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Under the new regulation based on Basel solvency framework, known as Basel III and Basel 

IV, financial institutions must calculate the market risk capital requirements based on the 

Expected Shortfall (ES) measure, replacing the Value at Risk (VaR) measure. In the financial 

literature, there are many papers dedicated to compare VaR approaches but there are few 

studies focusing in comparing ES approaches. To cover this gap, we have carried out a 

comprenhensive comparative of VaR and ES models applied to IBEX-35 stock index. The 

comparison has been carried out from a twofold perspective: accurate risk measure and loss 

functions. The results indicate that the method based on the conditional Extreme Value Theory 

(EVT) is the best in estimating market risk, outperforming Parametric method and Filter 

Historical Simulation. 
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Introduction 

Over the last decades the financial services industry has undergone significant transformation due to internal and 

external factors, including business model transformation, adoption of advances technologies, changing regulatory 

frameworks, etc.  

Since the global financial crisis of 2008, there has also been an ever-growing need for financial institutions to 

accurately assess their exposure to financial risks (Summinga and Narsoo, 2019), especially under stressed conditions 

or combined with other interrelated triggering events (Danielsson et al., 2014; Deloitte, 2017). The market risk 
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regulatory pre-crisis models were build up on assumptions (stochastic processes governing market prices, volatility 

models, etc) that did not adecuately capture tail-risk events, hence underestimating posible losses in stressed 

conditions (assuming market liquidity and large diversification effects across asset classes, etc). The crisis revelead 

substantial weaknesses in the banking system and the prudential framework, leading to risk-taking unsupported by 

adequate capital and liquidity buffers (Committee on the Global Financial System, CGFS, 2018).  

Regulators have responded to the crisis by reforming the global prudential framework and enhancing supervisión 

in order to increase banks’ resilience and financial stability worlwide. The Basel Committee on Banking Supervision1 

(BCBS), in its October 2013 consultative paper, and subsequent versions published thereafter, for revised market risk 

framework, suggested new ways of dealing with market risk in banks’ trading and banking books.  

Under the new regulation based on Basel solvency framework (BCBS, 2012, 2016a, 2017a, 2017b, 2019), known 

as Basel III, also coined as Basel III-revised or Basel IV2  (see Feridun and Ozün, 2020), financial institutions must 

calculate the market risk capital requirements based on the Expected Shortfall (ES) measure, replacing the Value at 

Risk (VaR) measure based on internal models legitimized by the supervisory authorities since 1998 (BCBS, 1996; 

Hubbert, 2012; Acerbi and Szekey, 2014; Chen, 2014; Szylar, 2014; Chang et al, 2019; Rossignolo, 2019). Table 1 

shows a summary of the evolution of the Basel capital requirements. The BCBS estimated that the new rules will 

result in an approximate median capital increase of 22% and a weighted average capital increase of 40% (BCBS, 

2016b:7), compared with the previous framework. 

 

 

 

 

 

 

 

 

  

 
1 The Basel Committee on Banking Supervision (BCBS) was established in 1974 by the central bank governors of the G10 

countries as a forum for regular cooperation on banking supervision. It is currently composed of central banks and high -level 

representatives of the supervisory authorities of the following member countries: Argentina, Australia, Belgium, Brazil, Canada, 

China, France, Germany, Hong Kong SAR, India, Indonesia, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, Russia, 

Saudi Arabia, Singapore, South Africa, Spain, Sweden, Switzerland, Turkey, Great Britain and the United States. The BCBS is 

not a legislative body. Its role is to develop supervisory recommendations, which only take effect when are adopted by national 

authorities in each jurisdiction 

2 A critical analysis of the new Basel minimum capital requirements for market risk can be found in Orgeldinger (2017). In the 

context of credit risk, Binder and Lehner (2020) study the impact of the Basel IV regulations on risk weight densidity, one  of the 

main topics of the revision of the Basel III framework in order to reduce the excessive volatility of risk weights for credit  risk 

which is also associated to the introduction of parameter floors and output floors (BCBS, 2017a).  
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Table 1. Evolution of Basel standards. Capital requirements and approximations 

BIS Agreement Objective Issue 

 date 

Implemen- 

tation date 

Pre-financial crisis 

Basel I 

(BIS I) 

Creating a general framework focus on  Credit risk (CAR: 8% 

RWA) 

1988 1992 

Ammended 

 to Basel I 

Incorporation of market risk.  

Internal VaR models 

1996 1998 

 

 

Basel II 

(BIS II) 

Provide a more risk-sensitive framework, which is structured in 3 

pillars: 

• Pillar I: minimum capital requirements for credit, market and 

operational risks 

- Standardized approach & internal risk models (VaR) 

• Pillar II: Supervisory review process 

• Pillar III: Market discipline 

 

1999 

 

2007 

Post-financial crisis 

 

Basel 2.5 

Adjust capital requirements for market risk: 

• Stress VaR  

• Capital burden for incremental risk 

 

2009 

 

2011 

Basel III 

 

Strengthen Basel II to adopt post-financial crisis reforms: 

• Reviews of internal and standardized model approximations. 

• Strengthening the solvency ratio 

• Incorporation of illiquidity risk with two new ratios: LCR and 

NSFR 

• Límits between banking and trading book. 

• CET 1: 2-4% 

• Capital buffer: 2.5-7% 

• Countercyclical buffer: 0-2.5% 

• Leverage ratio: 3% 

 

2009/ 

2010 

 

2022 initially 

but deferred by 

one year to 1 

January 2023 

(BCBS, 2020) 

Basel III-revised (also called Basel IV) 

Basel III-revised 

(coined as Basel 

IV) 

Market risk:  

Replacement of VaR by ES as a regulatory risk measure 

2016 (*) 

Elements of the package that includes the following items:  

• Credit risk:  a  revised standardised approach and revisions to the 

internal ratings-based (IRB) approach 

• Credit valuation adjustment (CVA) framework revised;  

• Operational risk: a revised standardised approach 

• Revisions to the measurement of the leverage ratio  

• An aggregate output floor, which will ensure that banks’ RWA 

generated by internal models are no lower than 72.5% of RWA 

as calculated by the Basel III Framework's standardised 

approaches.  

 

 

2017 

Notes: CAR: Minimum regulatory capital requirement; RWA: Risk-weighted assets; ES: Expected Shortfall; LCR Liquidity 

Coverage Coefficient;  NSFR: Stable Net Funding Ratio;   CET 1: Common Equity Tier 1 own resources  

(*) Previous versions in 2012/2013 

Source: Own elaboration 

 

VaR has traditionally been the main risk measure to compute the market risk of financial assets. Portfolio VaR 

represents the maximum amount an investor may lose that is likely to occur at a given confidence level over a 

specified period (holding period).  It provides a measure of the loss frequency (Acerbi and Tasche, 2002) but it does 

not provide an estimate of the loss severity.  

The main limitations of VaR as a measure of financial risk are (i) VaR does not report the magnitude of loss when 

it is greater than VaR, which means that it fails to capture tail risks and (ii) VaR is not a coherent risk measure by not 

meeting the axiom of subaditivity, as demonstrated by Artzner et al (1999). This non-subaditivity of VaR implies that 
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it may be the case that, contrary to the classical idea of diversification, the total VaR of a portfolio could be greater 

than the sum of the VaR of each of its components. Both problems are solved with an alternative risk measure, the 

Expected Shortfall (ES), which is consistent and does report losses beyond the VaR, by measuring the average of the 

losses when they exceed the VaR3. 

