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Abstract: The spatio-temporal variogram is an important factor in spatio-temporal prediction 
through kriging, especially in fields such as environmental sustainability or climate change, 
where spatio-temporal data analysis is based on this concept. However, the traditional spatio-
temporal variogram estimator, which is commonly employed for these purposes, is extremely 
sensitive to outliers. We approach this problem in two ways in the paper. First, new robust 
spatio-temporal variogram estimators are introduced, which are defined as M-estimators of an 
original data transformation. Second, we compare the classical estimate against a robust one, 
identifying spatio-temporal outliers in this way. To accomplish this, we use a multivariate scale-
contaminated normal model to produce reliable approximations for the sample distribution of 
these new estimators. In addition, we define and study a new class of M-estimators in this 
paper, including real-world applications, in order to determine whether there are any significant 
differences in the spatio-temporal variogram between two temporal lags and, if so, whether we 
can reduce the number of lags considered in the spatio-temporal analysis. 
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1. Introduction 
 
There exist several approaches for the treatment of spatio-temporal data. The most 
common approach is to assume that the data are a partial realization of a spatio-temporal 
random field Z(s, t), (s, t) in DX T (see, e.g., [1,2]). In this superpopulation model ([3], p. 8), 
we also assume that D is a fixed subset of Rd, d>1 and T in R; that is, we assume 
that a random variable Z, such as precipitation, temperature or atmospheric pollutant 
concentrations, is observed at some known fixed locations s and different time moments t, 
considering a geostatistical framework where the spatial observations are expected to be 
correlated with a decreasing correlation as the distance between locations increases. 
We can conduct exploratory data analysis with spatio-temporal data, mainly through 
their visualization. However, it is more interesting to model the random field, allowing 
for inference of the model parameters and closed-form expressions (see [4]). As it is 
usually assumed that the data come from a joint Gaussian (i.e., normal) distribution, we are 
interested in estimating the parameters; that is, summaries of the first- and second-order 
characteristics. To make this feasible, we suppose that Z(s, t) is intrinsically stationary in 
space and time; that is, its increments in space and time have a zero mean (possibly after a 
temporal trend has been removed) and have a variance that depends only on displacements 
in space and differences in time. With these assumptions, the parameter of interest is the 
spatio-temporal variogram of Z, defined as 
2 gz(h; t) = var(Z(s + h; t + t) - Z(s; t)), 
where var is the variance of Z, h is a spatial lag, and t is a temporal lag. 
We also assume that Z is spatially isotropic; that is, the variogram depends on the 
spatial lag h only through the Euclidean norm ||h||. 
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Furthermore, one of the most important problems in geostatistics is kriging prediction
at new locations, for which the spatio-temporal variogram is required. Hence, the spatio-
temporal variogram is the crucial parameter in geostatistics. However, the traditional
spatio-temporal variogram estimator, which is commonly employed for these purposes,
is extremely sensitive to outliers. Moreover, in a wide range of fields, such as geology,
the environment, sustainability or climate change, detecting atypical observations is of
special interest.

Considering these aims, we first define new robust estimators of the spatio-temporal
variogram. Then, we obtain very accurate approximations for the sample distribution of
these new estimators, and, with these, we finally identify spatio-temporal outliers.

The spatio-temporal variogram of Z can also be written as

2 γz(h; τ) = E[(Z(s + h; t + τ)− Z(s; t))2],

where E denotes the mathematical expectation of Z.
To analyze Z, we consider observations of the random field Z(s, t) at spatial locations

{si : i = 1, ..., m} and times {tj : j = 1, ..., T}, where n = m · T is the sample size.
In this situation, the spatio-temporal variogram is estimated using the classical method-

of-moments estimator, also called the empirical spatio-temporal variogram (see [3,5,6]),

2 γ̂z(h; τ) =
1

|Ns(h)|
1

|Nt(τ)| ∑
si ,sk∈Ns(h)

∑
tj ,tl∈Nt(τ)

(Z(si; tj)− Z(sk; tl))
2,

where Ns(h) refers to the set containing all pairs of spatial locations with spatial lag h, and
Nt(τ) refers to the set containing all pairs of time points with time lag τ. Furthermore,
|N(·)| denotes the number of elements in the set N(·).

If we denote, by n(h, τ) = |Ns(h)| · |Nt(τ)|, the sample size considered in the estimator
2 γ̂z(h; τ)—that is, the number of pairs with spatio-temporal lag (h, τ)—this estimator is a
sample mean of n(h, τ) terms and, hence, sensitive to outliers in the terms.

In [7], robust estimators of the spatial variogram and accurate approximations for their
distributions were obtained. In [8], these results were extended to the multivariate case,
with robust estimators for the cross-variogram. In the first part of this paper, we extend
these results by introducing a temporal component into the problem. This is achieved by
defining new robust M-estimators of the spatio-temporal variogram and obtaining accurate
approximations for their distributions, as well as for the classical one, 2 γ̂z(h; τ). In the
last part of this paper, we propose a method for identifying spatio-temporal outliers, also
obtaining interesting properties of a new class of M-estimators.

The remainder of this paper is organized as follows: A spatio-temporal variogram
M-estimator is proposed in Section 2, and an approximation to its distribution is obtained at
the end of Section 3.2. The problem of independence of the transformed observations is ad-
dressed in Section 4. These results are applied in Section 5 to the empirical spatio-temporal
variogram estimator. In Section 6, we introduce Huber’s spatio-temporal variogram estima-
tor and obtain an approximation to its distribution. An example is developed in Section 7.
The question of whether some temporal lags can be dropped in the analysis is considered
in Section 8. The problem of identifying spatio-temporal outliers is addressed in Section 9,
where a new class of M-estimators is defined. The conclusions of the paper are presented
in Section 10.

