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Abstract: In this paper, we obtain a saddlepoint approximation for the small sample distribution of several 
variogram estimators such as the classical Matheron’s estimator, some M-estimators like the robust 
Huber’s variogram estimator, and also the α-trimmed variogram estimator. The tail probability 
approximation obtained is very accurate even for small sample sizes. In the approximations we consider 
that the observations follow a distribution close to the normal, specifically, a scale contaminated normal 
model. To obtain the approximations we transform the original observations into a new ones, which can be 
considered independent if a linearized variogram can be accepted as model for them. To check this, a 
goodness of fit test for a variogram model is defined in the last part of the paper. 
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1 Introduction and notation 

Variogram estimation is a very important issue in Geostatistics where a random variable Z is 
observed at some known fixed locations s ∈ D, being D a fixed subset of Rd , d ≥ 1. 

Thus, it is also very important to obtain the distribution of the variogram estimator because it can 
be used to analyze the properties of the estimator and to check the fit of a particular variogram 
model, which can be used, for instance, in kriging interpolation. 

In Matheron (1962), a classical estimator  2γˆM (h)  of the variogram was introduced, an estimator 
which is widely used in applications of spatial statistics. In Cressie and 
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Hawkins (1980) or Genton (1998), some robust versions were defined but their distri-
butions, not even some approximations of them, were obtained.

In fact, there is no useful approximation for the distribution of 2γ̂M (h) when the
sample size is small. There are only some approximations if the sample size is large
or if the n observations Z(si ) = Zi are i.i.d. Gaussian random variables; in this case,
Ali (1987) obtained a small-sample beta approximation. Nevertheless, to suppose that
the observations follow a normal model is unrealistic because, in practice, they are
contaminated by occasional outliers. For this reason, we shall assume a model close
to the normal and, specifically, a scale contaminated normal model,

F = (1 − ε) N (μ, σ ) + ε N (μ, gσ)

with ε ∈ (0, 1) (usually small) and g > 1, for the marginal distributions.
We shall also assume that the variable Z , from which we obtain the sequence of

observations Z(si), verifies the intrinsic stationarity property, i.e., (Cressie 1993, p.
40) that the differences have zero mean

E[Z(s + h) − Z(s)] = 0, ∀s, s + h ∈ D

and the variance depends only on lag h,

V (Z(s + h) − Z(s)) = 2 γ (h), ∀s, s + h ∈ D.

The function 2 γ (h) is called the variogram (Matheron 1962),

2 γ (h) = V (Z(s + h) − Z(s)) = E[(Z(s) − Z(s + h))2].
The estimation of the variogram is made for several fixed lags h, thereby obtaining 

the estimations 2 ̂γ (h) . Next, a modeling exercise on the pairs (||h||, γ̂ (h)) is carried 
out, fitting a suitable function to these pairs of data: the semivariogram model, where 
||.|| denotes the Euclidean norm.

The knowledge of the distribution of 2 ̂γ (h) can be used to analyze its properties 
and check this fit.

Although the total number of observations is usually large, since the estimation of 
the variogram 2 γ (h) is made for each h, the sample size n used in each estimation, 
for fixed h, could be small, and the saddlepoint approximations, suitable.

The rest of this paper is organized as follows. In Sect. 2 a transformation of the 
original variables is done to obtain the required independence of the observations 
and also the distribution of these new variables. In Sect. 3 the estimation problem is 
established emphasizing on the M-estimators.

Von Mises approximations and saddlepoint approximations are considered and 
applied to the estimators of the variogram in Sects. 4 and 5, respectively.

In Sect. 6 these approximations are applied to Matheron’s estimator and in Sect. 7 
to the α-trimmed variogram estimator. The approximation for the Huber’s variogram 
estimator is obtained in Sect. 8. The independence condition is satisfied by a 
linearized version of the variogram which is defined in Sect. 9.
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After we have obtained the approximations, we use them in Sect. 10 to define a
confidence zone and a goodness of fit test for a variogram model.

If the linearized version of the variogram can be accepted, we could also accept the
independence of the transformed variables.

Finally, some concluding remarks are given in Sect. 11.

2 Preliminary transformation

If we define the variable Ys as

Ys(h) = (Z(s + h) − Z(s))2

the problem considered in the paper is an estimation problem for the expectation of
the variable Ys(h), because it is E[Ys(h)] = 2 γ (h). In this way, we follow the via of
location estimation, suggested by Cressie and Hawkins (1980), instead of the via of
variance estimation used in Genton (1998).

This transformation, usually shortened as

Ys = (Zs+h − Zs)
2

is a key element in the paper because, although variables Zs are not independent,
Cressie and Hawkins (1980, pp. 119–120) argue, “for problems of practical interest,
the interdependence between Yt and Ys will be negligible except for a negligibly
small proportion of the Yt , Ys pairs. We therefore feel justified in treating the {Yt } as
if they were an independent random sample.”

Delving into this matter, because the locations si are fixed in advance (for instance
they could be sample stations), they can be considered as equally spaced on a transect,
as for instance in Fig. 2.1 of Cressie (1993, p. 32). Then, we can match two contiguous
Zi (for which the dependence is supposed to be the strongest), so that it is t + h = s.
The correlation between

√
Ys = Zs+h − Zs and

√
Yt = Zt+h − Zt , will be 0 if and

only if (Cressie and Hawkins 1980, p. 119)

ρ(h) − 1

2
[ρ(2h) + 1] = 0

or equivalently, if
2C(h) = C(2h) + C(0) (1)

being ρ(h) = C(h)/C(0) the autocorrelation function and C(h) = cov(Z(s), Z(s +
h)) the covariogram.

