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Abstract
The increasing complexity of stochastic models used to describe the behavior of 
asset returns along with the practical difficulty of defining suitable hedging strate-
gies are relevant factors that compromise the soundness and quality of risk meas-
urement models. In this paper we define the risk model as the mispricing a conse-
quence of using an inadequate model to describe asset behavior and we develop a 
least-squares Monte Carlo methodology to estimate market and model risk simul-
taneously. The results show that at different confidence levels and time horizons the 
proposed methodology to estimate the market and model risks has a greater joint 
explanatory power than the isolated estimate of market risk.

Keywords  Model risk · Simulation model · Stochastic process · Monte Carlo · 
Least-squares

JEL Classification  C15 · C35 · C51 · C52

Introduction

Basel (2009a) is a directive requiring financial institutions to quantify model risk 
taking into account two risks: the risk associated with a potentially incorrect valu-
ation and the risk associated with using unobservable calibration parameters. Basel 
(2009b) are recommendations on controlling models and operational risk among 
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which they indicate that model validation requires a sensitivity analysis performed 
to assess the impact of variations on model parameters. In practice, model param-
eter calibration is quite approximate and does not always yield meaningful data. The 
financial industry has come to no consensus on the risk model. Hénaff and Martini 
(2011) describes the state of the art of model risk and emphasizes the problem of 
identifying which model is the most appropriate. Hénaff and Martini (2011) argues 
that simulation studies provide the most comprehensive assessment of model risk 
and that we need a methodology to measure model risk considering wrong param-
eters, each model’s probability, and a risk estimate as VaR (Value at Risk). Derman 
(1996) is the first systematic description of model risk:

•	 Inapplicability of model: a mathematical model may not be relevant to describe 
the problem at hand.

•	 Incorrect model: the possibility of using a model that does not accurately 
describe the situation being modeled. This is the most common interpretation of 
model risk.

•	 Correct model/incorrect solutions: these can lead to inconsistent pricing of 
related claims, among others.

•	 Correct model/inappropriate use: related to an inaccurate numerical solution of 
an otherwise correct model (e.g., the risk related to Monte Carlo calculations 
with too few simulations).

•	 Badly approximated solutions: this appears when numerical methods are used to 
solve a model.

•	 Software and hardware errors.
•	 Unstable data: financial data is of notoriously poor quality. Models must be 

robust with respect to errors in input data.

Cont (2006) distinguishes between uncertainty and risk. When a risk manager is 
not able to attribute a precise probability to future outcomes this is called uncer-
tainty. By contrast when we can specify a unique probability measurement of future 
outcomes or ambiguity it is called risk. The econometric models specify a prob-
ability measure pursuant to the historical evolution of market prices, while pricing 
models use a risk neutral probability which relates various instruments’ prices in an 
arbitrage-free manner. If the market is complete, then neutral probability is unique 
and defined by the historical evolution of prices; if the market is incomplete, then 
neutral probability is not unique. In these more realistic cases, we have to select a 
model compatible with market prices of underlying asset and hedging instruments. 
Often, however, the underlying values are not observable (e.g. the market value of 
the assets in the Merton (1974) model), are illiquid (OTC) or depend on a set of 
parameters (stochastic, alpha, beta and rho model, the SABR model).

Cont (2006) points out two ways to measure risk models: worst-case approaches 
and averaging model that incorporates model uncertainty into estimates using Monte 
Carlo algorithms.

Gupta et al. (2010) notes, like Cont (2006), that the calibration may use data for 
only the underlying assets to reduce uncertainty about the real world measurement 
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or it may use the observable prices of traded derivatives to reduce uncertainty about 
the risk-neutral measurement. The use of derivatives, however, has drawbacks:

–	 Illiquidity regarding maturities, strikes and volume, or with different payoffs, 
making it difficult to properly define the hedging strategy.

–	 The market is incomplete.
–	 The sophisticated pricing models and strategies do not match the behavior of the 

underlying assets (see Cont (2006) in example 4.5, and Bakshi et al. (1997) used 
dynamic simulation hedging to find that the most sophisticated model may not be 
the most effective tool for hedging).