2. M-Estimators of the Spatio-Temporal Variogram
2.1. Underlying Model for Z

The common model assumption for spatio-temporal data Z is a normal distribution.
Nevertheless, this is a very strong assumption as, although most of the data will come from
this model, it is very likely that some will not. For this reason, it is more realistic to assume
a scale-contaminated normal distribution for the model (see, e.g., [9], p. 2):
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(1− ε)N(µ, σ2) + εN(µ, g2σ2),

where ε ∈ (0, 1) and g > 1, with ε representing the proportion of outliers in the sample
and g denoting the quantity that contaminates them. For ε = 0 or g = 1, this model
is the normal distribution and, if ε > 0 and g > 1, it is the N(µ, σ2) in the central part
but with heavier tails. In this way, we consider that the model for Z is inside the class
of scale contamination neighborhoods of the normal distribution, Pε(N) = {Fε|Fε =
(1− ε)N(µ, σ2) + εN(µ, g2σ2)}, one of the usual model classes considered in robustness
studies ([9] p. 12 , [10,11] or [12] p. 870).

Although the main role in the question of the underlying model is played by the
marginal distributions of Z, in order to complete the mathematical framework, we shall as-
sume that these marginal distributions are obtained from the multivariate scale-contaminated
normal distribution (see, e.g., [13], pp. 2, 220).

2.2. M-Estimators of the Spatio-Temporal Variogram

Let us consider the transformation

Xij = (Z(si + h; tj + τ)− Z(si; tj))
2 ∀si, tj. (1)

These new variables will be shortened, in some cases, by Xu, u = 1, . . .n, considering
them as a sample of a new variable X = (Z(s + h; t + τ) − Z(s; t))2 defined from the
lags of Z in space and time. As the parameter of interest is now 2 γz(h; τ) = E[X] , the
problem of estimating the spatio-temporal variogram described in the previous section
can be considered as the problem of estimating the expectation of the random variable X,
obtained from the original Z through this transformation.

This framework is especially suitable and useful in situations related to spatial or
temporal data, where the initially dependent observations are separated by a spatial
and/or temporal lag and where direct robust estimators, if they exist, are difficult to apply.
Considering this mean (the spatio-temporal variogram) as a functional T of the underlying
distribution F,

T(F) =
∫

xdF(x),

where F is the cumulative distribution function of X, and its classical method-of-moments
estimator is the sample mean

T(F∗n(h,τ)) =
∫

xdF∗n(h,τ)(x) =
1

n(h, τ)

n(h,τ)

∑
u=1

Xu

of the transformed variables Xu, where F∗n(h,τ) is the empirical cumulative distribution
function. This approach—that is, expressing estimators as functionals of the empirical
distribution function—is common and useful in robustness studies ([9,14]).

An important question here is how to choose the transformation (1) such that the new
variables Xu are independent in the new sample mean. We shall deal with this problem
later. If we achieve this independence, obtaining robust estimators for the parameter T(F)
is an easy task with M-estimators and α-trimmed means of the transformed variables Xu.
With respect to the former, we can define a spatio-temporal M-estimator ([11]) Tn for the
parameter T(F) (the spatio-temporal variogram) based on the transformed observations
Xu as a solution to the equation

n

∑
u=1

ψ(Xu, Tn) = 0, (2)

assuming that ψ(x, θ) is monotonic decreasing in θ for all x. In fact, as Tn is an estimator
for a location problem, ψ(x, θ) is of the form ψ(x− θ), with ψ(v) monotonically increasing
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in v. Now, we should control the local robustness of these M-estimators, through choosing
different bounded score functions ψ (see, e.g., refs. [9,15] for a background on robust
methods and standard M-estimators.)

Hence, the idea that we propose in the paper is that, instead of considering a weird
estimator for a strange parameter of the initial Z distribution, we transform the original
(and usually dependent) observations Zu into new data Xu (independent under some
conditions), obtaining, in this way, a natural parameter of the new variable (e.g., its mean),
for which a manageable estimator (the sample mean) should be feasible. Then, standard
techniques of robustification can be applied. The comparison between the traditional
estimator (the empirical spatio-temporal variogram) and one of these robust M-estimators
here introduced, both based on the observations Xu, is the well-known comparison between
the sample mean and a robust M-estimator (see, e.g., [9,14]).

This idea was first successfully applied in [16] and has also been utilized in [7,8].
Furthermore, in the paper [17], this idea was used for the periodogram ordinates in the
context of a time-series.

2.3. Distribution of Variables Xu

An important problem is to determine the distribution of this new variable X, from
the original normal (or contaminated normal) distribution of Z, in order to later obtain the
distribution of the robust estimators based on X.

If we consider a scale-contaminated normal model for the original observations Z,
as the variable Z(si + h; tj + τ)− Z(si; tj) follows a normal distribution with 0 mean and
variance 2γz(h; τ). For each si, tj, the distribution of the transformed variables

Xij = (Z(si + h; tj + τ)− Z(si; tj))
2

is the mixture

F = (1− ε) 2 γz(h; τ) χ2
1 + ε g2 2 γz(h; τ) χ2

1 = (1− ε)G + εH,

where G = 2γz(h; τ)χ2
1 and H = g22γz(h; τ)χ2

1, where χ2
1 is a chi-square distribution with

one degree of freedom, following a similar development to that followed in [7], Section 2.1.

