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Abstract: In some statistical methods, the statistical information is provided in terms of the values used by 
classical estimators, such as the sample mean and sample variance. These estimations are used in a 
second stage, usually in a classical manner, to be combined into a single value, as a weighted mean. 
Moreover, in many applied studies, the results are given in these terms, i.e., as summary data. In all of 
these cases, the individual observations are unknown; therefore, computing the usual robustness 
estimators with them to replace classical non-robust estimations by robust ones is not possible. In this 
paper, the use of the median of the distribution Fx of the sample mean is proposed, assuming a location-
scale contaminated normal model, where the parameters of Fx are estimated with the classical estimations 
provided in the first stage. The estimator so defined is called median of the distribution of the mean, MdM. 
This new estimator is applied in Mendelian randomization, defining the new robust inverse weighted 
estimator, RIVW. 
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1. Introduction

In the application of some statistical methods, such as clinical trials, the results are, usually, 
described in terms of the values taken by classical estimators, such as the sample mean and 
sample variance. These results are combined, in a second stage, as a weighted mean in a meta 
analysis. The same occurs in its alternative, Mendelian Randomization, one of the main topics 
in causal inference. 

Moreover, in many applied studies, their results have been described in these terms, i.e., as 
summary data, not knowing the individual observations, to compute robust estimators with 
them, replacing the classical non-robust estimations with robust ones. 

In this paper, a solution to this problem is proposed, correcting, if necessary, the given classical 
estimations because, although the individual observations are unknown, the mechanism that 
generates the data is known because it is the model. 

Focusing on the mean estimation problem, the optimal estimator (uniformly minimum variance 
unbiased estimator) is the sample mean, when no outliers exist in the sample, and the normal 
distribution N(µ, σ2) is assumed as the model, with µ and σ2 being the usual parameters of the 
normal distribution, population mean, and variance. Assume that a proportion e of outliers exists 
in the sample, i.e., a contaminated normal model (see [1], p. 2) 

(1 − e)N(µ, σ2) + eN(g1µ, g22σ2) 

where most of the data are from a N(µ, σ2), and a small part of them, , are from a normal 
model with more dispersion and a different location, N(g1µ, g22σ2), where g1 is a contamination 
parameter that affects the location, and g2 is a contamination parameter that affects the scale. 
The optimality of the sample mean is lost because the optimal procedure 
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and its properties heavily depend on the assumed probability model ([2], p. 2). This is the
reason why classical statistics rests, basically, on the normal model and on the sample mean.

Additionally, under a contaminated normal model, the robustness of the sample
mean is lost [1,3]. Under this model, the sample mean is not the maximum likelihood
estimator [4], and even the normality of the sample mean is not guaranteed [5].

In this paper, a new estimator for a location–scale contaminated normal model is
proposed, avoiding the extreme sensitivity of the sample mean but coinciding with it
when no outliers are present in the data. The median of the distribution Fx of the sample
mean is proposed as a new estimator, where the parameters of Fx are estimated with the
classical estimations described in previous studies. This estimator is called the median of the
distribution of the mean, MdM.

The two reasons why this new estimator relies on the distribution of the sample mean
are that, first, the classical estimations are given in terms of the classical mean (and classical
variance) and, second, this new procedure extends the classical one in the sense that if no
outliers are present, this new estimator is the classical sample mean, i.e., with this method,
the classical estimation is extended to the case in which outliers are present.

Another estimator somewhat related to MdM is the median of the means estimator
MoM. However, this estimator is, finally, one of the sample means and, hence, is not robust
(see [6]).

With the MdM, robustness and optimality are obtained if there are no outliers. Hence,
with this approach, a new vision of the dilemma between optimality and robustness
is provided.

Because the exact sample distribution of x under a mixture distribution is not known,
here it is estimated in a closed form with the von Mises (VOM) plus saddlepoint (SAD)
method, a technique used by the author in several studies (see, for instance, [7,8]) but in
another context. With this approximation, the estimator introduced in this paper can also
be extended to other more general models than the normal mixture considered here.