Due to the definition of the variogram, we have that 2 γ (h) = 2C(0) − 2C(h) .
Hence, it will be C(h) = C(0) − γ (h) and C(2h) = C(0) − γ (2h) . Thus, we shall
obtain equality (1), and so independence between the Ys , if the semivariogram model
is such that

γ (2h) = 2γ (h) (2)
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condition that is obtained if, for ||h|| before the range of the variogram, a linear
semivariogram model can be accepted for the pairs (||h||, γ̂ (h)). This requirement in
the semivariogram model will be checked in the last part of the paper.

Hence, in what follows, we shall consider the {Ys} as if they were a sample of
independent variables, and the estimators will be based on them.

2.1 Distribution of variables {Ys}

Although the main role is played by the normal marginal distributions of the Zi , to
complete the mathematical framework, let us say that these marginal distributions are
obtained from the multivariate contaminated normal distribution with joint probability
density function (pdf)

fM (z) = fM (z1, . . . , zn) = (1 − ε) fN (z;μ,Σ) + ε fN (z;μ, g2Σ)

where ε ∈ (0, 1), g > 1, and where fN (z;μ,Σ) denotes the pdf of a n-variate
normal random vector having the multivariate normal distribution with mean vector
μ = (μ, . . . , μ)′ and covariance matrix Σ , a matrix where all the elements of its
diagonal are equal to σ 2.

From this joint distribution, the marginal distributions will be the scale contaminated
normal model,

f (zi ) = (1 − ε)

∫
· · ·

∫
fN (z;μ,Σ)dz1 . . . dzi−1dzi+1 . . . dzn

+ε

∫
· · ·

∫
fN (z;μ, g2Σ)dz1 . . . dzi−1dzi+1 . . . dzn

= (1 − ε) N (μ, σ ) + ε N (μ, gσ)

i = 1, . . . , n, because of the properties a multivariate normal distribution (the marginal
distributions are univariate normal) and the meaning of the elements of its covariance
matrix.

Under no contamination, it is clear that, if observations Zs follow a normal distri-
bution,

Zs ≡ N (μ, σ )

where X ≡ H stands for “X is distributed as H”, then it is (Zs+h − Zs) ≡
N

(
0,

√
2γ (h)

)
and

Ys ≡ 2 γ (h) χ2
1 .

Under contamination, if

Zs ≡ F = (1 − ε)N (μ, σ ) + εN (μ, gσ)
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because the joint distribution of the vector Z = (Z1, . . . , Zn) is the multivariate con-
taminated normal distribution, the distribution of Ys = (Zs+h − Zs)

2 is

P{Ys ≤ y} = (1 − ε)

∫ ∫
A
f1(zs, zs+h;μ2,Σ2) dzsdzs+h

+ε

∫ ∫
A
f2(zs, zs+h;μ2, g

2Σ2) dzsdzs+h

being A the set

A = {(zs, zs+h) : (zs+h − zs)
2 ≤ y},

f1 a bivariate normal distribution with mean vector μ2 = (μ,μ)′ and covariance
matrix Σ2, a matrix in which the two elements in the diagonal are equal to σ 2, and f2
a bivariate normal distribution with mean vector μ2 and covariance matrix g2Σ2.

Hence, under f1, the variable
√
Ys = Zs+h − Zs is the difference between two

univariate normal distributions (and so, with normal distribution, where no correlation
means independence) with variance V (

√
Ys) = 2 γ (h) because of the intrinsic sta-

tionarity property of the Zi . Similarly, under f2, the variable
√
Ys = Zs+h − Zs is the

difference of two univariate normal distributions with variance V (
√
Ys) = g22 γ (h).

Then, standardizing, the distribution of Ys will be

P{Ys ≤ y} = (1 − ε)Pf1

{
(Zs+h − Zs)

2 ≤ y
}

+εPf2

{
(Zs+h − Zs)

2 ≤ y
}

= (1 − ε)Pf1

{(
Zs+h − Zs√

2 γ (h)

)2
≤ y

2 γ (h)

}

+εPf2

⎧⎨
⎩

(
Zs+h − Zs√
g2 2 γ (h)

)2
≤ y

g22 γ (h)

⎫⎬
⎭

= (1 − ε)P

{
χ2

1 ≤ y

2 γ (h)

}
+ εP

{
χ2

1 ≤ y

g22 γ (h)

}

= (1 − ε)Gχ2
1

(
y

2 γ (h)

)
+ εGχ2

1

(
y

g22 γ (h)

)

being Gχ2
1

the cumulative distribution function of a χ2
1 . But this is the cumulative

distribution function of a contaminated chi-square model

(1 − ε) 2 γ (h) χ2
1 + ε g2 2 γ (h) χ2

1

because of the definition of this model and the total probability theorem. Hence, we
can say that

Ys ≡ (1 − ε) 2 γ (h) χ2
1 + ε g2 2 γ (h) χ2

1
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Therefore, to say that Zs follows a distribution model close to the normal, can be
formalized in the context of the paper saying that Ys has a distribution close to the
2 γ (h) χ2

1 , for instance, (1 − ε) 2 γ (h) χ2
1 + ε g2 2 γ (h) χ2

1 .

