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Abstract. The multivariate exponential power is a useful distribution for modeling departures

from normality in data by means of a tail weight scalar parameter that regulates the non-
normality of the model. The incorporation of a shape asymmetry vector into the model serves

to account for potential asymmetries and gives rise to the multivariate skew exponential power

distribution. This work is aimed at revisiting the skew exponential power distribution taking
as a starting point its formulation as a scale mixture of skew-normal distributions. The paper

provides some highlights and theoretical insights on the role played by its parameters to assess

two complementary aspects of the multivariate non-normality such as directional asymmetry
and tail weight behavior regardless of the asymmetry; the intuition behind both issues relies on

well-known mathematical ideas about skewness maximization and convex transform stochastic

orderings.

1. Introduction

The exponential power (EP) distribution has an ancient history in statistics which dates back
to Subbotin’s pioneer work [42] with an early multivariate generalization introduced by De Simoni
[41], later on quoted by the follow-up [24]; it can also be considered as a particular case of the
Kotz-type family of distributions [31] as highlighted in [19, Section 3.2]. Unlike other non-normal
distributions, like for example the t distribution, the EP family has the advantage of including
distributions having heavier and lighter tails than the normal one with the normal model being
an intermediate distribution within the family. Due to its flexibility and wide scope, a lot of
research has been carried out since the aforementioned foundational works with contributions that
show its usefulness both in univariate [13, 14, 46, 1, 18, 25, 39, 45] and multivariate settings
[32, 22, 23, 35, 20], a matrix generalization of the model [40], its study in the context of the general
class of elliptically contoured distributions [21, 3, 30, 38], some caveats about its limitation to
remain closed under marginalization [27], as well as related variants to assess asymmetry [6, 2, 12]
and some other models under which this family can be considered [37, 38].

This paper adopts the approach of several of the aforementioned works [24, 19, 27, 21] to define
the multivariate EP distribution as follows: we say that an input vector X follows a p-dimensional
exponential power distribution with location vector ξ and full rank scale matrix Ω if its probability
density function (pdf) is given by

f(x; ξ,Ω, β) =
βΓ(p2 )

πp/2Γ( p
2β )2p/2β

| Ω |−1/2 exp

{
−1

2

[
(x− ξ)>Ω−1(x− ξ)

]β}
, (1.1)

x ∈ Rp, where β > 0 is a tail weight parameter accounting for the peakedness of the model.
The notation X ∼ EPp(ξ,Ω, β) is used to indicate that X has a distribution with pdf in (1.1).
Note that when β = 1 the EP vector has a multivariate normal distribution Np(ξ,Ω). Figure 1
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illustrates the differences of peakedness by visual comparison of the shapes of the bidimensional
normal (β = 1) and double exponential (β = 1/2) density functions.
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Figure 1. Probability density functions for the bivariate double exponential (left)
and normal (right) variables with location ξ = (0, 0) and scale matrix Ω = I2.

The skew exponential power (SEP) class arises when asymmetry is injected into a EP distri-
bution so that a skewed model is obtained as a result; some past work has addressed the issue
dealing with different variants of skewed EP distributions: see the works [6, 2, 12] or the alter-
native formulation as a scale mixture of skew-normal (SMSN) distributions [15, Section 3]. This
paper examines the multivariate SEP family from the latter representation, from which analytical
closed for expressions for moments can be obtained [16, 28], a relevant issue when addressing skew-
ness maximization. The paper is organized as follows: The next section gives some background
about the multivariate SN distribution and the SMSN representation of the SEP vector. Section
3 discusses the role played by the shape vector and the tail weight β as parameters that account
for the multivariate non-normality of the model; some novel insights regarding the assessment of
directional asymmetry, through the direction that yields the maximal skewness projection, as well
as the connection of the tail weight parameter with well established multivariate convex transform
stochastic orderings, are studied in order to enhance their interpretation in the assessment of the
multivariate non-normality. Finally, Section 4 recaps the main findings of the paper suggesting yet
unexplored ideas to advance progress towards future research directions.

2. The multivariate skew exponential power distribution

This section deals with some material aimed at presenting the SMSN formulation of the SEP
distribution. Firstly, some background about the SN distribution and its extension to the SMSN
family is provided; then the representation of the multivariate exponential power distribution
as a scale mixture of normal (SMN) distributions is recalled in order to introduce the SMSN
representation of the SEP model in a natural way.

