and Malkovich-Afifi’s measures agree in the SN
model. Their relationship with the slant parameter α∗2

1 = α′Ω̄α, established
in Corollary 1, points to two methods that would allow to carry out stochas-
tic skewness comparisons: the first method estimates de maximal skewness
projection and calculates Malkovich-Afifi’s index accordingly. Alternatively,
Mardia index (5) can be estimated and, once again, we can use it for stochas-
tic comparisons of SN vectors. We call these procedures MaxSkew and Mardia

methods. Both alternatives can be implemented using standard functions of
the R packages MaxSkew (Franceschini and Loperfido 2016), which uses the
computational approach of Loperfido (2013), and psych (Revelle 2016). The
following examples with artificial data show the performance of both methods
for two specific parameterizations of the SN model.

4.1.1 SN model with a Permutation Symmetric scale matrix

Let us consider a vector such that X ∼ SNp(0,Ω,α) with Ω a Permutation
Symmetric scale matrix given by Ω = Ω̄ = (ωi,j)1≤i,j≤p, where ωi,j = ωj,i = ρ

for 1 ≤ i < j ≤ p and ωi,i = 1 for 1 ≤ i ≤ p, with ρ > − 1
p−1 in order to have

a positive definite matrix. For simplicity we are taking ρ > 0.

The shape parameter α leading to the most skewed SN multivariate dis-
tribution with respect to the ordering ≤cc lies in the direction that maximizes
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the quantity α∗2
1 = α′Ω̄α. In this case it lies in the direction of the normal-

ized eigenvector e= 1√
p1p×1, where 1p×1 denotes a vector whose components

are all equal to 1. Then the maximum for α∗2
1 is given by the largest eigen-

value: e′Ω̄e = 1+(p−1)ρ (Main et al 2015), which in turn gives the following
Mardia’s and Malkovich-Afifi’s skewness coefficients:

γD1,p = γM1,p = 2(4− π)2
[

1 + (p− 1)ρ

π + (π − 2)(1 + (p− 1)ρ)

]3

. (10)

In order to compare MaxSkew and Mardia methods, we carry out the fol-
lowing simulation experiment: a total of 1000 samples are drawn from the a
random vector X ∼ SNp(0,Ω, e) for sample sizes n = 100, 250, 500, dimen-
sions p = 2, 5, 10 and ρ = 0.2, 0.5, 0.9. Then (10) is estimated by both proce-
dures for each sample and the Mean Squared Error (MSE) is calculated over
the one thousand samples. Note that, for our simulations, we have taken the
most skewed vector among the family of SN distributions with a Permutation
Symmetric scale matrix.

n = 100 n = 250 n = 500

p

ρ
0.2 0.5 0.9 0.2 0.5 0.9 0.2 0.5 0.9

2 0.05 0.05 0.06 0.01 0.01 0.01 0.003 0.004 0.005
5 0.24 0.25 0.22 0.04 0.04 0.05 0.01 0.01 0.02
10 1.00 1.10 0.83 0.10 0.11 0.13 0.02 0.04 0.05

Table 1: MSE obtained by the MaxSkew method.

n = 100 n = 250 n = 500

p

ρ
0.2 0.5 0.9 0.2 0.5 0.9 0.2 0.5 0.9

2 0.08 0.09 0.10 0.02 0.02 0.02 0.01 0.01 0.01
5 4.08 4.18 4.04 0.72 0.74 0.73 0.19 0.19 0.19
10 154.68 153.72 152.69 26.55 26.51 26.45 6.86 6.84 6.86

Table 2: MSE obtained by Mardia method.

4.1.2 SN model with a Toeplitz scale matrix

Assume that X follows a SN distribution, X ∼ SNp(0,Ω,α), with scale
matrix a Kac-Murdock-Szegö symmetric Toeplitz matrix defined as follows:
Ω = Ω̄ = (ωi,j)1≤i,j≤p where ωi,j = ρ|i−j| : 1 ≤ i ≤ j ≤ p with ρ an
autoregressive parameter, which we are going to assume to be non-negative.

In this example we are not aware of a closed form for the direction yield-
ing the maximum of α∗2

1 = α′Ω̄α, but it can calculated numerically at
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each scenario of the following simulation experiment. We have drawn 1000
samples from a SN vector having a Toeplitz scale matrix for sample sizes
n = 100, 250, 500, dimensions p = 2, 5, 10 and ρ = 0.2, 0.5, 0.9. For every p and
ρ we find the vector e solving the problem: argmax

α:||α||=1

(α′Ω̄α), so that the most

skewed vector in the ordering ≤cc is found. Then we calculate γD1,p and γM1,p
using Corollary 1.