3 Estimation problem

In this paper we obtain accurate saddlepoint approximations for the distributions of
the estimators defined in Cressie and Hawkins (1980), via location estimation instead
of the via scale estimation considered in Genton (1998). All these estimators will be
based on the, supposedly independent, {Yi }.

These approximations can be used to study the properties of the estimators, to test
a model for the variogram and also to check the supposed independence of the {Yi }.

Some of the variogram estimators Tn will be M-estimators with score function
ψ : Y × Θ −→ IR , i.e., the solution of the equation

n∑
i=1

ψ(Yi , Tn) = 0 (3)

assuming that ψ(y, θ) is monotonic decreasing in θ for all y. In fact, Tn will be an
estimator for a location problem, being ψ(y, θ) of the form ψ(y − θ), with ψ(u)

monotonic increasing in u (Daniels 1983).
We shall also obtain an accurate approximation for the case in which Tn is the

α-trimmed mean of the Yi .

4 vonMises approximation for the distribution of Tn

The first order von Mises expansion of a functional T at a model distribution F is
(Withers 1983 or Serfling 1980)

T (F) = T (G) +
∫

IF (x; T ,G) dF(x) + Rem

where IF is the Hampel’s Influence Function (Hampel 1974). The remainder term is

Rem = 1

2

∫ ∫
T (2)
GF

(x1, x2) d[F(x1) − G(x1)] d[F(x2) − G(x2)]

being T (2)
GF

the second derivative of the functional T at the mixture distribution GF =
(1 − λ)G + λ F , for some λ ∈ [0, 1] and x, x1, x2 ∈ R.

If the distributions F and G are close enough, the remainder term Rem will be
small, and the von Mises approximation

T (F) 
 T (G) +
∫

IF (x; T ,G) dF(x) (4)
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will be an accurate approximation for the functional T at the model distribution F .
Distribution G is chosen so that we know the value of the leading term T (G) and plays
an important role; it is called pivotal distribution.

In the particular case that we consider the Tail Probability functional

T (F) = PXi≡F {Tn > t}

we obtain the von Mises approximation for the distribution of Tn

PF {Tn > t} 
 PG{Tn > t} +
∫

TAIF (x; t; Tn,G) dF(x) (5)

where TAIF (x; t; Tn,G) is the Tail Area Influence Function (Field and Ronchetti
1985), defined as

TAIF (x; t; Tn,G) = ∂

∂ε
PGε,x {Tn > t}

∣∣∣∣
ε=0

for all x ∈ R where the right hand side exists. This influence function measures the
influence on the tail probability of contamination in the underlying model because the
TAIF is just the Hampel’s influence function of the tail probability functional, i.e. it is
calculated changing the underlying model G by a contaminated model (1−ε)G+εδx ,
before computing the first derivative at ε = 0, being δx the distribution which assigns
mass 1 at x .

If F = (1 − ε)G + εH the von Mises approximation (5) is

PF {Tn > t} 
 PG{Tn > t} + ε

∫
TAIF (x; t; Tn,G) dH(x) (6)

because
∫

TAIF (x; t; Tn,G) dG(x) = 0.
This approximation will be very useful if we choose, as pivotal distribution G, a

model for which the tail probability PG{Tn > t} is easy to compute.

5 Saddlepoint approximation for the distribution of anM-estimator
of the variogram

Let Tn be an M-estimator. Next we are going to obtain a saddlepoint approximation
for the TAIF (x; t; Tn,G) to be included in Eq. (5). The resulting expression will be
called VOM+SAD approximation.

We shall assume Yi ≡ G = 2 γ (h) χ2
1 as pivotal distribution because of the

comments at the end of Sect. 2, since it is Zi ≡ N (μ, σ ).
To obtain a saddlepoint approximation for the TAIF (x; t; Tn,G), we can use Lugan-

nani and Rice (1980) formula (Jensen 1995, p. 77; or better Huber and Ronchetti 2009,
p. 314), to obtain the approximation given in Daniels (1983) for M-estimators Tn :
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PYi≡G {Tn(Y1, . . . ,Yn) > t} = 1 − Φ(s) + φ(s)

[
1

r
− 1

s
+ O(n−3/2)

]

where s and r are the functionals

s = √−2nK (z0, t)

r = z0

√
nK ′′(z0, t)

being K (λ, t) the function

K (λ, t) = log
∫ ∞

−∞
eλψ(y,t) dG(y)

K ′′(λ, t) the second partial derivative of K (λ, t) with respect to the first variable; z0
the saddlepoint, i.e., the solution of the saddlepoint equation

K ′(z0, t) =
∫ ∞

−∞
ez0ψ(y,t) ψ(y, t) dG(y) = 0

and Φ, φ the cumulative and density functions, respectively, of the standard normal
distribution.

Hence, if r1 = z0
√
K ′′(z0, t), following the same computations than in García-

Pérez (García-Pérez 2003, pp. 403–404) it will be

TAIF (x; t; Tn,G) = φ(s)

r1
n1/2

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
+ O(n−1/2).