Expected Shortfall (ES) measure is defined as the expected return on an asset/portfolio conditional on the return 

being below a given quantile of its distribution (its VaR). Unlike VaR measure, ES is a coherent measure of risk 

(Artzner et al., 1997, 1999). This feature along with the observation shows that under the stress conditions as the 

observed during the global financial crisis, VaR forecasts (99 percentil) were exceeded multiple times, explaining the 

change in the regulation fostered by the Basel Committee on Banking Supervision. In the new solvency framework 

ES (97.5th percentile, one-tailed confidence level) is calibrated on a stressed period to reduce procyclicality (Zhang, 

2016).  

The methodologies developed to calculate a portfolio VaR are (i) the variance-covariance approach also called 

Parametric method, (ii) the Non-parametric approach (e.g. Historical Simulation), and (iii) the Semiparametric 

approach (e.g. Extreme Value Theory, Filter Historical Simulation and CaViaR method). All these models can be 

extended to calculate ES measure.  

In the financial literature, there are many papers dedicated to compare VaR approaches (see Abad et al., 2014 for 

an exhaustive review) but there are few studies focusing in comparing ES approaches. Regarding to this last measure, 

most of the studies focus on proposing different tests to evaluate the validity of the ES estimations4.  

Some comparison studies of ES approaches can be found in McNeil and Frey (2000), Yamai and Yoshiba (2002a, 

2002b), Harmantzis et al. (2006), Rigui and Ceretta (2015), Zikovic and Filer (2012), Liu and Kuntjoro (2015) and 

Sobreira and Louro (2020). McNeil and Frey (2000) and Yamai and Yoshiba (2002a, 2002b) compare the approach 

based on the conditional Extreme Value Theory (EVT) with the Gaussian model and conclude that the former  

provides more accurate ES estimacions. Harmantzis et al. (2006) compare the performance of three ES models: 

Gaussian model, Historical Simulation (HS) and the approach based on the EVT. They conclude that Gaussian model 

understimates ES measure meanwhile the HS model and the conditional EVT provide more accurate est imations. 

Rigui and Ceretta (2015) compare a large set of models: (i) Parametric method below several distribution (ii)  EVT 

and (iii) CaViaR method. The models are estimated using unconditional and conditional volatility models. They find 

that there is a predominance of conditional models over the unconditional models.  

 
3 Yamai and Yoshiba (2002a, b) of the Bank of Japan were the first regulators to take into account the great problem of VaR, its 

non-subaditivity and after their comparative analysis with VaR, laid the foundations of the ES as a possible future regulatory 

measure. Some authors such as Daníelsson et al (2001) and Basak and Shapiro (2001), showed that VaR had potentially 

destabilizing effects on the economy.  Danielsson and Zhou (2017) considered that the biggest drawback of VaR is not its non -

subsidiarity but that the main disadvantage of VaR compared to ES lies in its greater ease of being manipulated without incurring 

regulatory breaches. 

 
4 These tests are based on exception frequency test (Du and Escanciano, 2017; Colletaz et al., 2013; Moldenhauer and Pitera, 

2017), exception frequency and independence tests (Du and Escanciano, 2017; Costanzino and Curran, 2015, 2018; Kratz et al., 

2018; Emmer et al., 2015, Clift et al., 2016; Patton et al., 2019), exception magnitude tests (McNeil and Frey, 2000; Wong, 2 008, 

2010) and exception frequency and magnitude test (Acerbi and Szekely, 2014; Linconvil and Chiann, 2018). A comprehensive 

review of most of these test can be found in García -Jorcano (2017) and Novales and Garcia -Jorcano (2019). 
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Zikovic and Filer (2012) compare several ES models: (i) parametric model, some non-parametric models as (ii) 

HS and (iii) Kernel Historical approach, and two semiparametric approaches (iv) FHS method and (v) the 

unconditional and conditional EVT approach. The results show that for a large number of models there is no 

statistically significant difference. The top performers are the approach based on the conditional EVT with a GARCH 

model for modeling volatility and the models based on volatility updating. Liu and Kuntjoro (2015) evaluate the 

performance of three family models: (i) parametric approach below Gaussian distribution and Student-t distribution 

(ii) Historical Simulation (HS) which is a non parametric approach and (iii) the EVT (semi-parametric approach). 

From these three families, nine models of estimation are developed as they consider conditional and unconditional 

volatility measure. The study is carried out in three periods. Among all nine models, the unconditional EVT model 

was the only suitable model for all the three evaluation periods. Unexpectedly, the result also indicated that 

conditional models did not improve the accuracy of ES estimates compared to corresponding unconditional models. 

Sobreira and Louro (2019) compare the performance of different methodologies: HS, Riskmetrics, Parametric 

approach below different distributions and the EVT approach. The results show that the combination of asymmetric 

GARCH with EVT performs the best in forecasting ES measure, specially for more conservative coverage levels. 

Overall, all of these studies indicate that the approach based on the conditional EVT is the best in estimating ES 

measure. 

In this paper we compare the performance of three relevant approaches for forecasting VaR and ES. The methods 

included in the comparison are: (i) parametric approach and two semiparametric approach: (ii) the approach based 

on the conditional EVT and (iii) Filter Historical Simulation (FHS). In the case of parametric method, five distribution 

have been considered: Normal, Student-t (symmetric) distribution (STD), the skewness student-t distribution (SSTD), 

generalized error distribution (GED)  and the skewness generalized error distribution (SGED) of Theodossiou (2001). 

To estimate portfolio market risk a forecast volatility is required, for which we use an APARCH model. This model  

has been estimated below different distribution: Gaussian, Student-t, GED, skew Student-t and skew GED. Thus for 

each method we have five risk measures.  

Our objective is to carry out a systematic analysis that simultaneously consider different approaches and different 

distribution hypotheses for modeling volatility. Unlike the aforementioned papers the comparison of these three 

methodologies is made both in terms of their ability to provide accurate risk measure and in terms of loss functions. 

To undertake this study, we focus on the Spanish stock market, which has not been previously analysed in the 

literature on ES estimation models throughout the current decade and, particularly in the recent period 2014-2017 

that follows the financial crisis.  

The rest of the paper is organized as follows. Section II describes the methodology, which includes the risk 

measures applied, the volatility model used, the backtesting of VaR and ES forecasts and loss functions. Section III 

and IV present the data and empirical results, respectively, and Section V ends with the conclusions. 

 

 

 

 



S. Benito Muela, C. López-Martin, R. Arguedas / ACRN Journal of Finance and Risk Perspectives 11 (2022) 79-104 

84 

Methodology 

Risk Measures 

According to Jorion (2001), “VaR measure is defined as the worst expected loss over a given horizon under normal 

market conditions at a given level of confidence”. Thus, VaR is a conditional quantile of the asset return loss 

distribution. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be identically distributed independent random variables representing the financial returns. Using 

𝐹(𝑥) to denote the cumulative distribution function, 𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥|Ωt−1) conditioned to the information 

available at t-1 (Ωt−1). Assume that {𝑋𝑡} follows the stochastic process given by: 

 

𝑋𝑡 = 𝜇𝑡 + 𝜎̃𝑡𝑧𝑡       𝑧𝑡~𝑖𝑖𝑑(0,1) (1) 

where 𝜎̃𝑡
2= 𝐸(𝑧𝑡

2|Ωt−1) and 𝑧𝑡  has the conditional distribution function G(z), G(z) =  P(zt <  z|Ωt−1). It can be 

assumed that 𝜎𝑡 =  𝜎 for all t or that 𝜎𝑡 has a probability density Pr (𝜎𝑡|𝛺𝑡−1). In this paper, we consider the later. 

