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A B S T R A C T   

This paper thoroughly examines the statistical properties of cryptocurrency returns, particularly 
focusing on studying which is the best statistical distribution for fitting this type of data. The 
preliminary statistical study reveals (i) high volatility, (ii) an inverse leverage effect, (iii) skewed 
distributions and (iv) high kurtosis. To capture the nonnormal characteristics observed in cryp-
tocurrency data, we verified the goodness of fit of a large set of distributions, both symmetric and 
skewed distributions such as skewed Student-t, skewed generalized t, skewed generalized error 
and the inverse hyperbolic sign distributions. The results show that the skewed distributions 
outperform normal and Student-t distributions in fitting cryptocurrency data, although there is no 
one skewed distribution that systematically better fits the data. In addition, we compare these 
distributions in terms of their ability to forecast the market risk of cryptocurrencies. In line with 
the results obtained in the statistical analysis, we find that the skewed distributions provide better 
risk estimates than the normal and Student-t distributions, both in short and long positions, with 
SGED being the distribution that provides better results.   

1. Introduction 

Cryptocurrencies are one of the most disruptive financial innovations of the last decade (Feng et al., 2018). Katsiampa et al. (2018) 
define cryptocurrencies as “a digital asset designed to work as a medium of exchange using cryptography to secure the transactions 
without being subject to any government intervention”. The first and largest cryptocurrency in the world by market capitalization, 
Bitcoin, is considered the first large-scale implementation of blockchain technology. The Bitcoin blockchain was designed to allow fast 
and secure transactions and, at the same time, maintain the anonymity of users using a public record book that authenticates trans-
actions between economic agents without the need for a central entity that proves the movement of funds. The original intention of 
blockchain development was not to create a new currency (Procházka, 2018) but to establish the principles of a functional decen-
tralized cash payment system such as a peer-to-peer network for file sharing (Rosic, 2017). 

Bitcoin has led the cryptocurrency industry since its inception in 2008 by a programmer (or group of programmers) under the 
pseudonym Satoshi Nakamoto (Nakamoto, 2008). Since then, many cryptocurrencies have been created, but it was not until Ethereum 
began in the summer of 2015 that a major step in the evolution of cryptocurrency took place with the integration of smart contracts 
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onto the blockchain (Ray, 2019). 
As of mid-November 2020, there were more than 7700 cryptocurrencies, with a total market capitalization of 538.765.720.190 US 

dollars (Bitcoin, Ethereum, Ripple and Litecoin represent an 80% market share), according to CoinMarketCap. This figure is similar to 
that reached at the end of 2017, a year in which the cryptocurrency market experienced greater growth. During some upper price peaks 
(for example, on January 4, 2018, when the market cap of the combined crypto markets was approximately $760 billion USD), the 
combined total market capitalization of cryptocurrencies was more than that of Google, which is the second largest company based on 
capitalization, and was comparable with the GDP of Switzerland, which is the 19th largest in the world according to the IMF (Haig, 2018). 

The strong growth experienced by the price of cryptocurrencies since their creation has attracted the interest of many investors who 
demand these assets not so much for reasons of transaction but for reasons of investment. However, cryptocurrencies are primarily 
regarded as assets rather than currencies (Baek & Elbeck, 2015; Cheah & Fry, 2015; Dyhrberg, 2016). 

The spectacular growth of cryptocurrencies’ price since their introduction has attracted significant attention from the academic 
world. A large number of published papers focus on descriptive analysis of the Bitcoin network (see Zang & Lee, 2019 and Härdle et al., 
2020, among others). Other studies analyse the efficiency of cryptocurrency markets, for instance, Lopez-Martin et al. (2021), Brauneis 
and Mestel (2018), Caporale et al. (2018), Tran and Leirvik (2019), Wei (2018) and Chaim and Laurini (2018, 2019). Although the 
results obtained in these papers are heterogeneous, they suggest that overall, the cryptocurrency markets are inefficient, although as in 
the case of Bitcoin, some authors argue that inefficiency tends to decrease (Bariviera et al., 2017; Köchling et al., 2019; Sensoy, 2019; 
Tran & Leirvik, 2019 and Vidal-Tomás et al., 2019). 

Other papers study the determinants of the cryptocurrency price. On this topic, many studies conclude that cryptocurrencies’ price 
depends neither on economic factors nor monetary factors but rather on speculative and supply and demand factors (see Bouoiyour & 
Selmi, 2015; Cheah & Fry, 2015; Ciaian et al., 2016; Eom et al., 2019). As stock markets are exposed to macroeconomic factors and 
government fiscal or monetary policies, the fact that cryptocurencies’ prices may not depend on such factors opens the possibility for 
cryptocurrencies to be a source of diversification against the risk of stock markets. Along this line, some studies analyse the ability of 
cryptocurrencies to diversify assets and hedge against traditional asset risks (see Bouri, Jalkh, et al., 2017; Bouri, Molnár, et al., 2017; 
Brière et al., 2015; Dyhrberg, 2016; Eisl et al., 2015; Feng et al., 2018; García-Jorcano & Benito, 2020; Gkillas & Longin, 2019; Kang 
et al., 2019; Klein et al., 2018).1 These papers describe a weak relationship between cryptocurrencies and stock markets, so they may 
act as a hedging asset against movements in the price of stocks.2 

Other studies have focused on analysing the stylized facts of cryptocurrencies. For instance, Feng et al. (2018) point to the fact that this 
kind of data displays some characteristics of immature market assets, such as autocorrelated and nonstationary return series. Other papers 
indicate that cryptocurrency returns show (i) skewness and a degree of kurtosis (e.g., Zhang et al., 2018); (ii) high volatility (e.g., Chu 
et al., 2015; Chu et al., 2017; Katsiampa, 2017; Klein et al., 2018; Phillip et al., 2018); and (iii) a heavier tail than traditional currencies 
(Borri, 2019; Feng et al., 2018; Gkillas & Katsiampa, 2018; Osterrieder et al., 2017; Osterrieder & Lorenz, 2017; Phillip et al., 2018). 

Our paper contributes to the existing literature by thoroughly examining the statistical properties of cryptocurrency returns, 
particularly which statistical distribution is the best for fitting this type of data. Regarding this last point, the literature is quite scarce. 
To the best of our knowledge, only the studies of Chan et al. (2017) and Osterrieder and Lorenz (2017) address this issue. Thus, in the 
present article, we try to fill this gap by checking the goodness of fit of a large set of distributions, both symmetric and skewed dis-
tributions. The distributions included in the comparison are the normal distribution, the Student-t distribution (symmetric), the 
skewed Student-t distribution (SSD) of Hansen (1994), the skewed generalized t distribution (SGT) of Theodossiou (1998), the skewed 
generalized error distribution (SGED) of Theodossiou (2001) and the inverse hyperbolic sign (IHS) of Johnson (1949).3 

To study the dependence between two or more markets through copula analysis, it is necessary to previously model the marginal 
distribution of the analysed market returns. In this sense, the study carried out in this work is interesting not only for measuring market 
risk but also for studying the structural dependence between markets. 