Hence, from (5), the VOM+SAD approximation will be

PF {Tn > t} 
 PG{Tn > t} +
∫

φ(s)

r1
n1/2

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
dF(x). (7)

If Zi ≡ (1−ε)N (μ, σ )+εN (μ, gσ), i.e., F = (1−ε) 2 γ (h) χ2
1 +ε g2 2 γ (h) χ2

1 ,
from expression (6), the VOM+SAD approximation will be

PF {Tn > t} 
 PG{Tn > t} + ε
φ(s)

r1

√
n

(∫
ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

− 1

)
(8)

being G = 2γ (h)χ2
1 and H = g22γ (h)χ2

1 , and noting that a distribution b χ2
1 is a

gamma distribution with parameters (1/2, 1/(2b)).
Sometimes, the distributions F and G are not close enough. In these cases we 

can improve the approximation considering an iterative procedure as in García-Pérez 
(2011, 2012, 2016).
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Remark 1 One of the keys of using the von Mises expansion is to choose, as pivotal
distribution G, a manageable model (a normal, or a χ2 in this case) for which we can
easily compute the tail probability PG{Tn > t}. In situations where we can not calculate
this tail probability exactly, we can use the previous Lugannani and Rice formula to
compute a saddlepoint approximation for the leading term, being the VOM+SAD
approximation

PF {Tn > t} 
 1 − Φ(s) + φ(s)

[
1

r
− 1

s

]

+
∫

φ(s)

r1
n1/2

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
dF(x).

Remark 2 Alternatively, we could think of using directly a saddlepoint approximation
of the tail probability under distribution F and not to use the von Mises expansion
first. Namely, assuming that Yi ≡ F , we could use directly the previous saddlepoint
approximation given in Daniels (1983),

PYi≡F {Tn(Y1, . . . ,Yn) > t} 
 1 − Φ(s) + φ(s)

[
1

r
− 1

s

]
(9)

where all the elements are the same than in the previous section but now, with respect
to model F.

Nevertheless, approximation (9) is not useful unless F is so manageable that it
allows to compute the elements in the approximation.

For instance, in the simple case that Zi ≡ (1 − ε)N (μ, σ ) + εN (μ, gσ), the
distribution F in approximation (9) is F = (1 − ε) 2 γ (h) χ2

1 + ε g2 2 γ (h) χ2
1 and, if

we look for a closed form approach, the fact that the model is a mixture of distributions,
makes the saddlepoint equation unviable and, therefore, the saddlepoint approach. For
this reason, we shall use the VOM+SAD approximation given by Eqs. (7), or (8) in
the particular case of a contaminated Gaussian.

6 Approximation for the distribution of Matheron’s estimator

Matheron’s estimator is not robust (Cressie and Hawkins 1980 or Genton 1998).
However, because its use is so widespread, we obtain in this section an VOM+SAD
approximation to its distribution under contamination, studying so its (lack of) robust-
ness.

If N (h) = {(si , s j ) : si − s j = h} and the sample size is n = Nh , the cardinality
of N (h), Matheron’s estimator is the sample mean (hence, not robust) of the Yi =
(Zi+h − Zi )

2,

2γ̂M (h) = 1

Nh

Nh∑
i=1

Yi = y.
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Thus, in the unrealistic case of no contamination, i.e., if Zi ≡ N (μ, σ ) and so,
Yi ≡ 2 γ (h) χ2

1 , the exact distribution of 2γ̂M (h) is the tail of a χ2 distribution with
Nh degrees of freedom,

P{2γ̂M (h) > t} = P

{
χ2
Nh

>
t Nh

2γ (h)

}
.

Hence, using G = 2 γ (h) χ2
1 as pivotal distribution, the von Mises approximation

(5) will be

PF {2γ̂M (h) > t} 
 P

{
χ2
Nh

>
t Nh

2γ (h)

}
+

∫
TAIF (x; t; Tn,G) dF(x)

and therefore, the von Mises plus saddlepoint (VOM+SAD) approximation (7) for the
distribution of Matheron’s estimator under a model F will be

PF {2γ̂M (h) > t} 
 P

{
χ2
Nh

>
t Nh

2γ (h)

}

+
∫

φ(s)

r1
N 1/2
h

(
ez0ψ(x,t)∫

ez0ψ(y,t)dG(y)
− 1

)
dF(x).

In the particular case that F = (1−ε) 2 γ (h) χ2
1 +ε g2 2 γ (h) χ2

1 , the (VOM+SAD)
approximation will be, from (8)

PF {2γ̂M (h) > t} 
 P

{
χ2
Nh

>
t Nh

2γ (h)

}
+ ε

φ(s)

r1

√
Nh

(∫
ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

− 1

)

(10)
where G is a gamma distribution with parameters (1/2, 1/(4γ (h)), and H is a gamma
distribution with parameters (1/2, 1/(4g2γ (h)).

Working on approximation (10), z0 is the solution of

K ′(z0, t) =
∫ ∞

−∞
ez0ψ(y,t) ψ(y, t) dG(y) = 0

where ψ(y, t) = y − t . From this equation we obtain the saddlepoint

z0 = 1

4γ (h)
− 1

2t
.