The VaR with a given probability 𝛼 ∈ (0, 1), denoted by VaR(𝛼), is defined as the 𝛼 quantile of the probability 

distribution of financial returns: 

𝐹(𝑉𝑎𝑅(𝛼)) = Pr(𝑋𝑡 ≤ 𝑉𝑎𝑅(𝛼)) =  𝛼 (2) 

There are two methods to estimate this quantile: (1) inverting the distribution function of financial returns 𝐹(𝑥) 

and (2) inverting the distribution function of innovations 𝐺(𝑧). With regard to the later, it is also necessary to estimate 

𝜎𝑡
2  

𝑉𝑎𝑅𝑡(𝛼) = 𝐹−1 (𝛼) =  𝜇𝑡 + 𝛼𝑡𝐺−1(𝛼) (3) 

Therefore, a VaR model involves the specification of 𝐹(𝑥) or 𝜎𝑡
2 and 𝐺(𝑧). Parametric method, the approach 

based on the conditional Extreme Value Theory approach and the Filter Historical Simulation approach focus on 

estimating5 𝐺(𝑧). The ES measure with a given probability 𝛼 ∈  (0, 1), denoted by ES(α), is defined as the average 

of all losses that are greater than or equal to VaR, i.e., the average loss in the worst α % cases:  

 

𝐸𝑆𝑡(𝛼) = 𝐸𝑡−1[𝑍𝑡|𝑍𝑡 ≤ 𝑉𝑎𝑅𝑡(𝛼)] (4) 

or 

𝐸𝑆𝑡(𝛼) =  𝜇𝑡 + 𝛼𝑡𝐸𝑡−1[𝑍𝑡|𝑍𝑡 ≤ 𝐺−1(𝛼)] (5) 

  

Table 2 summarizes the market risk capital requirements (based on VaR metrics first and ES currently) proposed 

by the Basel Committee regulations over time. 

 

 

 

 

 
5 We assume that 𝜇𝑡 = 𝜇.  
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Table 2. Market risk capital requirements under Basel Accords: internal models approach  

 

1996 

The daily capital requirement for general market risk (CRM) would be the maximum between the previous day's 

VaR and k times the average daily VaR over the past 60 days, where k was a multiplier in the range between 3 

and 4. This multiplier, set by the banking supervisors, was conditional on the results of the validation exercises 

of the models (backtesting, see table below): 

𝐶𝑅𝑀𝑡 = max { 𝑉𝑎𝑅𝑡 −1 , 𝑘 ⋅ ∑
1

60
⋅ 𝑉𝑎𝑅𝑡 −𝑖

60

i=1

 }  

3 ≤ 𝑘 ≤ 4 

VaR should be obtained at the 99% confidence level using a 10-day holding period.   

The historical observation period for calculating the VaR had to be at least one year. 

The supervisor did not prescribe a particular type of model for the estimation of VaR, being able to use the 

method of variances / covariances, historical simulation or Monte Carlo, among others. 

 

 

2009 
An additional capital requirement for market risk was set (coined as "Stress VaR", 𝑉𝑎𝑅 𝑠) based on the results of 

stress testing scenarios, in addition to that indicated in the previous formula based on VaR.  Stress VaR (calculated 

at least weekly using a 10-day horizon and with a confidence of 99%) aimed to replicate the VaR that would have 

been generated in the bank's current portfolio if market risk factors had experienced a period of  12 months of 

continuous financial stress.  

The capital requirement for market risk is calculated according to:  

𝐶𝑅𝑀𝑡 = max { 𝑉𝑎𝑅𝑡−1 , 𝑘 ⋅ ∑
1

60
⋅ 𝑉𝑎𝑅𝑡 −𝑖

60

i=1

 } + 𝑚𝑎𝑥 {𝑉𝑎𝑅𝑡 −1
𝑠 , 𝑘 ∑

1

60
𝑉𝑎 𝑅𝑡−𝑖

𝑠

60

𝑖=1

} 

 

2012 to 

date 

Replacement of the VaR by the ES metric. The ES is calculated, on a daily basis, at a confidence level of 97.5. 

The ES for a liquidity horizon has to be calculated from an ES with a 10-day liquidity 

The ES has to be calibrated for a period of stress. Banks can specify a small number of risk factors that has to 

explain a minimum of 75% of the variation in the ES model. The ES for capital risks is calculated as follows:  

𝐸𝑆 = 𝐸𝑆𝑅,𝑆 ∙ (𝐸𝑆𝐹,𝐶 /𝐸𝑆𝑅,𝐶 ) 

The ES for regulatory capital purposes is equal to the ES based on the periods of stress observations using a small 

group of risk factors multiplied by the ratio of the ES measure based on the most recen t 12-month observation 

period with an entire set of risk factors. 

 

The aggregate capital requirement for market modellable risk factors (IMCC) is equal to the maximum of the 

most recent observation and a weighted average of the previous 60 días (𝐼𝑀𝐶𝐶𝑎𝑣𝑔) scaled by a multiplier (m) 

that is fixed at a  minimum of 1.5 (up to 2 depending on the backtesting results (see table): 

 

𝐶𝑅𝑀𝑡 = max { 𝐼𝑀𝐶𝐶𝑡−1, 𝑚 ⋅ 𝐼𝑀𝐶𝐶𝑎𝑣𝑔  } 

 

 

Backtesting zones in the Basel Capital Accords. 

Zone  Number of 

exceptions 

 Backtesting-dependent multiplier 

  1996/2009 (k)  2012 (m) 

Green  0 a 4  3  1.5 

 

Yellow/ 

Amber 

 5 

6 

7 

8 

9 

 3.4 

3.5 

3.65 

3.75 

3.85 

 1.7 

1,76 

1.83 

1,88 

1.92 

Red  10 or more  4  2 
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In the following lines we describe the general characteristics of the methods that we compare in this paper.  

(i) Parametric approach.  

This approach assumes that financial returns follow a known distribution function. Below this method 𝐺 −1(𝛼) is the 

percentile 𝛼 of the distribution assumed. In this study we have considered five types of distribution: (i) Normal, (ii) 

Student’s t-distribution, (ii) skew Student-t, (iv) GED and (v) skew GED. With this method 𝐸[𝑍𝑡|𝑍𝑡 ≤ 𝐺−1(𝛼)] can 

be calculate as follow 

𝐸𝑡−1[𝑍𝑡|𝑍𝑡 ≤ 𝐺−1(𝛼)] =
1

𝛼
∫ 𝑧𝑔(𝑧)𝑑𝑧

𝐺−1(𝛼)

−∞
=

1

𝛼
∫ 𝐺−1(𝑠)𝑑𝑠

𝛼

0
 (6) 

where 𝑔() is the density function of the innovations.  

The main advantage of this method is that it is very easy to implement, especially when a normal distribution is 

assumed for innovations, although in this case the results are usually somewhat poor. These results improve when fat 

tail and asymmetric distributions are assumed, in which case the degree of difficulty for risk estimation increases.  

 

(ii) Filter Historical Simulation (FHS)  
 

Filter Historical Simulation (FHS) was proposed by Barone-Adesi et al. (1999). According to this method 𝐺 −1(𝛼) 

can be calculated as follow:  

𝐺−1(𝛼) = 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒{(𝑧̂𝑡)𝑡=1,
𝑛 ,𝛼}       (7) 

where (𝑧̂𝑡)𝑡=1  
𝑛  is a innovation sample simulated by bootstrapping. Thus, the right term in Equation 7 is the quantile 

𝛼 of the innovations simulated sample. Replacing (7) in (3) we obtain the VaR measure. In this case we calculate 

𝐸[𝑍𝑡|𝑍𝑡 ≤ 𝐺−1(𝛼)] by approximation (see Emmer et al., 2015):  

𝐸[𝑍𝑡|𝑍𝑡 ≤ 𝐺−1(𝛼)] =  
1

4
{𝑞𝛼(𝑧̂𝑡) + 𝑞0.75𝛼+0.25(𝑧̂𝑡) + 𝑞0.5𝛼+0.5(𝑧̂𝑡) + 𝑞0.25𝛼+0.75(𝑧̂𝑡)} (8) 

being 𝑞𝛼 the 𝛼 quantile of the innovations simulated sample (𝑧̂𝑡)𝑡=1  
𝑛 . The ES measure will be obtained by 

replacing the above expression in [5].  

