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Abstract: Let Z(s) = (Z1(s), ..., Zp(s))t be an isotropic second-order sta�onary mul�variate spa�al 
process. We measure the sta�s�cal associa�on between the p random components of Z with the 
correla�on coefficients and measure the spa�al dependence with variograms. If two of the Z components 
are correlated, the spa�al informa�on provided by one of them can improve the informa�on 
of the other. To capture this associa�on, both within components of Z(s) and across s, we use a 
cross-variogram. Only two robust cross-variogram es�mators have been proposed in the literature, 
both by Lark, and their sample distribu�ons were not obtained. In this paper, we propose new robust 
cross-variogram es�mators, following the loca�on es�ma�on method instead of the scale es�ma�on 
one considered by Lark, thus extending the results obtained by García-Pérez to the mul�variate case. 
We also obtain accurate approxima�ons for their sample distribu�ons using saddlepoint techniques 
and assuming a mul�variate-scale contaminated normal model. The ques�on of the independence of 
the transformed variables to avoid the usual dependence of spa�al observa�ons is also considered in 
the paper, linking it with the acceptance of linear variograms and cross-variograms. 
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1. Introduction and Notation 
 
Spatial dependence is described by a variogram in the univariate case. If there is 
another variable correlated with the variable of interest and we want to use its spatial 
information, we have to use a cross-variogram, thus extending the univariate analysis to 
the multivariate case. 
Formally, let Z(s) = (Z1(s), ..., Zp(s))t, s in D be an isotropic second-order stationary 
multivariate spatial process, with D being a fixed subset of Rd, assuming that each component 
Zi, i = 1, ..., p, has an expectation and variance constant, i.e., they do not depend on 
the location s. We also assume that the covariance between two observations depends only 
on the distance that separates them and not on the spatial locations. 
In addition, we admit that each component possesses a variogram 
2 gii(h) = var(Zi(s + h) - Zi(s)), s, s + h  in D 
where var is the variance. 
We measure the statistical association between the random components of Z with the 
correlation coefficients and the spatial dependence in each component with the variograms. 
To capture the association both within components of Z(s) and across s, the cross-variogram 
is defined as ([1], p. 67, or [2], p. 229) 
2gij(h) = cov(Zi(s + h) - Zi(s), Zj(s + h) - Zj(s) 
= E[(Zi(s + h) - Zi(s))(Zj(s + h) - Zj(s)) 
s, s + h in D, where cov means covariance and E means mathematical expectation. 
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This definition is for collocated data, i.e., assuming that each location (site) has all
variables Zi measured, a situation that we assume all over the paper.

The results refer to the pair (i, j), i.e., to a generic pair of components Zi, Zj of the
vector Z(s) = (Z1(s), ..., Zp(s))t.

Let us also assume that we have a sample of Z(s) at m locations s1, ..., sm, obtaining
m (p-dimensional) observations Z(s1), ..., Z(sm). Hence, the data matrix is a m× p matrix
where the (l, j)th element is the observation of component Zj at location sl .

The definition of new robust estimators against outliers of the cross-variogram and
their sample distributions are the aims of this paper.

Until now, there were only two robust estimators previously defined by [3]. This
author considered the covariance estimation method to obtaining two somewhat weird and
difficult to apply estimators. Here, we consider the location estimation method, extending
the idea considered first in [4] and followed in [5] to the multivariate case.

To do this, we start with the classical (non-robust) method-of-moments estimator,
defined as

2γ̂ij(h) =
1

Nh

Nh

∑
l=1

[
(Zi(sl + h)− Zi(sl)) · (Zj(sl + h)− Zj(sl))

]
with the sample size being n = Nh and where the cardinality of N(h) = {(sl1 , sl2) :
sl1 − sl2 = h}.

It is usually assumed that spatial data follow a normal distribution, but this is unreal-
istic because, in practice, they are contaminated by occasional outliers. For this reason, we
assume in the paper a model close to the normal, i.e., a normal-like model in the central
region but with heavier tails than the normal, namely, a multivariate-scale-contaminated
normal distribution with joint probability density function (pdf):

fM(z) = fM(z1, ..., zp) = (1− ε) fN(z; µ, Σ) + ε fN(z; µ, g2Σ) (1)

where ε ∈ (0, 1); g > 1; fN(z; µ, Σ) denotes the pdf of a p-variate normal random vector
with mean vector µ = (µ1, ..., µp) and covariance matrix Σ, a matrix with values σ2

i in its
diagonal, i = 1, ..., p.

In this framework, ε represents the small proportion of outliers in the sample (e.g.,
the proportion of extreme weather events affecting Z at all locations) and g represents
the extent of the contamination. If ε = 0 or g = 1, this model reduces to the multivariate
normal distribution and, if ε > 0 and g > 1, it resembles the normal in the central part but
with heavier tails.

This is the usual way in which robust statistics handles the nonnormality of the
data: establishing a neighborhood of the standard model distribution, the contamination
neighborhood, inside which the underlying model is located (e.g., [6–8], p. 12, or [9], p. 870).

From this joint distribution, the marginal distributions of the Zi are the univariate
scale contaminated normal models:

(1− ε)N(µi, σ2
i ) + εN(µi, g2σ2

i ).

The paper is organized as follows. In Section 2, we consider a consecutive pair of
transformations of the initial observations to avoid their dependence. With these, we can
use standard techniques for independent and identically distributed (iid) random variables.
We also obtain in that section the distribution of these new variables. Here, we have a
remarkable difference with respect to the paper by [5]: there, the transformed variables
were the square of standard normal variables, i.e., χ2 distributed random variables, but
here, we have the product of two different normal variables.