The rest of the elements of (10) are

K (z0, t) = − t

4γ (h)
+ 1

2
+ 1

2
log

(
t

2γ (h)

)

K ′′(z0, t) = 2 t2
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Table 1 Tail Probabilities for
several values of t and sample
size Nh = 3

t Exact Approximation

2.5 0.12193 0.1241979

3.0 0.07362 0.0750320

3.5 0.04361 0.0449431

4.0 0.02595 0.0267487

4.5 0.01510 0.0158439

5.0 0.00910 0.0093526

s = √
Nh

√
t

2γ (h)
− 1 − log

(
t

2γ (h)

)

r = √
Nh

1√
2

(
t

2γ (h)
− 1

)

φ(s)

r1
=

exp
{
− Nh

2 (t/(2γ (h)) − 1 − log(t/(2γ (h))))
}

√
π(t/(2γ (h)) − 1)∫

ez0ψ(x,t)dH(x)∫
ez0ψ(y,t)dG(y)

=
√

2γ (h)√
t − tg2 + 2g2γ (h)

Then, VOM+SAD approximation (10) is

PF {2γ̂M (h) > t} 
 P

{
χ2
Nh

>
t Nh

2γ (h)

}

+ε
√
Nh

2γ (h)√
π(t − 2γ (h))

exp

{
− Nh

2

(
t

2γ (h)
− 1 − log

t

2γ (h)

)}

·
( √

2γ (h)√
t − tg2 + 2g2γ (h)

− 1

)
(11)

Let us observe that, if ε = 0 or g = 1, the sum of the right hand side of this
approximation is zero.

We see the quality of approximation (11) in Table 1 for several values of t , con-
sidering a sample size as small as Nh = 3, g = 1.1 (10% of contamination in scale),
2γ (h) = 1.3, ε = 0.01 and where the exact values are obtained with a simulation of
100,000 samples.

For other larger values of ε or g (i.e., for more distant distributions) we shall obtain
accurate approximations with the iterative procedure previously mentioned.

In Fig. 1 we plot this approximation as the dotted line, being the solid line the exact
distribution.

After we have seen that the VOM+SAD approximation is accurate, we can used
it to represent the tail probability of Matheron’s estimator with no contamination
(ε = 0) and with several degrees of contamination: ε = 0.01, ε = 0.05, ε = 0.1 and
ε = 0.2. They are plotted in Fig. 2. We can see in this figure that, as we increase the
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Fig. 1 Exact and approximate tail probabilities for Matheron’s estimator with Nh = 3

contamination percentage, i.e., as we increase the value of ε, the p values and critical
values are greatly affected.

All the computations and R functions used in the paper are on the website
https://www2.uned.es/pea-metodos-estadisticos-aplicados/variogram.htm as Supple-
mentary Material.

As we mentioned in Remark 2, the direct saddlepoint approximation is unviable
even in the simple case of being F = (1 − ε) 2 γ (h) χ2

1 + ε g2 2 γ (h) χ2
1 , because it

would be

K (λ, t) = log

[
(1 − ε)

e−λt

√
1 − λ4γ (h)

+ ε
e−λt√

1 − λ4g2γ (h)

]

and this mixture does not allow to obtain a closed form expression for the saddlepoint
z0, and so, for the sadlepoint approximation.

7 Approximation for the distribution of the˛-trimmed variogram
estimator

In addition to M-estimates, another usual robust estimator is the sample α-trimmed 
variogram, defined again for the transformed Nh variables Yi as follows:

https://www2.uned.es/pea-metodos-estadisticos-aplicados/variogram.htm
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Fig. 2 Exact and approximate tail probabilities of Matheron’s estimator with contamination ε = 0.01,
ε = 0.05, ε = 0.1 and ε = 0.2 and sample size Nh = 3

If we trim the 100 · α% of the smallest and the 100 · α% of the largest ordered data
Y(i), the (symmetrically) sample α-trimmed variogram is defined as

2γ̂α(h) = 1

Nh − 2r

(
Y(r+1) + · · · + Y(Nh−r)

) = Y α

where r = [Nhα] if [ . ] stands for the integer part.
An important remark is that the sample α-trimmed variogram estimates the pop-

ulation α-trimmed variogram, which will usually be different from the population
variogram 2 γ (h), the population mean of the Yi , because these observations follow,
in the normal case, the highly skewed χ2 distribution.

Nevertheless because 2γ̂α(h) will be more robust than Matheron’s estimator, we
recommend its use.

In García-Pérez (2016) an accurate VOM+SAD approximation is obtained for the
sample α-trimmed mean. From Corollary 1 therein, we can approximate the small
sample distribution of the sample α-trimmed variogram 2γ̂α(h) when the observations
Yi come from F , with k iterations (k large), by the distribution of 2γ̂M (h) when the
observations come from F as

PF
{
2γ̂α(h) > t

} 
 (1 + Nh c1)
k+1 (1 + Nh c2)

k+1 PF
{
2γ̂M (h) > t

}
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Fig. 3 Tail probabilities of the 0.1-trimmed variogram 2γ̂α(h) estimator with no contamination, ε = 0, and
contamination ε = 0.01, ε = 0.05, ε = 0.1 and ε = 0.2

where c1 = [
(1 − 2α)1/(k+1) − 1

]
and c2 = [

1/(1 − 2α)1/(k+1) − 1
]
.