This approach does not make strong assumptions about the distribution of the returns portfolio, so that it can 

accommodate wide tails, skewness and any other non-normal features. The disadvantages of this approach is that the 

results slightly dependent on the data set. Besides, unlike other non-parametric approaches like Historical Simulation, 

FHS take volatility background into account.  

 

(iii) The approach based on the conditional Extreme Value Theory.  

Within the EVT context, there are two approaches to study the extreme events. One of them is the direct modeling of 

the distribution of minimum or maximum realizations (McNeil, 1998). The other one is modeling the exceedances of 

a particular threshold (Peaks Over Threhold method (POT)). This last approach is generally considered to be the most 

useful for practical applications due to the more efficient use of the data for the extreme values. In the Appendix of 

the paper we provide a detailed description of this methodology. In this paper we use POT approach to estimate the 

tail of the distribution of the standardized residuals and thus later estimate the risks measure. As the GPD is only 

defined for positive values, we multiply our data by (-1) and thus move the left tail to the right side. Therefore, the 

VaR of a portfolio at 𝛼% probability will be calculated as: 
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𝑉𝑎𝑅𝑡(𝛼) = 𝜇𝑡 + 𝜎̃𝑡  𝐺−1(1 − 𝛼) (9) 

where  𝜇𝑡 and 𝜎̃𝑡 represent the conditional mean and the conditional standard deviation of the returns 6 and  

𝐺−1(1 − 𝛼) is the quantile (1 − 𝛼) of the GPD. The ES of a portfolio at (1 − 𝛼)% probability will be calculated as: 

𝐸𝑆𝑡(𝛼) =  𝜇𝑡 + 𝜎̃𝑡𝐸𝑡−1[𝑍𝑡|𝑍𝑡 ≥ 𝐺−1(1 − 𝛼)] (10) 

and  

𝐸𝑆𝑡 = 𝜇𝑡 + 𝜎̃𝑡 [
 𝐺−1(1 − 𝛼)

1 − 𝜉
+

𝛽 − 𝜉𝑢

1 − 𝜉
] 

(11) 

where 𝜉  and 𝛽  are the shape parameter and ths escala parameter of the Generalized Pareto distribution (GPD).   

The same as FHS, this method captures some characteristics of the financial returns as curtosis and skew and it 

take into account changes in volatility (conditional ETV). The disadventages of this method is that it depends on the 

extreme return distribution assumption. Besides, its results depend on the extreme data set. 

APARCH model  

The APARCH model (Asymmetric Power ARCH model) was proposed by Ding et al (1993). This model can well 

express volatility clustering, fat tails, excess kurtosis, the leverage effect, and the Taylor effect. The latter effect is 

named after Taylor (1986) who observed that the sample autocorrelation of absolute returns was usually larger than 

that of squared returns. The APARCH equation is, 

 

𝜎𝑡
𝛿 = 𝜔 + ∑ 𝛼𝑖(|𝜀𝑡−𝑖| + 𝛾𝑖𝜀𝑡−𝑖)𝛿

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
𝛿

𝑝

𝑗=1

 

 

(12) 

where 𝜔, 𝛼𝑖 , 𝛾𝑖, 𝛽𝑗 and 𝛿 are additional parameters to be estimated. The parameter 𝛾𝑖 reflects the leverage effect 

(−1 < 𝛾𝑖 < 1). A positive (resp. negative) value of 𝛾𝑖 means that past positive (resp. negative) shocks have a deeper 

impact on current conditional volatility than past negative (resp. positive) shocks. The parameter 𝛿 plays the role of 

a Box-Cox transformation of 𝜎𝑡 (𝛿 > 0). 

The APARCH equation is supposed to satisfy the following conditions, i) ω > 0 (since the variance is positive), 

𝛼𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑞, 𝛽𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑝. When 𝛼𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑞, 𝛽𝑗 = 0, 𝑗 = 1, 2, . . . , 𝑝, then 𝜎2 = 𝜔, ii) 

0 ≤ ∑ 𝛼𝑖 + ∑ 𝛽𝑗
𝑝
𝑗=1

𝑞
𝑖=1 ≤ 1. The APARCH is a general model because it has great flexibility, having as special cases, 

among others, GARCH and GJR-GARCH models.  

 

 

 

 

 
6  For estimating the volatility of the return, we use an APARCH model, which is given by the next expression:  σt

δ = α0 +

α1(|εt−1| − γεt−1)δ + βσt−1
δ , α0, β, 𝛿 > 0,    α1 ≥ 0, −1 < 𝛾 < 1. In this model, the γ parameter captures the leverage effect (Black, 

1976), which means that volatility tends to be higher after negative returns.  
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Backtesting 

Backtesting VaR 

Many authors are concerned about the adequacy of the VaR and ES measures, especially when they compare several 

methods. Papers, which compare the VaR methodologies commonly use two alternative approaches: the basis of the 

statistical accuracy tests and/or loss functions (Sarma et al., 2003; Angelidis and Degiannakis, 2007; Abad et al., 

2015).  

a.- Accuracy tests 

We check the accuracy of different estimates of VaR using five standard tests which are the most usual procedures: 

the unconditional coverage (LRuc) test (Kupiec, 1995), the conditional coverage (LRcc) test and the independence test 

(LRind) of Christoffersen (1998), Backtesting Criterion Statistic (BTC) and Dynamic Quantile (DQ) test of Engle and 

Manganelli (2004). To implement all these tests, the exception indicator (I t) must be defined. If rt represents the 

returns and VaR(𝛼) is the VaR obtained with a given probability 𝛼 ∈ (0,1), we have an exception when 𝑟𝑡 <

 𝑉𝑎𝑅𝑡(𝛼)and then It is equal to one (zero otherwise).  

Kupiec (1995) shows that assuming the probability of an exception is constant, then the number of exceptions 

(𝑥 = ∑ 𝐼𝑡) follows a binomial distribution 𝐵(𝑁, 𝛼), where N is the number of observations. An accurate 𝑉𝑎𝑅(𝛼) 

measure should produce an unconditional coverage (𝛼 = ∑ 𝐼𝑡 𝑁⁄  ) equal to 𝛼 percent. Thus, the null hypothesis of 

this test is 𝛼̑ = 𝛼 for the unconditional coverage test has as a null hypothesis 𝛼̑ = 𝛼 , with a likelihood ratio statistic:  

𝐿𝑅𝑢𝑐 = 2[𝑙𝑜𝑔(𝛼𝑥(1 − 𝛼)𝑁−𝑥) − 𝑙𝑜𝑔(𝛼𝑥(1 − 𝛼)𝑁−𝑥)]     (13) 

which follows an asymptotic 𝜒2(1)  distribution. 