In Section 3, cross-variogram M-estimators based on the new variables are defined.
The von Mises plus saddlepoint (VOM+SAD) approximations for their distributions are
also obtained, approximations that are applied to the classical method-of-moment estimator
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in Section 4. This is the first time that a closed form approximation of its distribution is
obtained. Simulations of approximation accuracy and lack of robustness of its distribution
are included.

In Section 5, we define the α-trimmed cross-variogram estimator and we obtain the
VOM+SAD approximation for its distribution. We do the same for the Huber’s cross-
variogram estimator in Section 6. We include here a simulation study to compare the
robustness of the three estimators as we increase the degree of contamination.

Section 7 is devoted to analyzing the dependence of the transformed variables on the
linearized cross-variogram models. We conclude the paper with two examples of real data.

Finally, in Section 8, we give some conclusions, ending the paper with an Appendix,
which contains the technical details obtained in the paper.

2. Preliminary Transformation

The usual dependence between spatial observations Z does not allow for the use
of techniques for iid variables. Nevertheless, it is possible to skip this restriction by
transforming the initial observations Z.

Namely, let us define the gap or lag variable Wi
s as

Wi
s = Wi

s(h) = Zi(s + h)− Zi(s).

The cross-variogram is now

2γij(h) = E
[
Wi

s ·W
j
s

]
the mean of the product, and its classical estimator, the method-of-moments estimator,

2γ̂ij(h) =
1

Nh

Nh

∑
l=1

Wi
sl
·W j

sl

The sample mean of the variables Xl = Wi
sl
·W j

sl , l = 1, ..., n, is non-robust then.
This is the reason why we say that we use the location estimation way: the parameter

is the mean, and the classical estimator is the sample mean. In this manner, instead
of considering a weird estimator for a strange parameter of the initial distribution, we
propose to transform the original (and usually dependent) observations Zl into new data
Xl (independent under some conditions) obtaining a natural parameter of the new variable
(its mean) for which a manageable estimator (the sample mean) should be feasible. Then,
standard techniques of robustification can be applied.

This idea has been successfully applied, first, in [4] and in [5].
An important problem is determining the distribution of this new variable Xl from

the original normal (or contaminated normal) distribution of Zl to later obtain the distri-
bution of the robust estimators obtained, where Xl is now the product of two different
normal variables.

2.1. Correlation between Wi
t and W j

s

First, let us define two new functions that are natural extensions of the similar ones
associated with the variogram.

Let us call cross-covariogram between Zi and Zj to the function (provided it is well defined)

CCij(|a− b|) = cov(Zi(a), Zj(b))

that will be equal to E[Zi(a) · Zj(b)]− µi · µj.
Here, a will be t or t + h and b will be s or s + h, and thus, µi = E[Zi(t + h)] = E[Zi(t)]

and µj = E[Zj(s + h)] = E[Zj(s)], where the equality between the expectations is obtained
because of the intrinsic stationary property of the components of Z.
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Analogously, we assume the equality of the variances in locations that are distanced
by a lag h, σ2

i = V[Zi(t + h)] = V[Zi(t)], and σ2
j = V[Zj(s + h)] = V[Zj(s)].

Let us also define the cross-correlogram as

ρij(|h|) = CCij(|h|)
σi · σj

Now, the covariance between Wi
t and W j

s will be (see the Appendix A for details)

cov
(

Wi
t , W j

s

)
= σi σj

[
2ρij(|t− s|)− ρij(|t− s + h|)− ρij(|t− s− h|)

]
.

Thus, the correlation between Wi
t and W j

s will be zero if

2ρij(|t− s|)− ρij(|t− s + h|)− ρij(|t− s− h|) = 0.

Because locations are fixed in advance (for instance, they could be sample stations)
we assume that they are equally spaced on a transect, for instance, in Figure 2.1 of [1], i.e.,
they are data on a regular grid. Hence, we can match two contiguous Zi (for which the
dependence is supposed to be the strongest), so that it is t + h = s.

Now, the previous condition of correlation equal to zero is obtained if

2ρij(h)− ρij(0)− ρij(2h) = 0

or, in terms of the cross-covariogram, when

2CCij(h)− CCij(0)− CCij(2h) = 0. (2)

On the other hand, with a little of algebra, the cross-variogram can be expressed as
(see Appendix A for details)

2γij(h) = 2
[
CCij(0)− CCij(h)

]
i.e.,

CCij(h) = CCij(0)− γij(h)

and then, it will be
CCij(2h) = CCij(0)− γij(2h).

Replacing these values of CCij(h) and CCij(2h) in (2), we obtain

2
[
CCij(0)− γij(h)

]
− CCij(0)−

[
CCij(0)− γij(2h)

]
= 0

i.e., the correlation between Wi
t and W j

s will be 0 when

γij(2h) = 2γij(h)

i.e., if a linear cross-variogram can be accepted as model (because, theoretically, the nugget
is 0).
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Remark 1. The increments Wi
t and W j

s have as joint cumulative distribution function, if they
are uncorrelated,

P(1−ε) fN1+ε fN2

{
Wi

t ≤ x, W j
s ≤ y

}
= (1− ε)PfN1

{
Wi

t ≤ x, W j
s ≤ y

}
+εPfN2

{
Wi

t ≤ x, W j
s ≤ y

}
= (1− ε)PfN1

{
Wi

t ≤ x
}

PfN1

{
W j

s ≤ y
}

+εPfN2

{
Wi

t ≤ x
}

PfN2

{
W j

s ≤ y
}

Hence, if Wi
t and W j

s are uncorrelated, with probability 1− ε, they are independent
under model fN1 and, with probability ε, they are independent under model fN2 , being a
mixture of independent variables. For this reason, these variables are considered in the
paper as independent if they are uncorrelated, following the idea of [4].