3. Approximation to the Distribution of M-Estimators of the Spatio-Temporal
Variogram

The distribution of these new robust M-estimators Tn, defined by (2), depends on the
distribution of the new variables Xu after the transformation. We obtain an approximation
to the distribution of the robust estimators Tn(X1, . . ., Xn) in two steps: in the first step, we
consider a von Mises expansion (VOM) of the tail probability functional, which depends on
another functional, for which we obtain a saddlepoint approximation (SAD) in the second
step. The independence of the Xu is now required.

3.1. von Mises Approximation

If Tn(X1, . . ., Xn) is an estimator with associated functional T, and F is the underlying
model distribution of the observations Xu, we usually cannot express T(F) explicitly;
however, we can utilize a linearization based on the von Mises expansion, [18], at G (called
the pivotal distribution) as follows:

T(F) = T(G) +
∫

IF(x; T, G)dF(x) + O(||F− G||2),

where IF(·; T, G) is the Hampel Influence Function; that is, the Gâteaux derivative of T at
G in direction ∆x, the Dirac measure at x (see [15,19,20]).

If we consider T as the tail probability functional, T(F) = PXi≡F{Tn > a}, the Hampel
Influence Function is now the Tail Area Influence Function TAIF ([21]), and the previous
von Mises expansion is equal to
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PF{Tn > a} = PG{Tn > a}+
∫

TAIF(x; a; Tn, G) dF(x) + O
(
||F− G||2

)
,

from which we define the von Mises approximation (VOM)

PF{Tn > a} ' PG{Tn > a}+
∫

TAIF(x; a; Tn, G) dF(x), (3)

which will be accurate if the distributions F and G are close. In this case, we can use this
approximation to compute the distribution of Tn under the underlying model F using a
model G in the class Pε(N).

In particular, if F is the mixture F = (1− ε)G + εH , the von Mises approximation
will be

PF{Tn > a} ' PG{Tn > a}+ ε
∫

TAIF(x; a; Tn, G) dH(x), (4)

because ∫
TAIF(x; a; Tn, G) dF(x) = (1− ε)

∫
TAIF(x; a; Tn, G) dG(x)

+ε
∫

TAIF(x; a; Tn, G) dH(x) = (1− ε) · 0 + ε
∫

TAIF(x; a; Tn, G) dH(x).

3.2. Saddlepoint Approximation of the TAIF

The von Mises approximations (3) or (4) depend on the TAIF, which is the influence
function of the tail probability functional. Daniels ([22], p. 94), using the Lugannani
and Rice formula ([23]), gave the following saddlepoint approximation (SAD) for the tail
probability of an M-estimator Tn(X1, . . ., Xn) with score function ψ, assuming that G is the
underlying model for the Xu,

PG{Tn > a} = 1−Φ(s) + φ(s)
[

1
r
− 1

s
+ O(n−3/2)

]
, (5)

where Φ and φ are the cumulative and density functions of the standard normal distribution,
and s and r are the functionals

s =
√
−2nK(z0, a) , r1 = z0

√
K′′(z0, a) , r =

√
n r1,

where

K(λ, a) = log
∫ ∞

−∞
eλψ(y,a) dG(y)

is the cumulant generating function of the distribution G; K′′(λ, a) and K′(λ, a) are the sec-
ond and first partial derivatives of K(λ, a) with respect to the first argument λ, respectively,
and z0 is the saddlepoint; that is, the functional solution of the saddlepoint equation

K′(z0, a) =
∫ ∞

−∞
ez0ψ(y,a) ψ(y, a) dG(y) = 0.

If, in approximation (5), we replace the model G by the contaminated model Gε;x =
(1− ε)G + ε∆x and obtain the derivative at ε = 0, in all of the functionals involved in
it, we obtain a saddlepoint approximation of the TAIF(x; a; Tn, G), (for details, see [24]
pp. 402–404, [25] p. 77 or [9] p. 314), as

TAIF(x; a; Tn, G) =
φ(s)

r1
n1/2

(
ez0ψ(x,a)∫

ez0ψ(y,a)dG(y)
− 1

)
+ O(n−1/2). (6)
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Replacing the SAD approximation (6) in the VOM approximation (3), we obtain the
VOM + SAD approximation for the distribution of an M-estimator Tn(X1, . . ., Xn) with
score function ψ, at the model F, which is on the order of O(n−1/2),

PF{Tn > a} ' PG{Tn > a}+ φ(s)
r1

√
n

( ∫
ez0ψ(x,a)dF(x)∫
ez0ψ(y,a)dG(y)

− 1

)
. (7)

In the particular case that the transformed observations Xu follow a mixture model
F = (1− ε)G + εH, the VOM+SAD approximation is

PF{Tn > a} ' PG{Tn > a}+ ε
φ(s)

r1

√
n

(∫
ez0ψ(x,a)dH(x)∫
ez0ψ(y,a)dG(y)

− 1

)
. (8)

Remark 1. If the sample size is large and Tn is asymptotically normal under F, we can approximate
its distribution using the Central Limit Theorem, thereby, obtaining

PF{Tn > a} ' PF{(Tn − E[Tn])/σTn > (a− E[Tn])/σTn}

= 1−Φ((a− E[Tn])/σTn).

Alternatively, if Tn is only asymptotically normal under G, we can approximate the leading
terms of (7) and (8).

Remark 2. Approximations (7) and (8) are valid for any M-estimator with score function ψ based
on Xu data, solution of (2). For spatio-temporal data, these Xu, which are transformations of the
initial Zi observations, have different distributions than the Ys used in [7] for the estimation of the
spatial variogram and also different from those used in [8] in the estimation of the cross-variogram.