Christoffersen (1998) developed a conditional coverage test. This jointly examines whether the percentage of 

exceptions is statistically equal to the one expected and the serial independence of It+1. He proposed an independence 

test, which aimed to reject VaR models with clustered violations. The LRcc test examines jointly whether the model 

generates a correct proportion of failures (𝐿𝑅𝑢𝑐) and whether the exceptions are statistically independent from one 

another (𝐿𝑅𝑖𝑛𝑑). The independence property of exception is an essential property because the measures of risk must 

reply automatically to any new information; a model that does not consider this factor would provoke clustering of 

exceptions.  The likelihood ratio statistic of the conditional coverage test is 𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑, which is 

asymptotically distributed 𝜒2(2). The LRind statistic is the likelihood ratio statistic for the hypothesis of serial 

independence against first-order Markov dependence. The 𝐿𝑅𝑖𝑛𝑑 statistic is 𝐿𝑅𝑖𝑛𝑑 = 2[𝑙𝑜𝑔𝐿𝐴 − 𝑙𝑜𝑔𝐿𝑜] and has an 

asymptotic 𝜒2(1) distribution. The likelihood function under the alternative hypothesis is 𝐿𝐴 = (1 −

𝜋01)𝑁00𝜋01
𝑁01(1 − 𝜋11)𝑁10𝜋11

𝑁11 where 𝑁𝑖𝑗 denotes the number of observations in state j after having been in state i in 

the previous period, 𝜋01 =
𝑁01

𝑁01 +𝑁00
  and 𝜋11 =

𝑁11

𝑁11+𝑁10
. The likelihood function under the null hypothesis (𝜋01 =

𝜋11 = 𝜋 =
𝑁11+𝑁01

𝑁
 ) is 𝐿0 = (1 − 𝜋)𝑁00+𝑁10 (𝜋)𝑁01+𝑁11  . 

A similar test to Kupiec test for the significance of the departure of  𝛼̑ from 𝛼 is the BTC. In this case, what is 

compared to check if the VaR estimates are accurate is to compare if the number of observed exceptions is equal to 

the number of expected exceptions 𝐻𝑜: 𝑁𝛼 ≤ 𝑁𝛼. The statistic (Z) known as Backtesting Criterion, is defined by the 

expression: 
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Z =
Nα̂ − Nα

√Nα(1 − α)
 (14) 

which is asymptotically distributed as a normal with mean zero and variance one, 𝑍~𝑁(0,1). 

Finally, the DQ test examines whether the exception indicator is uncorrelated with any variable that belongs to 

the information set Ωt-1 available when the VaR was calculated7. This is a Wald test of the hypothesis that all slopes 

are zero in a regression of the exception indicator variable on a constant, five lags and the VaR estimate.  

𝐼𝑡 =  𝛽0 + ∑ 𝛽𝑖

5

𝑖=1

𝐼𝑡−1 + 𝜇𝑉𝑎𝑅 + 𝜀𝑡 (15) 

We consider that a model is accurate when it passes all tests. 

b.- Loss functions  

The backtesting procedures based on certain statistical tests present a drawback; they only show whether the VaR 

estimates are accurate, so this toolbox does not allow us to rank the models. Backtesting based on the loss function 

pays attention to the magnitude of the failure when an exception occurs. Lopez (1998, 1999), who is a pioneer in this 

area, proposes to examine the distance between the observed returns and the forecasted VaR(α). This difference 

represents the loss that has not been covered. The loss functions enable the financial manager to rank the models. The 

model that minimises the total loss will be preferred to the other models. Lopez (1999) proposed a general form of 

the loss function: 

𝐿𝑡 = {
𝑓(𝑟𝑡 , 𝑉𝑎𝑅) 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅

𝑔(𝑟𝑡 , 𝑉𝑎𝑅) 𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅
 

(16) 

where 𝑓(𝑟𝑡 , 𝑉𝑎𝑅) and 𝑔(𝑟𝑡 , 𝑉𝑎𝑅) are functions such that 𝑓(𝑟𝑡 , 𝑉𝑎𝑅)≥𝑔(𝑟𝑡 , 𝑉𝑎𝑅), thereby penalising to a greater 

extent those cases where the real returns fall below the VaR estimations. Lopez proposed different functional forms 

for 𝑓(𝑟𝑡 , 𝑉𝑎𝑅) and 𝑔(𝑟𝑡 , 𝑉𝑎𝑅). In this study, we apply two loss functions: Lopez’s magnitude loss function and 

Lopez’s lineal loss function.  

Lopez’s Magnitude loss function (LF1) has the following quadratic specification where large failures are penalised 

more than small failures: 

LF1= {1 + (𝑉𝑎𝑅𝑡 − 𝑟𝑡)2 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

  0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(17) 

Lopez’s lineal loss function (LF2) is calculated as follows: 

LF2= {
(𝑉𝑎𝑅𝑡 − 𝑟𝑡) 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

 0  𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡
 

(18) 

Caporin (2008) notes that there is an open issue with the functions aforementioned. For this author, what is 

important is not the losses uncovered but their relative size. For this purpose, the author proposes three different loss 

function. In this study we have applied the following specification: 

 
7 A more detailed description of these tests can be found in Abad et al. (2014). 
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LF3= {
|1 − |

𝑟𝑡

𝑉𝑎𝑅𝑡
||  𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

 0  𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡

 

(19) 

 

Backtesting ES  

a.- Accuracy test 

In order to check the accuracy of conditional ES, we use McNeil and Frey (2000) test which is the most successful 

in the literature. The authors are interested in the size of the discrepancy between the return 𝑟𝑡+1 and the conditional 

expected shortfall forecast 𝐸𝑆𝑡(𝛼) in the event of quantile violation. The authors define the residuals exceedances 

and denote them by {𝑦̂𝑡+1:𝑡 𝜖 𝑇.   𝑟𝑡+1 < 𝑉𝑎𝑅𝑡+1(𝛼)}   where 𝑦̂𝑡+1 = 
𝑟𝑡+1−𝐸𝑆̂𝑡+1(𝛼)

𝜎̂𝑡+1
 and  𝐸𝑆̂𝑡+1(𝛼)  is an estimation 

of the conditional expected shortfall. Thus, for testing whether the estimates of the expected shortfall are correct, we 

must test if the sample mean of the residual is equal to zero against the alternative that the mean of 𝑦 is negative. 

Indeed, given a sample {𝑦𝑡+1} of size 𝑁 (where 𝑁 is the number of violations in the 𝑇 period), the sample mean 

𝑦 converges in distribution to standard normality, as 𝑁 tends to ∞ by the central limit theorem. In other words, given 

population mean 𝜇𝑦 and variance 𝜎𝑦, by applying the central limit theorem, the statistics for testing the null hypothesis 

are given by  

𝑡 =
𝑦

𝑆𝑦

√𝑁

~𝑡𝑁−1 
(20) 

where 𝑦 and 𝑆𝑦  are the sample mean and the sample standard deviation, respectively, of the exceedance residuals. 

  

b.- Loss functions 

In the same way to Lopez’s loss function for VaR, Nieto and Ruiz (2008) introduced the loss function calculated with 

respect of the ES. These authors obtained the loss function with respect to ES, when an exception occurs. The  loss 

function for ES (L) has the following expression: 

𝐿𝐹4 = {
(𝑟𝑡 − 𝐸𝑆𝑡)2 𝑖𝑓     𝑟𝑡 < 𝑉𝑎𝑅𝑡  
         0            𝑖𝑓     𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡

 
 

 

(21) 

Assuming ES is the new risk measure, we generalize Lopez’s lineal loss function (LF2) and Caporini loss function 

(LF4) calculated with respect ES. Thus, we introduce the following expressions to quantify loss function for ES: 

LF5= {1 + (𝑉𝑎𝑅𝑡 − 𝑟𝑡)2 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

  0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(22) 

  

LF6= {
(𝐸𝑆𝑡 − 𝑟𝑡) 𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

 0  𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡
 

(23) 

 

LF7= {
|1 − |

𝑟𝑡

𝐸𝑆𝑡
||  𝑖𝑓 𝑟𝑡 < 𝑉𝑎𝑅𝑡

 0  𝑖𝑓 𝑟𝑡 ≥ 𝑉𝑎𝑅𝑡

 

(24) 

 

The model which minimizes the LF will be the best. 