2.2. Independence of the Observations Xs

The method-of-moments estimator 2γ̂ij(h) was expressed as the sample mean of

the variables Xl = Wi
sl
·W j

sl , l = 1, ..., n. Considering only two of them, X1 = Wi
s1
·W j

s1

and X2 = Wi
s2
·W j

s2 , if we can accept a linear variogram for the variable Zi and a linear
variogram for the variable Zj, it was proved in [5] that Wi

s1
will be independent of Wi

s2
and

that W j
s1 will be independent of W j

s2 , l = 1, ..., n.
If, additionally, we can accept a linear cross-variogram for the couple (Zi, Zj), the

variables Wi
s1

and W j
s2 , and W j

s1 and Wi
s2

will be independent.
As a conclusion, if we could accept a linear variogram for the variable Zi, a linear

variogram for the variable Zj, and a linear cross-variogram for this pair, the variables

Xl = Wi
sl
·W j

sl , l = 1, ..., n, could be considered independent, a situation that we assume in
the paper and to which we shall return later.

2.3. Distribution of the Transformed Variables

Therefore, the initial observations Zi, Zj, normal or contaminated normal distributed,

are transformed into the lag variables Wi
s, W j

s and, finally, into their product Xs = Wi
s ·W

j
s .

The reason for this transformation is to express the classical estimator as a sample mean
of independent variables (if linear variograms and cross-variogram can be accepted),
obtaining a nice mathematical expression for the estimator, very useful in the definition of
new robust estimators of of location and in the determination of its sample distribution,
thanks to this location estimation way.

The problem is that, although, initially, the Zi are contaminated normal variables, after
two transformations, we do not have normality in Xs. In what follows, we obtain their
distributions.

Proposition 1. (a) If Zi ≡ N(µi, σ2
i ), then Wi

s ≡ N(0, 2γii(h)).
(b) If Zi ≡ (1 − ε)N(µi, σ2

i ) + εN(µi, g2σ2
i ), then Wi

s ≡ (1 − ε)N(0, 2γii(h))+
εN
(
0, g2 2γii(h)

)
.

(Proof in the Appendix A).
To obtain the distribution of 2γ̂ij(h) we use two results from Nadarajah and Pongány

(2016).

Proposition 2. ([10], p. 202, Theorems 2.1 and 2.2)
(a) Let (V1, V2) denote a bivariate normal random vector with zero means, unit variances, and
correlation coefficient ρ. Then, the pdf of X = V1 ·V2 is
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pX(x) =
1

π
√

1− ρ2
exp

{
ρ

1− ρ2 x
}

K0

(
1

1− ρ2 |x|
)

(3)

−∞ < x < ∞, where K0 is the modified Bessel function of the second-order zero.
(b) If X1, ..., Xn (n ≥ 2) is a random sample of X = V1 ·V2, the pdf of their sample mean X is

pX(x) =
n(n+1)/2 2(1−n)/2 |x|(n−1)/2
√

π
√

1− ρ2Γ(n/2)
exp

{
a1 − a2

2
x
}

K 1−n
2

(
a1 + a2

2
|x|
)

(4)

−∞ < x < ∞, where a1 = n/(1− ρ), a2 = n/(1 + ρ), and Kb is the modified Bessel function of
the second-order b.

Thus, if (Zi, Zj) is a bivariate scale contaminated normal variable with distribution

(1− ε)N(µ, Σ) + εN(µ, g2Σ) = (1− ε)N1 + εN2

the variable (Wi
s, W j

s) will be a bivariate scale contaminated normal variable with distribution

(1− ε)N(0, Σc) + εN(0, g2Σc)

where, in Σc, the two elements of the diagonal are V
(
Wi

s
)
= 2 γii(h) and V

(
W j

s

)
= 2 γjj(h)

and the correlation coefficient between Wi
s and W j

s is

ρij(h) =
2γij(h)√

2 γii(h)
√

2 γjj(h)

equal to the correlation coefficient between Wi
s/
√

2γii(h) and W j
s /
√

2γjj(h), usually short-
ened as ρ in the rest of the paper. Hence, it will be√

2 γii(h)
√

2 γjj(h) · ρ = 2γij(h).

The distribution of Xs = Wi
s ·W

j
s is

F(x) = P{Xs ≤ x} = (1− ε)PN1{Xs ≤ x}+ εPN2{Xs ≤ x}

= (1− ε)PN1

 Xs√
2 γii(h)

√
2 γjj(h)

≤ x√
2 γii(h)

√
2 γjj(h)


+εPN2

 Xs

g2
√

2 γii(h)
√

2 γjj(h)
≤ x

g2
√

2 γii(h)
√

2 γjj(h)


= (1− ε) PX

(
x/(

√
2 γii(h)

√
2 γjj(h))

)
+ε PX

(
x/(g2

√
2 γii(h)

√
2 γjj(h))

)
= (1− ε)G(x) + εH(x) (5)

where PX is the cumulative distribution function for which the pdf is given by (3). The last
equality, (5), is used as a notation.
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3. Cross-Variogram M-Estimators

Because the method-of-moments estimator is the sample mean of the transformed vari-
ables Xs, this estimator is robustified as it is the sample mean, but here, the model distribu-
tion of the observations is somewhat peculiar, with the computations being more elaborated.

Firstly, we define a large class of cross-variogram estimators for which their robustness
can be controlled. We call cross-variogram M-estimators, with score function ψ : X ×Θ −→
IR, to the solution of the equation:

n

∑
s=1

ψ(Xs, Tn) = 0 (6)

where Xs are the variables previously considered and we assume that ψ(x, θ) is monotoni-
cally decreasing in θ for all x. In fact, Tn is an estimator for a location problem, with ψ(x, θ)
being of the form ψ(x− θ), with ψ(u) monotonically increasing in u, [11].