Hence, because of the previous approximation (11) for the small sample distribution
of Matheron’s estimator, the VOM+SAD approximation for the tail probability of the
sample α-trimmed variogram 2γ̂α(h), under a scale contaminated normal model, is

PF {2γ̂α(h) > t} 
 (1 + Nh c1)
k+1 (1 + Nh c2)

k+1

[
P

{
χ2
Nh

>
t Nh

2γ (h)

}

+ε
√
Nh

2γ (h)√
π(t − 2γ (h))

exp

{
− Nh

2

(
t

2γ (h)
− 1 − log

t

2γ (h)

)}

·
( √

2γ (h)√
t − tg2 + 2g2γ (h)

− 1

)]
(12)

In Fig. 3 we plot the tail probability of the 0.1-trimmed variogram estimator 2γ̂α(h)

with no contamination (ε = 0), and with several degrees of contamination: ε = 0.01,
ε = 0.05, ε = 0.1 and ε = 0.2, being a sample size as small as Nh = 3.

We observe from this figure that, as we increase the contamination percentage, i.e.,
as we increase the value of ε, the p-values and critical values are affected but less than 
with Matheron’s estimator, if we compare the differences between the curves in this 
figure and in Fig. 2.
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8 Approximation for the distribution of the Huber’s variogram
estimator

In the case that the ψ function, ψ(x, t) = ψ(x − t), used to obtain the M-estimator
in Eq. (3), is the Huber’s function ψb(u) = min{b, max{u,−b}}, the M-estimator
obtained is called the Huber’s variogram estimator 2γ̂H (h) and an approximation
for its distribution can be obtained from Eqs. (7), or (8) in the particular case of a
contaminated Gaussian distribution.

But the idea of these approximations is to use, as pivotal distribution G, a model
for which the leading term PG

{
2γ̂H (h) > t

}
is easily computable. Nevertheless, this

is not the case with a scale contaminated normal model where G = 2γ (h)χ2
1 . For this

reason, in this case, as it was pointed out in Remark 1, we shall use the Lugannani
and Rice formula for this leading term, being the VOM+SAD approximation for the
distribution of the Huber’s variogram estimator

PYi≡F
{
2γ̂H (h) > t

} 
 1 − Φ(s) + φ(s)

[
1

r
− 1

s

]

+ε
φ(s)

r1

√
n

(∫
ez0ψb(x−t)dH(x)∫
ez0ψb(y−t)dG(y)

− 1

)
(13)

where the saddlepoint z0 is such that

∫
ez0ψb(y−t) ψb(y − t) dG(y) = 0

being G = 2γ (h)χ2
1 and H = g22γ (h)χ2

1 , and where all the functionals r , r1 and s
are computed with respect to model G.

This approximation may seem complicated but it is easy to compute using R soft-
ware (R Development Core Team 2018).

9 Linearized version of the variogrammodel

Representing by ra the range of a variogram, we saw in Sect. 2 that if we accept a
variogram model such that

γ (2h) = 2γ (h)

||h|| < ra, the observations Yi , used in the variogram estimation for this h, can be
considered independent.

This condition is satisfied by a straight line. Hence, if for a particular h, a linear
semivariogram can be accepted, the independence of the Yi used in its estimation, can
also be accepted.

For instance, let us observe that the spherical model, the most used one, is such that
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γ (h) = c||h|| + O(ra−3)

for a constant c. Hence, the previous condition is practically satisfied, if the range is
large.

Using the classical Matheron’s estimator γ̂M (h), next we formally define a Lin-
earized Semivariogram Model ML(h). If this can be accepted, the independence
condition will be satisfied.

We first divide the variogram estimations into two subsets: before the range and
after the range. If we represent the parameters of the variogram as nugget nu, sill
si(=partial sill+nugget) and range ra, the definition of Linearized Semivariogram
Model is based on the regression line through the origin y = slo ||h|| for the pairs of
data (||h||, γ̂M (h) − nu), where ||h|| < ra.

If

y = nu + slo ||h||

is this linearized part and we intersect it with the horizontal line equal to si , the
intersection point is ((si − nu)/slo, si).

Finally, in order that the linearized semivariogram model ML(h) is continuos and
that it represents in a better way a semivariogram model M(h), ML(h) is defined as

ML(h) =
{
nu + slo ||h||, if ||h|| ≤ (si − nu)/slo
si, if ||h|| > (si − nu)/slo.

Let us observe that M(h) (and ML(h)) are models for the semivariogram γ (h),
not for the variogram 2γ (h).

9.1 Robust linearized version of the variogrammodel

If we use a robust estimate γ̂R(h) of the variogram instead of the Matheron’s estimator,
the robust linearized version of the variogram model is very similar to the classical
one. We divide the variogram again into two parts: before the range ra and after the
range, being the range the same obtained in the classical estimation.

Before the range we compute the regression line through the origin, y = b ||h||
for the pairs of data (||h||, γ̂R(h) − nu), where ||h|| < ra, being the nugget the same
obtained in the classical estimation.

After the range, we define it as the constant line equal to the sample mean x R , let
us say, of the values γ̂R(h), varying ||h||.