2.1. The multivariate skew-normal and SMSN families. The multivariate skew-normal (SN)
distribution was introduced by [9] to regulate asymmetry departures from normality. Here, it is
adopted the notation of the original seminal works [9, 8] to define the pdf of a p-dimensional SN
vector with location vector ξ = (ξ1, . . . , ξp)

> and scale matrix Ω as follows:

f(x; ξ,α,Ω) = 2φp(x− ξ; Ω)Φ(α>ω−1(x− ξ)) : x ∈ Rp, (2.1)
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where φp(·; Ω) denotes the pdf of a p-dimensional normal variate with zero mean and covariance
matrix Ω, Φ is the distribution function of a standard N(0, 1) scalar variable, ω = diag(ω1, . . . , ωp)

is a scale diagonal matrix with non negative entries such that Ω = ω−1Ωω−1 is a correlation matrix
and α is a p-dimensional shape vector that regulates the asymmetry of the model. If α = 0 then
the pdf in (2.1) reduces to the density of a normal vector with mean vector ξ and covariance matrix
Ω. We use the notation X ∼ SNp(ξ,Ω,α) to indicate that X follows a p-dimensional skew-normal
distribution with pdf given by (2.1).

Note that the diagonal matrix ω can be written as ω = (Ω � Ip)1/2, where the symbol �
denotes the entry-wise matrix product. It also holds that X = ξ + ωZ, where Z is a normalized
multivariate skew-normal variable with pdf given by

f(z; 0,α,Ω) = 2φp(z; Ω)Φ(α>z). (2.2)

The normalized SN variate has a simple pdf and a tractable stochastic representation which
enables its extension to the wider SMSN family in a natural way [11, 16, 17] (with reference [17]
a posthumous reprint of [16]). This paper adopts the formulation from the aforementioned works
to define a SMSN vector as follows:

Definition 1. Let Z be a random vector such that Z ∼ SNp(0,Ω,α), with pdf (2.2), and let S
be a non negative scalar variable independent of Z. The random vector X = ξ + ωSZ, where ω
is a diagonal matrix with non negative entries, is said to follow a multivariate SMSN distribution.

We put X ∼ SMSNp(ξ,Ω,α, H), with H the distribution function of the mixing variable S

and Ω = ωΩω, to indicate that X follows a p-dimensiontal SMSN distribution. Note that when
H is degenerate at S = 1 then X becomes a SNp(ξ,Ω,α) vector.

2.2. The SMSN formulation of the skew exponential power distribution. The SMSN
distribution reduces to a scale mixture of normal distributions when the shape vector is equal to
the p-dimensional zero vector, α = 0p, since the vector Z from Definition 1 has a p-dimensional

normal distribution, i.e. Z ∼ Np(0,Ω). We put X ∼ SMNp(ξ,Ω, H) to indicate that X follows
a SMN distribution. The multivariate EP distribution with pdf (1.1) admits a SMN formulation
as long as the tail weight parameter satisfies that 0 < β ≤ 1, as the following proposition shows
[23].

Proposition 2.1. Let X be a p-dimensional vector such that X ∼ EPp(ξ,Ω, β). Then it holds
that X ∼ SMNp(ξ,Ω, H) if and only if 0 < β ≤ 1. When β ∈ (0, 1) the distribution H of the
mixing variable is absolutely continuous and it has pdf given by

hβ(s) =
2
p
2 (1−

1
β )Γ(1 + p

2 )

Γ(1 + p
2β )

sp−3Sβ

(
1

2
s−2; 2−

1
β

)
: s > 0, (2.3)

where Sβ(·; 2−
1
β ) denotes the pdf of a non negative stable distribution having characteristic function

ϕ(t) = exp
{
− 1

2 |t|
βe−i

π
2 βsign(t)

}
. On the other hand, when β = 1 H is the degenerate distribution

at S = 1.

The result of Proposition 2.1 motivates to define the skew EP distribution as follows.

Definition 2. Let Z be a vector such that Z ∼ SNp(0,Ω,α) with pdf (2.2) and let S be a non
negative scalar variable, independent of Z, with the density function of Proposition 2.1 for any
β ∈ (0, 1]. If ω is a diagonal matrix with non-negative entries then we say that the random vector
X = ξ + ωSZ follows a multivariate skew exponential power distribution.
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We write X ∼ SEPp(ξ,Ω,α, β) to indicate that X follows a p-dimensional SEP distribution

with location ξ, scale matrix Ω = ωΩω, shape vector α and tail weight parameter β ∈ (0, 1]. It is
worthwhile noting that the SEP family of distributions belongs to the wider skew-elliptical class
of distributions [15] and it is also closed under full-rank affine transformations.

From the stochastic representation of the SEP vector in Definition 2, the mean vector and the
covariance matrix of the model are obtained by combining (6.18) of [11] with Lemma 2.1:

Lemma 2.1. Let X be a vector such that X ∼ SEPp(ξ,Ω,α, β). Then the moments of the mixing

variable are given by E(Sk) =
2k/2βΓ(p2 )Γ(p+k2β )

2k/2Γ( p
2β )Γ(p+k2 )

.