The results show that the skewed distributions outperformed the normal and Student-t distributions in fitting cryptocurrency data, 
although there is no skewed distribution that systematically better fits the data. Finally, we carry out an empirical application where 
we show that to estimate the market risk of cryptocurrencies, assuming asymmetric distributions improves the results with respect to 
the normal distribution and Student-t in both long and short positions, with the SGED providing better results. 

The remainder of the paper is organized as follows: Section II describes the methodology. Section III presents the data and empirical 
results. In Section IV, we present an empirical application in portfolio management, and Section V discusses the conclusion. 

2. Methodology 

This paper evaluates the performance of several skewed and symmetric distributions in modelling the tail behaviour of daily 
cryptocurrency returns and in quantifying market risk. First, we fit several distributions, and then, we compare them in terms of their 
ability to measure market risk. In the next subsection, we show the distributions used for fitting cryptocurrency data and describe the 
measure used for quantifying market risk. 

1 Most of these applications have been done for Bitcoin.  
2 In this line, other authors study the dependence among several cryptocurrencies; see, for instance, Gkillas et al. (2018). In this study, the authors 

find a high dependence among cryptocurrencies, so they conclude that diversifying by investing in various cryptocurrencies may not be a good 
strategy.  

3 See Abad et al. (2014) for a detailed introduction on the skewed fat-tailed distributions. 
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2.1. Probability distribution 

As previously mentioned, the empirical distribution of cryptocurrency returns has been documented to be asymmetric and exhibit a 
significant excess of kurtosis (fat tail and peakness). Therefore, assuming a normal distribution for risk management of these assets, 
particularly for estimating the Value at Risk (VaR), may not produce good results. Under this assumption, the size of the losses will be 
much higher than those predicted by a normal distribution. 

The Student-t distribution can often account well for the excess kurtosis, but this distribution does not capture the skewness of the 
returns. Taking this fact into account, our interests lie in investigating the performance of the skewed distributions in fitting these data. 
In what follows, we describe the density functions of the skewed distributions used in this paper for fitting cryptocurrency returns. 

2.1.1. Skewed student-t distribution (SSD) of Hansen 
To model the skewness in the shape of the conditional return density, Hansen (1994) defined the SSD as: 
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are the standardized returns, Γ(.) is the gamma function, λ is the skewness parameter, and η is a tail-thickness 

parameter. The parameters of the density function satisfy |λ| < 1 and η > 2. 

2.1.2. Skewed generalized error distribution (SGED) 
The SGED was proposed by Theodossiou (2001). The SGED probability density function is 
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are the standardized returns, λ is a skewed parameter |λ| < 1, k is the kurtosis parameter, and sign denotes the sign function. 

2.1.3. Skewed generalized t distribution (SGT) 
The SGT introduced by Theodossiou (1998) is a skewed extension of the generalized t distribution that was originally proposed by 

McDonald and Newey (1988). The SGT is a distribution that allows fitting for a very diverse level of skewness and kurtosis, and it has 
been used to model the unconditional distribution of daily returns for a variety of financial assets. Furthermore, SGT incorporates 
several well-known distributions, such as the generalized t distribution (McDonald & Newey, 1988), the SSD of Hansen (1994), the 
SGED of Theodossiou (2001), the normal distribution, the uniform distribution, the GED of Nelson (1991) and Student-t distribution. 
The SGT probability density function for the standardized residual is: 
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λ is the skewness parameter, |λ| < 1; η is a tail-thickness parameter, η > 2; k is a peakness parameter, k > 0; sign is the sign function; 
B(.) is the beta function; δ is Pearson’s skewness; and zt =

rt − μt
σt 

is the standardized residual. The skewness parameter λ controls the rate 
of descent of the density around the mode of zt. In the case of positive skewness (λ > 0), the density function is skewed to the right. In 
contrast, the density function is skewed to the left with negative skewness (λ < 0). 

2.1.4. Inverse hyperbolic sign (IHS) 
The IHS was proposed by Johnson (1949), and its density function is the following: 
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μw and σw are the mean and the standard deviation, respectively, of w = sinh(λ + x /k), sinh is the hyperbolic sine function, and x is a 
standard normal variable. Note that the negative value of k results in more leptokurtic distributions. 

To analyse the goodness of fit of these distributions, we use several standard tests, such as the Kolmogorov-Smirnov test (KS) 
(Kolmogorov, 1933; Massey, 1951; Smirnov, 1939), and the Chi2 test of Pearson (1900). In addition, as the SGT distribution nets all the 
distributions considered in this paper (except IHS), we use the likelihood ratio test to evaluate which distribution provides the best fit 
to the data. 

2.2. Measuring market risk 

According to Jorion (2001), “Value at Risk (VaR) measure is defined as the worst expected loss over a given horizon under normal 
market conditions at a given level of confidence”. Thus, VaR is a conditional quantile of the asset return loss distribution. 

Let X1,X2,…,Xn be identically distributed independent random variables representing the financial returns. Using F(x) to denote 
the cumulative distribution function, F(x) = Pr(Xt ≤ x|Ωt− 1) conditioned on the information available at t-1 (Ωt− 1). Assume that {Xt} 
follows a stochastic process given by: 

Xt = μt + σtzt zt ∼ iid(0, 1) (5)  

where μt is the conditional mean return; σ2
t = E (z2

t
⃒
⃒Ωt− 1) and zt has the conditional distribution function G(z), G(z) =  P(zt < z|Ωt− 1). 

The VaR with a given probability α ∈ (0, 1), denoted by VaR(α), is defined as the α quantile of the probability distribution of financial 
returns: 

F(VaR(α))= Pr(Xt ≤VaR(α))= α (6) 

To estimate this quantile, different methods have been developed: (i) nonparametric methods such as historical simulation 
methods; (ii) parametric methods and (iii) semiparametric methods such as filtered historical simulation (FHS), CaViar methods and 
methods based on extreme value theory (EVT). Among them, the parametric method is the most commonly used by financial in-
stitutions. In this method, the VaR of a portfolio is calculated as: 

VaRt(α)= μt + σtG− 1(α) (7)  

where G− 1(α) is the percentile α of the distribution assumed for the innovations. In this study, we considered six types of distributions: 
(i) the normal distribution, (ii) the Student-t distribution, (ii) the skewed Student-t distribution (SSD) of Hansen, (iv) the skewed 
generalized error distribution (SGED) of Theodossiou (2001), (v) the skewed generalized t distribution (SGT) of Theodossiou (1998) 
and (vi) the inverse hyperbolic sine (HIS) of Johnson (1949). 