We can control the robustness of the cross-variogram M-estimators, choosing a
bounded score function. Other robustness properties, such us the breakdown point, can
also be applied to this class of estimators.

3.1. Von Mises Approximation for their Distributions

If Tn(X1, ..., Xn) is an estimator where F is the underlying model distribution of the
observations, the tail probability PF{Tn > t} can be expressed at another model G using
the von Mises expansion as [12–14]:

PF{Tn > t} = PG{Tn > t}+
∫

TAIF(x; t; Tn, G) dF(x) + O
(
||F− G||2

)
where TAIF(x; t; Tn, G) is Hampel’s influence function of the tail probability functional,
called tail area influence function [15] and defined as

TAIF(x; t; Tn, G) =
∂

∂ε
PGε,x{Tn > t}

∣∣∣∣
ε=0

for all x ∈ R where the right-hand side exists.
This influence function is calculated by changing the underlying model G using a

contaminated model (1− ε)G + εδx before computing the first derivative at ε = 0, with δx
being the distribution that assigns mass 1 at x.

If distributions F and G are close enough, we can use the von Mises approximation (VOM)

PF{Tn > t} ' PG{Tn > t}+
∫

TAIF(x; t; Tn, G) dF(x) (7)

to compute the distribution of Tn under the underlying model F using model G.
In particular, if F is a mixture F = (1− ε)G + εH the von Mises expansion is

PF{Tn > t} = PG{Tn > t}+ ε
∫

TAIF(x; t; Tn, G) dH(x) + O(ε2)

because
∫

TAIF(x; t; Tn, G) dG(x) = 0. The von Mises approximation (7) will be then

PF{Tn > t} ' PG{Tn > t}+ ε
∫

TAIF(x; t; Tn, G) dH(x). (8)

Distribution G plays an important role in the VOM approximation because we can
choose it such that we know the tail probability of the leading term, PG{Tn > t}. Distribu-
tion G is called the pivotal distribution, and let us observe that TAIF is also computed for
this pivotal distribution.



8 of 21

3.2. Saddlepoint Approximation of the TAIF

In order to use von Mises approximation (8) for location M-estimators, we compute
a saddlepoint approximation (SAD) of the TAIF(x; t; Tn, G) , using Lugannani and Rice’s
formula, [16] ([17], p. 77, or better, [8], p. 314). We use the approximation given in [11]
for M-estimators and, following the same computations as that in [18], pp. 402–404, we
have that

TAIF(x; t; Tn, G) =
φ(s)

r1
n1/2

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
+ O(n−1/2) (9)

where φ is the density function of the standard normal distribution, and s and r1 are the
functionals

s =
√
−2nK(z0, t)

r1 = z0

√
K′′(z0, t)

with
K(λ, t) = log

∫ ∞

−∞
eλψ(y,t) dG(y)

being the cumulant generating function of distribution G; K′′(λ, t) being the second partial
derivative of K(λ, t) with respect to the first variable λ; and z0 being the saddlepoint, i.e.,
the solution of the saddlepoint equation

K′(z0, t) =
∫ ∞

−∞
ez0ψ(y,t) ψ(y, t) dG(y) = 0.

Replacing the SAD approximation (9) in the VOM approximation (8), we obtain the
VOM+SAD approximation for the distribution of the M-estimator Tn(X1, ..., Xn), assuming
that Xi ≡ F = (1− ε)G + εH,

PF{Tn > t} ' PG{Tn > t}+ ε
φ(s)

r1

√
n

(∫
ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

− 1

)
(10)

which is the approximation that we use in what follows and where G and H are the
distributions that appear in (5).

The VOM+SAD approximation will be accurate if distributions F and G are close.
Nevertheless, if this is not the case, we can use an iterative procedure, as in [19–21],
considering intermediate distributions between F and G.

4. Sample Distribution of the Method-of-Moments Estimator

Not all the cross-variogram M-estimators are robust. For instance, the classical method-
of-moment estimator 2γ̂ij(h) is not robust because its score function ψ(u) = u is not
bounded. Nevertheless, we compute its VOM+SAD approximation to show its lack of
robustness next and because its distribution will be useful in the determination of the
distribution of some robust versions of it.

Due to 2γ̂ij(h) being an M-estimator with score function ψ(x − θ) = x − t, we
can use approximation (10). Its leading term is computed with respect to distribution

G(x) = PX

(
x/(

√
2 γii(h)

√
2 γjj(h))

)
, where PX is the cumulative distribution function

for which the pdf is pX , given by (3) in Proposition 2.
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Thus, the leading term in (10) is

PG{2γ̂ij(h) > t} = P

{
1

Nh

Nh

∑
s=1

Xs > t

}
= PG

{
1

Nh

Nh

∑
s=1

Wi
s W j

s > t

}

= PG

 1
Nh

Nh

∑
s=1

Wi
s√

2γii(h)
W j

s√
2γjj(h)

>
t√

2γii(h)
√

2γjj(h)


=

∫ ∞

d
pX(x) dx

where d = t/(
√

2γii(h)
√

2γjj(h)) and where pX is the pdf given by (4) because, now, the
previous tail probability is the tail probability of the sample mean of the product of two
standard normal distributions.

The rest of the elements in approximation (10) essentially depend on the cumulant
generating function of distribution G and are described in the Appendix. All of them
are very easy to program with R. They are computed in the Supplementary Materials
available on the website. https://www2.uned.es/pea-metodos-estadisticos-aplicados/
cross-variogram.htm (accessed on 22 February 2021).