The rest of the paper is structured as follows. In Section 2, the VOM+SAD approxima-
tion for the distribution of the sample mean is obtained under a location–scale contaminated
normal model. The definition and some properties of this new location estimator are con-
sidered in Section 3, and a scale estimator, based on these ideas, is defined in Section 4, and
an example of the application of this new estimator is considered in Section 5. These ideas
are applied to Mendelian randomization in Section 6. Some conclusions are outlined in
Section 7.

2. VOM+SAD Approximation of Sample Mean Distribution

Because the new estimator depends on the distribution of the sample mean, the
distribution of the sample mean must be very precise, especially when the considered
sample sizes are very small. For this situation, using a von Mises expansion ([9], p. 215,
or [10], p. 578) that depends on Hampel’s influence function [11] is highly recommended.

Although, in the end, the obtained results are be applied to the mixture of normals
model considered previously, these refer to more general models, F, G, and H, which
indicate future extensions of this method.

The final approximation is called VOM+SAD and was previously obtained by the
author in the context of spatial data (see [7,8]). Following the ideas developed in those two
papers, considering the tail probability functional, initially, the approximation obtained is

PF{Tn > t} ' PG{Tn > t}+
∫

TAIF(x; t; Tn, G) dF(x)

which allows the approximation of the distribution of Tn when the observations follow model
F by the distribution of Tn when the variables of Tn follow model G (pivotal distribution).

This approximation depends on the tail area influence function, TAIF, defined in [12].
Restricting this approximation to M estimators with a monotonic decreasing score

function ψ (see [1], p. 46) and using the Lugannani and Rice formula ([13], or [14] p. 77,
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or [1] p. 314) to obtain a saddlepoint approximation for the TAIF, as the approximation
given in [15] (p. 94), for M estimators, the VOM+SAD approximation obtained is

PF{Tn > t} ' PG{Tn > t}+
∫

φ(s)
r1

n1/2

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
dF(x).

In the case of a location–scale mixture normal model, the framework that it is consid-
ered in this paper, i.e., assuming that Zi ≡ (1− ε)N(µ, σ2)+ εN(g1µ, g2

2σ2), the VOM+SAD
approximation is

PF{Tn > t} ' PG{Tn > t}+ ε
φ(s)

r1

√
n

(∫
ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

− 1

)
(1)

where G = N(µ, σ2), and H = N(g1µ, g2
2σ2).

VOM-SAD Approximation for the Distribution of the Sample Mean

In the particular case of the sample mean, the score function is ψ(x, t) = x− t. Remem-
ber that in the VOM+SAD approximation, the saddlepoint is computed under G = N(µ, σ2).
Under this pivotal distribution, it is

K(λ, t) = log
∫

eλ(y−t) 1
σ
√

2π
e−

1
2σ2 (y−µ)2

dy =
σ2λ2

2
+ λ(µ− t).

Hence, from the saddlepoint equation K′(z0, t) = 0 the saddlepoint z0 = (t − µ)/σ2

is obtained.
Additionally, K(z0, t) = −(t− µ)2/(2σ2), φ(s) = φ(

√
n(t− µ)/σ), r1 = (t− µ)/σ,

and K′′(λ, t) = σ2. The leading term is PG{Tn > t} = 1 − Φ(
√

n(t − µ)/σ), and the
quotient in last term in the right side of (1) is∫

ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

= exp
{
(g1 − 1)µ z0 +

1
2
(g2

2 − 1)σ z2
0

}
.

Hence, the VOM+SAD approximation (1) is

PF{x > t} ' 1−Φ(
√

n σ z0) + ε

√
n

σ z0
φ(
√

n σ z0)
(

e(g1−1)µ z0+
1
2 (g2

2−1)σ z2
0 − 1

)
.

If distributions F and G are not close enough, intermediate distributions can be
considered, as in [16–18], to obtain a more accurate approximation.

3. Estimator Median of the Distribution of the Mean

If the previous distribution of the mean is

Fx(x) = 1− PF{x > x}

the median of this distribution, i.e., F−1
x (1/2), is called the median of the distribution of the

mean, MdM, i.e., this estimator is the solution of

Fx(MdM) =
1
2

.

The parameters of Fx are estimated with the classical estimations, the sample mean x
and the sample variance s2.

Figures 1–3 show that as contamination parameters ε, g1, or g2 increase, the difference
between MdM and x, i.e., z0, increases.