We have applied both MaxSkew and Mardia methods to estimate γD1,p =

γM1,p; the MSE of the estimations is calculated over the one thousand samples
in all the scenarios under consideration. The results show that once again that
MaxSkew method outperforms Mardia.

n = 100 n = 250 n = 500

p

ρ
0.2 0.5 0.9 0.2 0.5 0.9 0.2 0.5 0.9

2 0.05 0.05 0.06 0.01 0.01 0.01 0.003 0.003 0.005
5 0.27 0.23 0.26 0.03 0.04 0.05 0.01 0.01 0.02
10 1.08 1.03 0.88 0.10 0.09 0.12 0.02 0.02 0.05

Table 3: MSE obtained by the MaxSkew method.

n = 100 n = 250 n = 500

p

ρ
0.2 0.5 0.9 0.2 0.5 0.9 0.2 0.5 0.9

2 0.09 0.09 0.10 0.02 0.02 0.02 0.005 0.006 0.007
5 4.14 4.06 4.18 0.72 0.73 0.73 0.18 0.19 0.19
10 155.18 153.73 153.31 26.65 26.83 26.50 6.86 6.88 6.95

Table 4: MSE obtained by Mardia method.

4.2 An example with real data

The results of the simulation study have shown the superiority of the MaxSkew

method. Here, we apply it to real data in order to estimate γD1,p = γM1,p. so that
skewness differences in the ordering ≤cc may be uncovered.

Data with biomedical measures were collected for 202 atheltes, 102 male
and 100 female, by the Australian Institute of Sport (AIS) (Cook and Weis-
berg 2009). Let us consider a vector X = (BMI, SSF,Bfat, LBM) whose
components denote the body mass index, the sum of skin folds, the body fat
percentage and the lean body mass. The SN distribution has been previously
reported to be a good model for fitting this data (Azzalini and Capitanio
1999).

Figure 5 displays the bivariate scatterplots of the variables in X for males
and females. The contour plots of the fitted bivariate SN models highlight
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differences in asymmetry between both groups; perhaps the most remarkable
difference corresponds to the pair (Bfat, LBM). We quantify the observed
differences by application of the MaxSkew method to estimate γD1,p = γM1,p
for all the bivariate combinations in both groups. The results, summarized in
Table 5, confirm the visual inspection. Overall, we can conclude that pairings
of variables for males are more skewed with respect to ≤cc than for females.
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Fig. 5: Bivariate scatterplots of variables in X for males (top) and females
(bottom) along with the contour levels of the fitted SN distribution.
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BMI BMI BMI SSF SSF Bfat

SFF Bfat LBM Bfat LBM LBM

Males 1.96 2.54 2.59 2.46 2.26 2.64
Females 1.07 1.35 0.63 1.67 1.06 0.47

Table 5: Estimates of γD1,p = γM1,p obtained by the MaxSkew method.

5 Summary and concluding remarks

In this paper we have addressed the problem of the skewness stochastic com-
parison between vectors that follow a multivariate SN distribution. A new
skewness stochastic ordering has been proposed and its relationship with some
classical measures that quantify departures from normality in the SN model
has been studied. The new ordering is defined using the well-known convex
transform ordering between the corresponding skewed scalar components in
the canonical form of the vectors; this is a quite natural way for defining it,
since all the multivariate skewness of the SN model is absorbed by such a
skewed component. An extension of the convex transform order to the mul-
tivariate setting has been recently introduced by Belzunce et al (2015); we
revisited it in the context of the canonical transformation of SN vectors and
studied its connection with our skewness stochastic ordering.

We have also proved that the canonical convex transform order is a total
order for the family of multivariate SN distributions. In addition, for a specific
parametrization of the SN model, having location vector ξ and scale matrix
Ω, the most skewed vector with respect to the ordering ≤cc can be obtained
theoretically by finding the shape vectorα that maximizes the slant parameter,
α′Ω̄α, of the only skewed component in the canonical representation.

Since the proposed stochastic ordering relies on the canonical representa-
tion of the SN vector and this canonical form has already been established for
scale mixtures of skew-normal (SMSN) distributions (Capitanio 2012), future
research would include the extension of the proposed ordering to the more
general class of SMSN vectors. We believe that a program for such extension
should begin by exploring the SMSN multivariate family due to the appeal-
ing form of its stochastic representation: for a vector X following a SMSN
distribution it is given by

X = ξ + ωSZ,

where ξ is a location vector, ω is a scale diagonal matrix with non-negative
entries, Z is a SN vector with density function (2), and S is a non-negative
scalar variable, independent of Z, that injects an extra tail-weight parameter
into the multivariate model (Capitanio 2012; Azzalini and Capitanio 2014).