4.1. Performance of the Theoretical Results with Simulations

We can see how accurate the VOM+SAD approximation is for the method-of-moments
estimator with a simulation study, considering a sample size as small as n = 3. We consid-
ered a bivariate normal distribution with mean vector (0, 0) and covariance matrix such
that 0.52 and 0.72 are the marginal variances and 0.3 the covariance for (Wi

s, W j
s). We con-

sider four different situations: no contamination, contamination ε = 0.05, contamination
ε = 0.1, and contamination ε = 0.2.

Under these conditions, we obtain Figure 1 in which we appreciate that the approxi-
mations are very good, especially in the tails, which are the areas of interest for tests and
confidence intervals.
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Figure 1. Approximate tail probabilities (in black) and simulated (in red) for the method-of-moments estimator 2γ̂ij(h) with
sample size Nh = 3, with no contamination, and with three different degrees of contamination ε.

We include in Table 1 some values of Figure 1 (see the Supplementary Materials, p. 6):
values of the VOM+SAD approximation and exact ones obtained with the simulation.

https://www2.uned.es/pea-metodos-estadisticos-aplicados/cross-variogram.htm
https://www2.uned.es/pea-metodos-estadisticos-aplicados/cross-variogram.htm
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Table 1. Tail probabilities of the VOM+SAD approximation and the exact (simulated) values for the method-of-moments
estimator of Figure 1.

No Contamination ε = 0 ε = 0.05 ε = 0.2

Approximation Exact Approximation Exact Approximation Exact

t = 0.4 0.26627 0.27903 0.27101 0.28199 0.28524 0.29635
t = 0.6 0.11944 0.12512 0.12319 0.12904 0.13443 0.13795
t = 0.8 0.05052 0.05665 0.05302 0.05895 0.06053 0.06312
t = 0.9 0.03189 0.03671 0.03386 0.03727 0.03978 0.04304
t = 1.0 0.01950 0.02451 0.02102 0.02449 0.02560 0.02811

If we compute from this table the relative errors of the approximation, in %, defined
as usual (see, for instance, [22]) as

100× |Exact− Approximation|
1− Exact

we obtain Table 2, showing extremely low relative errors in the approximations. This is
one of the advantages of saddlepoint approximations, [14].

Table 2. Relative errors of the VOM+SAD approximation, in %.

No Contamination ε = 0 ε = 0.05 ε = 0.2

t = 0.4 1.7698 1.5292 1.5789
t = 0.6 0.6492 0.6717 0.4083
t = 0.8 0.6498 0.6301 0.2764
t = 0.9 0.5004 0.3542 0.3407
t = 1.0 0.5136 0.3557 0.2583

4.2. Robustness of the Method-of-Moments-Estimator

We can observe the lack of robustness of the distribution of the method-of-moments-
estimator in Figure 2 as we increase ε or g.

The programs in R, used to obtain this figure, are in the Supplementary Materials.
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Figure 2. Tail distribution of the method-of-moments estimator 2γ̂ij(h) with sample size Nh = 3
and two underlying models: (1− ε)N(0, 1) + εN(0, 1.12) and (1− ε)N(0, 1) + εN(0, 1.22), for three
different degrees of contamination ε.
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Remark 2. The sample size Nh, considered in each estimation, depends on the value of the lag h,
that is fixed in advance. If h is small, the number of lags will be large and Nh will be small. The
VOM+SAD approximations obtained in the paper are very accurate, even in this case.

Nevertheless, if h is large, the number of lags will be small and the sample size Nh will be
large. In this case, it is easier to compute the leading term as

PG{2γ̂ij(h) > t} = P

{
1

Nh

Nh

∑
s=1

Xs > t

}

= PG

 1
Nh

Nh

∑
s=1

Wi
s√

2γii(h)
W j

s√
2γjj(h)

>
t√

2γii(h)
√

2γjj(h)


using the central limit theorem because

Wi
s√

2γii(h)
W j

s√
2γjj(h)

is the product of two standard normal variables with correlation coefficient ρ. The charac-
teristic function of this product is (expression (4) in [10])

ϕ(u) = [1− i(1 + ρ)u]−1/2[1 + i(1− ρ)u]−1/2

and then, the mean of this product variable Xs is ϕ′(0)/i = ρ and the second moment
about the origin is ϕ′′(0)/i2 = 1 + 2ρ2. Hence, the variance will be 1 + ρ2 and the leading
term can be computed if Nh is large, as

PG{2γ̂ij(h) > t} ' 1−Φ

 t√
2γii(h)

√
2γjj(h)

− ρ

 √
Nh√

1 + ρ2

.

Since, if ε = 0 or g = 1, the scale contaminated normal distribution is just a normal
distribution, this last expression is an approximation for the distribution of the classical
method-of-moments estimator under the usual underlying normal distribution model.

5. α-Trimmed Cross-Variogram Estimator

Another robust estimator for the cross-variogram, which is not an M-estimator, can
be obtained by trimming the Xs observations as follows:

Considering the initial pair of variables Zi and Zj, and transforming them to the

couple Wi
s = Zi(s + h) − Zi(s) and W j

s = Zj(s + h) − Zj(s) and finally to the product

Xs = Wi
s ·W

j
s , if we trim the 100 · α% of the smallest and the 100 · α% of the largest ordered

data X(i), the (symmetrically) sample α-trimmed cross-variogram estimator is defined as

2γ̂ijα(h) =
1

Nh − 2r

(
X(r+1) + ... + X(Nh−r)

)
= Xα

where r = [Nhα] if [ . ] stands for the integer part.
To obtain an approximation for its sample distribution, we use an accurate VOM+SAD

approximation obtained in [21]. From Corollary 1 therein, we can approximate the small
sample distribution of the sample α-trimmed cross-variogram 2γ̂ijα(h) when the obser-
vations Xi come from F = (1− ε)G + εH, with k iterations (k large), by the VOM+SAD
approximation to the distribution of the method-of-moments-estimator 2γ̂ij(h), obtained
in the previous section, as

PF

{
2γ̂ijα(h) > t

}
' (1 + Nh c1)

k+1 (1 + Nh c2)
k+1 PF

{
2γ̂ij(h) > t

}



12 of 21

where c1 =
[
(1− 2α)1/(k+1) − 1

]
and c2 =

[
1/(1− 2α)1/(k+1) − 1

]
.