Proof. See the appendix. �

Then it can be shown in an easy way that

E(X) = ξ + E(S)

√
2

π
γ and var(X) = E(S2)Ω− E(S)2

2

π
γγ′

with E(S) = 2
1−β
2β

Γ(p2 )Γ(p+1
2β )

Γ( p
2β )Γ(p+1

2 )
, E(S2) = 2

1−β
β

2Γ(p+2
2β )

pΓ( p
2β )

, γ =
Ωη√

1 + η′Ωη
and η = ω−1α.

The stochastic representation also provides a natural strategy for the simulation of observations
from a p-dimensional SEP vector. Although the observations from the SN vector ωZ can be
obtained in an easy way using the functionalities of the sn R package [7], the non tractability of
the density function (2.3) makes the simulation of the mixing variable a difficult task. However,
for some specific tail weight parameters the mixing variable has a well-known distribution; in such
cases we can simulate observations from S: for example, when β = 1, the model becomes the
SN distribution, whereas β = 1/2 corresponds to the skewed version of the multivariate double
exponential distribution, with the mixing variable S following a generalized gamma distribution
[23]. Figure 2 displays the plots of the pdf for the skewed bivariate double exponential variate; it
illustrates the effect caused by the parametric vector α on the shape of the densities as well as the
contoured plots obtained after injection of asymmetry across different directions.

3. Insights on the multivariate non-normality of the model

This section examines the role played by the parameters of the SEP model to assess multivariate
non-normality; some ideas that elaborate on kurtosis and directional asymmetry are discussed next.

3.1. Assessment of kurtosis. First of all, we introduce some notation: Let X be SEP vector
such that X ∼ SEPp(ξ,Ω,α, β) and let us denote by X0 the vector obtained when α = 0p, where
0p is the p-dimensional zero vector so that X0 ∼ EPp(ξ,Ω, β). Let us consider the quadratic

forms QX and QX0
, associated to X and X0, given by QX = (X − ξ)>Ω−1(X − ξ) and QX0

=

(X0 − ξ)>Ω−1(X0 − ξ). Finally, let us denote by SEP the class of skew exponential power
distributions having a SMSN representation, which is given by

SEP = {X ∼ SEPp(ξ,Ω,α, β) : ξ ∈ Rp,Ω ∈ Rp × Rp,α ∈ Rp, 0 < β ≤ 1}.
Since X0 follows an elliptical distribution, the quadratic form QX0

has the same distribution as

the so called modular variable, R2
β , from the stochastic representation of the elliptical vector X0

[21]. On the other hand, as the SEP distribution belongs to the SMSN class —which in turn has
the perturbed symmetry structure of [11, Proposition 1.1] (see [12] page 872 or [11] page 172)—
then the SEP vector meets the modulation invariance property from [11, Proposition 1.4] or [10,

Proposition 2] so we can assert that QX and QX0
are equally distributed, i.e. QX

d
= QX0

. This



NEW INSIGHTS ON THE MULTIVARIATE SKEW EXPONENTIAL POWER DISTRIBUTION 5

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

0.00

0.01

0.02

0.03

0.04

0.05

x
y

(a) α> = (3, 0)
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(b) α> = (3, 3)
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(c) α> = (−3,−3)
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(d) α> = (3,−3)

Figure 2. Density functions of the bivariate double exponential (β = 1/2), with
location ξ = (0, 0) and scale matrix Ω = I2, for different shape vectors.

finding could also follow from [11, Corollary 5.9], also a consequence of the modulation invariance

property. Therefore, we conclude that QX
d
= QX0

d
= R2

β .
We now define a stochastic relation between SEP vectors as follows:

Definition 3. Let X1 and X2 be two vectors such that Xi ∼ SEPp(ξi,Ωi,αi, βi) : i = 1, 2. We
say that X1 and X2 are modular related, and we denote it by X1RX2, if their corresponding

quadratic forms QX1
and QX2

have the same distribution, i.e. QX1

d
= QX2

.

It can be shown that R defines an equivalence relation. The equivalence classes that form
the quotient space induced by R are characterized as follows: for each vector Y such that Y ∼
SEPp(ξ,Ω,α, β

∗), its equivalence class is the subset in SEP that contain the vectors fulfilling

QX
d
= QY ; it is given by

SEPβ∗ = {X ∼ SEPp(ξ,Ω,α, β) : ξ ∈ Rp,Ω ∈ Rp × Rp,α ∈ Rp, β = β∗}
so it holds that SEP =

⋃
β∈(0,1]

SEPβ . Hence, SEP can be partitioned in accordance to the tail

weight parameter, with each equivalence class being characterized by all the p-dimensional SEP
distributions having the same tail weight parameter. This is a revealing insight that motivates
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the kurtosis stochastic comparison of equivalence classes borrowing some ideas of previous works
[44, 3] on Van Zwet’s convex transform ordering [43]. The next definition formalizes this intuition.