The robust linearized version of the variogram model is then defined as

RML(h) =
{
nu + b ||h||, if ||h|| ≤ (x R − nu)/b
x R, if ||h|| > (x R − nu)/b.
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10 Inferences with the distribution of the variogram estimator

With the approximations for the distribution of the variogram estimators γ̂ (h) pre-
viously obtained, we can check, for each h, if the value γ (h) given by a particular
variogram model M(h) (spherical, exponential, etc.) can be accepted.

More specifically, for each h, assuming it is true the null hypothesis H0 : γ (h) =
γ (h)0 given by a variogram model F0, we can compute a 1 − β confidence interval
for γ (h), based on γ̂ (h)

PF0{b1(h) < γ̂ (h) < b2(h)} = 1 − β

being PF0{γ̂ (h) < b1(h)} = β/2 and PF0{γ̂ (h) > b2(h)} = β/2 . We accept the
value γ (h)0, given by the semivariogram model, if it is inside this confidence interval.

We could choose β in order to be a significance level for multiple tests, varying h,
but the global test, discussed below, is more appropriate for this task.

Anyway, these pairs of points (b1(h), b2(h)), varying h, establish a confidence
zone (not a formal confidence region), within which the values of the semivariogram
estimator should be. If this is the case, we shall accept the semivariogram model,
although the test defined below in Sect. 10.1 is more appropriate.

If the linearized semivariogram model ML(h) is inside the confidence zone, we
should accept it as model and hence, condition (2), accepting so the independence of
the transformed variables Yi used in the estimator 2γ̂M (h).

Besides this, the fact that γ̂ (h) is outside of a confidence interval associated with a
value h, is an indication of the possible presence of spatial outliers at a distance ||h||.
10.1 Global test for the variogrammodel

The confidence zone established in the last section can not be used as a formal test.
On the other hand, because of the visual appeal of plotting, we can think in fitting a
linear or non-linear regression model to the pairs (||h||, γ̂ (h)) and to check a particular
variogram model with the usual regression tests. Nevertheless these ones are based on
the normality of the observations or in a large sample size.

If the underlying model F is not normal and the sample size not very large, these
tests can not be used. Another possibility is to use robust techniques, such as the robust
coefficient of determination (Renaud and Victoria-Fesser 2010), the robust Akaike AIC
criterion (Ronchetti 1997), the robust Mallows’s Cp (Ronchetti and Staudte 1994) or
the robust cross-validation (Ronchetti et al. 1997) because these methods do not need
the normality assumption.

Nevertheless here we are going to use the previous saddlepoint approximation to
test the null hypotheses of a particular variogram model M0(h).

Although other more robust test statistics can be used, by analogy with the statistic
of the Kolmogorov–Smirnov goodness of fit test, we base our test on

Sn = sup
h

∥∥2γ̂ (h) − 2γ (h)
∥∥ = max

1≤||h||≤K

∥∥2γ̂ (h) − 2γ (h)
∥∥

assuming there are K lags.
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If we define the random variable W (h) = 2γ̂ (h)− 2γ (h) , its cumulative distribu-
tion function will be

HW (h)(w) = 1 − P{2γ̂ (h) > w + 2γ (h)}

where the tail probability can be computed with the previous VOM+SAD approxima-
tion.

Now, if U (h) = ‖W (h)‖, its cumulative distribution function will be

HU (h)(u) = HW (h)(u) − HW (h)(−u).

Finally, the cumulative distribution function of Sn will be

FSn (v) =
K∏

||h||=1

HU (h)(v) =
K∏

||h||=1

[
HW (h)(v) − HW (h)(−v)

]

=
K∏

||h||=1

[
P2γ (h){2γ̂ (h) > −v + 2γ (h)} − P2γ (h){2γ̂ (h) > v + 2γ (h)}]

because, under the null hypothesis, we assume the independence between two incre-
ments of the same size h: Zt+h − Zt and Zs+h − Zs .

Hence, because we have locations equally spaced on a transect, we shall have also
independence between two multiples of this size Zt+h1 − Zt and Zt+h2 − Zt , i.e.,
between two U (h1) and U (h2).

Example 1 Let us consider Cadmium data from meuse data set of sp library.
The usual variogram model M(h) admitted is Spherical with nu = 0.5478482,
si = 1.3397976 + 0.5478482 = 1.887646 and ra = 1149.439 (see Supplemen-
tary Material).

We use the VOM+SAD approximation for the tail probability of the Matheron’s
estimator 2γ̂M (h) given in (11) considering a scale contaminated normal as underlying
model, with ε = 0.01 and g = 1.1.

To obtain the linearized spherical semivariogram model we observe that the fitted
regression line is

y = nu + slo ||h|| = 0.547848 + 0.001392 ||h||

and the interception point ((si − nu)/slo, si) = (962.4983, 1.887646). Thus, the
linearized spherical semivariogram model ML(h) will be

ML(h) =
{

0.547848 + 0.001392 ||h||, if ||h|| ≤ 962.4983
1.887646, if ||h|| > 962.4983

For each h we compute the 95%-confidence limits (b1(h), b2(h)) with approxima-
tion (11) that are represented as dots in the center and right side of Fig. 4.
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Fig. 4 Matheron’s estimates γ̂M (h), Semivariogram model M(h) and Linearized semivariogram model
ML (h) (left). Confidence zone created by the distribution of the Matheron’s estimator andM(h) (middle).
ML (h) Confidence zone created by distribution of the Matheron’s estimator and ML (h) (right)

In the left-hand plot of this figure are shown the values of the Matheron’s estimator
γ̂M (h) (red squares), the semivariogram model M(h) and the linearized semivari-
ogram model ML(h), both very close.