S. Benito Muela, C. López-Martin, R. Arguedas / ACRN Journal of Finance and Risk Perspectives 11 (2022) 79-104 

91 

Data 

The data consist of the IBEX358 stock index extracted from the Thomson-Reuters-Eikon database. The index is 

transformed into returns by taking the logarithmic differences of the closing daily price (in percentage). We use daily 

data for the period January 3, 2000, through December 29, 2017. The full data period is divided into a learning sample 

(January 3rd, 2000 to December 31th, 2013) and a forecast sample (January 3 rd, 2014 to December 29th, 2017). Thus, 

we work with 4568 observations and generate 1022 out-of-sample VaR and ES forecasts with a confidence level of 

𝛼=97.5%9. 

Figure 1 presents the evolution of the daily index and returns of the IBEX35. The index shows a sawtooth profile 

alternating periods with upward slope and a period of sudden decreases. In addition, we can observe that the range 

fluctuation of daily returns is not constant, which means that the variance of the returns changes over time. The 

volatility of IBEX35 was particularly high from 2008 to 2009, coinciding with the period known a s the Global 

Financial Crisis. In the last years of the sample, we observe a period that is more stable.  

The basic descriptive statistics are provided in Table 3. The unconditional mean of daily return is negative and 

very close to zero (-0.0032%). The skewness statistic is negative, implying that the distribution of daily returns is 

skewed to the left. The kurtosis coefficient, with a value close to 9, shows that the yields do not follow a normal 

distribution as this distribution has much thicker tails than the normal distribution. Similarly, the Jarque-Bera statistic 

is statistically significant, rejecting the assumption of normality. All this evidence shows that the  empirical 

distribution of daily returns cannot be fit by a normal distribution, as it exhibits a significant excess of kurtosis and 

asymmetry (fat tails and peakness). 

 

 
8 The IBEX35 is the main reference stock market index of the Spanish stock market 

(https://www.bolsasymercados.es/esp/Home). It is an index weighted by stock market capitalization that is made up of the 35 

most liquid companies listed on the Spanish stock market. 

9 Under the new regulation based on the Basel III solvency framework (BCBS, 2019), ES (α=0.975) replaces VaR (α=0.99). The 

comparison conducted in this paper is not intended to compare both measures in the new framework but to evaluate these risk 

measures in terms of accuracy and model risk. For that reason the confidence level chosen (α=0.975) is the same for ES and 

VaR. 

 

https://www.bolsasymercados.es/esp/Home
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Figure 1. IBEX35 

 

Table 3. Descriptive statistics of the daily returns 
 

Mean (%) Median 

(%) 

Maximum Minimum Std. 

Dev. 

Skewness Kurtosis Jarque-

Bera IBEX35 -0.0032* 0.0621 0.1348 -0.1319 0.0149 -0.0796* 8.819* 6451 

Note:  (*) denotes significance at the 5% level. 

 

Empirical results 

Market risk estimations (VaR and ES) 

In this section we analyse the market risk estimations that we have obtained for the IBEX35 returns from the models 

analysed. Figure 2 reports these estimations for each of the distributions (Normal, Student-t, GED, Skew Student-t 

and Skew GED) we have considered. Panel (a) reports VaR estimations join to the returns and Panel(b) reports ES 

estimations also join to the returns.  

Un inspection visual of these figures suggest that the market risk of the IBEX35 is time-varying moving between 

-2% and -8% mostly. Apparently, no large differences are observed in the estimates obtained by each of the models 

used for their estimation. However, these differences exist and are revealed when some descriptive statistics of the 

estimates are analyzed. Table 4 reports the mean, median, standard deviation and minimum of the VaR estimations. 

Table 5 reports these statistics for the ES estimations.  
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Panel (a): VaR  Panel (b): ES  

Normal distribution for volatility estimation 

  
Student-t distribution for volatility estimation 

 
 

GED distribution for volatility estimation 

  
Skew Student-t distribution for volatility estimation 

 
 

Skew GED distribution for volatility estimation 

 
 

Figure 2. VaR and ES estimations below different models 
 

Note: The table shows the IBEX-35 daily retuns (in grey) and VaR (Panel a) and ES (Panel b) forecasts from parametric 

model (in black), EVT model (in red) and FHS model (in green). 
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Table 4. Descriptive statistics of the VaR estimations 

 PARAMETRIC EVT FHS 

 mean median std min mean median std min mean median std min 
Normal -2.39 -2.19 0.85 -6.89 -2.60 -2.39 0.94 -7.49 -2.53 -2.32 0.91 -7.60 

Student-t -2.41 -2.21 0.88 -6.88 -2.60 -2.37 0.96 -7.45 -2.49 -2.30 0.89 -6.66 

GED -2.45 -2.25 0.89 -7.11 -2.60 -2.38 0.96 -7.54 -2.51 -2.30 0.91 -7.44 

SSD -2.55 -2.33 0.93 -7.32 -2.60 -2.37 0.95 -7.45 -2.52 -2.31 0.92 -7.46 

Skew GED -2.57 -2.37 0.90 -6.98 -2.60 -2.38 0.95 -7.54 -2.53 -2.30 0.92 -7.59 

 

Table 5. Descriptive statistics of the ES estimations 

 PARAMETRIC EVT FHS 
 mean median std min mean median std min mean median std min 

Normal -2.85 -2.62 1.02 -8.22 -3.35 -3.09 1.20 -9.97 -2.99 -2.75 1.07 -8.67 

Student-t -3.09 -2.84 1.12 -8.90 -3.36 -3.09 1.22 -9.90 -2.94 -2.70 1.05 -7.86 

GED -3.05 -2.80 1.10 -8.94 -3.36 -3.09 1.22 -10.02 -2.97 -2.72 1.07 -8.63 

SSD -3.29 -3.02 1.19 -9.55 -3.36 -3.09 1.21 -9.90 -2.99 -2.73 1.08 -8.55 

Skew GED -3.18 -2.93 1.11 -8.69 -3.36 -3.09 1.21 -10.02 -2.99 -2.73 1.08 -8.73 

 

The analysis of descriptive statistics reveals some interesting issues. First of all, we observed that the market risk 

estimations obtained with Parametric model are hight sensitive to the distribution assume for the returns.  Normal 

distribution provides the lowest market risk estimacions while the skewed distributions provides the highe st. For 

instance, in average, the VaR estimation below a Normal distribution is -2.39 becoming -2.57 when we assume a 

Skew GED distribution. These differences are still higher when we calculate the ES. In average, the ES estimation 

from a Normal distribution is -2,85, while the  forescast losses below a Skew GED becomes -3.18%.  

Unlike the Parametric method, in average terms the market risk estimations obtained from the method based on 

the EVT and FHS method do not depend much on the assumed distribution, although occasionally some differences 

can be observed. 

Second, the variability of the estimated losses is also sensitive to the distribution assumed for the yields. Again, 

the normal provides the most stable risk estimates, followed by the Student-t and/or GED and finally the skewed 

distributions. Third, in all the cases analyzed, the mean is lower than the median, indicating that there are large losses 

in the left tail. 

To last, we also observed large differences between the VaR estimates obtained under the parametric method and 

those obtained with EVT and FHS. Between these last two methods, however, the differences on average do not 

exceed 5 basis points. It should also be noted that in the case of the parametric method, the differences are reduced 

when we consider distributions with fat and asymmetric tails. In the case of the normal, the differences average almost 

20 basic points. 