The main reason for the definition of MdM is that the median is more robust than the
sample mean and, hence, the influence of possible outliers, not knowing the individual
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observations, as assumed here, should be lower with the median of the distribution of the
mean than with the sample mean, used in this distribution as an estimator of the location
parameter. Furthermore, in the case without outliers, this estimator is equal to the classical
sample mean.
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Figure 1. Differences between MdM and x as ε increases.
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Figure 2. Differences between MdM and x as g1 increases.
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Figure 3. Differences between MdM and x as g2 increases.

As a limitation, observe that MdM is also sensitive if outliers already affect the sample
mean or sample variance used in the estimation of the location or scale parameter µ or σ2.
Nevertheless, with MdM, this sensitivity is lower.

One way to check the behavior of MdM with respect to x in a simple numerical
example is to run the R sentences

> x<-0.80*rnorm(11,2,1)+0.2*rnorm(11,3*2,1)
> mean(x)
> median(x)
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in which we consider a random sample of n = 11 sample data from a mixture normal
0.8N(2, 1) + 0.2N(3 · 2, 1), i.e., a sample where ε = 0.2, g1 = 3 and g2 = 1.

Finally, in future research, other robust estimators could be considered, such as the
trimmed mean of the distribution of the sample mean.

4. Dispersion Estimator

With the ideas developed in this paper, a dispersion estimator should be

F−1
x (3/4)− F−1

x (1/4).

5. Example

In most application papers, only the final values of the estimators used on them are
given. Additionally, these estimators are usually the classical sample mean and sample
variance and do not include the individual observations from which these estimators are
obtained and, therefore, not providing the opportunity to robustify these values using
robust techniques.

For this reason, a large number of examples could serve as an illustration of the
estimator defined in this paper. Next, let us consider just one.

Example 1. One of these studies is [19], where some vertebral column and thorax of Neanderthals
fossils were re-evaluated using their vertebrae because, probably, as stated by the author, errors
occurred in the reconstruction and the samples were wrongly classified. He mentions ([19], p. 23) a
misclassification of 7/33, which can be considered as the value of the contamination parameter ε.

Because modern humans and Neanderthals have very similar vertebrae, no difference in the
mean is assumed, using, hence a distortion factor g1 = 1. On the other hand, Neanderthals are
slightly more stockier than modern humans, with the dispersion of the latter being larger, assuming
that g2 = 1.5.

In Table 2 in [19], classical acceptance confidence intervals are provided for several vertebrae
of 28 modern humans. They are based on the classical mean and variance, as the author says in
this table. From the table, with respect vertebra T1, the remains of Kebara 2 and La Ferrassie can
be considered as modern humans instead of Neanderthals, because they are inside of the confidence
interval. The same happens with vertebra T7 but not with vertebra T5.

From these classical intervals, for vertebra T1, the classical sample mean and standard deviation
are x = 16.6 and S = 3.61, respectively. In this case, the estimator median of the distribution
of the mean takes the value MdM = 15.034, obtaining the new robust acceptance confidence
interval equal to [13.63 , 16.43], which does not contain the remains, concluding then, that these
remains are Neanderthals and not modern humans, as they were wrongly considered with the
classical estimators.

With respect to vertebra T5, MdM = 17.54, and the new robust acceptance confidence
interval is [15.84 , 19.24], with neither the classical nor the robust interval not including the
remains, confirming that they are Neanderthals.

Finally, for vertebra T7, MdM = 19.43, and the new robust acceptance confidence interval
[17.73 , 21.13], both this robust and the previous classical confidence interval including the remains
of the La Ferrassie, hence being modern humans and not Neanderthals.

6. Robust Inverse-Weighted Estimator RIVW in Mendelian Randomization

Another field for the class of problems considered in this paper is randomized clinical
trials (CTs). In each of these CTs, the sample mean and sample variance are the usual
final result. These are usually combined, in a classical way, as a weighted mean in a meta-
analysis. In CTs, the relationship of a variable X (called cause) with another variable Y
(called effect) is analyzed, but reverse causality may exist or a lack complete randomization
or, more importantly, confounders may be present.