To assess the performance in terms of VaR, we carry out a comparison using a two-stage selection approach. In the first stage, we 
use several accuracy tests, and in the second stage, and only for the remaining models, we calculate the loss function. 

To check the accuracy of different VaR estimates, we use several standard tests, which are the most common procedures: the 
unconditional coverage (LRuc) test (Kupiec, 1995), the conditional coverage (LRcc) test, the independence test (LRind) of Christoffersen 
(1998), and the dynamic quantile (DQ) test of Engle and Manganelli (2004) (a detailed review of these tests can be found in Abad et al. 
(2014)). 

To implement all these tests, the exception indicator (It) must be defined. If rt represents the returns in time t and VaRt(α) is the VaR 
obtained with a given probability α ∈ (0, 1), we have an exception when rt < VaRt(α), and then, It is equal to one (zero otherwise). 

The unconditional coverage test (LRuc) has the null hypothesis α̂ = α, with a likelihood ratio statistic given by 
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LRuc = 2log
α̂x
(1 − α̂)N− x

αx(1 − α)N− x ∼ χ2(1) (8)  

where α̂ is the percentage of the exceptions; α is the expected percentage; and x is the number exception. The conditional coverage test 
(Christoffersen, 1998) jointly examines whether the percentage of exceptions is statistically equal to the expected percentage and the 
serial independence of It. The likelihood ratio statistic of the conditional coverage test is LRcc = LRuc + LRind, which is asymptotically 
χ2(2)-distributed and the LRind statistic is the likelihood ratio statistic for the hypothesis of serial independence against first-order 
Markov dependence. 

Finally, the dynamic quantile test proposed by Engle and Manganelli (2004) examines whether the exception indicator is uncor-
related with any variable that belongs to the information set Ωt− 1 available when the VaR is calculated. This is a Wald test of the 
hypothesis that all slopes are zero in a regression of the exception indicator variable on a constant, five lags and the VaR. 

The backtesting procedures based on certain statistical tests present a disadvantage; they only show whether the VaR estimates are 
accurate, so this toolbox does not allow us to rank the models. Backtesting based on the loss function emphasizes the magnitude of the 
failure when an exception occurs. Lopez (1998, 1999), who is a pioneer in this area, proposed examining the distance between the 
observed returns and the forecasted VaR(α). This difference represents the loss that has not been covered. The loss function (LF) 

Fig. 1. Daily price of the cryptocurrencies.  
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enables the financial manager to rank the models. The model that minimizes the total loss will be preferred to the other models. There 
are different formulations for loss functions (see Abad et al., 2014), and in this analysis, the linear loss function, which has the 
following specification, will be used: 

LF=

{
|VaRt − rt| if rt < VaRt

0 otherwise (9)  

3. Data and empirical results 

3.1. Data 

For our empirical analysis, we used data from six cryptocurrencies: Bitcoin Monero, Ripple, Litecoin, Dash and Stellar. These 
cryptocurrencies account for just over 67% of the market capitalization according to the data of CoinMarketCap.4 All currencies are 

Fig. 2. Daily returns of the cryptocurrencies.  

4 https://coinmarketcap.com/. 
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expressed in terms of the US dollar. The data consist of the closing daily price extracted from CoinMarketCap. These prices are 
transformed into returns by taking logarithmic differences. The complete sample nearly covers six years. The data period runs from 
January 01, 2015, to September 30, 2020. 

Fig. 1 illustrates the price evolution of all currencies considered. In these plots, we can clearly observe the strong growth that the 
cryptocurrency price experienced during the first part of 2017 as well as the collapse of these currencies in the following months. Among the 
arguments that explain the fall of the market in 2018 is the lack of regulation and the frequent and allegations of fraud attacks on cryp-
tocurrency platforms.5 Fig. 1 also shows the effect of the health crisis caused by COVID-19 in March 2020. This crisis caused all crypto-
currencies to crash, producing losses of more than 25%. This fact can be observed clearly in Fig. 2, where we report the evolution returns. 

Despite the health crisis and the lasting subsequent economic downturn, the value of some cryptocurrencies, such as Bitcoin, 
surprisingly recovered prior to March 2020. Finally, we observe that the range of fluctuation of Bitcoin is lower than that of the rest of 
the cryptocurrencies (see Fig. 2). 

Table 1 provides the correlations of the daily returns for all currencies considered. Overall, the correlation detected between 
cryptocurrencies is very high, reducing the possibility of obtaining benefits derived from their diversification. 

Further insights into the distributional properties of cryptocurrencies can be obtained by studying the basic descriptive statistics of 
the daily returns shown in Table 2. For all currencies considered, the mean return is positive, ranging from 0.1% to 0.3%. The standard 
deviation of the cryptocurrencies is also different, indicating that the cryptocurrencies do not show the same level of risk. Bitcoin, for 
example, is the safest currency, followed by Litecoin and Dash. Stellar has the largest dispersion of all cryptocurrencies. 

The skewness statistic is positive for all currencies except for Bitcoin, which is negative. In all cases, the excess kurtosis statistic is 
very large, implying that the distributions of those returns have much thicker tails than the normal distribution. According to the 
Jarque-Bera test, we reject the hypothesis of normality in all cases. 

The QQ plots displayed in Fig. 3 corroborate this result. According to these charts, we can say that the normal distribution does not 
fit well, neither in the centre nor in the tails of the probability distribution of the cryptocurrencies. 

To study the autocorrelation of the daily returns, we use the Lung-Box test for different lags (see Table 3). This test is applied over 
the daily return and the squared return. Only in the case of Dash returns can the hypothesis of no autocorrelation not be rejected for any 
lags. This result is consistent with the efficient market hypothesis. For Bitcoin and Litecoin returns, the no autocorrelation hypothesis 
cannot be rejected for (1) and (5) lags, indicating some degree of efficiency. The rest of the cryptocurrencies, namely, Monero, Ripple 
and Stellar, seem to be negotiated in inefficient markets. 

Table 3 also reports the Lung-Box test for the squared return. The hypothesis of no autocorrelation is rejected in all cases, a fact 
consistent with ARCH effects. This result justifies the appropriateness of using a GARCH framework to model conditional volatility. 

This preliminary statistical study reveals the following facts about cryptocurrency returns: high volatility, skewed distributions, 
high kurtosis and positive autocorrelation for square returns. Concerning the autocorrelation of the returns, the results vary depending 
on the cryptocurrency analysed. Such stylized facts are similar to those obtained by other authors, such as Gangwal and Longin (2018) 
and Lopez-Martin et al. (2021). 

Table 1 
Daily correlation, January 1, 2015 to September 30, 2020.   