–	 Different parameters for several models can provide the same solution (see Cont 
(2006) in example 4.4).

For the vast majority of assets, a price cannot be directly observed and has to be 
inferred from observable prices of benchmark instruments. This is typically the case 
for financial derivatives whose prices are related to various features of their under-
lying assets. This process is known as marking to model (see Rebonato 2003) and 
involves both a mathematical algorithm and subjective aspects, exposing the process 
to a variety of errors. The solution is then bounded but not unique and the question 
is how it is distributed in this interval.

Frey and Sin (2001) points out that, in practice, it may not be possible to deter-
mine a finite upper bound on the volatility process, although if the model satisfies 
the Hadamard means criteria (i.e., for all admissible data a unique solution exists 
that depends continuously on the data) then we call the process of approximating 
an ill-posed problem with a well-posed problem regularization. A common way of 
addressing the potential non-existence of a solution is to replace equation with a 
minimization (least-squares) problem.

In some cases, Lindley (2006) argues that it is as important to be able to meas-
ure the uncertainty of a model parameter as it is to find the model parameter. One 
method of measuring the potential error is precisely to consider the model param-
eters as a random variable, assigning them a probability distribution.

Deryabin (2012) looks at upper and lower bounds on coherent model risk meas-
urements. He defines parsimonious linear bounds for the model calibration uncer-
tainty that depend only on the stochastic dynamics specified by the model and 
its calibration and not on a particular choice of modeling parameters. But this is 
only true for derivatives with liquidity market price and needs bid-ask prices or 
benchmark

Sibbertsen et  al. (2008) reviews the calibration of financial risk models and 
defines model risk as the discrepancy between the implemented data generat-
ing process and the data observed, i.e., the model risk has three levels: selection 
of probability distribution; econometric models (see Carcano 2009) and tests, and 
the estimate of parameters. Boucher et al. (2014) estimates model risk as a biased 
VaR estimate with respect to true VaR but only analyzes it for a known econometric 
DGP (GARCH t-Student); Danielsson et al. (2016) follows this analysis but includes 
more econometric models. Brotcke (2018) uses a logit model to measure the model 
robustness index to control how the risk estimate methodologies behave in different 
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events. Model risk describes the risk that the model used adjust the market data 
incorrectly.

Some studies focus on model uncertainty and model risk but do not calculate 
a capital risk charge as a result of measuring unexpected losses (Hénaff and Mar-
tini 2011; Cohort  et  al. 2013). Only a few papers, however, are concerned with 
determining capital requirements for model risk (Merton 1974; Elices and Gimé-
nez 2014; Glasserman and Xu 2014; Boucher et al. 2014; Breuer and Csiszar 2016; 
Detering and Packham 2016).

Among the different causes of model risk, we study the misspecification of the 
underlying stochastic process and calibration and revision of estimated parame-
ters, in line with the definition of incorrect model risk in Derman (1996) or value 
approach. As Morini (2011) indicates, the risk model is the significant difference 
between mark-to-model value and price market or price approach. However, as Kato 
and Yoshiba (2000) points out, this includes the risk result of the discretization error 
and other approaches. Bignozzi and Tsanakas (2016) studies the impact of param-
eter uncertainty on capital adequacy for a given risk measurement and capital esti-
mate procedure then proposes modified capital estimate procedures based on para-
metric bootstrapping and on predictive distributions. Feng et al. (2021) uses relative 
entropy to measure calibration error and Black-Scholes model risk due to recalibra-
tion. In line with the Bayesian proposal of Sibbertsen et  al. (2008) Bignozzi and 
Tsanakas (2016) and Runaru and Zheng (2017), but using Monte Carlo approaches, 
we calculate the expected risk measure by taking the average of all candidate mod-
els. The main shortcoming of this approach consists of the difficulties to measure the 
probability of each model a priori. We propose a linear possibility by least-squares 
as shown in Frey and Sin (2001). Thus, our contribution consists of providing a 
methodological response to the regulatory requirements on the control of model 
risk; specifically, we propose a simulation algorithm and a least squares estimation 
that allows us to determine the model that best fits the data and, once the parameters 
have been estimated recursively, to estimate both market risk (with the mean value 
of these parameters) and model risk (with extreme values of these parameters).