Definition 4 (kurtosis ordering between SEP vectors). Let us consider X and Y two SEP vectors
such that X ∼ SEPp(ξ1,Ω1,α1, β1) and Y ∼ SEPp(ξ2,Ω2,α2, β2). We say that X is less than

or equal to Y in kurtosis, and we denote it by X ≤k Y , if and only if F−1QY
(FQX (r)) is convex for

r ≥ 0, where FQX and FQY are the distribution functions of their corresponding quadratic forms:

QX = (X − ξ1)>Ω−11 (X − ξ1) and QY = (Y − ξ2)>Ω−12 (Y − ξ2).

The k-ordering handles the comparison of SEP vectors by setting the problem in terms of the
convex transform ordering of their quadratic forms QX and QY . The next theorem shows that the
order in Definition 4 is actually a total ordering in the same direction as the tail weight parameter
β.

Theorem 3.1. Let us consider two random vectors X and Y such that X ∼ SEPp(ξ1,Ω1,α1, β1)
and Y ∼ SEPp(ξ2,Ω2,α2, β2). If 0 < β1 ≤ β2 ≤ 1 then Y ≤k X when p > 2.

Proof. We must proof the convexity of the function F−1QX
(FQY (r)) for r ≥ 0.

The proof follows from a simple argument that uses the definition of the relation R as follows:
from the properties of quadratic forms of SN vectors [11] and the properties of the multivariate

exponential power distribution [21] it is obtained that QX
d
= R2

β1
and QY

d
= R2

β2
, where R2

β1
and

R2
β2

are the modular variables associated with exponential power vectors X0 and Y 0 such that

X0 ∼ EPp(ξ1,Ω1, β1) and Y 0 ∼ EPp(ξ2,Ω2, β2). Taking into account [3, Proposition 3], we can

assert that F−1
R2
β1

(FR2
β2

(r)) is a convex function for r ≥ 0 from which the convexity of the function

F−1QX
(FQY (r)) follows. �

Theorem 3.1 provides intriguing theoretical insights. In addition to providing a mathematically
sounded result for the stochastic of equivalence classes from the relationR, it also enhances the role
played by the tail weight parameter β as an indicator of kurtosis compatible with the multivariate
convex transform k-ordering. Thus, the implications are twofold: on the one hand, it serves to
carry out multivariate stochastic comparisons between SEP vectors irrespective of their location,
scale and shape asymmetry vector by comparing their tail weight parameters; on the other hand,
it allows to assess the multivariate kurtosis of wide subclasses within SEP, as determined by the
equivalence classes SEPβ , using a single parameter β which has a meaningful interpretation in
terms of a kurtosis convex transform ordering.

3.2. Assessment of directional asymmetry. While the tail weight parameter β regulates the
peakedness of the distribution irrespective of its asymmetry, the shape vector α —or its equivalent
counterpart η = ω−1α— is aimed at accounting for multivariate asymmetry in a directional
fashion. In order to delve into its role to handle directional asymmetry, we set out the problem
of finding directions that yield maximal skewness projections when the input vector X follows a
SEP distribution. The problem can be formally described as follows:

Let X be a p-dimensional input vector such that X ∼ SEPp(ξ,Ω,α, β) with 0 < β ≤ 1. Our
goal is to find the vector c for which the scalar variable Y = c>X attains the maximal skewness,
that is, the vector yielding the maximal skewness proyection. This goal is accomplished by solving
the optimization problem: max

c∈Rp0
γ1(c>X), with γ1 the standard third moment skewness measure

defined by γ1(Y ) = E2

(
Y − µY
σY

)3

and Rp0 the set of all non null p-dimensional vectors.

Since γ1 is scale invariant, without loss of generality, we can confine to vectors such that c>Ωc =
1; hence, the problem can be formulated as
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max
c∈Sp

γ1(c>X) (3.1)

where Sp = {c ∈ Rp : c>Ωc = 1}.
The maximal skewness γD1,p = max

c∈Sp
γ1(c>X), with the superscript D standing for directional

skewness, is a well-known measure that allows to capture the directional nature of the asymmetry
[36]. Theorem 3.2 shows that the maximal skewness projection is attained at the direction of the
shape vector of the SEP model, regardless of the value of the tail weight parameter. Its proof uses
the following auxiliary lemmas.