Moreover, CTs are expensive and take a long time. With Mendelian randomization
(MR), a method that has received a renewed interest in recent years, CTs are imitated
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because, in any person, all genetic material is randomized allocated from their parents,
including DNA markers. Randomly, some people receive more DNA markers related
with variable X and, for others, fewer. MR uses genetic variants (usually single-nucleotide
polymorphisms (SNPs)) as instrumental variables Z.

Mathematically, MR is used to avoid possible biases in the regression of Y on X due to
these three causes just mentioned. Formally, MR leads us to a two-step linear regression
process; first, for every genetic variant Zj, j = 1, . . . , L, a linear regression of X on Zj is
performed, where, for individuals, i = 1, . . . , nj is

Xi | Zij = βX0 + βXj Zij + eXij

from which the fitted values X̂i are obtained and used in a second regression of Y on these
X̂, obtaining finally [20]

Yi | Zij = βY0 + (β · βXj + αj) Zij + eYij = βY0 + βYj Zij + eYij

where βXj and βYj represent the association of Zj with the exposure and the outcome (only
through X), respectively. The parameter β · βXj represents the effect of Zj on Y through X,
where β is the causal effect of X on Y that is being estimated. Moreover, αj represents the
association between Zj and Y not through the exposure of interest. Finally, the errors terms
eXij and eYij are assumed to be independent because independent samples are assumed to
be used to fit the two previous regression models.

In MR, the standard estimator of the parameter of interest β, the slope in the linear
regression of Y on X, is the classical two-stage least squares estimator

β̂Rj =
β̂Yj

β̂Xj

which is the quotient of the slope of the regression of Y on Zj, β̂Yj , and the slope estima-

tor of the regression of X on Zj, β̂Xj . These classical estimations, one for each value of
the instrumental variable Zj, are combined with the classical inverse-variance weighted
(IVW) estimator

IVW =
L

∑
j=1

ωj β̂Rj /(
L

∑
j=1

ωj)

where ωj = 1/var(β̂Rj), which is used to weight the β̂Rj estimators, assuming that the L
genetic variants are mutually independent. In this way, a single causal effect estimate from
L genetic instruments is obtained.

This classic and widely used estimator is not robust because it has a 0% breakdown
point because it is a weighted mean, see, for instance, [21].

In this section, the robustification of the classical estimator IVW is obtained, first, by
replacing estimators β̂Rj with the median of the distribution of the mean, MdMj estimators and,
second, by replacing the weights ωj with vj, the inverse of the new dispersion estimator,

vj =
1

F−1
x (3/4)− F−1

x (1/4)

defining the new estimator, based on the β̂Rj distribution, as

RIVW =
∑L

j=1 vj MdMj

∑L
j=1 vj

.
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6.1. Distribution of β̂Rj Estimator

In this section, an approximation for the distribution of β̂Rj is obtained for each genetic
variant Zj, j = 1, . . . , L, i.e, j is fixed. Moreover, because of the usual regression assumptions,
Zij is not random in the two previous linear regressions, i.e., in the estimator β̂Rj .

Hence, with µXi denoting the constant

µXi = βX0 + βXj Zij

avoiding the j in the notation of µXi to simplify it, and with µYi being the constant

µYi = βY0 + βYj Zij,

and assuming no outliers in the sample, the variable Xi | Zij follows a normal distribution

Xi | Zij ≡ N(µXi , σ2
Xi
)

and

Yi | Zij ≡ N(µYi , σ2
Yi
).

The estimator β̂Rj is equal to

β̂Rj =
β̂Yj

β̂Xj

and, considering standardized data, i.e., that β̂Rj is computed as a correlations quotient,

β̂Rj =

nj

∑
i=1

YiZij

nj

∑
i=1

XiZij

its tail distribution is

P
{

β̂Rj > a
}

= P

{
∑

nj
i=1 YiZij

∑
nj
i=1 XiZij

> a

}

= P

{ nj

∑
i=1

YiZij − a
nj

∑
i=1

XiZij > 0

}

= P

{ nj

∑
i=1

(Yi − aXi)Zij > 0

}
.