In the case of the ES, the method based on the EVT provides and FHS provide market risk estimations very 

different. The former forecast losses around 3.3% while FHS forecast losses around 3,0%.  

In the followings section we analyse the accurate of the market risk estimations and we use loss functions to 

discern which of the methods yields better estimates. 
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Backtesting results 

In this section, the accuracy of risk measures is analysed. The risk measures, VaR and ES, were obtained from three 

different models: (i) parametric method and two semiparametric approaches: (ii) the aproach based on the conditional 

EVT and (iii) Filter Historical Simulation. In the case of parametric method, five distributions have been considered: 

Normal, Student-t (symmetric) (STD) distribution, the skewness Student-t distribution (SSTD), generalized error 

distribution (GED)  and the skewness generalized error distribution (SGED) of Theodossiou (2001). All these 

methods require a forecast volatility to estimate portfolio market risk to which we use an APARCH model. This 

model  has been estimated below different distribution: Normal, STD, GED, SSTD and SGED.  

Thus for each method we have five risk measures each one coming from a different distribution used to model 

return volatility. These measures are obtained one day ahead at the 97.5% confidence level. 

To evaluate the accuracy of VaR estimates, five tests have been applied: LRuc, BTC, LRind, LRcc and DQ. Table 

6 reports the p-value of these tests, joint to the number and percentage of exceptions.  

Table 6. Accuracy tests: VaR (α=97,5%) 
 

Normal STD GED SSTD SGED 

Panel (a) Parametric apporach 

Nº exceptions 30 30 30 28 27 

% exceptions 2.94 2.94 2.94 2.74 2.64 

LRuc 0.57 0.57 0.57 0.75 0.85 

BTC 0.27 0.27 0.27 0.35 0.38 

LRind 0.37 0.37 0.37 0.41 0.42 

LRcc 0.57 0.57 0.57 0.67 0.71 

DQ 0.07 0.07 0.07 0.27 0.23 

Panel (b): Conditional EVT  

Nº exceptions 26 27 28 26 27 

% exceptions 2.54 2.64 2.74 2.54 2.64 

LRuc 0.95 0.85 0.75 0.95 0.85 

BTC 0.40 0.38 0.35 0.40 0.38 

LRind 0.44 0.42 0.41 0.44 0.42 

LRcc 0.74 0.71 0.67 0.74 0.71 

DQ 0.49 0.16 0.28 0.13 0.24 

Panel (c) Filter Historical Simulation (FHS ) 

Nº exceptions 28 30 28 30 28 

% exceptions 2.74 2.94 2.74 2.94 2.74 

LRuc 0.75 0.57 0.75 0.57 0.75 

BTC 0.35 0.27 0.35 0.27 0.35 

LRind 0.41 0.37 0.41 0.37 0.41 

LRcc 0.67 0.57 0.67 0.57 0.67 

DQ 0.27 0.09 0.16 0.07 0.26 

Note: Table shows the p-value of the statistics: (i) the unconditional coverage test (LRuc); (ii) the back -testing criterion (BTC); 

(iii) statistics for serial independence (LRind); (iv) the Conditional Coverage test (LRcc) and (v) the Dynamic Quantile test 

(DQ).  
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The three methods underestimate risk as they provide a percentage of exceptions higher than it is expected (2,5%) 

but it is the approach based on the conditional extreme value theory which provide a percentage c loser to the expected 

one.  

According to accuracy tests, VaR estimates are accurate for all approaches regardeless the distribution assumed 

for modeling volatility. The null hypothesis has not been rejected by any test. 

In a second stage, and after checking the accuracy of the VaR measurements, we have calculated the loss functions 

(Table 7) . The model that provides the lowest loss function value is the best. Figure 3 shows the loss functions for 

each model. 

Thus, according to Lopez’s loss function, the best model for estimating VaR measure is the based on the 

conditional extreme value theory (EVT). This result is obtained regardeless of the distribution assumed for modeling 

return volatility. In particular, the lowest value for loss functions is obtained for EVT under SSTD. Parametric model 

is the worst model for three distributions (Normal, STD and GED) and FHS has the worst behaviour for skewness 

distributions (SSTD and SGED). 

 

Table 7. Loss functions for VaR 

VaR   Parametric EVT FHS 

Lopez's magnitude loss function (LF1) Normal 160.11 143.6 152.05 

STD 158.03 144.27 150.75 

GED 156.37 145.46 152.01 

SSTD 148.36 143.29 154.19 

SGED 146.47 144.4 148.71 

Lopez's lineal loss function (LF2) Normal 29.61 23.93 26.09 

STD 29.00 24.05 26.09 

GED 28.08 24.02 26.54 

SSTD 25.44 24.01 26.21 

SGED 24.63 23.94 26.29 

Caporini's loss function (LF3) Normal 12.74 9.35 10.63 

STD 12.42 9.47 10.51 

GED 11.81 9.43 10.94 

SSTD 10.23 9.43 10.78 

SGED 9.68 9.37 10.50 
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Figure 3. Loss functions for VaR 

To test whether the ES estimations are correct, we use the test proposed by McNeil and Frey (2000). The results 

of this test are displayed in Table 8. According to this tests all approaches provide correct estimations of the ES 

measure as in no case we find evidence against the null hypothesis that says that average of the discrepancy measure 

is equal to zero.  

Table 8. Backtesting for Expected Shortfall estimations 

ES (α=97,5%) 

 Normal STD GED SSTD SGED 

Parametric 0,95 0,86 0,88 0,74 0,82 

EVT 0,73 0,73 0,69 0,75 0,71 

FHS 0,91 0,9 0,93 0,9 0,92 

Note: Table shows the p-value of the McNeil and Frey test (2000).  

Then, we have obtained the four loss functions presented in Subsection 2.3. Table 9  shows the results for each 

model.  
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Table 9. Loss functions for ES 

ES   Parametric EVT FHS 

Nieto and Ruiz loss function (LF4) Normal 107,35 91,77 103,65 

STD 98,43 90,93 103,07 

GED 100,33 91,39 103,60 

SSTD 92,08 90,99 104,55 

SGED 95,76 91,35 101,34 

López’s magnitude loss function (LF5) Normal 126,35 98,77 118,65 

STD 111,43 97,93 118,07 

GED 114,33 98,39 119,60 

SSTD 100,08 97,99 117,55 

SGED 104,76 98,35 116,34 

Lopez's lineal loss function (LF6) Normal 18,54 13,20 16,47 

STD 15,33 13,17 16,59 

GED 15,88 13,18 17,14 

SSTD 13,52 13,17 16,75 

SGED 14,22 13,18 16,71 

Caporini's loss function (LF7) Normal 6,49 3,86 5,55 

STD 4,91 3,84 5,60 

GED 5,18 3,85 5,76 

SSTD 4,00 3,84 5,74 

SGED 4,36 3,85 5,51 

 

 

 

Figure 4. Loss functions for ES 

 

Regarding the loss functions we find that the approach based in the conditional EVT model provide the lowest 

losses. This result is irrespective of the distribution assumed for modeling volatility. In particular, the lowest value 

for loss functions is obtained for EVT under STD. The worst model is FHS since it provides the highest values of the 

loss function for all distribution functions except for the normal distribution. 
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To sum up, in the analize period we find that according to the accurate test all the models (a total of fithteen)  used 

to estimate market risk, given by VaR and ES measures, provide accurate risk estimations. But not all of them capture 

equally the tail risk. According to the loss function, the model that performed better in capturing tail risk is the 

approach based on the Extreme Value Theory, both in VaR estimation and ES estimation. This results is in line with 

the VaR literature which indicate that this model is the best performed in VaR estimate (Ergun and Jun, 2010; Ozun 

et al., 2010 and Tolikas et al., 2007). The novelty of our results is linked to the ES models due to the fact of the lack 

or very limited comparative papers in this field.  