Bitcoin Monero Ripple Litecoin Stellar Dash 

Bitcoin 1.00 0.57 0.39 0.64 0.42 0.54 
Monero 0.57 1.00 0.35 0.47 0.41 0.50 
Ripple 0.39 0.35 1.00 0.41 0.58 0.32 
Litecoin 0.64 0.47 0.41 1.00 0.42 0.47 
Stellar 0.42 0.41 0.58 0.42 1.00 0.35 
Dash 0.54 0.50 0.32 0.47 0.35 1.00  

Table 2 
Daily log return statistics, January 1, 2015 to September 30, 2020.   

Mean Median Std. Dev. Skewness Kurtosis Max. Min. Jarque-Bera 

Bitcoin 0.002 0.002 0.039 − 0.996 13.644 0.225 − 0.465 16665* 
Monero 0.003 0.000 0.064 0.589 8.979 0.585 − 0.494 7190* 
Ripple 0.001 − 0.003 0.064 2.915 47.067 1.027 − 0.616 197117* 
Litecoin 0.001 0.000 0.057 0.400 14.203 0.510 − 0.514 17739* 
Stellar 0.001 − 0.002 0.071 1.956 19.195 0.723 − 0.410 33636* 
Dash 0.002 − 0.001 0.058 0.650 8.259 0.438 − 0.459 6128* 

The Jarque-Bera statistic is distributed as the Chi2 with two degrees of freedom. (*) denotes significance at the 1% level. 

5 At the end of 2017 and the beginning of 2018, the European Union and US regulators warned of the risks involved in operating with these digital 
currencies as well as the fraudulent use that can be given to them, to launder money or finance terrorist activities, which resulted in an impact on the 
quote value of Bitcoin and other cryptocurrencies, although cryptocurrencies often operate outside the scope of national regulations (Auer & 
Claessens, 2018; Brühl, 2017). 
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3.2. Empirical results 

3.2.1. Modelling conditional variance 
In this section, we estimate the conditional standard deviation of the cryptocurrencies. To estimate the volatility of these cur-

rencies, we use two GARCH family models. The first model considered is GARCH (1,1), whose expression is as follows: 

σ2
t = ω+αε2

t− 1 + βσ2
t− 1 (13)  

where ω, α, β ≥ 0. The GARCH model captures some of the characteristics observed in financial returns such volatility clustering 
(Mandelbrot, 1963). However, this model does not take the leverage effect (Black, 1976) into account. This effect is related to the 
possibility that volatility responds asymmetrically to surprises of different signs. To study this effect, we also estimate the EGARCH(1, 
1) model, whose expression is as follows: 

log σ2
t =ω+ β log σ2

t− 1 + θ
[⃒
⃒
⃒
⃒
εt− 1

σt− 1

⃒
⃒
⃒
⃒ − E(|εt|)

]

+ γ
εt− 1

σt− 1
(14) 

In this model, the parameter γ captures the leverage effect. If γ > 0, the positive surprises have more impact on volatility than 

Fig. 3. Empirical percentile of the standardized returns against the percentile of the standard normal distribution.  
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negative surprises; the reverse is true for a γ < 0. Overall, for stock returns, the γ parameter is negative, indicating that negative 
surprises have a higher impact on volatility than positive surprises. However, in the case of fixed income returns, the γ parameter is 
usually positive, as in this case, a negative surprise (εt− 1 < 0) is good news for investors. 

According to the evidence shown in the previous section, the volatility of the cryptocurrencies has been estimated assuming a 
Student-t distribution that has a heavier tail than the normal distribution. 

Table 4 reports the estimation of parameters for two considered models of volatility and the test ARCH for autoregressive conditional 
heteroskedasticity at 5 and 7 lags. According to the ARCH test, both models adequately capture the volatility of the data. On the other 
hand, the parameters of the GARCH model are all positive and statistically significant. The persistence degree, given by α+ β, ranges 
depending on the cryptocurrency between 0.75 (Stellar) and 0.98 (Dash). For the EGARCH model, almost all parameters are statistically 
significant, including the γ parameter, which captures the leverage effect. Note also that the sign of this parameter is positive, indicating 
the existence of an inverse leverage effect. This means that in the case of cryptocurrencies, volatility tends to be higher after positive shocks. 

The empirical literature dedicated to analysing the leverage effect in cryptocurrencies is very limited, and most papers are related to 
Bitcoin. Many controversies arise regarding this currency. Some authors find an inverse leverage effect (see Bouri, Azzi, & Dyhrberg, 
2017; García-Jorcano & Benito, 2020; Klein et al., 2018), while other studies do not detect a significant leverage effect (Dyhrberg, 2016; 
Katsiampa, 2017; Takaishi, 2018; Tiwari et al. 2019). 

In the case of Bitcoin, García-Jorcano and Benito (2020) argue that the inverse leverage effect could be explained by the fact that, in this 
period, Bitcoin behaved as a safe-haven asset, whose demand increases when uncertainty increases in traditional markets. If investors 
fleeing the risk of traditional markets seek Bitcoin as a safe-haven asset, then the price of Bitcoin will grow, thus transferring the volatility 
of the equity markets to the Bitcoin market. This argument was initially given by Baur (2012) to justify that gold volatility increases with 

Table 3 
Autocorrelation test for daily returns and squared returns.   

Returns Squared Returns 

Lung-Box (1) Lung-Box (5) Lung-Box (10) Lung-Box (5) Lung-Box (10) Lung-Box (15) 

Bitcoin 1.28 2.05 19.66 36.94 58.35 87.46 
(0.25) (0.84) (0.03) (0.00) (0.00) (0.00) 

Monero 4.12 17.15 43.81 45.41 101.32 206.18 
(0.04) (0.00) (0.00) (0.00) (0.00) (0.00) 

Ripple 0.34 34.46 55.84 175.53 269.01 307.13 
(0.55) (0.00) (0.00) (0.00) (0.00) (0.00) 

Litecoin 0.18 6.92 28.79 36.67 79.78 109.08 
(0.67) (0.22) (0.00) (0.00) (0.00) (0.00) 

Stellar 5.43 14.60 27.63 333.64 543.98 555.66 
(0.02) (0.01) (0.00) (0.00) (0.00) (0.00) 

Dash 0.46 9.67 16.03 52.43 83.38 126.39 
(0.49) (0.08) (0.10) (0.00) (0.00) (0.00) 

Note: In parentheses, we show the p-value of the Lung-Box test. 

Table 4 
Parameter estimations of the volatility models.    