The extension would involve an analogous approach, following the path of
Definitions 3 and 4, that may ensure the validity of the results established in
this paper for SN vectors. Deep understanding of the distributional form of
the SMSN family is needed in order to address the issue.
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Another alternative to generalize the results even more would explore wider
families of multivariate skewed distributions such as the skew-elliptical family
(Branco and Dey 2001; Genton 2004; Azzalini and Capitanio 2014) or differ-
ent forms of skewed elliptical-based multivariate distributions (Azzalini and
Capitanio 2003; Genton and Loperfido 2005; Arellano-valle and Genton 2010;
Landsman et al 2017). To the best of our knowledge, a well-established canon-
ical representation for multivariate distributions within these families is an
open issue that should be addressed before moving forward.

Finally, we want to stress the potential use of Theorem 1 for making infer-
ence. Since it establishes that the slant parameter of the first canonical variate
is an indicator to assess the cc ordering, we argue that any inferential proce-
dure should rely on the estimation of such quantity. Currently the MaxSkew

(Franceschini and Loperfido 2016) and sn (Azzalini 2016) R packages provide
computational alternatives to address the issue in future research advances.

Appendix

Lemma 1 (Sign patterns) Let us consider α1 and α2 non-negative param-

eters such that 0 < α1 < α2. The function m defined by

m(x) = −x
2

2
+

(a+ bx)2

2
+ logΦ(α1x)− logΦ(α2(a+ bx))− log b : x ∈ R,

with b > 0, has one, two or three zeros.

Proof.
We know that em(x) is the quotient of the densities of two scalar random

variables S and Z such that S ∼ SN1(0, 1, α1) and Z =
T − a

b
with T ∼

SN1(0, 1, α2). Therefore, we can assert that the number of zeros of the function
m is at least one. Since m can be rewritten as m(x) = m1(x) −m2(x), with

m1(x) = −x
2

2
+logΦ(α1x) andm2(x) = − (a+ bx)2

2
+logΦ(α2(a+bx))+log b,

the number of intersections between m1 and m2 gives the number of zeros of
m. We now examine the behavior of both functions.

lim
x→−∞

m1(x) = lim
x→∞

m1(x) = −∞ and m1(x) < 0 , x ∈ R. (11)

The first derivative of m1 is given by

m′
1(x) = −x+ α1φ(α1x)

Φ(α1x)
= −x+

α1
1

φ(α1x)
− r(α1x)

, with r(t) =
1− Φ(t)

φ(t)

for t > 0 the well-known Mills’ ratio, which is a convex and strictly decreasing
function Baricz (2008). Therefore, when x > 0 we get
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m′′
1(x) = −1− α1

( 1
φ(α1x)

− r(α1x))2

(

α2
1x

φ(α1x)
− α1r

′(α1x)

)

< 0.

When x < 0, taking into account that m′
1(x) = −x +

α1φ(α1x)

1− Φ(−α1x)
=

−x+ α1

r(−α1x)
we obtain once again that

m′′
1(x) = −1 +

α2
1

r(−α1x)2
r′(−α1x) < 0.

Therefore, m1 is negative concave function having a unique maximum.
On the other hand, for m2 it is straightforward to show that, as long b ≤ 1,

we have

lim
x→−∞

m2(x) = lim
x→∞

m2(x) = −∞ with m2(x) < 0 , x ∈ R. (12)

Now, using an analogous argument as previously for m1 we conclude that
m2 is a negative concave function with a unique maximum provided that b ≤ 1.
Similarly, when b > 1 we can see that m2 is a concave function with two zeros,
being non-negative between the zeros.

Next, we study the asymptotic relative positions of m1 and m2, as well as
the limit behavior of the function m.

Firstly, we calculate the limit

lim
x→∞

m(x) =
a2

2
− log b + lim

x→∞

(

(b2 − 1)x2

2
+ abx

)

=

=

{

−∞ if b < 1 or if b = 1 and a < 0

∞ if b > 1 or if b = 1 and a > 0
. (13)

Secondly, we need the limit

lim
x→−∞

m(x) =
a2

2
−log b+ lim

x→−∞
x2

[

b2 − 1

2
+
ab

x
+

1

x2
log

(

Φ(α1x)

Φ(α2(a+ bx))

)]

.