The middle plot shows the semivariogram model M(h) and the confidence zone,
established by the 0.95%-confidence limits, represented by blue dots, limits obtained
with the distribution of the Matheron’s estimator, assuming that this model M(h) is
true. We observe that the values of this estimator (red squares) are inside of the 0.95%-
confidence intervals (blue dots), for all the h considered, i.e., inside the confidence
zone; hence, the spherical model M(h) (blue curve) fits well.

Finally, the right-hand plot shows the linearized semivariogram model ML(h)

(green curve) and the 0.95%-confidence limits, represented by green dots, obtained
with the distribution of the Matheron’s estimator assuming that the linearized model
ML(h) is true. Since the values of this estimator (red squares) are inside of the 0.95%-
confidence intervals (green dots), the linearized semivariogram model fits well.

In Table 2, these 0.95% confidence limits obtained with the model M(h) and
the linearized model ML(h) are given, plus the values obtained by the Matheron’s
estimator. We observe that these last ones are always inside the confidence limits,
suggesting to accept both models and so, the independence of the transformed variables
Yi .
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Table 2 0.95% confidence intervals for several values of h

h 0.95% conf. lim. with M(h) 0.95% conf. lim. with ML (h) γ̂M (h)

79.29244 [0.45875, 0.96232] [0.44000, 0.92300] 0.6650872

163.97367 [0.70596, 0.97329] [0.65806, 0.90725] 0.8584648

267.36483 [0.87699, 1.15010] [0.80134, 1.05089] 1.0064382

372.73542 [1.03125, 1.33686] [0.93484, 1.21188] 1.1567136

478.47670 [1.18495, 1.50212] [1.07656, 1.36472] 1.3064732

585.34058 [1.31289, 1.66948] [1.20650, 1.53420] 1.5135658

693.14526 [1.43469, 1.80844] [1.34560, 1.69615] 1.6040086

796.18365 [1.52592, 1.92738] [1.47160, 1.85876] 1.7096998

903.14650 [1.60544, 2.01765] [1.60816, 2.02108] 1.7706890

1011.29177 [1.64862, 2.09173] [1.67333, 2.12306] 1.9875659

1117.86235 [1.66310, 2.13141] [1.66441, 2.13310] 1.8259154

1221.32810 [1.65917, 2.13905] [1.65917, 2.13905] 1.8852099

1329.16407 [1.65305, 2.14600] [1.65305, 2.14600] 1.9145967

1437.25620 [1.65430, 2.14457] [1.65430, 2.14457] 1.8505336

1543.20248 [1.64300, 2.15748] [1.64300, 2.15747] 1.8523791

Finally, the formal global test for checking the linearized semivariogram model 
gives a value for the test statistic of Sn = 0.3018476 and for the p-value

P{Sn > 0.3018476} = 1 − FSn (0.3018476) = 0.9011587

accepting the linearized semivariogram model and so, the independence of the trans-
formed observations Yi used in γ̂M (h).

Example 2 Let us consider now log Calcium data (mg/l), one of the eight variables 
observed in the groundwater data analysis around the city of Madrakah, a town located 
in the Wadi Usfan region in western Saudi Arabia, (Marko et al. 2014).

We represent in Fig. 5 the values of the Matheron’s variogram estimator, 0.05-
trimmed variogram estimator and Huber’s variogram estimator (with tuning constant 
b = 1) using theses data, with a lag constant h = 0.002 (see Supplementary Material). 
We observe an outlier at lag h = 0.006.

The linearized versions of the variogram models are added to the previous plot in 
Fig. 6.

The test statistics of the global test, for checking the three linearized semivariogram 
models, are Sn = 0.1221990 (classical); Sn = 0.165044411 (0.05-trimmed), and 
Sn = 0.0711932514 (Huber).

Besides this, the p-values, computed with the VOM+SAD approximations (11),
(12) and (13) respectively, and considering, as underlying model, a scale contaminated 
normal with ε = 0.01 and g = 1.1 are: 0.208566, 0.0273871 and 0.9999, accepting 
the linearized semivariogram model and so, the independence of the transformed 
observations Yi .
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Fig. 5 Matheron’s estimates γ̂M (h), 0.05-trimmed estimates γ̂α(h), Huber’s estimates γ̂H (h)
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Fig. 6 Estimates and Linearized versions of the variogram model
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11 Conclusions

Small sample distributions for classical and robust variogram estimators are obtained,
approximations that are based on the von Mises expansion plus a saddlepoint approx-
imation. It is proven that these are very accurate, even for small sample sizes.

The approximations are computed, considering a scale contaminated normal model
for the spatial observations Zi , approximations from which we obtain closed form
expressions that allow an easy robust interpretation of the variogram estimators.

With these approximations it is possible to test a particular variogram model, which
can be used in kriging interpolation.

Finally, it is also possible to test the independence of the transformed variables
Yi = (Zi+h − Zi )

2, opening so the possibility of using, in Spatial Statistics, the usual
statistical methods for an independent sample of Yi .
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