In addition to the differences in the observations are the differences in the score functions. Here,
for the spatio-temporal problem, ψ will include the temporal dimension, which was not considered
in the other two mentioned papers. However, the main difference is that, in [7], we obtained M-
estimators for the spatial variogram, while here we obtained it for the spatio-temporal variogram.
However, if the temporal dimension is removed (see Section 8), both estimators will agree. Hence, the
estimators obtained here generalize those of the variogram (without temporal dimension) obtained
there, as it should be.

This remark can be clearly observed in the example considered in Section 7, where we obtain
seven different spatial variogram estimators (see Figure 6 for the classical and Figure 7 for the robust)
at the seven different temporal lags considered—all of them obtained from the only one classical
(Figure 4) or robust (Figure 5) three-dimensional spatio-temporal variogram estimator.

4. Independence of the Transformed Variables Xu

As the locations si are fixed in advance, they can be considered as being equally
spaced on a transect, as in [3], p. 32. Hence, we can match two contiguous si (for which
the dependence of the Zi is supposed to be the strongest), such that si + h = si+1. Under
these conditions, with the same arguments as in [7], Section 2, it can be proved that, at
each time tj and time lag τ, the correlation between

√
Xij = Z(si + h; tj + τ)− Z(si; tj) and√

Xkj = Z(sk + h; tj + τ)− Z(sk; tj) is 0 if a linear semivariogram model can be accepted

for all the initial Zu variables.
Moreover, following the ideas provided in [8] for the cross-variogram, if we can also

accept a linear cross-variogram for each pair (Zi, Zk) at any pair of time moments, assuming
that all moments are equally spaced, the variables

√
Xij = Z(si + h; tj + τ)− Z(si; tj) and√

Xkl = Z(sk + h; tl + τ)− Z(sk; tl) will also be independent; then, so will all of the Xu,
u = 1, . . ., n, assuming that the vector Z of the observations is distributed as a multivariate
(or contaminated) normal distribution.

Hence, to obtain the independence of the Xu, we must check that a linear semivari-
ogram can be accepted for the Zu and a linear cross-variogram for each pair (Zi, Zk).
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This can easily be checked in a visual way with R and formally with the global test
proposed in [7], Section 10.1. Furthermore, these linearity requirements should not be a
serious problem, as we can move the spatial lag h and/or the time lag τ until linearized
versions ([7], Section 9) of the variograms and cross-variograms can be accepted.

5. VOM + SAD Approximation of the Distribution of the Empirical
Spatio-Temporal Estimator

As the classical method-of-moments estimator

2 γ̂z(h; τ) =
1

n(h, τ)

n(h,τ)

∑
u=1

Xu

is an M-estimator and a solution of the equation

n(h,τ)

∑
u=1

ψ(Xu, Tn) = 0

with the score function ψ(v) = v, we can use the results of Section 3 to obtain a VOM +
SAD approximation for its distribution.

In the unrealistic case of no contamination—namely, if Z ≡ N(µ, σ2) and so, Xu ≡
2 γz(h; τ) χ2

1—the exact distribution of 2 γ̂z(h; τ) is the tail of a χ2 distribution with n(h, τ)
degrees of freedom,

P{2 γ̂z(h; τ) > a} = P
{

χ2
n(h,τ) >

a · n(h, τ)

2γz(h; τ)

}
.

Hence, using G = 2 γz(h; τ) χ2
1 as a pivotal distribution, the von Mises approxima-

tion (8) becomes

PF{2 γ̂z(h; τ) > a} ' P
{

χ2
n(h,τ) >

a · n(h, τ)

2γz(h; τ)

}
+ε

φ(s)
r1

√
n(h, τ)

(∫
ez0ψ(x,a)dH(x)∫
ez0ψ(y,a)dG(y)

− 1

)
, (9)

considering a scale-contaminated normal distribution for the original observations Z, i.e.,
the following model for the Xu

F = (1− ε) 2 γz(h; τ) χ2
1 + ε g2 2 γz(h; τ) χ2

1 = (1− ε)G + εH,

where G = 2γz(h; τ)χ2
1 and H = g22γz(h; τ)χ2

1 ; that is, where G is a gamma distribution
with parameters (1/2, 1/(4γz(h; τ))), and H is a gamma distribution with parameters
(1/2, 1/(4g2γz(h; τ))).

In (9), the saddlepoint is

z0 =
1

4γz(h; τ)
− 1

2a
,

and approximation (9) becomes
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PF{2 γ̂z(h; τ) > a} ' P
{

χ2
n(h,τ) >

a n(h, τ)

2γz(h; τ)

}
+ε
√

n(h, τ)
2γz(h; τ)√

π(a− 2γz(h; τ))

· exp
{
−n(h, τ)

2

(
a

2γz(h; τ)
− 1− log

a
2γz(h; τ)

)}
·
( √

2γz(h; τ)√
a− ag2 + 2g2γz(h; τ)

− 1

)
. (10)

This approximation has the same accuracy as the VOM + SAD approximation obtained
in [7] for Matheron’s estimator because, in fact, the classical spatio-temporal estimator is a
generalization of Matheron’s estimator. For this reason, the lack of robustness of Matheron’s
estimator is also inherited in the empirical spatio-temporal estimator.

Accuracy of the Approximation

Let us observe that, if ε = 0 or g = 1, the sum of the right-hand side of approxima-
tion (10) is zero. Moreover, we can observe the accuracy of this approximation with a
simulation, as explained in the Supplementary Material.

With this simulation, we can see the quality of approximation (10) in Table 1 for
several values of a, considering a sample size as small as n(h, τ) = 3, g = 1.1 (i.e., 10%
contamination in scale), 2γz(h; τ) = 1.4 and ε = 0.01. The exact values were obtained with
a simulation considering 100, 000 samples.