The rest of the paper is structured as follows. Section II proposes the methodol-
ogy. Section III shows experimental and market data results and Section IV offers 
concluding remarks.

Methodology to measure the model risk

Base Line model risk

Historically, the stochastic processes have been used by several authors (Bachelier 
1990; Osborne 1959; Samuelson 1965) to explain the behavior of the return series 
of financial assets.

In modern finance it is common to use the so-called Geometric Brownian 
Motion (GBM ) to define the behavior of return-on-asset prices. These processes 
are characterized by two components, drift ( � ) and diffusion ( � ). While the first 
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is the trend, the second shows the volatility which follows the trend. Both are 
unknown parameters and cause model risk. If St is the natural logarithm of the 
price at each instant of time t, the behavior of this variable in discrete time is 
given by (1), from applying the Itô Lemma to the process in continuous time:

where Wt is the Wiener process defined in (2).

� is standard cumulative normal distribution and �S,t is a random standard normal 
variable.

We define a stochastic model with constant drift and diffusion as Base Line 
Model in (3).

Our aim is to determine the parameters that define the behavior of these processes 
to find out which is the implicit market model. The financial literature offers two 
approaches: market and equilibrium models. While the former are based on the prin-
ciples that inspired the assessment of contingencies proposed by Black and Scholes 
(1973) and Merton (1974), using self-financing portfolios and free arbitrage oppor-
tunity prices, the latter raises questions about equilibrium price independently of 
market prices. In the first case, the usual way to calibrate the parameters is to solve 
the stochastic partial differential equation for a hedged portfolio that cannot outper-
form the risk-free rate chosen as numerarie. However, as already pointed out, if the 
market is incomplete or shows liquidity problems then we need to use another pro-
cedure. For these cases, we propose a least-squares Monte Carlo methodology in 
line with Avellaneda  et  al. (2000), Longstaff and Schwartz (2001), and Glasser-
man and Xu (2014). Avellaneda  et al. (2000) use a non-uniformly weighted Monte 
Carlo simulations, but since our objective is to determine the model that best fits the 
behavior of the returns of the assets traded in the market and, unlike (Avellaneda  
et al. 2000) we do not assume that both the underlying asset and the derivative are 
traded), our proposal uses an uniformly weighted simulation. And unlike (Glasser-
man and Xu 2014), our objective is not to estimate the risk model as sensitivity to 
changes in the probability distribution, but to identify the process followed by asset 
returns and sensitivity to the parameters that define it. While Glasserman and Xu 
(2014) proposal assumes the ability to generate values (simulate) from any path of 
stochastic processes, we define these simulations as a way to estimate the market 
and model risks simultaneously.

This has two major implications:

•	 The estimate uses a sample of prices and not the whole population. Both Avel-
laneda  et al. (2000) and our estimates show sampling errors (the finite sample 
effect).

(1)ΔSt = (� − 0.5�2)Δt + �ΔWS,t

(2)ΔWS,t ∼ �(0,Δt) ∼ Δt�(�, �) → ΔWS,t =
√
(Δt)�S,t

(3)ΔSt = (� − 0.5�2)Δt + �
√
Δt�S,t
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•	 The random number simulation also experiences the same effect since the 
unknown parameters that cause the original shocks are unobservable.