Lemma 3.1. Let S be the mixing variable of a scale mixture model with density function (2.3).
Then it holds the moment inequality E(S3)− E(S)E(S2) ≥ 0.

Proof. See the appendix. �

Lemma 3.2. Let X be a vector such that X ∼ SEPp(ξ,Ω,α, β). Then the moments of the mixing

variable meet the following inequality:
4

π
E(S)E(S3)− E(S2)2 ≥ 0.

Proof. See the appendix. �

Lemma 3.3. Let X be a vector such that X ∼ SEPp(ξ,Ω,α, β). Then it holds the following

inequality: E(S3) +
4

π
E(S)3 − 2E(S)E(S2) ≥ 0.

Proof. See the appendix. �

The result on directional asymmetry is now stated in the next theorem.

Theorem 3.2. Let X be a random vector such that X ∼ SEPp(ξ,Ω,α, β) with 0 < β ≤ 1. Then
the maximum skewness in (3.1) is attained at the direction of the shape vector η> = α>ω−1,

specifically at c>∗ = α>ω−1/
√
α>Ωα = η>/

√
η>Ωη.

Proof. When β = 1, the input vector X follows a SN; so the proof follows from [33]. In order
to prove the statement when β ∈ (0, 1), we use the lemmas in the Appendix in combination with
some of the arguments deployed by [33, 4].

Since γ1 is location invariant, we can assume that ξ = 0 for the sake of simplicity. Taking
into account the SMSN representation of the SEP vector, the properties of the SN under linear
transformations —see (5.42) and (5.43) from [11] or alternatively the earlier work [8]— and the
assumption c>Ωc = 1 for the vector driving the direction, it follows that the scalar variable
Y = c>X = SZ, with Z = c>ωZ, has a SN distribution such that Z ∼ SN1(0, 1, λ), where the
shape scalar parameter λ is given by

λ =
c>ωΩα√

1 +α>Ωα− (c>ωΩα)2
.

Therefore, Y admits a SNSM formulation so that we can apply Proposition 3 from [16] to get

γ1(Y ) = E2

(
Y − µY
σY

)3

=
2

π

δ2
(
aδ2 − 3b

)2
σ6
Y

: 0 ≤ δ2 < 1, (3.2)

where the quantities appearing in (3.2) are defined by a = E(S)3
4

π
− E(S3), b = E(S)E(S2) −

E(S3), σ2
Y = E(S2) − 2

π
E(S)2δ2 and δ2 =

λ2

1 + λ2
. Note that simple calculus using Lemma 2.1
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with the expectations involved in γ1(Y ) would give an explicit expression for the skewness on any
direction.

We now show that γ1(Y ) is non decreasing function with respect to δ2. Its first derivative is
given by

∂γ1(Y )

∂δ2
=

6

π

(aδ2 − 3b)(aδ2 − b)σ2
Y + E(S)2(2/π)δ2(aδ2 − 3b)2

σ8
Y

. (3.3)

The quantities appearing in the expression above can be rearranged to give

∂γ1(Y )

∂δ2
=

6

π

(aδ2 − 3b)h(δ2)

σ8
Y

,

where h(δ2) = cδ2 − bE(S2) with c = E(S3)[
4

π
E(S)2 − E(S2)].

Lemmas 3.1 and 3.3 show that −b ≥ 0 and a− 2b ≥ 0 which implies that a− 3b ≥ 0. We now
study the sign of the factors aδ2 − 3b and h(δ2) from the expression above.

If it happened that a ≥ 0 then we would obtain that aδ2−3b ≥ 0 whereas if a < 0, it would result
that aδ2 − 3b > a− 3b so aδ2 − 3b ≥ 0 once again. To study the sign of h(δ2), we also distinguish
two cases: if c ≥ 0 then it suffices to invoke Lemma 3.1 once again to get h(δ2) ≥ 0; meanwhile, if it
happened that c < 0 then, taking into account Lemma 3.2, we obtain that h(1) = c− bE(S2) ≥ 0;
so we conclude that h(δ2) > h(1) ≥ 0.