Table 1. Tail probabilities for several values of a and sample size n(h, τ) = 3.

a Exact Approximation

2.5 0.14714 0.148299
3.0 0.09308 0.093233
3.5 0.05577 0.058124
4.0 0.03548 0.036006
4.5 0.02089 0.022196
5.0 0.01313 0.013633

This VOM + SAD approximation is shown in Figure 1, as the dotted line, where the
solid line shows the exact distribution.

0.0 0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

a

Figure 1. Exact and approximate tail probabilities for the empirical spatio-temporal estimator with
n(h, τ) = 3.

In Figure 2, we plot the VOM + SAD approximation with different contaminations:
ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2. We can see that, as the contamination percentage
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(i.e., the value of ε) increases, the p-values and critical values are greatly affected, graphically
indicating the lack of robustness of the classical spatio-temporal estimator.

3.0 3.5 4.0 4.5 5.0 5.5

0
.0

2
0

.0
4

0
.0

6
0

.0
8

a

epsilon=0.01

epsilon=0.05

epsilon=0.1

epsilon=0.2

Figure 2. Exact and approximate tail probabilities of the empirical spatio-temporal estimator with
contamination ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2, with sample size n(h, τ) = 3.

The details of this and other computations, as well as the R functions ([26]) used in
the paper, are available on the website https://www2.uned.es/pea-metodos-estadisticos-
aplicados/spa-temp-variogram.htm as Supplementary Material (accessed on 18 April
2022).

6. Huber’s Spatio-Temporal Variogram Estimator

We define the Huber spatio-temporal variogram estimator 2 γ̂H(h; τ) as the M-estimator
obtained from Equation (2) using, as the score function ψ, the Huber function ψb(u) =
min{b, max{u,−b}}, where b is the tuning constant.

This estimator is a generalization of the spatial Huber estimator for the spatial vari-
ogram defined in [7]. Here, the score function ψ incorporates the time component, some-
times as spatial variograms at different time moments.

In the approximation proposed for the tail probability of Huber’s spatio-temporal
variogram estimator, we approximate the leading term using the Lugannani and Rice
formula, [23], given in (5), and the second term using the integral of the saddlepoint
approximation of the TAIF obtained in Section 3.2, assuming again a scale-contaminated
normal model. The VOM + SAD approximation obtained in this way is

PXi≡F{2 γ̂H(h; τ) > a} ' 1−Φ(s) + φ(s)
[

1
r
− 1

s

]
+ε

φ(s)
r1

√
n(h, τ)

(∫
ez0ψb(x−a)dH(x)∫
ez0ψb(y−a)dG(y)

− 1

)
,

where the saddlepoint z0 is obtained from the saddlepoint equation∫
ez0ψb(y−a) ψb(y− a) dG(y) = 0.

Some applications of this estimator are given in the following example.

7. Example

For this example, we obtain the Huber spatio-temporal variogram estimator for the
NOAA data set. This data set was introduced in [5] and refers to the daily weather data
obtained by the US National Oceanic and Atmospheric Administration (NOAA) National
Climatic Data Center.

In this data set, we considered the variable Tmax—the daily maximum temperature in
degrees Fahrenheit. The classical spatio-temporal semivariogram for this variable is shown

https://www2.uned.es/pea-metodos-estadisticos-aplicados/spa-temp-variogram.htm
https://www2.uned.es/pea-metodos-estadisticos-aplicados/spa-temp-variogram.htm
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in Figure 2.17 of [5], p. 39. In Figure 3, we show the Huber spatio-temporal semivariogram
estimator defined in this paper, considering the tuning constant b = 1.345.

Huber’s  spatio−temporal semivariogram estimator
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Figure 3. Huber’s spatio-temporal semivariogram estimator (with tuning constant equal to 1.345)
of daily Tmax from the NOAA data set for July 2003, computed using the estimator introduced in
Section 6.

Three-dimensional representations of these classical and robust Huber’s spatio-temporal
semivariogram estimators are shown, respectively, in Figures 4 and 5.

Details of these computations are provided in the Supplementary Material.
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Figure 4. Three-dimensional picture of the classical spatio-temporal semivariogram estimator of the
daily Tmax from the NOAA data for July 2003.
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Huber’s  spatio−temporal semivariogram estimator
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Figure 5. Three-dimensional picture of the Huber spatio-temporal semivariogram estimator (with a
tuning constant equal to 1.345) of the daily Tmax from the NOAA data for July 2003 computed using
the estimator introduced in Section 6.

8. Significant Time Dimension

We can see differences with respect to the selected temporal lags in Figures 6 and 7 for
the classical and robust semivariogram estimators, respectively, obtained from the three-
dimensional spatio-temporal variogram estimators by fixing the lags. These differences
became smaller as we increased the time lag. If there were no significant differences between
two of these semivariograms, we could group these two lags into one, thus, reducing the
number of time lags considered.