We define �S,t and �∗
S,t

 as real and simulated standard normal random shocks, respec-
tively. Since the real shock is not observable because we do not know the value of 
model parameters, we use a simulated shock to estimate the model. If Q is percentile 
rank function, then �∗

S,t
= �−1(QS,t) with the first and second sample moments (mean 

and variance) equal to 0 and 1, respectively. According to (3), we express the linear 
relations between return rates and each of these random numbers as (4).

where �(�∗
S,t
) = 0 , �(�∗

S,t
,ΔSt) = ��S ,ΔS = 1 and, et is the error to be minimized 

( min.
∑T

t=1
e2

t
 ). For a return sample of size T and � sample for estimating, the basic 

procedure proposal is, first, to estimate percentile rank of observed return and gener-
ate the corresponding T normal standard random numbers ( �∗

S,t
 ). Secondly, for j = 1 

to T − � , estimate the diffusion and drift parameters in (4) by least squares:

Finally, we define the Value at Risk (VaR1) and Model at Risk (MaR) for an � confi-
dence interval and time horizon Δt in (6):

where PT is the current asset price, �� is the value for the � th percentile on a stand-
ard normal distribution and, �� and �� are the values for � th percentile among the 
estimaties.

Generalized model risk

Under the characteristics of stochastic models, there are different proposals about 
the model components (drift and diffusion) and from these a diversity of models 
arises. We define the following models with their corresponding empirical expres-
sions which we use to estimate the parameters for each model:

(4)

ΔSt = (𝜇 − 0.5𝜎2)Δt + 𝜎
√
Δt𝜖S,t

Δ̂St = a + b𝜖∗
S,t

et = ΔSt − Δ̂St

(5)
𝜎̂j =

b√
Δt

𝜇̂j =
a

Δt
+ 0.5𝜎̂2

j

(6)

PT+Δt = exp(ST )

VaR(Δt,𝛼,𝜎̂,𝜇̂) = {exp[(𝜇̂ − 0.5𝜎̂2)Δt + 𝜎̂
√
Δt𝜖𝛼] − 1}PT

MaR(Δt,𝜎𝛼 ,𝜇𝛼 )
= {exp[(𝜇𝛼 − 0.5𝜎2

𝛼
)Δt + 𝜎𝛼

√
Δt𝜖𝛼] − 1}PT − VaR(Δt,𝛼,𝜎̂,𝜇̂)

1  We may also use other risk measures such as Conditional-VaR or Shortfall
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•	 Model-0. Drift and diffusion are constants as (3) or Base Line Model and, we 
estimate their unkown parameters by (5).

•	 Model-I. Reversion mean and constant diffusion (7). This model is an Ornstein-
Uhlenbeck process for the stochastic variable St = ln Pt . It means that there is a 
reversion force on St pushing towards an equilibrium level ( � ), � is the velocity 
of the reversion and ln 2

�
 is the half-life or the expected time for St to reach the half 

way point to the equilibrium level (a revision of this type of models is Chan et al. 
(1992)). To avoid discretization errors (i.e. using Euler or Milstein approxima-
tions), we use the correct discrete time format for this process for both forms in 
continuous time, i.e., additive and geometric. In (7), we show the exact (valid for 
large Δt ) discrete time expression (see Dixit et al. 1994, p. 76) to simulate and 
the llinear model to estimate unkown parameters: 

 For additive process 𝜇 = ln P̄ , where P̄ is the long-run equilibrium price and the 
estimation of the parameters is: 

 For the geometric process (see Schwartz 1997) �∗ = � −
�2

2�
 so for (8) we need 

only re-estimate the equilibrium level parameter as: 

 It also applies to other cases like in Ho and Lee (1986), where the interes rate 
(r) shows time dependent drift and constant diffusion. In continuous time the 
Ho and Lee (1986) model is: drt = (�t − �rt−1)dt + �dWt = �t + xt , where 
�t is a deterministic component that depends on market forward rates and xt 
is the stochastic component or Ornstein-Uhlenbeck process with null drift as: 
dxt = −�rt−1dt + �dWt . For �0 = r0 and x0 = 0 , we use the same procedure to 
estimate the unkown parameters (see Chan et al. 2015, pp. 167–170).