Conclusions 

Under the new regulation based on Basel solvency framework (BCBS, 2012, 2016a, 2017a, 2019), known as Basel 

IV, financial institutions must calculate the market risk capital requirements based on the Expected Shortfall (ES) 

measure, replacing the Value at Risk (VaR) measure based on internal models, legitimized by the supervisory 

authorities since 1998 (BCBS, 1996; Hubbert, 2012; Szylar, 2014; Acerbi and Szekey, 2014). In the financial 

literature, there are many papers dedicated to compare VaR approaches but there are  few studies focusing in 

comparing ES approaches. 

Our study aims to cover this gap by carrying out a comprenhensive comparative of VaR and ES models. The 

methods included in the comparison are: (i) parametric approach; (ii) the approach based on the conditional EVT and 

(iii) Filter Historical Simulation. In the case of parametric method, five distribution have been considered: Normal, 

Student-t (symmetric) distribution (STD), the skewness student-t distribution (SSTD), generalized error distribution 

(GED)  and the skewness generalized error distribution (SGED) of Theodossiou (2001). To estimate portfolio market 

risk a forecast volatility is required to which we use an APARCH model. This model  has been estimated below 

different distribution: Gaussian, Student-t, GED, skew Student-t and skew GED. Thus, for each method we have five 

risk measure. Our objective is to carry out a systematic analysis that simultaneously considers different approaches 

and different distribution hypotheses for modeling volatility.   

For this study we focus on the Spanish stock market, which has not been previously analysed in the literature on 

ES estimation models. The analysis period goes from January 3rd, 2014 to December 29 th, 2017. The results show 

that all the models provide accurate risk estimations. But not all of them capture equally the tail risk. According to 

the loss function, the model that performed better in capturing tail risk is the approach based on the EVT, both in 

VaR estimation and ES estimation. This results is in line with the VaR literature which indicates that this model is 

the best performed in VaR estimate. The novelty of our results is in connection to the ES models as the comparative 

papers in this field are scarce. We also detect that the conditional EVT entails less risk model that Parametric method 

and FHS, as the former is less sensitive to the distribution assumed for modeling volatility. Finally, we find that in 

line with the literature, the VaR measure entails less model risk than the ES measure. This fact imply that there are 

more possibilities of regulatory arbitrage with this new measure than with VaR measure.  
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Appendix: Extreme Value Theory 

Extreme value theory (EVT) is a powerful and yet fairly robust framework in which to study the tail behaviour of a 

distribution. Even though EVT has previously found large applicability in climatology and hydrology, there is also a 

number of extreme value studies in the finance literature in recent years (Novales and Garcia-Jorcano, 2019; Mögel 

and Auer, 2018; Louzis et al., 2012; Brooks et al., 2005; Bekiros and Georgoutsos, 2005; Embrechts et al., 1999).  

Within the EVT context, there are two approaches to study the extreme events. One of them is the direct modeling 

of the distribution of minimum or maximum realizations. The other one is modeling the exceedances of a particular  

threshold. This last method is called Peaks Over Threshold (POT). In the next lines we describe this approach.  

In general, we are not only interested in the maximum of observations, but also in the behaviour of large 

observations which exceed a high threshold. One method of extracting extremes from a sample of observations, 𝑋𝑡 ,

𝑡 = 1, 2, … 𝑛 with a distribution function 𝐹(𝑥) = Pr (𝑋𝑡 ≤ 𝑥) is to take the exceedances over a predetermined high 

threshold 𝑢. An exceedance of a threshold 𝑢 occurs when 𝑋𝑡 > 𝑢 for any 𝑡 in 𝑡 = 1,2, … , 𝑛. Thus, an excess over 𝑢 

is defined as 𝑦 = 𝑋𝑡 − 𝑢.  

Let 𝑥0 be the finite or infinite right endpoint of the distribution 𝐹. That is to say, 𝑥0 = sup {𝑥 ∈ 𝑅: 𝐹(𝑥) < 1} ≤

∞. The distribution function of the excesses (𝑦) over the threshold 𝑢 is given by 𝐹𝑢(𝑦) = 𝑃((𝑋 − 𝑢) ≤ 𝑦| 𝑋 >

𝑢)  for 0 ≤ 𝑥 ≤ 𝑥0 − 𝑢. Thus, 𝐹𝑢(𝑦) is the probability that the value of 𝑋 exceeds the threshold 𝑢 by no more than 

an amount 𝑦, given that the threshold is exceeded.  This probability can be written as:  

 

𝐹𝑢(𝑦) =
𝐹(𝑦 + 𝑢) − 𝐹(𝑢)

1 − 𝐹(𝑢)
 

  (1) 

This distribution can be approximated by the generalized Pareto distribution (GPD) which is usually expressed as 

a two-parameter distribution: 

 

𝐺𝛽.𝜉 (y) =  {
1 − (1 +

𝜉

𝛽
𝑦)

−
1

𝜉
   𝑖𝑓 𝜉 ≠ 0

1 − exp (−
𝑦

𝛽
)          𝑖𝑓   𝜉 = 0

 (2) 

where ξ and 𝛽 > 0 are the shape parameter and the scale parameter, respectively. Using this approximation, the 

distribution function of 𝑋 will be given by 𝐹(𝑥) = (1 − 𝐹(𝑢)) 𝐹𝑢(𝑦) + 𝐹(𝑢). 

Replacing  𝐹𝑢(y) by GPD and 𝐹(𝑢) by its empirical estimator (𝑛 − 𝑁𝑢)/𝑛, where 𝑛 is the total number of 

observations and 𝑁𝑢 the number of observations above the threshold 𝑢, we have 

 

𝐹(𝑥) = 1 − 
𝑁𝑢

𝑛
(1 +

𝜉

𝛽
(𝑥 − 𝑢))

−
1
𝜉

 (3) 

For a given probability 𝛼 > 𝐹(𝑢), the quantile 𝛼, which is denoted by 𝑞𝛼, 𝑖s calculated by inverting the tail 

estimation formula to obtain 
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𝑞𝛼 = 𝑢 +  
𝛽

𝜉
((

𝑛

𝑁𝑢

(1 − 𝛼))

−𝜉

− 1)  (4) 

The distributional choice is motivated by a theorem (Balkema & de Haan, 1974; Pickands, 1975) which states 

that, for a certain class of distributions, the GPD is the limiting distribution for the distribution of the excesses, as the 

threshold tends to the right endpoint: 

lim
𝑢→𝑥0

𝑠𝑢𝑝|𝐹𝑛
(𝑦) − 𝐺𝑃𝐷𝜉 ,𝜎(𝑦)| = 0 

This theorem is fulfilled if and only if 𝐹 is in the maximum domain of attraction (MDA) of the generalized extreme 

value distribution 𝐻𝜉, (𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉)). It means that if, for a given distribution 𝐹, appropriately normalized 

maximum sample converge to a non-degenerated distribution 𝐻𝜉, then this is equivalent to say 𝐻𝜉 is the MDA for 𝐹  

for some value of 𝜉.  

The class of distribution 𝐹 for which the condition 𝐹 ∈ 𝑀𝐷𝐴(𝐻𝜉) holds is large; essentially all commonly 

encountered continuous distributions show the kind of regular behaviour. 

 