The calculus of this limit requires looking into some details about the
asymptotic behavior of the last summand in the expression above. We sketch
the computations as follows: taking into account that

lim
x→−∞

Φ(α1x)

Φ(α2(a+ bx))
=

α1

α2b
lim

x→−∞
φ(α1x)

φ(α2(a+ bx))

=
α1

α2b
exp

{

lim
x→−∞

(

−α
2
1x

2

2
+
α2
2(a+ bx)2

2

)}

= 0 or ∞,
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depending on whether the limit of the exponential equals −∞ or ∞, we would

obtain that lim
x→−∞

log

(

Φ(α1x)

Φ(α2(a+ bx))

)

= ±∞. It then stands to reason the

application of L’hopital’s rule in order to get

lim
x→−∞

1

x2
log

(

Φ(α1x)

Φ(α2(a+ bx))

)

= lim
x→−∞

1

2x

[

α1φ(α1x)

Φ(α1x)
− bα2φ(α2(a+ bx))

Φ(α2(a+ bx))

]

= lim
x→−∞

1

2x

[

bα2
2(a+ bx)− α2

1x
]

=
b2α2

2 − α2
1

2
,

where the two step in the second line above has been carried out using the
relation between the quotients in the square brackets and the Mills’ ratio
together with the asymptotic expansion of the Mills’ ratio from Abramowitz
and Stegun (1964; (26.2.12)). Consequently,

lim
x→−∞

m(x) =
a2

2
− log b+ lim

x→−∞
x2

(

b2 − 1

2
+
ab

x
+
b2α2

2 − α2
1

2

)

whose result, that depends on the signs of the difference b2(α2
2 +1)− (α2

1 +1)
and a, can be established as follows:

lim
x→−∞

m(x) =







−∞ if b <
√

α2

1
+1

α2

2
+1

or if b =
√

α2

1
+1

α2

2
+1

and a > 0

∞ if b >
√

α2

1
+1

α2

2
+1

or if b =
√

α2

1
+1

α2

2
+1

and a < 0
(14)

The limits (13) and (14) along with the fact
√

α2

1
+1

α2

2
+1

< 1, resulting from

the condition of the statement, are suggesting the cases to be considered in
items (i)–(vii). For all of them we will take into account that both m1 and m2

are concave functions with a unique maximum.
Before studying the sign pattern of the function m in all these cases, let us

introduce some notation: the symbol − is used to denote negativity and the
symbol + is for positivity; for example, with the pattern −+ we denote that
a function is changing from negative to positive.

(i) 0 < b <

√

α2

1
+1

α2

2
+1

. In this case, taking into account the conclusions derived

in (13) and (14), we obtain: lim
x→−∞

m(x) = lim
x→∞

m(x) = −∞, which implies

that m1 and m2 have two intersection points and the function m has two
zeros with sign pattern −+−.

(ii)
√

α2

1
+1

α2

2
+1

< b < 1 . Now, the results obtained in (13) and (14) lead to the

following limits: lim
x→−∞

m(x) = ∞ and lim
x→∞

m(x) = −∞, from which we

can deduce that m1 and m2 may intersect once or three times, depending
on the values of a. Hence, m may have one or three zeros with respective
sign patterns +− and +−+−.



Stochastic ordering based on the canonical transformation 23

(iii) b > 1 . In this case from (13) and (14) we obtain: lim
x→−∞

m(x) = lim
x→∞

m(x) =

∞, which implies that m1 and m2 will intersect one each other twice and
m has two zeros with sign pattern +−+.

(iv) b = 1 , a > 0 . For this case once again lim
x→−∞

m(x) = lim
x→∞

m(x) = ∞ and

m will have two zeros with the same sign pattern as in (iii).
(v) b = 1 , a < 0 . This case leads leads to the same limits as those in item (ii):

lim
x→−∞

m(x) = ∞ and lim
x→∞

m(x) = −∞. However, in this case m has only

one zero, with +− sign pattern, due to the stochastic dominance of the
distribution functions of variables S and Z = T − a.

(vi) b =
√

α2

1
+1

α2

2
+1
, a > 0 . In this case m has the same limit behavior as in item

(i), so that it has two zeros with sign pattern −+−.

(vii) b =
√

α2

1
+1

α2

2
+1
, a < 0 . This case leads to the same limits for m as in item (ii)

so the function m may have one or three zeros which in turn yield the sign
patterns +− and +−+− respectively.

The conclusions derived in all these previous cases prove the statement of
the lemma. �
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