Letting Wi (removing the j if there is no risk of confusion) denote the random variable
Wi = Wij = (Yi − aXi)Zij, i = 1, . . . , nj, where a and Zij are not random, the aim is to
compute the distribution of the sample mean of the variables Wi at 0, i.e.,

P
{

β̂Rj > a
}
= P

{ nj

∑
i=1

Wi > 0

}
= P

{
W > 0

}
where Wi is independent but not identically distributed because

Wi | Zij ≡ N(µi, σ2
i ), i = 1, . . . , nj

where

µi = (µYi − a · µXi )Zij
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and

σ2
i = V((Yi − a · Xi)Zij)

which depends on σ2
Xi

and σ2
Yi

. The values of these parameters are given from previous
studies following the median of the distribution the mean method.

If the data contain no outliers, it will be

Wi | Zij ≡ N(µi, σ2
i )

but, as usual, a proportion ε of outliers in the data is assumed, i.e., as a model for the
observations Wi the following

Fi = (1− ε)N(µi, σ2
i ) + εN(gi1 µi, g2

i2 σ2
i )

where the contamination constants gi1 and gi2 are assumed to depend on i = 1, . . . , nj.
To compute the distribution of W under models Fi, assuming that the sample sizes nj

are small, a von Mises approximation (VOM), based on a von Mises expansion, is used to
obtain an accurate approximation with small sample sizes.

6.2. VOM Approximation of the Distribution

In general, to approximate the tail probability of statistic Tn under a vector of model
distributions F = (F1, . . . , Fn), knowing its tail distribution under the vector of model
distributions G = (G1, . . . , Gn) (called pivotal distributions), the von Mises expansion of
the tail probability of Tn(X1, X2, . . . , Xn) at F is used ([10], Section 2, or [22], Theorem 2.1,
or [17], Corollary 2),

PF{Tn(X1, X2, . . . , Xn) > t} = PF1,...,Fn{Tn(X1, X2, . . . , Xn) > t}

= PG{Tn(X1, X2, . . . , Xn) > t}+
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dFi(x) + Rem

where the sample space X ⊂ Rm,

Rem =
1
2

∫
X

∫
X

T(2)
GF

(x1, x2)d[F(x1)−G(x1)]d[F(x2)−G(x2)]

where T(2)
GF

is the second derivative of the tail probability functional at the mixture distribu-
tion GF = (1− λ)G + λF, for some λ ∈ [0, 1]; and TAIFi is the ith (multivariate) partial tail
area influence function of Tn at G = (G1, . . . , Gn) in relation to Gi, i = 1, . . . , n, introduced
in [17], Definition 1,

TAIFi(x; t; Tn, G) =
∂

∂ε
PGε,x

i
{Tn(X1, . . . , Xn) > t} |ε=0

in those x ∈ X where the right-hand side exists. In the computation of TAIFi, only Gi is
contaminated; the other distributions remain fixed, i = 1, . . . , n.

In general, Rem is close to 0, and the von Mises approximation (VOM) is defined as

PF{Tn(X1, X2, . . . , Xn) > t} ' PG{Tn(X1, X2, . . . , Xn) > t}

+
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dFi(x). (2)

Moreover, if F is a mixture distribution, F = (1− ε)G + εH, Rem = O(ε2) ([23], p. 77).
Additionally, because of the partial influence functions properties ([22], p. 3) that are valid
for the partial tail area influence functions defined in [17], for any Tn it will be
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∫
X

TAIFi(x; t; Tn, G)dGi(x) = 0, (3)

i.e., the integral with respect a given model of the TAIFi that depends on this model is equal
to 0. Hence,

PF{Tn(X1, X2, . . . , Xn) > t} = PG{Tn(X1, X2, . . . , Xn) > t}

+(1− ε)
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dGi(x)

+ε
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dHi(x) + O(ε2)

= PG{Tn(X1, X2, . . . , Xn) > t}+ 0 + ε
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dHi(x) + O(ε2)

i.e., the VOM approximation is

PF{Tn(X1, X2, . . . , Xn) > t} ' PG{Tn(X1, X2, . . . , Xn) > t}

+ε
n

∑
i=1

∫
X

TAIFi(x; t; Tn, G) dHi(x).