The non negativity of aδ2 − 3b and h(δ2) shows that γ1(Y ) is a non decreasing function of δ2.
Therefore, the maximization of the skewness measure γ1(c>X) is equivalent to the maximization
of the quantity

δ2 =
λ2

1 + λ2
=

(c>ωΩα)2

1 +α>Ωα
,

where c>ωΩα = (c>Ω1/2)(Ω1/2ω−1α) with Ω1/2 a positive definite symmetric matrix such that

Ω1/2Ω1/2 = Ω. Hence, using an analogous argument as in [33, Proposition 2.2], we can assert
that (c>ωΩα)2 ≤ α>Ωα from which we conclude that the maximal skewness is attained at the

direction of the vector c>∗ = α>ω−1/
√
α>Ωα, as we aimed to prove. �

Note that if we replace δ2 in expression (3.2) by the quantity δ2∗ =
λ2∗

1 + λ2∗
, where λ2∗ = α>Ωα =

η>Ωη is the value of λ2 at the maximal skewness direction c>∗ , we would obtain the skewness
attained at the maximal skewness projection. It is given by

γD1,p =
2λ2∗

[
( 4
πE

3(S)− 3E(S)E(S2) + 2E(S3))λ2∗ − 3(E(S)E(S2)− E(S3))
]2

π
[
E(S2) +

(
E(S2)− 2

πE
2(S)

)
λ2∗
]3 (3.4)

where the moments appearing in this expression can be calculated from their general expression
in Lemma 2.1. Actually, the quantity above provides an analytical formula for Malkovich-Afifi’s
measure of skewness [36] under SEP multivariate distributions.

For the specific case of a tail weight parameter β = 1, the mixing variable is degenerate at S = 1
so that E(S) = E(S2) = E(S3) = 1; hence, the quantity in expression (3.4) becomes

γD1,p = 2(4− π)2
{

η>Ωη

π + (π − 2)η>Ωη

}3

. (3.5)

This quantity corresponds to Mardia’s and Malkovich-Afifi’s measures of multivariate skewness
under the multivariate SN distribution [8, 33, 11] as was expected to happen.
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Figure 3 displays the heat color surfaces that depict the skewness measure γD1,p as a function of

the non-normality pair (β, δ2∗) with 0 < β ≤ 1 and δ2∗ =
λ2∗

1 + λ2∗
ranging in the interval [0, 1). We

can see that, due to the difficulties for computing large gamma functions in the expectations of the
mixing variable, some blanks appear in the plots specially for the higher dimensions. Overall, it
can be observed that the skewness decreases as the dimension increases. In addition, the curves on
the skewness surface that trace the lines with equal tail weight show a dominance relation which
means that, as the tail weight parameter β decreases, the corresponding skewness curve appear
each one above the preceding one; this dominance relationship is illustrated by the plots displayed
in Figure 4.
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Figure 3. Skewness surfaces with respect to the quantities δ2∗ =
λ2∗

1 + λ2∗
and the

tail weight parameter β for dimensions p = 5 (top left), p = 10 (top right), p = 20
(bottom left) and p = 40 (bottom right).

4. Concluding remarks

In this paper we have examined the multivariate skew exponential power distribution and have
studied some of its theoretical properties in order to delve into the role played by the parameters
of the model to handle the multivariate non-normality. It has been assumed that the tail weight
parameter meets the condition 0 < β ≤ 1 so that the skew exponential power vector admits a
SMSN stochastic representation. The SMSN formulation is useful to show that the tail weight
parameter accounts for multivariate kurtosis regardless of the shape asymmetry vector, whereas
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Figure 4. Skewness curves for the tail weight parameters: β = 3/4 (solid line),
β = 1/2 (dashed line), β = 1/4 (dotted line) and dimensions p = 5 (top left),
p = 10 (top right), p = 20 (bottom left) p = 40 (bottom right).

the shape vector regulates the multivariate asymmetry in a directional fashion; specifically, it is
shown that such a shape vector lies on the direction yielding the maximal skewness projection
regardless of the value of the tail weight parameter. When the tail weight equals to β = 1, the
underlying model reduces to the SN distribution and our result on directional skewness agrees
with previous work for SN vectors [33]. Summing up, we advocate the unique and singular role
of the tail weight and the shape vector of multivariate skew exponential power model to account
independently for different facets of the non-normality.

The theoretical results from Theorems 3.1 and 3.2 have implications for research in the statistical
practice including but not limited to: skewness-based projection pursuit, the modeling of non-
normal asset returns, model-based clustering and the role played by the SEP parameters as well
as the sensitivity of gaussian bayesian networks to deviations from normality along the lines of
previous work [35]. Moreover, an explicit expression of the pdf of the SEP model would enable
inferential work; research in this direction may benefit from the approach followed in Section 4.1
of [10].