In the bottom row of Figure 3, we plot the tail probability of the 0.2-trimmed cross-
variogram estimator 2γ̂ijα(h) with no contamination (ε = 0) and with two percentages of
contamination: ε = 0.15 and ε = 0.3, with the sample size being Nh = 10.
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Figure 3. Tail probabilities of the classical method-of-moments cross-variogram estimator 2γ̂ij(h)
(top row of figures) and 0.2-trimmed cross-variogram estimator 2γ̂ijα(h) (bottom row of figures),
with no contamination, ε = 0, and contaminations ε = 0.15 and ε = 0.3.

We observe in this figure that, as we increase the contamination percentage, i.e., as we
increase ε, the tail probabilities obtained with the trimmed cross-variogram estimators are
affected but by less than those obtained with the classical method-of-moments estimator.
We see this by comparing the first row of figures (non-trimmed cross-variogram estimators)
with the second row of figures (trimmed cross-variogram estimators).

6. Huber’s Cross-Variogram Estimator

If the ψ function, ψ(x, t) = ψ(x− t), used to obtain the M-estimator in Equation (6)
is the Huber’s function ψb(u) = min{b, max{u,−b}}, the M-estimator obtained is called
the Huber’s cross-variogram estimator, 2γ̂ij H(h). Since its score function is bounded, this
estimator will be robust.

An approximation for its distribution can be obtained from (10). Nevertheless, the
leading term PG

{
2γ̂ij H(h) > t

}
is not easy to compute. For this reason, in this case, we use

the Lugannani and Rice formula to approximate this leading term, the VOM+SAD approxi-
mation for the distribution of the Huber’s cross-variogram estimator being the following:

PXi≡F

{
2γ̂ij H(h) > t

}
' 1−Φ(s) + φ(s)

[
1
r
− 1

s

]
+ ε

φ(s)
r1

√
n

(∫
ez0ψb(x−t)dH(x)∫
ez0ψb(y−t)dG(y)

− 1

)
(11)

where the saddlepoint z0 is such that∫
ez0ψb(y−t) ψb(y− t) dG(y) = 0

with G and H being the distributions that appear in (5), and where all the functionals r, r1,
and s are computed with respect to model G.

This approximation may seem complicated but it is easy to compute using the huber
function of the MASS library, [23].
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Example 1. In order to analyze the behaviour of the robust estimators defined in the paper, we
compare them with the classical method-of-moments estimator, carrying out a simulation study in
which we compare the 0.1-trimmed and Huber’s variogram estimators with the classical one.

The study consists of a simulation of two spatial and statistical correlated variables
Z1 and Z2, both with a normal distribution, in different situations, with some of them
considered, for instance, in [4]:

(A) No contamination, Z1 ≡ N(0, 1);
(B) Z1 ≡ 0.95 · N(0, 1) + 0.05 · N(0, 52);
(C) Z1 ≡ 0.90 · N(0, 1) + 0.10 · N(0, 52);
(D) Z1 ≡ 0.80 · N(0, 1) + 0.20 · N(0, 52);
(E) Z1 ≡ 0.95 · N(0, 1) + 0.05 · N(0, 202);
(F) Z1 ≡ 0.90 · N(0, 1) + 0.10 · N(0, 202);
(G) Z1 ≡ 0.80 · N(0, 1) + 0.20 · N(0, 202).

The details of the simulations are in the Supplementary Materials. In these simulations,
we observe less sensitivity in the robust estimators than in the classical one, as we increase
the contamination in the model. We appreciate this in Figures 4 and 5. In the first one, we
observe that the classical variogram model can be accepted for the three estimations in
case (A), where there is no contamination. Nevertheless, as we increase the contamination
(Figure 5), this variogram model does not represent the classic variogram estimations; only
in some cases it represents the 0.1-trimmed variogram estimations, and it can be accepted
when we consider Huber’s variogram estimations except, perhaps, in the last case, where
it is doubtful.
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Figure 4. Variogram estimations of Example 1: classical (black), 0.1-trimmed (green) and Huber’s (red), and the variogram
model with no contamination.
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Figure 5. Variogram estimations of Example 1: classical (black), 0.1-trimmed (green) and Huber’s (red), and the variogram
model with no contamination.

7. Linearized Version of the Cross-Variogram Model

We saw at the end of Section 2.2 that, if linear models can be accepted as variograms
and cross-variograms, the variables Xs can be considered independent. These linearized
versions of the model (classical and robust) were introduced in Section 9 of [5] and can
be applied to model the cross-variogram. They essentially consists of replacing, before
the range, the increasing part of the traditional variogram, or cross-variogram, using the
regression line and, after the range, using the sill (or the robust sample mean in the robust
linearized version).

Additionally, the test defined in Section 10.1 of [5] can be used to check if these models
can be accepted, using saddlepoint approximations for the robust (and classical) estimators
of the variograms and cross-variograms.