ω  α  β  γ  v  Log-L AIC ARCH (5) ARCH (7) Sum Square Error 

Bitcoin E − 0.06 0.05* 0.98** 0.31** 2.94** 4432 ¡4.215 0.54 0.74 0.091 
G 0.00** 0.02* 0.86**  2.41** 4416 − 4.203 0.99 9.99 0.113 

Monero E − 0.30** 0.06** 0.94** 0.31** 3.54** 3171 ¡3.015 0.25 0.37 0.386 
G 0.00** 0.01** 0.79**  3.52** 3166 − 3.012 0.99 9.99 0.400 

Ripple E − 0.59** − 0.01 0.88** 0.75** 2.28** 3804 − 3.620 0.95 0.98 9.306 
G 0.00 0.26* 0.67**  2.28** 3805 ¡3.620 0.99 9.99 4.255 

Litecoin E − 0.06** 0.02 0.98** 0.32** 2.34** 3786 ¡3.601 0.94 0.98 0.555 
G 0.00** 0.03* 0.87**  2.24** 3772 − 3.590 0.99 1.00 0.766 

Stellar E − 0.39** 0.04 0.92** 0.39** 3.08** 3243 − 3.085 0.92 0.95 1.182 
G 0.00** 0.02** 0.73**  3.04** 3244 ¡3.086 0.99 9.99 1.074 

Dash E − 0.35** − 0.01 0.93** 0.35** 3.19** 3459 ¡3.283 0.95 0.96 0.240 
G 0.00** 0.22** 0.76**  3.14** 3445 − 3.278 0.99 9.99 0.254 

Note: (E) EGARCH model; (G) GARCH model; γ parameter: captures the leverage effect; v: degrees of freedom; Log-L: log likelihood; AIC: Akaike 

information; Sum of squared errors: 
∑T

i=1
(ε2

t − σ̂2
t )

2 
where T is the size of the sample; εt are the innovations of the returns; and ̂σ2

t is the estimation of the 

conditional variance. ARCH(p) is the test for autoregressive conditional heteroskedasticity by Engle (1982) at the p lag. For each currency, we remark 
in bold the highest Log-L, the lowest AIC and the minimum sum of squared errors. 
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positive surprises. These authors use this same argument to justify what is observed in the Bitcoin market. The idea is not farfetched since 
in many articles, the role of Bitcoin as a risk-hedging asset has been proposed, playing a role similar to that played by gold. 

Table 4 also reports the log likelihood (Log-L) and the Akaike information criterion (AIC) for both volatility models.6 According to 
these criteria, the model that provides the best fit is the EGARCH model. Only in the case of Ripple and Stellar does the GARCH model 
appear to provide a better fitting. 

Finally, to determine which model generates the best volatility forecasts, we compare ε2
t with the volatility obtained from both 

models (σ̂2
t ). The sum of the squared errors is reported in the last column of Table 4. For all cryptocurrencies, except Ripple and Stellar, 

the EGARCH model provides the best forecasts. 
According to the aforementioned results, we use an EGARCH(1,1) model to model the volatility of Bitcoin, Monero, Litecoin and 

Dash. For Ripple and Stellar, we use a GARCH(1,1) model. 
Fig. 4 illustrates the conditional standard deviation of all currencies considered. The first that attracts our attention is the low 

volatility of Bitcoin compared to other currencies. Second, joint volatility peaks are also observed, which is consistent with the high 
correlation detected (Table 1). Finally, it should be noted that around March 2020, all markets exhibited a significant increase in 
volatility, coinciding with the global health crisis. 

Fig. 4. Conditional standard deviation. For the estimation of the conditional standard deviation, we use an EGARCH model for Bitcoin, Monero, 
Litecoin and Dash and a GARCH model for Ripple and Stellar. 

6 Akaike (1974). 
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3.2.2. Fitting distributions 
To capture the nonnormal characteristics observed in cryptocurrency data, we fit five distributions: Student-t distribution, which is 

symmetric, and four skewed distributions, namely, SGT, SGED, SSD and HIS. In addition, we include the normal distribution for 
comparative reasons. 

The parameters of the distributions were estimated by the maximum likelihood method. Table 5 presents these estimates and the 
standard errors in brackets. As we expected, the unconditional mean is close to zero for all cryptocurrencies. Only for Bitcoin and 
Monero is the mean statistically significant. The standard deviation for all currencies is statistically significant. These estimates do not 
differ much from the data displayed in Table 2. 

For all cryptocurrencies except Bitcoin and Litecoin, the skewness parameter is positive and statistically significant at the 5% level, 
which means that the distributions of these returns are skewed to the right. On the other hand, parameters κ and η, which control the 
peakness of the distribution around the mode and the tails of the distribution, respectively, are significant at the 5% level for all 
currencies considered. These results corroborate that the cryptocurrencies do not follow a normal distribution, display a higher degree 
of peakness and show heavier tails than the normal distribution. This result can be observed clearly in Fig. 5, where we display the 
histogram of the Bitcoin with the superimposed normal density function, the Student-t density function and the density functions of the 
SGT, SGED, SSD and IHS. We observe that the normal density function does not fit the histogram of Bitcoin well, neither in the centre 
nor in the tail. Only for very high quantiles does the fitting appear good. Unlike the normal distribution, the Student-t and skewed 
distributions appear to provide a good fit. The same is observed for the rest of the cryptocurrencies considered (see the Appendix). 

Regarding Fig. 5 and the figures reported in the Appendix, we observe that the goodness of fit in the left tail provided by the skewed 
distribution is similar to that provided by Student-t, especially in high quantiles. However, in the right tail, we observe some differ-
ences. In this case, the density of the skewed distributions is above that of Student-t, although for very high quantiles, these functions 

Table 5 
Maximum likelihood estimates.    

μ  σ λ η κ 

Bitcoin SGT 0.002 (0.001)* 
0.002 (0.000)* 
0.002 (0.001)* 
0.002 (0.000)* 
0.002 (0.000)* 
0.002 (0.001)* 

0.039 (0.002)* 
0.039 (0.001)* 
0.353 (0.009)* 
0.048 (0.001)* 
0.629 (0.016)* 
0.039 (0.001)* 

0.003 (0.011) 
0.000 (0.040) 
0.002 (0.014) 
− 0.001 (0.021) 

18.112 (8.763)* 
2.006 (0.000)* 
2.002 (0.000)* 

0.774 (0.025)* 
0.711 (0.022)* 
0.827 (0.013)*  

SGED  
SSD  
IHS  
Student-t  
Normal 

Monero SGT 0.003 (0.001)* 
0.003 (0.000)* 
0.003 (0.001)* 
0.003 (0.001)* 
0.001 (0.001) * 
0.003 (0.001)* 

0.065 (0.002)* 
0.062 (0.001)* 
0.072 (0.002)* 
0.066 (0.001)* 
0.072 (0.002)* 
0.064 (0.001)* 

0.060 (0.021)* 
0.083 (0.002)* 
0.051 (0.021)* 
0.078 (0.031)* 

4.287 (0.266)* 1.468 (0.057)*  
SGED  0.946 (0.032)*  
SSD 2.831 (0.065)*   
IHS  1.104 (0.030)*  
Student-t 2.835 (0.066)*   
Normal   