(7)

St = 𝜇[1 − exp(−𝛾Δt)] − [1 − exp(−2𝛾Δt)]
𝜎2

4𝛾
+ 𝜎

√
1 − exp(−2𝛾Δt)

2𝛾
𝜖S,t

+ St−1 exp(−𝛾Δt)

Ŝt = a + b𝜖∗
S,t

+ cSt−1

et = St − Ŝt

(8)

𝛾̂ = −
ln c

Δt

𝜎̂ =
b√
Δt

�
−

2 ln c

1 − c2

𝜇̂ =
a + [1 − exp(−2𝛾Δt)]

𝜎2

4𝛾

1 − c

(9)𝜇̂ =
a + [1 − exp(−2𝛾Δt)]

𝜎2

4𝛾

1 − c
+

b

1 − c2
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•	 Model-II. Stochastic drift and constant diffusion. The behavior of asset price is 
usually defined in neutral risk terms, so the drift depends on the risk-free inter-
est rate. Both the asset price and the interest rate are stochastic. For example, we 
define the behavior of the interest rate as a variant of Model-I, while the asset 
price follows a GBM or Model-0. The interest rate discretization model, e.g. with 
� parameter to avoid negative values (see Cox et al. 1985 where � = 0.5 ) is: 

 were the unkown parameters are estimated as (8). Since return assets are cor-
related ( �r,S ) to interest rate movements, we apply Cholesky decomposition (see 
Chan et al. 2015, pp. 165–166): 

 And the searched parameters are: 

 The model restriction is 2�r�r

�2
r

≥ 1 or the Feller condition. Applying this condi-
tion on (10) results in: 

•	 Model-III. Jump diffusion like in Merton (1976) or Ball and Torous (1983), but 
in this case we distinguish between jumps up (+) and down (−) : 

(10)

rt = 𝜇r[1 − exp(−𝛾rΔt)] − [1 − exp(−2𝛾rΔt)]
𝜎2

r

4𝛾r

+ r
𝜅
t−1

𝜎r

√
1 − exp(−2𝛾Δt)

2𝛾
𝜖S,t

+ rt−1 exp(−𝛾rΔt)

r̂t = ar + br𝜖
∗
r,t

r
𝜅
t−1

+ crrt−1

er,t = rt − r̂t

(11)

Δyt = ΔSt − rt = −0.5𝜎2
ΔS
Δt + 𝜎ΔS

√
Δt𝜖S,t

Δ̂yt = aS + bS𝜖
∗
S,t

+ cS𝜖
∗
r,t

eS,t = Δyt − Δ̂yt

(12)
𝜌̂r,S = ���(

bS

cS

)

���� b2
S

b2
S
+ c2

S

𝜎̂S =
cS

𝜌̂r,S

√
Δt

(13)

2�r�r

�2
r

=

2
cr

Δt

0.5ar+b2
r

cr

2br√
Δt

=
0.5ar + b2

r

2b2
r

⇒
ar

2br

≥ 1
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 where � is an uniform distribution, � is a normal standard distribution, �+,− is 
the annualized frecuency of jumps up and down and the size of jumps follows a 
�(�+,−, �2,+,−) . Note that shocks ( �S, �

+,−

J
 ) are i.i.d. Then we estimate the unkown 

parameters in two-steps:

–	 First, we use (4) and (5) to estimate � and � . We calculate: 
et = ΔSt − [(𝜇̂ − 0.5𝜎̂2)Δt + 𝜎̂

√
Δt𝜖∗

S,t
] . If xt =

zt−meane

desve

 is the standardized 
residuals and pxt

 are the correponding percentiles then we estimate the annu-
alized jump frecuencies as: 

 Note that we select only higher values of C for jumps up and less than −C to 
jump down (if we cannot distinguish between jumps up and down, then we 
would take the values of x in absolute value and we would select the highest 
values of C).

–	 Second, once the jump frequencies have been estimated, we proceed to esti-
mate the jump size parameters by: 

1.	 Simulating uniform random numbers (u), as many as observations ( �).
2.	 Creating a matrix DNx3 , where each row rD corresponds to each simulated 

variable u and is defined as: If u is less than 𝜆̂+Δt then rD = (1, 0, 0) ; if 
higher than 1-𝜆̂−Δt then rD = (0, 0, 1) ; otherwise rD = (0, 0, 0).

3.	 Generating A as a vector (Nx1) of standard normal random numbers and 
appliying the Hadamard product. In such a case: A∗ = A◦D�.