Namely, we test the null hypothesis of a particular variogram or cross-variogram
modelM0(h) from which we obtain the theoretical variogram values 2γii(h) (or cross-
variogram values 2γij(h))) using as test statistic

Sn = sup
h
‖2γ̂ii(h)− 2γii(h)‖ = max

1≤||h||≤K
‖2γ̂ii(h)− 2γii(h)‖

or
Sn = sup

h

∥∥2γ̂ij(h)− 2γij(h)
∥∥ = max

1≤||h||≤K

∥∥2γ̂ij(h)− 2γij(h)
∥∥

assuming that we consider K lags.
If we unify both as

Sn = sup
h
‖2γ̂(h)− 2γ(h)‖ = max

1≤||h||≤K
‖2γ̂(h)− 2γ(h)‖

the cumulative distribution function of Sn is (see [5])

FSn(v) =
K

∏
||h||=1

[
P2γ(h){2γ̂(h) > −v + 2γ(h)} − P2γ(h){2γ̂(h) > v + 2γ(h)}

]
probabilities that are computed with the VOM+SAD approximations.
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We remark that the number K of lags (and hence the value of h) can be modified to
obtain the desired linearity.

Example 2. Let us consider prediction data, included in the jura data set from Pierre Goovaerts’
book that contains geolocated information of several variables. This data set is called prediction.dat
in the R library, gstat.

Two correlated variables, with a distribution similar to a scale contaminated normal
model, are ln(Pb) (natural logarithm of Lead) and Ni (Nickel).

The values of the classical method-of-moments estimator, the 0.1-trimmed cross-
variogram estimator, and the Huber’s cross-variogram estimator (with tuning constant
b = 1.5) are easily obtained for these variables, as can be seen in the Supplementary
Materials. The lag distant chosen was h = 0.2. These values are shown in Figure 6.

To use their distributions, obtained in the paper, it is necessary to check if we can
accept linear variograms for these two variables and a linear cross-variogram for the pair,
as it was pointed out in Section 2.2. If this is the case, the variables Xs, s = 1, ..., n can be
considered independent.
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Figure 6. Classical (black) and robust (green and red) cross-variogram estimations of Example 2.

Assuming as underlying model, a scale contaminated normal with ε = 0.01 and
g = 1.1, the linearized versions of the variograms for the logarithm of Lead are shown in
Figure 7. The linearized versions of the variograms for Nickel are shown in Figure 8.

Finally, the linearized versions for the cross-variograms models are shown in Figure 9.
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Figure 7. Classical (black) and robust (green and red) variogram estimations for the logarithm of lead
and their linearized variograms of Example 2.
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Figure 8. Classical (black) and robust (green and red) variogram estimations for nickel and their
linearized variograms of Example 2.
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Figure 9. Classical (black) and robust (green and red) cross-variogram estimations, linearized
versions, and the classical model (blue) of Example 2.

From a visual point of view, all these linearized versions can be accepted using the test
considered in Section 7. The values of the test statistics Sn = suph‖2γ̂(h)− 2γ(h)‖ and the
p-values are given in Table 3 (see the Supplementary Materials). Thus, the independence
of the Xs can be accepted.

Table 3. Values of Sn = suph‖2γ̂(h)− 2γ(h)‖ and its p-value considering a scale contaminated
normal with ε = 0.01 and g = 1.1 of Example 2.

Log Lead Nickel Cross-Variogram

Sn p-Value Sn p-Value Sn p-Value

Classical 0.0704076 0.052087 27.8255 0.112065 1.160842 0.9775347
0.1-trimmed mean 0.0312044 1 58.3908 1 0.878346 0.7257757
Huber 0.0634437 1 29.0930 1 0.894193 1

We conclude the paper with a real-data example in which we observe how robust
cross-variogram estimations provide models less sensitive to outliers, which will lead us to
a more robust cokriging.

Example 3. Let us consider the geolocated pollution data, included in the Supplementary Materi-
als, that are the 2017 average concentrations of four air pollutants in the Community of Madrid
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(Spain): nitrogen monoxide (NO), nitrogen dioxide (NO2), suspended particles with a size less than
10 microns (PM10), and ozone (O3). These data are obtained from 22 monitoring stations [24–26].

Two of these 4 variables are strongly correlated and have a distribution similar to a
scale contaminated normal model; they are NO and NO2.

The variogram-crossvariogram matrix of the classical variogram and cross-variogram
estimators along with classical least squares model (Mather’s model in this case) are shown
in Figure 10.

The values of the classical method-of-moments estimator, the 0.1-trimmed cross-
variogram estimator, and the Huber’s cross-variogram estimator (with tuning constant
b = 1.5) for these variables are obtained in the Supplementary Materials. These values are
shown in Figure 11, along with the linearized cross-variogram models.

We observe that, at first lag, the three estimations agree. In the others, we can see the
soft effect of the 0.1-trimmed cross-variogram and Huber’s cross-variogram estimators.

The linearized versions of the variograms and cross-variogram can be accepted, and
therefore, the independence of the transformed variables Xs, s = 1, ..., n.

Moreover, we appreciate the influence of the outliers in the estimation of the (lin-
earized) cross-variogram in Figure 11 and, therefore, on the cokringing obtained with
classical cross-variogram models. Thus, the use of robust estimators of the cross-varogram
will be more reasonable in order to obtain a robust cokriging.
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Figure 10. Variogram-crossvariogram matrix of the classical variogram and cross-variogram estimations with the classical
model of Example 3.
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Figure 11. Classical (black) and robust (green and red) cross-variogram estimations of Example 3,
with the linearized cross-variogram models.
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8. Conclusions

In this paper, we introduced new robust cross-variogram estimators and we obtained
saddlepoint approximations for their distributions when the underlying model is a scale-
contaminated normal distribution. We also obtained an approximation for the distribution
of the method-of-moments estimator.

These approximations are especially useful when the sample size is small, a situation
that we have when the size of the lag h is small.

We also proposed a suitable transformation of the initial observations to avoid the
traditional dependence of the spatial observations. We see that is that linear variograms
and a linear cross-variogram can be accepted as models to obtain this.