Our findings also highlight some other problems for future research: A major advantage of the
exponential power distribution is that it can model both light and heavy tails; as the Kotz-type
distribution has the same characteristic and additionally it can also model holes [29], we wonder
whether the properties studied for SEP distributions would also be valid for skewed generaliza-
tions of Kotz-type distributions. Moreover, the consideration of other SEP formulations, like those
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ones introduced in [2, 12], may deserve further investigation on kurtosis assessment and directional
skewness for the case β > 1. On the other hand, the skew-normal Cauchy model can be represented
as a shape-scale mixture of SN distributions whose properties, including third moments and cumu-
lants, have been investigated by [26] and are closely related to those ones of the SEP model; the
study of directional asymmetry under shape-scale mixtures of SN vectors is also an open problem.
Another issue is concerned with the consideration of other measures of multivariate skewness that
depend on third moments [34].

As an afterthought, the results derived in this work also point out further research regarding
the stochastic comparison of SMSN vectors: the SMSN representation of the multivariate skew
exponential power model suggests looking into the role played by the non-normality parameters of
the SMSN class by means of an ad hoc convex transform stochastic ordering; research effort along
this line would complement previous related work on the issue [44, 3, 5].

Appendix: proofs of auxiliary lemmas

Proof of Lemma 2.1. The proof relies on a property about quadratic forms of SN vectors. Taking
into account [11, Corollary 5.1] or the property appearing in expression (5.7) of [11, Section 5.7],

we can assert that the quadratic form Q = (X − ξ)>Ω−1(X − ξ) = S2Y >Ω−1Y —with Y a

vector such that Y ∼ SNp(0p,Ω,α)— has the same distribution as S2Y >0 Ω−1Y 0 with Y 0 a

normal vector such that Y 0 ∼ Np(0p,Ω). Hence, Q
d
= S2Y >0 Ω−1Y 0

d
= S2G2, where G2 is a

scalar variable, independent of the mixing variable S, following a χ2
p distribution. On the other

hand, we also know that the quadratic form Q has the same distribution as the squared of the
modular variable R associated to the p-dimensional elliptically contoured vector with distribution
EPp(ξ,Ω, β) [22]. The density function of R has been derived by [21]; it is given by

hR(r) =
p

Γ
(

1 + p
2β

)
2
p
2β

rp−1 exp

{
−1

2
r2β
}
I(o,∞)(r).

Since the scalar variablesR2 andQ have the same distribution we can put: E(Rk) = E(Sk)E(Gk),

from which we get E(Sk) =
E(Rk)

E((G2)k/2)
. The expectations appearing in E(Sk) can be calculated

in an easy way due to the tractability of the density functions of R and G2; simple integral calculus
gives

E(Rk) =
2k/2βΓ

(
p+k
2β

)
Γ
(
p
2β

) and E(Gk) = E((G2)k/2) =
2k/2Γ

(
p+k
2

)
Γ
(
p
2

)
which in turn leads to the expression of the statement. �

Proof of Lemma 3.1. The result follows from the next property: if f and g are two increasing
functions then it holds that Cov(f(X), g(X)) ≥ 0 provided that the second order moments and
cross moments of f(X) and g(X) exist. Since S is a non negative random variable the statement
of the lemma will follow putting f(S) = S2 and g(S) = S. �

Proof of Lemma 3.2. Using the general expression from Lemma 2.1, we get

4

π
E(S)E(S3)− E(S2)2 =

22/βΓ2(p2 )

22Γ2( p
2β )

[
4

π

Γ(p+1
2β )Γ(p+3

2β )

Γ(p+1
2 )Γ(p+3

2 )
−

Γ2(p+2
2β )

Γ2(p+2
2 )

]
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=
22/β

p2

Γ2(p+2
2β )

Γ2( p
2β )

[
4

π

2

p+ 1

Γ2(p+2
2 )

Γ2(p+1
2 )

Γ(p+1
2β )Γ(p+3

2β )

Γ2(p+2
2β )

− 1

]
. (4.1)

We now define the function: g0(x) = g(x+
ω

2
)− g(x) with g(x) = xψ(x) : x ≥ 1, ω ≥ 1 and ψ

the digamma function. This instrumental function will also be used in the proofs of Lemmas 3.2
and 3.3.

From the series expansion of the digamma function given by

ψ(z) = −γ − 1

z
+

∞∑
n=1

(
1

n
− 1

n+ z

)
,

where γ is the Euler-Mascheroni constant, we obtain that g′′(x) = 2ψ′(x)+xψ′′(x) = 2

∞∑
n=1

n

(n+ x)3
.