Moreover, because of Proposition 1 in [17],

TAIFi(x; t; Tn, G) = −PG1,...,Gn{Tn(X1, X2, . . . , Xn) > t}

+ PG1,...,Gi−1,Gi+1,...,Gn{Tn(X1, . . . , Xi−1, x, Xi+1, . . . , Xn) > t}

and the VOM approximation of the tail probability PF{Tn(X1, X2, . . . , Xn) > t} can also be
expressed as

PF{Tn(X1, X2, . . . , Xn) > t} ' (1− n)PG{Tn(X1, X2, . . . , Xn) > t}

+
∫
X

PG2,...,Gn{Tn(x, X2, . . . , Xn) > t} dF1(x)

+
∫
X

PG1,G3,...,Gn{Tn(X1, x, . . . , Xn) > t} dF2(x) + · · ·

+
∫
X

PG1,...,Gn−1{Tn(X1, . . . , Xn−1, x) > t} dFn(x) (4)

which allows an approximation of the tail probability PF{Tn(X1, X2, . . . , Xn) > t} under
models F = (F1, . . . , Fn), knowing the value of this tail probability under near models
G = (G1, . . . , Gn).

In the particular case that Tn(X1, X2, . . . , Xn) = W, the VOM approximation for the
tail of W can be expressed as (see (2) with n = nj, j = 1, . . . , L and t = 0 now)

PF
{

W > 0
}
' PG{W1 + . . . + Wnj > 0}+

nj

∑
i=1

∫
R

TAIFi
(
x; 0; W, G

)
dFi(x)

or, see (4),
PF
{

W > 0
}
' PG{W1 + . . . + Wnj > 0}

+

nj

∑
i=1

∫
R

[
−PG{W1 + . . . + Wnj > 0}
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+PG1,...,Gi−1,Gi+1,...,Gnj
{W1 + . . . + Wi−1 + x + Wi+1 + . . . + Wnj > 0} dFi(x)

]
or

PF
{

W > 0
}
' (1− nj)PG{W1 + . . . + Wnj > 0}

+
∫
R

PG2,...,Gnj
{x + W2 + . . . + Wnj > 0} dF1(x)

+
∫
R

PG1,G3,...,Gnj
{W1 + x + W3 + . . . + Wnj > 0} dF2(x) + . . .

+
∫
R

PG1,...,Gi−1,Gi+1,...,Gnj
{W1 + . . . + Wi−1 + x + Wi+1 + . . . + Wnj > 0} dFi(x)

+ . . . +
∫
R

PG1,...,Gnj−1{W1 + . . . + Wnj−1 + x > 0} dFnj(x).

If it is assumed as model for the observations Wi

Fi = (1− ε)N(µi, σ2
i ) + εN(gi1 µi, g2

i2 σ2
i )

and it is denoted by Ggi1,gi2
i ≡ N(gi1 µi, g2

i2 σ2
i ), and by Gi ≡ N(µi, σ2

i ) the pivotal distribu-
tion, i = 1, . . . , nj, i.e.,

Fi = (1− ε)Gi + εGgi1,gi2
i .

the generic component of this last equation is∫
R

PG1,...,Gi−1,Gi+1,...,Gnj
{W1 + . . . + Wi−1 + x + Wi+1 + . . . + Wnj > 0} dFi(x) =

∫
R

PG1,...,Gi−1,Gi+1,...,Gnj
{W1 + . . . + Wi−1 + Wi+1 + . . . + Wnj > −x} dFi(x)

=
∫
R

[
1−Φ

(
−x− µ−i

σ−i

)]
dFi(x)

where Φ is the cumulative distribution function of a standard normal distribution,

µ−i = µ1 + . . . + µi−1 + µi+1 + . . . + µnj

and
σ2
−i = σ2

1 + . . . + σ2
i−1 + σ2

i+1 + . . . + σ2
nj

.