Let us denote by γz(h, τ0) and γz(h, τ) the semivariograms at lags τ0 and τ for a fixed
spatial lag h, having corresponding distributions Fτ0 and Fτ . If we use approximation (7),
considering the distributions F = Fτ and G = Fτ0 , the VOM + SAD approximation of the
distribution of the classical spatio-temporal estimator Tn = 2γ̂z(h, τ) at lag τ is

PFτ{Tn > a} ' PFτ0
{Tn > a}+ φ(s)

r1

√
n(h, τ0)

( ∫
ez0ψ(x,a)dFτ(x)∫
ez0ψ(y,t)dFτ0(y)

− 1

)

= P
{

χ2
n(h,τ0)

>
a · n(h, τ0)

2γz(h; τ0)

}

+
√

n(h, τ0)
2γz(h; τ0)√

π(a− 2γz(h; τ0))

· exp
{
−n(h, τ0)

2

(
a

2γz(h; τ0)
− 1− log

a
2γz(h; τ0)

)}
·
(

exp
{
−a
(

1
4γz(h; τ0)

− 1
4γz(h; τ)

)} √
2γz(h; τ)√
2γz(h; τ0)

− 1

)
,

where n(h, τ0) is the sample size used by Tn at spatial lag h and temporal lag τ0.
In the same way as in a general testing problem, we test the null hypothesis θ = θ0

against the alternative θ > θ0 using a test statistic Sn, computing the tail probability
Pθ0{Sn > sn}, where sn is the observed value of Sn, and if this probability is small (large),
we reject (accept) the null hypothesis. Here, we can test, for a fixed spatial lag h, the null
hypothesis of no significant change between two temporal lags τ0 and τ—that is, H0 :
γz(h, τ) = γz(h, τ0), against H1 : γz(h, τ) > γz(h, τ0)—by computing the tail probability

P2γz(h,τ0)
{2γ̂z(h, τ) > 2γ̂z(h, τ)obs.}.

A small value of this probability will discredit the null hypothesis and lead us to reject it,
concluding that there exists a significant difference between the semivariograms at the lags
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τ0 and τ, suggesting that we must compute the (classical or robust) estimators in a separate
way at these two lags. On the other hand, if we accept the null hypothesis, we shall group
these two lags, thus, considering one less lag.
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Figure 6. Classical semivariograms of the daily Tmax from the NOAA data with respect to the seven
time lags considered.
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Figure 7. Huber’s semivariograms (with tuning constant equal to 1.345) of the daily Tmax from the
NOAA data with respect to the seven time lags considered.

For instance, in the previous example, considering the spatial lag h between 240 and
320, the previous probability between the starting moment and the first time lag or that
between the first and second temporal lag, are both equal to 0, suggesting highly significant
differences between these two pairs of lags (as can be appreciated in Figures 6 and 7).

On the other hand, the probability between time lags four and five is 0.9427521 and
between the last two is 0.9737844, (for the spatial lag 240 < h < 320), leading us to accept
the null hypothesis and suggesting that we can consider all of these observations in a single
group for the computation of the spatio-temporal variogram estimator.

9. Identification of Spatio-Temporal Outliers

The second objective of this work is to identify spatio-temporal outliers. For this
purpose, we calculated the VOM + SAD approximation of the distribution of the Difference
M-estimator, an M-estimator that is essentially the difference between the classical method-
of-moments estimator and the Huber estimator defined in Section 6. We chose this pair
of estimators, as Huber’s estimator minimizes the maximum asymptotic variance inside
the class of contamination neighborhoods of the normal distribution—the class of models
considered in the paper—and the mean is an extreme particular case of it (i.e., they are
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nested estimators). When this difference is significant at some pair of lags, we qualify this
pair of lags as spatio-temporal outliers.

This M-estimator is completely defined in (12) below; however, we can also say that the
Difference M-estimator is one of the estimators inside the class defined in the next section.

9.1. Average M-Estimators

M-estimators ([11]) are likely the most widely used robust estimators. Nevertheless,
they are somewhat unpleasant to handle as they are defined in an implicit way, as a solution
of an equation; in particular, the spatio-temporal M-estimator is a solution of Equation (2).
Next, we define a new class of M-estimators, which is considered in this paper only for the
case of location estimation.

Definition 1. If Tn is an M-estimator with score function ψ and, thus, with M-functional T(F)
defined by ∫

ψ(x, T(F)) dF(x) = 0,

the Average M-estimator associated with Tn is defined as

Ta
n =

1
n

n

∑
i=1

ψ(Xi)

with the associated functional

Ta(F) =
∫

ψ(x) dF(x).

The Average M-estimator associated with the mean is exactly the mean and
∑n

i=1 ψb(Xi)/n is the associated with the Huber estimator, ψb being the Huber score function
considered in Section 6.

An Average M-estimator is an M-estimator with score function ψ(x, θ) = ψ(x)− θ
because it is a solution of

n

∑
i=1

ψ(xi, θ) = 0;

that is,
n

∑
i=1

ψ(xi)− nθ = 0

or

Ta
n =

n

∑
i=1

ψ(xi)/n.

We summarize some of the main properties of this class of M-estimators in the follow-
ing proposition.

Proposition 1. (a) The Influence Function of a linear combination of estimators is the linear
combination of their Influence Functions:

If T = ∑
q
j=1 wj Tj is a linear combination of q estimators with Influence Functions IFj, the

Hampel Influence Function of T is ∑
q
j=1 wj IFj .

(b) The linear combination of Average M-estimators is an M-estimator:
If T = ∑

q
j=1 wj Ta

j is a linear combination of q Average M-estimators with score functions
ψj(xi)− θ, then T is an M-estimator with score function

ψ(xi, θ) =

(
q

∑
j=1

wj ψj(xi)

)
− θ.

(c) The Hampel Influence Function of an Average M-functional Ta(F) is
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IF(x; Ta, F) = ψ(x)− Ta(F). (11)

(d) The robustness properties of an Average M-estimator are the same as those of the M-estimator
from which it is defined.
(e) Any Average M-functional is a linear functional and is weakly continuous on the class of
probability distributions on the Borel σ-algebra if ψ is bounded.
(f) The asymptotic distribution of an Average M-estimator is normal with the mean being the
associated functional and asymptotic variance

(ψ(x)− Ta(F))2/n.

Proof. The proof of (a) is straightforward due to the linearity properties of the limits (or
derivatives) and because the Hampel Influence Function is defined as a limit.