Hence, g is a convex function which implies that g′(x) and g0(x) are non decreasing functions, with
the latter one being non decreasing because g′0(x) = g′(x+ ω/2)− g′(x). Therefore,

g0

(p
2
ω + ω

)
− g0

(p
2
ω +

ω

2

)
= ω

[
p+ 1

2
ψ

(
p+ 1

2
ω

)
− (p+ 2)ψ

(
p+ 2

2
ω

)

+
p+ 3

2
ψ

(
p+ 3

2
ω

)]
= ω(log f(ω))′ > 0,

with f the function defined by f(ω) =
Γ
(
p+1
2 ω

)
Γ
(
p+3
2 ω

)
Γ2
(
p+2
2 ω

) : ω ≥ 1 and (log f(ω))′ its first log

derivative. The previous expression shows that f is non decreasing; so putting ω =
1

β
we get

f(
1

β
) =

Γ
(
p+1
2β

)
Γ
(
p+3
2β

)
Γ2
(
p+2
2β

) ≥ f(1) =
Γ
(
p+1
2

)
Γ
(
p+3
2

)
Γ2
(
p+2
2

) =
p+ 1

2

Γ2
(
p+1
2

)
Γ2
(
p+2
2

) ,
which implies that the quantity (4.1) is non negative, as we aimed to prove. �

Proof of Lemma 3.3. From the general expression of the moments of the mixing variable in Lemma

2.1, we obtain after simple calculations that E(S3)+
4

π
E(S)3−2E(S)E(S2) = 2E(S)3

[
2

π
+ f(ω)

]
,

where ω =
1

β
and f is a function defined as follows:

f(ω) =
Γ2
(
p+1
2

)
Γ2
(
p
2

) f1(ω) [f2(ω)− 1] : ω ≥ 1

with f1 and f2 functions given by

f1(ω) =
2Γ
(
p+2
2 ω

)
Γ
(
p
2ω
)

pΓ2
(
p+1
2 ω

) and f2(ω) =
pΓ
(
p+3
2 ω

)
Γ
(
p
2ω
)

2(p+ 1)Γ
(
p+1
2 ω

)
Γ
(
p+2
2 ω

) .
Their first derivatives are

f ′1(ω) =
f1(ω)

[
g0
(
p+1
2 ω

)
− g0

(
p
2ω
)]

ω
and f ′2(ω) =

f2(ω)
[
g0
(
p+2
2 ω

)
− g0

(
p
2ω
)]

ω
,



NEW INSIGHTS ON THE MULTIVARIATE SKEW EXPONENTIAL POWER DISTRIBUTION 13

with g0 the same function as the one defined in the proof of the previous lemma. Using analogous
arguments as before, we can conclude that f1 and f2 are non decreasing which implies that f1(ω) ≥

Γ2
(
p
2

)
Γ2
(
p+1
2

) and f2(ω) ≥ 1/2. We now calculate the first derivative of f :

f ′(ω) =
Γ2
(
p+1
2

)
Γ2
(
p
2

) f1(ω)

{[
p+ 2

2
ψ

(
p+ 2

2
ω

)
+
p

2
ψ
(p

2
ω
)

−(p+ 1)ψ

(
p+ 1

2
ω

)]
[f2(ω)− 1] + f2(ω)

[
p+ 3

2
ψ

(
p+ 3

2
ω

)
+
p

2
ψ
(p

2
ω
)
− p+ 1

2
ψ

(
p+ 1

2
ω

)
− p+ 2

2
ψ

(
p+ 2

2
ω

)]}
.

Taking into account the lower bound for f2, we get:
Γ2
(
p
2

)
Γ2
(
p+1
2

) f ′(ω)

f1(ω)
≥

−1

2

[
p+ 2

2
ψ

(
p+ 2

2
ω

)
+
p

2
ψ
(p

2
ω
)
− (p+ 1)ψ

(
p+ 1

2
ω

)]
+

1

2

[
p+ 3

2
·

ψ

(
p+ 3

2
ω

)
+
p

2
ψ
(p

2
ω
)
− p+ 1

2
ψ

(
p+ 1

2
ω

)
− p+ 2

2
ψ

(
p+ 2

2
ω

)]
=

1

2

{
p+ 3

2
ψ

(
p+ 3

2
ω

)
− (p+ 2)ψ

(
p+ 2

2
ω

)
+
p+ 1

2
ψ

(
p+ 1

2
ω

)}
=

1

2ω

{
g0

(
p+ 2

2
ω

)
− g0

(
p+ 1

2
ω

)}
≥ 0.

Therefore, we can assert that f is also a non decreasing function for ω ≥ 1; consequently
f(ω) ≥ f(1) = −1/2 which implies that

E(S3) +
4

π
E(S)3 − 2E(S)E(S2) = 2E(S)3

[
2

π
+ f(ω)

]
≥ 2E(S)3

[
2

π
− 1

2

]
≥ 0

as we aimed to prove. �
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mixtures of normal distributions. Journal of Multivariate Analysis, 97(2):295–310, 2006.
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