Ripple SGT 0.000 (0.001) 0.068 (0.002)* 0.065 (0.010) * 
0.068 (0.014)* 
0.050 (0.015)* 
0.093 (0.020)* 

2.861 (0.067)* 
2.015 (0.001)* 
2.001 (0.105)* 

1.134 (0.034)* 
0.642 (0.023)* 
0.776 (0.010)*  

SGED 0.000 (0.001) 0.056 (0.003)*  
SSD − 0.001 (0.001) 0.284 (0.007)*  
IHS 0.000 (0.001) 0.070 (0.002)*  
Student-t − 0.002 (0.001) * 1.393 (0.036)*  
Normal 0.001 (0.001) 0.064 (0.001)* 

Litecoin SGT 0.000 (0.001) 
0.000 (0.007) 
- 0.001 (0.001) 
0.001 (0.001) 
0.000 (0.001) 
0.001 (0.001) 

0.058 (0.002)* 
0.056 (0.006)* 
0.180 (0.005)* 
0.068 (0.002)* 
1.146 (0.029)* 
0.057 (0.001)* 

0.003 (0.012) 
0.003 (0.014) 
− 0.005 (0.014) 
0.060 (0.020) * 

6.222 (1.005)* 
2.041 (0.002)* 
2.001 (0.001)* 

0.855 (0.027)* 
0.659 (0.023)* 
0.801 (0.012)*  

SGED  
SSD  
IHS  
Student-t  
Normal 

Dash SGT 0.002 (0.002) 
0.002 (0.002) 
0.002 (0.001)* 
0.002 (0.001)* 
- 0.001 (0.001) 
0.002 (0.001) * 

0.059 (0.002)* 
0.056 (0.002)* 
0.074 (0.002)* 
0.061 (0.001)* 
0.074 (0.002)* 
0.058 (0.001)* 

0.079 (0.018)* 
0.092 (0.015)* 
0.075 (0.019)* 
0.121 (0.028)* 

4.046 (0.221)* 
2.467 (0.030)* 
2.460 (0.030)* 

1.337 (0.049)* 
0.863 (0.061)* 
1.009 (0.023)*  

SGED  
SSD  
IHS  
Student-t  
Normal 

Stellar SGT 0.000 (0.001) 
0.000 (0.000) 
0.000 (0.001) 
0.001 (0.001) 
− 0.001 (0.001) 
0.002 (0.001)* 

0.075 (0.002)* 
0.065 (0.003)* 
0.107 (0.003)* 
0.072 (0.002)* 
0.074 (0.002)* 
0.058 (0.001)* 

0.070 (0.017)* 
0.030 (0.007)* 
0.069 (0.018)* 
0.118 (0.027)* 

2.968 (0.080)* 
2.234 (0.013)* 
2.460 (0.030)* 

1.489 (0.054)* 
0.798 (0.034)* 
0.946 (0.018)*  

SGED  
SSD  
IHS  
Student-t  
Normal 

Note: Parameter estimates of the SGT, SGED, SSD, HIS, Student-t and normal distributions. In brackets are standard errors. The dataset covers January 
1, 2015 to September 30, 2020. μ, σ, λ and η are the estimated mean, standard deviation, skewness parameter, and tail-thickness parameter, 
respectively, and к represents the peakness parameter. In the case of Student-t, η represents the degrees of freedom. An (*) denotes significance at the 
5% level. 

C. López-Martín et al.                                                                                                                                                                                                 



InternationalReview
ofEconomicsandFinance79(2022)387–407

398

Fig. 5. Histogram of the Bitcoin with superimposed normal (red) and Student-t (black) distributions and skewed distributions (blue): SGT, SGED, SSD and IHS. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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tend to converge. This result may have implications in measuring market risk associated with long and short positions. It seems clear 
that in the case of short positions, the use of the skewed distribution is more appropriate. 

To formally test the absence of normality, we used the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Massey, 1951; Smirnov, 
1939) and Chi2 test. These tests analyse whether the asset return empirical distribution follows a theoretical distribution. For all 
considered currencies, the normality hypothesis is always rejected (see Table 6). In addition, as the normal distribution is nested within 
the SGT, SGED and SSD distributions, we use the log-likelihood ratio to test the null hypothesis of normality against that of SGT, SGED 
or SSD. Again, for all the cryptocurrencies considered, this statistic is quite large and statistically significant at the 1% level, providing 
evidence against the normality hypothesis (see Table 6).7 

At this point, we are interested in determining the best distribution for fitting the currency return empirical distribution. As the SGT 

Table 6 
Goodness of fit test.   

Log-L LRNORMAL LRSGT AIC Chi2 KS 

Bitcoin 
SGT 4249.78 877.02** – − 8489.6 0.03 0.19 
SGED 4249.40 876.26** 0.76 ¡8490.8 0.05 0.19 
SSD 4208.95 795.36** 81.66** − 8409.9 0.00 0.01 
IHS 4227.87 – – − 8447.7 0.00 0.07 
Student 4208.98 – 81.60** − 8412.0 0.00 0.01 
Normal 3811.27  – − 7618.5 0.00 0.00 

Monero 

SGT 3047.31 524.20** – − 6084.6 0.33 0.63 
SGED 3035.92 501.42** 22.78** − 6063.8 0.19 0.07 
SSD 3042.89 515.36** 8.84 − 6077.8 0.01 0.55 
IHS 3047.02 – – ¡6086.0 0.06 0.71 
Student 3041.20 – 12.22** − 6076.4 0.02 0.43 
Normal 2785.21  – − 5566.4 0.00 0.00 

Ripple 

SGT 3634.5 1675.46** – ¡7258.9 0.10 0.57 
SGED 3615.7 1637.96** 37.50** − 7223.4 0.00 0.13 
SSD 3615.2 1636.88** 38.58** − 7222.4 0.01 0.02 
IHS 3631.9 – – − 7255.7 0.02 0.50 
Student 3613.9 – 41.08** − 7221.9 0.00 0.01 
Normal 2796.7  – − 5589.5 0.00 0.00 

Litecoin 

SGT 3582.1 1108.20** – − 7154.2 0.04 0.02 
SGED 3581.2 1106.44** 1.76 ¡7154.4 0.02 0.01 
SSD 3546.7 1037.44** 70.76** − 7085.4 0.01 0.01 
IHS 3566.9 – – − 7125.7 0.03 0.16 
Student 3547.6 – 68.92** − 7089.2 0.03 0.02 
Normal 3028.0  – − 6052.0 0.00 0.00 

Dash 

SGT 3332.6 663.64** – ¡6655.2 0.26 0.98 
SGED 3322.6 643.60** 20.04** − 6637.1 0.00 0.33 
SSD 3325.7 649.94** 13.70** − 6643.5 0.09 0.42 
IHS 3331.2 – – − 6654.4 0.72 0.66 
Student 3321.9 – 21.40** − 6637.8 0.05 0.37 
Normal 3000.8  – − 5997.5 0.00 0.00 