To prove (b), we set up the equation

n

∑
i=1

ψ(Xi, T) = 0;

that is,

n

∑
i=1

(
q

∑
j=1

wj ψj(xi)

)
− n T = 0

or

T =

(
q

∑
j=1

wj

n

∑
i=1

ψj(xi)/n

)
=

(
q

∑
j=1

wjTa
j

)
.

(c) The Hampel Influence Function of an Average M-functional Ta(F)

Ta(F) =
∫

ψ(y) dF(y)

is obtained first by contaminating the distribution

Ta(Fε) = (1− ε)
∫

ψ(y) dF(y) + ε ψ(x)

and then obtaining the derivative at ε = 0,

IF(x; Ta, F) = ψ(x)− Ta(F).

(d) The infinitesimal robustness properties of an estimator, such as the gross-error
sensitivity (B-robustness), local-shift sensitivity and rejection point, are based on its Influ-
ence Function which, in the case of M-estimators, depends on the behavior of their score
functions. As the Influence Function of an Average M-estimator is the score function ψ
(shifted by Ta(F)) of the M-estimator from which it is defined, as obtained in (11), the
robustness properties of both will be the same.

The same occurs with the global reliability (breakdown point) or with the qualitative
robustness and its weak continuity, as highlighted in (e), which is true because of Lemma 2.1
in [9], p. 24.

The proof of (f) is obtained from the Central Limit Theorem, with the asymptotic
variance of M-estimators equal to the square of the Influence Function ([9], p. 47).

9.2. Identification of Spatio-Temporal Outliers

As the classical method-of-moments estimator 2 γ̂z(h; τ) is the M-estimator associated
with the score function ψ(x) = x and the Huber spatio-temporal variogram estimator,
2 γ̂H(h; τ) is the M-estimator associated with the score function ψb(u) = min{b, max{u,−b}},
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where b is the tuning constant, to evaluate the effect of contamination, we define the
Difference M-estimator as a solution Tdi

n of the equation

n

∑
u=1

ψdi(Xu, Tdi
n ) = 0, (12)

where the score function in (12) is defined as ψdi = ψ− ψb , which is plotted in Figure 8.
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Figure 8. Score function defining the Difference M-estimator with tuning constant b.

The Difference M-estimator, completely defined from (12) as a general M-estimator,
can be also considered as the difference of the Average M-estimators associated with the
mean and the Huber estimator.

As it is an M-estimator, we can use the VOM + SAD approximation (8) for its distribu-
tion obtained above, PF{Tdi

n > a}, with ψdi being the score function.
As 2 γ̂z(h; τ) and 2 γ̂H(h; τ) are sums of squares, and the latter is softer than the former,

we should check for large positive values of the Difference M-estimator as spatio-temporal
outliers. Hence, if the probability PF{Tdi

n > tdi
n } for a pair of lags (h, τ) (where tdi

n is the
observed value of the Difference M-estimator), is significantly small, we conclude that
(h, τ) is a spatio-temporal outlier.

Example 1. Continuing with the example of Section 7, some of the differences between the classical
spatio-temporal estimator and the Huber spatio-temporal estimator are small (e.g., 0.0000 and
0.0299), while others are large (e.g., 6.4689 and 6.6959). With the approximation of the Difference
M-estimator, we obtain a table of tail probabilities (i.e., p-values for the test of significant differences),
thus, allowing for the detection of spatio-temporal outliers.

The full table for the 91 pairs of lags considered in this paper is provided in the Supplementary
Material. All 91 lags are shown in Figure 9 together with the highly significant spatio-temporal
outliers (in red) and the doubtfully significant outliers (in blue).

From the figure, if we discard the doubtful outliers (in blue), we can conclude that some of
spatio-temporal lag outliers are essentially only spatial outliers (at h = 40, h = 200 from the second
temporal lag), while two of them are essentially only temporal outliers (τ = 2, τ = 6, from the
distance lags h = 40 to h = 200; maybe h = 280). The truly spatio-temporal outliers, in both
components, are the intersection lags (h, τ) = (40, 2), (40, 6), (200, 2), (200, 6).

We remark that these spatio-temporal outliers are lag outliers (i.e., not observation coordinates);
that is, they are outliers with respect to the variogram, where the observations are not the initial Zi
but the transformed Xi. Nevertheless, they must be checked before kriging.
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Figure 9. Highly significant spatio-temporal atypical lags (in red) and doubtfully significant (in blue)
of the daily Tmax from the NOAA data.

10. Conclusions

In this paper, we proposed some robust estimators of the spatio-temporal variogram.
We also obtained accurate approximations for their distributions. These were based on a
von Mises expansion of the tail probability functional plus a saddlepoint approximation
of the Tail Area Influence Function involved in the von Mises expansion. One of the
advantages of these approximations is that they have a closed form, thus, allowing for easy
interpretation of the elements that they involve, such as the sample size, contamination
fraction, score function, temporal and spatial lags and so on.

These approximations are computed under a scale-contaminated normal model for the
observations. One of the key points in obtaining these approximations is the transformation
of the original variables into new independent variables. With the approximations obtained
in this way, we can check, for instance, whether the common use of all the observations
without temporal distinctions is valid or if the estimators must be computed for significantly
different times. We also used these approximations to identify spatio-temporal outliers in
the second part of the paper, defining a new class of M-estimators in the process.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10101785/s1.