If
µs = µ1 + . . . + µnj = µ−i + µi

and
σ2

s = σ2
1 + . . . + σ2

nj
= σ2

−i + σ2
i

then,

PG{W1 + . . . + Wnj > 0} = 1−Φ
(
−µs

σs

)
and

PF

{
β̂Rj > a

}
= PF

{ nj

∑
i=1

Wi > 0

}
= PF

{
W > 0

}
' 1−Φ

(
−µs

σs

)
+

nj

∑
i=1

∫
R

[
Φ
(
−µs

σs

)
−Φ

(
−x− µ−i

σ−i

)]
dFi(x). (5)

Because Fi is a normal mixture

Fi = (1− ε)Gi + εGgi1,gi2
i
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the VOM approximation (5) is

= 1−Φ
(
−µs

σs

)
+ ε

nj

∑
i=1

∫
R

[
Φ
(
−µs

σs

)
−Φ

(
−x− µ−i

σ−i

)]
dGgi1,gi2

i (x).

Moreover, because of property (3) for the partial influence functions mentioned before,
it is ∫

R

[
Φ
(
−µs

σs

)
−Φ

(
−x− µ−i

σ−i

)]
dGi(x) = 0

or ∫
R

Φ
(
−x− µ−i

σ−i

)
dGi(x) = Φ

(
−µs

σs

)
.

Hence, making the change of variable (x + µ−i)/σ−i = y, it is

∫
R

Φ
(
−x− µ−i

σ−i

)
dGgi1,gi2

i (x) = Φ

(
−µ

gi1
s

σ
gi2
s

)
where

µ
gi1
s = µ1 + . . . + µi−1 + gi1 µi + µi+1 + . . . + µnj

and
σ

gi2
s =

√
σ2

1 + . . . + σ2
i−1 + gi2 σ2

i + σ2
i+1 + . . . + σ2

nj
.

Then, the VOM approximation to the distribution of β̂Rj is

P
{

β̂Rj > a
}
= 1−Φ

(
−µs

σs

)
+ ε

nj

∑
i=1

[
Φ
(
−µs

σs

)
−Φ

(
−µ

gi1
s

σ
gi2
s

)]
.

Example 2. In a study [24], whether low-density lipoprotein cholesterol (LDL-C) is a cause of
coronary artery disease (CAD) was analyzed considering 28 DNA markers

DNA markers X Y
SNP exposure.beta exposure.se outcome.beta outcome.se
1 snp_1 0.0260 0.004 0.0677 0.0286
2 snp_2 -0.0440 0.004 -0.1625 0.0300
..............................................................
27 snp_27 0.0090 0.003 0.0000 0.0255
28 snp_28 -0.0360 0.007 0.0198 0.0647

Usually, Zi ≡ B(2, 0.5) is assumed to be an instrumental variable to mimic biallelic SNPs in
Hardy–Weinberg equilibrium. A value

IVW = 2.834214

was obtained.
With the method proposed in this paper, considering sample sizes of n = 37, n1 = 17, n2 = 10,

and n3 = 10, and contamination parameters ε = 0.05, gi1 = 1, and gi2 = 1.5, for the first DNA
marker is obtained

µs = µ1 + . . . + µnj = 30× (0.0677− a× 0.0260)

σ2
i = 0.0286× 37 = 1.0582

σs =
√

1.0582× 37 = 6.257268

µ
gi1
s = µs
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and
σ

gi2
s =

√
σ2

1 + . . . + σ2
i−1 + gi2 σ2

i + σ2
i+1 + . . . + σ2

nj

=
√

1.0582× 36 + 1.5× 1.0582 = 6.299405

MdM1 = 2.59

v1 =
1

F−1
x (3/4)− F−1

x (1/4)
=

1
8.08− (−2.877)

= 0.0912.

For all the 28 DNA markers, we have

MdMj 2.59 3.70 2.78 2.71 4.93 . . .
vj 0.091 0.151 0.128 0.088 0.068 . . .

which are combined in the new robust estimate

RIVW = 2.042703.

7. Conclusions

In this paper, a new method for estimating the parameters in a location–scale con-
tamination model is introduced, in the case where individual observations are not avail-
able and, therefore, applying the usual robust methods is not possible, i.e., in summary
data problems.

For the location problem, a new estimator was defined that is equal to the usual sample
mean when no outliers exist and correcting classical estimations when outliers exist.

This new estimator was applied to one of the most used estimators in Mendelian
randomization, the inverse-variance weighted estimator (IVW), defining a new estimator
robust inverse weighted estimator (RIVW).
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