Stellar 

SGT 3074.7 996.38** – − 6139.3 0.26 0.82 
SGED 3049.3 945.57** 50.80** − 6090.5 0.00 0.01 
SSD 3070.9 988.92** 7.46 − 6133.9 0.09 0.74 
IHS 3075.7 – – ¡6143.5 0.72 0.92 
Student 3067.7 – 13.84** − 6129.5 1.00 0.60 
Normal 2576.5  – − 5148.9 0.00 0.00 

Note: Log-L is the maximum likelihood value. LRNormal is the LR statistic from testing the null hypothesis that the daily returns are distributed as 
normal against SGT, SGED or SSD. LRSGT is the LR statistic from testing the null hypothesis against the alternative distribution, the SGT. Columns 6 
and 7 show the p-value of the Chi2 test (column 6) and p-value of the Kolmogorov-Smirnov test (column 7). AIC is the Akaike Information Criterion. 
An *(**) denotes significance at the 5% (1%) level. 

7 In this case, the null hypothesis stablishes that the returns follow a normal distribution. If this hypothesis is rejected, we find evidence in favour 
of skewed distributions such as the SGT, SGED and SSD. 
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nets all the distributions considered in this paper (except IHS), we use the likelihood ratio test to evaluate which distribution is best in 
fitting the data. In the case of Bitcoin, the likelihood ratio test indicates rejection of the SSD, and Student-t in favour of the SGT.8 

However, in a comparison between SGED and SGT, the first distribution cannot be rejected. In addition, the Akaike information 
criterion (AIC) points to SGED as the best distribution in fitting Bitcoins returns. Note that this distribution is not rejected by the Chi2 
and KS tests. Similar results are found for Litecoin, although in the case of this cryptocurrency, the SGED does not pass the Chi2 and KS 
tests. 

For Monero and Stellar, the likelihood ratio test indicates rejection of the SGED, and Student-t in favour of the SGT. However, the 
SSD distribution cannot be rejected. For both cryptocurrencies, the Akaike information criterion (AIC) points to the IHS as the best 
distribution in fitting returns. Of these three distributions (SGT, SSD and IHS), only the IHS and SGT passed the KS and Chi2 tests. 
Therefore, we consider these two distributions to be the best in fitting Monero and Stellar returns. 

For Ripple and Dash, the likelihood ratio test shows rejection of the SGED, SSD and Student-t in favour of the SGT. This result is 

Table 7 
Accuracy tests for VaR estimations at 1% probability.   

Bitcoin Monero Ripple Litecoin Dash Stellar 

Long position 

SGT 
% exceptions 0.94 1.25 1.25 1.10 1.56 1.41 
Number of tests that pass H0  3 4 4 3 4 3 

SGED 
% exceptions 0.31 1.41 1.25 0.00 1.56 1.25 
Number of tests that pass H0  4 4 4 0 4 3 

SSD 
% exceptions 0.94 1.41 1.56 0.63 1.88 1.56 
Number of tests that pass H0  3 4 4 4 4 4 

HIS 
% exceptions 0.47 0.78 1.25 0.47 1.41 1.41 
Number of tests that pass H0  4 3 4 4 4 3 

Student-t 
% exceptions 1.10 0.78 1.25 0.94 1.41 1.41 
Number of tests that pass H0  3 3 4 3 4 3 

Normal 
% exceptions 0.63 1.41 1.56 0.31 2.03 1.56 
Number of tests that pass H0  4 4 4 4 4 4 

Short position 

SGT 
% exceptions 1.25 0.31 1.09 0.94 0.94 0.63 
Number of tests that pass H0  4 4 3 4 3 3 

SGED 
% exceptions 0.63 1.09 1.09 0.31 0.78 0.63 
Number of tests that pass H0  4 4 3 4 3 3 

SSD 
% exceptions 1.09 0.16 1.09 0.94 0.78 0.63 
Number of tests that pass H0  4 4 3 4 3 3 

HIS 
% exceptions 0.63 0.16 1.09 0.31 0.78 0.63 
Number of tests that pass H0  4 4 3 4 3 3 

Student-t 
% exceptions 1.25 0.78 1.71 0.94 1.25 0.78 
Number of tests that pass H0  4 4 3 4 4 3 

Normal       
% exceptions 1.10 0.93 2.02 0.78 1.41 1.25 
Number of tests that pass H0  4 4 4 4 4 4 

Note: The maximum losses at 1% probability in a long and short positions are given by the VaR(1%) and VaR(99%), respectively. 

8 In this case, the null hypothesis establishes that the returns follow an SSD distribution, and the alternative hypothesis is that the returns follow 
an SGT distribution. 
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consistent with the Akaike information criterion, which in both cases points to the SGT as the best distribution in fitting these returns. It 
is worth noting that for these cryptocurrencies, the SGT distribution passes both the Chi2 and KS tests. 

In summary, for all currencies considered, the normality hypothesis is always rejected; second, there is no evidence that the Student- 
t distribution fits the cryptocurrency data better than skewed distributions. In contrast, the likelihood ratio test indicates that the 
Student-t distribution is outperformed by the SGT distribution; and third, there is no one skewed distribution that fits the crypto-
currency data systematically better than the others. Thus, for Bitcoin and Litecoin, the best distribution is SGED, while for Ripple and 
Dash, the best distribution is SGT. For Monero and Stellar, the SGT and IHS distributions appear to be the best. 

4. Implications for portfolio management 

Considering the empirical findings discussed in Section 3, we would expect that in the case of cryptocurrencies, skewed distri-
butions provide better market risk estimations than those provided by the normal and Student-t distributions. 

To corroborate this fact, we compare these distributions in terms of their ability to forecast the market risk of the considered 
cryptocurrencies. For this purpose, we use the VaR measure, which is estimated using the parametric method described in Section 2. 

Through the VaR measure, we quantified the losses associated with long and short positions for two confidence levels, 90% and 

Table 8 
Accuracy tests for VaR estimations at 10% probability.   