Funding: This work was partially supported by grant PGC2018-095194-B-I00 from the Ministerio de
Ciencia, Innovación y Universidades (Spain).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author is very grateful to the referees for their kind and professional remarks.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Christakos, G. Spatiotemporal Random Fields: Theory and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017.
2. Hristopulos, D.T. Random Fields for Spatial Data Modeling: A Primer for Scientists and Engineers; Springer Nature: Berlin, Germany,

2020.
3. Cressie, N.A.C. Statistics for Spatial Data; John Wiley & Sons: New York, NY, USA, 1993.
4. Chilès, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012.
5. Wikle, C.K.; Zammit-Mangion, A.; Cressie, N. Spatio-Temporal Statistics with R; Chapman & Hall/CRC: London, UK, 2019.
6. Varouchakis, E.A.; Hristopulos, D.T. Comparison of spatiotemporal variogram functions based on a sparse dataset of groundwater

level variations. Spat. Stat. 2019, 34, 1–18. [CrossRef]
7. García-Pérez, A. Saddlepoint approximations for the distribution of some robust estimators of the variogram. Metrika 2020, 83,

69–91. [CrossRef]
8. García-Pérez, A. New robust cross-variogram estimators and approximations for their distributions based on saddlepoint

techniques. Mathematics 2021, 9, 762. [CrossRef]

https://www.mdpi.com/article/10.3390/math10101785/s1
https://www.mdpi.com/article/10.3390/math10101785/s1
http://doi.org/10.1016/j.spasta.2017.07.003
http://dx.doi.org/10.1007/s00184-019-00725-6
http://dx.doi.org/10.3390/math9070762


17 of 17

9. Huber, P.J.; Ronchetti, E.M. Robust Statistics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2009.
10. Tukey, J.W. A survey of sampling from contaminated distributions. In Contributions to Probability and Statistics: Essays in Honor of

Harold Hotelling, Stanford Studies in Mathematics and Statistics; Oklin, I., Ed.; Stanford University Press: Redwood City, CA, USA,
1960; Chaper 39, pp. 448–485.

11. Huber, P.J. Robust estimation of a location parameter. Ann. Math. Stat. 1964, 35, 73–101. https://www.jstor.org/stable/2238020.
[CrossRef]

12. Ebner, B.; Henze, N. Tests for multivariate normality—A critical review with emphasis on weighted L2-statistics. Test 2020, 29,
845–892. [CrossRef]

13. Kotz, S.; Balakrishnan, N.; Johnson, N.L. Continuous Multivariate Distributions. Volume 1: Models and Applications, 2nd ed.; John
Wiley & Sons: New York, NY, USA, 2000.

14. Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; Syahel, W.A. Robust Statistics: The Approach Based on Influence Functions; John Wiley
& Sons: New York, NY, USA, 1986.

15. Ronchetti, E. Accurate and robust inference. Econom. Stat. 2020, 14, 74–88. [CrossRef]
16. Cressie, N.; Hawkins, D.M. Robust estimation of the variogram: I. Math. Geol. 1980, 12, 115–125. [CrossRef]
17. La Vecchia, D.; Ronchetti, E. Saddlepoint approximations for short and long memory time series: A frequency domain approach.

J. Econom. 2019, 213, 578–592. [CrossRef]
18. von Mises, R. On the asymptotic distribution of differentiable statistical functions. Ann. Math. Stat. 1947, 18, 309–348. [CrossRef]
19. Withers, C.S. Expansions for the distribution and quantiles of a regular functional of the empirical distribution with applications

to nonparametric confidence intervals. Ann. Stat. 1983, 11, 577–587. [CrossRef]
20. Serfling, R.J. Approximation Theorems of Mathematical Statistics; John Wiley & Sons: New York, NY, USA, 1980.
21. Field, C.A.; Ronchetti, E. A tail area influence function and its application to testing. Sequential Anal. 1985, 4, 19–41. [CrossRef]
22. Daniels, H.E. Saddlepoint approximations for estimating equations. Biometrika 1983, 70, 89–96. [CrossRef]
23. Lugannani, R.; Rice, S. Saddle point approximation for the distribution of the sum of independent random variables. Adv. Appl.

Probab. 1980, 12, 475–490. [CrossRef]
24. García-Pérez, A. Von Mises approximation of the critical value of a test. Test 2003, 12, 385–411. [CrossRef]
25. Jensen, J.L. Saddlepoint Approximations; Clarendon Press: Oxford, UK, 1995.
26. R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena,

Austria, 2021. Available online: http://www.R-project.org (accessed on 18 April 2022).

http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1007/s11749-020-00740-0
http://dx.doi.org/10.1016/j.ecosta.2019.12.003
http://dx.doi.org/10.1007/BF01035243
http://dx.doi.org/10.1016/j.jeconom.2018.10.009
http://dx.doi.org/10.1214/aoms/1177730385
http://dx.doi.org/10.1214/aos/1176346163
http://dx.doi.org/10.1080/07474948508836070
http://dx.doi.org/10.1093/biomet/70.1.89
http://dx.doi.org/10.2307/1426607
http://dx.doi.org/10.1007/BF02595721
http://www.R-project.org

	Introduction
	M-Estimators of the Spatio-Temporal Variogram
	Underlying Model for Z
	M-Estimators of the Spatio-Temporal Variogram
	Distribution of Variables Xu

	Approximation to the Distribution of M-Estimators of the Spatio-Temporal Variogram
	von Mises Approximation
	Saddlepoint Approximation of the TAIF

	Independence of the Transformed Variables Xu
	VOM + SAD Approximation of the Distribution of the Empirical Spatio-Temporal Estimator
	Huber's Spatio-Temporal Variogram Estimator
	Example
	Significant Time Dimension
	Identification of Spatio-Temporal Outliers
	Average M-Estimators
	Identification of Spatio-Temporal Outliers

	Conclusions
	References