Supplementary Materials: The following are available online at https://www2.uned.es/pea-metodos-
estadisticos-aplicados/cross-variogram.htm.
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Appendix A

Expression for the covariance between W i
t and W j

s . Section 2.1

cov
(

Wi
t , W j

s

)
= cov

(
Zi(t + h)− Zi(t), Zj(s + h)− Zj(s)

)
= E

[
(Zi(t + h)− Zi(t)) · (Zj(s + h)− Zj(s))

]
= E

[
(Zi(t + h) · Zj(s + h)

]
− E

[
(Zi(t + h) · Zj(s)

]
−E
[
(Zi(t) · Zj(s + h)

]
+ E

[
(Zi(t) · Zj(s)

]
= CCij(|t + h− s− h|) + µi · µj − CCij(|t + h− s|)− µi · µj

−CCij(|t− s− h|)− µi · µj + CCij(|t− s|) + µi · µj

= ρij(|t− s|) σi σj − ρij(|t− s + h|) σi σj − ρij(|t− s− h|) σi σj + ρij(|t− s|) σi σj

= σi σj

[
2ρij(|t− s|)− ρij(|t− s + h|)− ρij(|t− s− h|)

]
.

Expression for the cross-variogram. Section 2.1

2γij(h) = E
[
(Zi(s + h)− Zi(s)) · (Zj(s + h)− Zj(s))

]
= E

[
(Zi(s + h) · Zj(s + h)

]
− E

[
(Zi(s + h) · Zj(s)

]

https://www2.uned.es/pea-metodos-estadisticos-aplicados/cross-variogram.htm
https://www2.uned.es/pea-metodos-estadisticos-aplicados/cross-variogram.htm
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−E
[
(Zi(s) · Zj(s + h)

]
+ E

[
(Zi(s) · Zj(s)

]
= CCij(0) + µi · µj − CCij(h)− µi · µj

−CCij(h)− µi · µj + CCij(0) + µi · µj

= 2
[
CCij(0)− CCij(h)

]

Proof of Proposition 1. If Zi is a variable with normal distribution, Zi ≡ N(µi, σ2
i ), where

X ≡ H stands for “X is distributed as H”; then, it is Wi
s = (Zi(s + h) − Zi(s)) ≡

N(0, 2γii(h)) because of the intrinsic stationary property of Zi.
If Zi has a distribution (1− ε)N(µi, σ2

i ) + εN(µi, g2σ2
i ) = (1− ε)N1 + εN2, the cumu-

lative distribution function of Wi
s will be

P
{

Wi
s ≤ y

}
= (1− ε)PN1

{
Wi

s ≤ y
}
+ εPN2

{
Wi

s ≤ y
}

= (1− ε)PN1

{
Zi(s + h)− Zi(s)√

2 γii(h)
≤ y√

2 γii(h)

}

+εPN2

{
Zi(s + h)− Zi(s)

g
√

2 γii(h)
≤ y

g
√

2 γii(h)

}

= (1− ε)Φ
(

y/
√

2 γii(h)
)
+ ε Φ

(
y/(g

√
2 γii(h))

)
where Φ is the cumulative distribution function of the standard normal distribution.

Elements of Approximation (10) for the Method-of-Moments estimator

K(λ, t) = log
∫ ∞

−∞
eλ(y−t) dG(y)

= log
∫ ∞

−∞
eλ(y−t) pX

 y√
2γii(h)

√
2γjj(h)

 dy√
2γii(h)

√
2γjj(h)

= −λt + log

{[
1− λ

√
2γii(h)

√
2γjj(h)(1 + ρ)

]−1/2

·
[

1 + λ
√

2γii(h)
√

2γjj(h)(1− ρ)

]−1/2
}

using expression (4) in Nadarajah and Pongány (2016) and with ρ being the correlation

coefficient between Wi
s/
√

2γii(h) and W j
s /
√

2γjj(h), mentioned above.

Hence, the saddlepoint equation K′(z0, t) = 0 from which we obtain the saddlepoint
z0 is √

2γii(h)
√

2γjj(h)(1 + ρ)

1− z0
√

2γii(h)
√

2γjj(h)(1 + ρ)
−

√
2γii(h)

√
2γjj(h)(1− ρ)

1 + z0
√

2γii(h)
√

2γjj(h)(1− ρ)
= 2 t.
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The other elements in (10) are

K(z0, t) = −z0t + log

{[
1− z0

√
2γii(h)

√
2γjj(h)(1 + ρ)

]−1/2

·
[

1 + z0

√
2γii(h)

√
2γjj(h)(1− ρ)

]−1/2
}

K′′(z0, t) =
1
2

[√
2γii(h)

√
2γjj(h)(1 + ρ)

]2

[
1− z0

√
2γii(h)

√
2γjj(h)(1 + ρ)

]2 +
1
2

[√
2γii(h)

√
2γjj(h)(1− ρ)

]2

[
1 + z0

√
2γii(h)

√
2γjj(h)(1− ρ)

]2

s =
√
−2nK(z0, t)

r1 = z0

√
K′′(z0, t)

and the integrals are

∫
ez0ψ(y,t)dG(y) = e−z0t

[
1− z0

√
2γii(h)

√
2γjj(h)(1 + ρ)

]−1/2

·
[

1 + z0

√
2γii(h)

√
2γjj(h)(1− ρ)

]−1/2

∫
ez0ψ(x,t)dH(x) = e−z0t

[
1− z0 g2

√
2γii(h)

√
2γjj(h)(1 + ρ)

]−1/2

·
[

1 + z0 g2
√

2γii(h)
√

2γjj(h)(1− ρ)

]−1/2
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