Bitcoin Monero Ripple Litecoin Dash Stellar 

Long position 

SGT 
% exceptions 10.63 8.91 7.67 11.89 8.76 7.36 
Number of tests that pass H0  4 4 4 4 4 3 

SGED 
% exceptions 6.72 7.03 6.57 5.48 7.82 6.10 
Number of tests that pass H0  4 4 3 3 4 2 

SSD 
% exceptions 11.74 9.22 8.45 11.74 8.76 7.82 
Number of tests that pass H0  4 4 4 4 4 4 

HIS 
% exceptions 9.86 8.44 7.67 8.92 8.29 7.04 
Number of tests that pass H0  4 4 4 4 4 4 

Student-t       
% exceptions 11.09 8.44 7.67 11.58 8.76 7.36 
Number of tests that pass H0  4 4 4 4 4 4 

Normal 
% exceptions 3.13 5.31 4.07 2.82 6.10 4.85 
Number of tests that pass H0  2 2 2 2 1 2 

Short position 

SGT 
% exceptions 12.50 8.45 8.92 12.19 9.08 6.57 
Number of tests that pass H0  4 4 4 4 3 4 

SGED 
% exceptions 7.03 6.73 7.51 5.94 7.82 5.16 
Number of tests that pass H0  4 4 4 2 4 2 

SSD 
% exceptions 10.16 8.45 9.70 12.34 9.08 6.57 
Number of tests that pass H0  3 4 4 4 3 3 

HIS 
% exceptions 10.78 7.98 9.55 10.00 9.08 6.42 
Number of tests that pass H0  4 4 4 4 4 4 

Student-t 
% exceptions 12.50 9.23 10.17 12.50 9.23 7.36 
Number of tests that pass H0  4 4 4 4 4 4 

Normal 
% exceptions 3.75 5.63 5.32 2.66 6.10 4.07 
Number of tests that pass H0  2 2 2 2 1 2 

Note: The maximum losses at 10% probability in a long and short positions are given by the VaR(10%) and VaR(90%) respectively. 

C. López-Martín et al.                                                                                                                                                                                                 



International Review of Economics and Finance 79 (2022) 387–407

402

99%. The sample, which runs from January 1, 2015 to September 30, 2020, is divided into a learning sample from January 1, 2015 to 
December 31, 2018 and a forecast sample from January 1, 2019 to the end of September 2020. 

To evaluate the performance of the distributions, we use a two-stage procedure. First, we evaluate the accuracy of the VaR esti-
mations for which we use several standard tests, and then, for distributions that pass the majority of the accuracy tests, we calculate 
Lopez’s loss function. The best distribution is the one that provides the lowest losses. 

Tables 7 and 8 show the percentage of exceptions and the number of accuracy tests that do not reject the null hypothesis, indicating 
that VaR estimates are accurate. For all currencies considered, all distributions, including the normal distribution, provide accurate 
VaR estimates in both long and short positions at the 99% confidence level (see Table 7). However, at a lower confidence level of 90%, 
a normal distribution fails to provide accurate VaR estimates. The rest of the distributions perform well in both long and short positions 
(Table 8). 

Although all distributions provide accurate VaR estimates—except the normal distribution at a low confidence level—not all 
distributions offer the same results in terms of risk quantification. To quantify the magnitude of the losses in the cases in which the 
returns fall below VaR, we use Lopez’s loss function (Eq. (9)). Table 9 shows these losses. 

At the 90% confidence level, the SGED distribution obtains the best results by providing the lowest losses for all currencies in both 
long and short positions. For a 99% confidence level, in a long position, the SGED distribution provides the lowest losses in the majority 
of the cases, while in a short position, it is the SSD distribution in conjunction with SGED that provides the best results. 

5. Conclusion 

The paper contributes to the existing literature through a thorough examination of the statistical properties of cryptocurrency 
returns, in particular, by analysing which statistical distribution better fits this type of asset. Regarding this last issue, the literature is 
quite scarce. For this study, we used data from six cryptocurrencies: Bitcoin Monero, Ripple, Litecoin, Dash and Stellar. These cryp-
tocurrencies account for just over 80% of the market capitalization according to the CoinMarketCap data. 

The preliminary statistical study allows us to draw the following conclusions about cryptocurrency returns: high volatility, inverse 
leverage effect, skewed distributions, high kurtosis and positive autocorrelation in returns and squared returns. 

To capture the nonnormal characteristics observed in cryptocurrency data, we tested the goodness of fit of a large set of 

Table 9 
Loss function.   

Bitcoin Monero Ripple Litecoin Dash Stellar 

1% probability 

Long position 

SGT 0.480 0.451 0.458 0.528 0.558 0.563 
SGED 0.275 0.652 0.436 – 0.492 0.504 
SSD 0.411 0.513 0.574 0.319 0.640 0.640 
IHS 0.341 0.424 0.464 0.135 0.520 0.529 
Student 0.488 0.407 0.470 0.474 0.494 0.508 
Normal 0.324 0.520 0.561 0.047 0.653 0.653 

Short position 

SGT 0.285 0.029 0.205 0.344 0.130 0.085 
SGED 0.199 0.180 0.186 0.133 0.114 0.070 
SSD 0.258 0.020 0.186 0.319 0.069 0.028 
IHS 0.218 0.022 0.203 0.179 0.096 0.054 
Student 0.329 0.053 0.305 0.408 0.208 0.152 
Normal 0.302 0.129 0.403 0.315 0.365 0.291 

10% probability 
Long position 

SGT 1.916 1.946 1.583 2.758 2.279 1.835 
SGED 1.311 1.699 1.466 1.617 2.020 – 
SSD 1.947 1.990 1.706 2.783 2.327 1.890 
IHS 1.754 1.884 1.642 2.287 2.225 1.791 
Student 1.960 1.900 1.652 2.716 2.260 1.825 
Normal – – – – – – 

Short position 

SGT 1.878 1.358 1.515 2.807 2.026 1.498 
SGED 1.078 1.038 1.348 1.491 1.703 – 
SSD 1.622 1.352 1.646 2.798 2.023 1.501 
IHS 1.608 1.312 1.622 2.249 1.972 1.459 
Student 1.932 1.430 1.713 2.849 2.103 1.571 
Normal – – – – – – 

Note: (–) denotes the case in which two or more accurate tests have been rejected. 
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distributions: symmetric and skewed distributions. The distributions included in the comparison are the normal distribution, the 
Student-t distribution (symmetric), the skewed Student-t distribution (SSD) of Hansen (1994), the skewed generalized t distribution 
(SGT) of Theodossiou (1998), the skewed generalized error distribution (SGED) of Theodossiou (2001) and the inverse hyperbolic sign 
(IHS) of Johnson (1949). 

The results indicate that the skewed distributions outperform the normal and Student-t distributions in fitting cryptocurrency data, 
although there is no one skewed distribution that systematically better fits the data. Thus, for Bitcoin and Litecoin, the best distribution 
is SGED, while for Ripple and Dash, the best distribution is SGT. For Monero and Stellar, the SGT and IHS distributions appear to be the 
best. 

Concerning the aforementioned findings, we would expect that the skewed distributions provide better market risk estimations 
than those provided by the normal and Student-t distributions. To corroborate this fact, we compare these distributions in terms of 
their ability to forecast the market risk of the cryptocurrencies. In line with the results obtained in the statistical analysis, we find that 
the skewed distributions provide better risk estimates than the normal and Student-t distributions, both in long and short positions, 
with the SGED distribution providing better results. 
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