4.	 Generating B as a vector (Nx1) of ones and appliying the Hadamard 
product to obtain: B∗ = B◦D�.

(14)

ΔSt = (𝜇 − 0.5𝜎2)Δt + 𝜎
√
Δt𝜖S,t + J

+
t
+ J

−
t

J
+
t
= J

+
t−1

+ �+
t
(𝜂+ + 𝛿𝜖+

J,t
)

J
−
t
= J

−
t−1

+ �−
t
(𝜂− + 𝛿𝜖−

J,t
)

�+
t
=

�
1 if ut < 𝜆+Δt

0 otherwise

�−
t
=

�
1 if ut > 1 − 𝜆−Δt

0 otherwise

ut ∼ �(0, 1)

𝜖S,t, 𝜖
+
J,t

, 𝜖−
J,t

∼ �(0, 1)

�(𝜖S,t, 𝜖
+
J,t
) = 0

�(𝜖S,t, 𝜖
−
J,t
) = 0

�(𝜖+
J,t

, 𝜖−
J,t
) = 0

(15)
𝜆̂+ = min(pet

|∀xt > C)Δt−1

𝜆̂− = max(pet
|∀xt < C)Δt−1
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5.	 If Z is a vector (Nx1) of standardized residuals then generating Y = Z◦D�

.
6.	 Concatenating matrix A∗ and B∗ we obtain: X = B∗ ∥ A∗ and then, 

Ŷ = 𝜃 ⋅ X.
7.	 Estimating parameters � = (�+,−, �+,−) by least squares of errors: 

e2 = (Y − Ŷ)2.
8.	 Repite T − � times.

•	 Model-IV. Stochastic volatily model. In this case, we consider two approachs: 

1.	 Volatility without mean reversion like in Hull and White (1987). The discre-
tized stochastic processes for asset return and volatility are (see equation 11 
in Hull and White 1987): 

 where �(�S,t, ��,t) = 0.
2.	 Volatility with mean reversion like in Scott (1987), Stein and Stein (1991) and 

Heston (1993) among others, where the corresponding discretized stochastic 
processes are (see Scott 1987 for Ornstein-Uhlenbeck process for volatility): 

	    The expression (17), as with the expression (10), has a similar constraint 
(Feller condition, see (13)). As volatility is not a variable traded directly on 
the marketplace, we propose a methodology in line with Broze et al. (1998) 
and Gouriéoux and Monfort (1996), but it also may be applied in a thinly 
traded market. Fiorentini et al. (2002) uses a time-series approach to estimate 
the parameters of stochastic volatility model. This indirect inference, using 
the NAGARCH model, has a drawback. Our methodology simulates shocks 
which are independent of the discretization error, while the use of an auxiliary 
model assumes that residuals show both together (true shock and discretiza-
tion error), with the corresponding effect on the estimated parameters. Addi-
tionally, as noted by Gouriéoux and Monfort (1996), to use auxiliary models 
the process must be simulated, which is questionable at least in the case of 
NAGARCH as a discretization approach to the Heston model. But this hap-
pens in other models like GARCH (see Heston and Nandi (2000)) as well. 
The simulation of stochastic volatility models was initially performed by the 
usual Euler or Milstein discretization, then more sophisticated methods that 
converge faster were used, avoiding potential negative values, such as vola-

(16)

St = St−1 exp[(� − 0.5�2
t
) Δt + �t

√
Δt�S,t]

�t = �t−1 exp[(�� − 0.5�2)Δt + �
√
Δtz�,t]

z�,t = �S,��S,t +

�
(1 − �2

S,�
)��,t

(17)

St = St−1 exp[(� − 0.5�2
t
)Δt + �t

√
Δt�S,t]

�t = �t−1 exp(−��Δt) + ��[1 − exp(−��Δt)] + �

�
1 − exp(−2��Δt)

2��
z�,t
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tility transformed or quadratic exponential scheme (see Gatheral 2006; Kahl 
and Jäckel 2006; Andersen 2008; Lord et  al. 2010; Zhu 2010). A review is 
available at Van Haastrecht and Pelsser (2010) and Rouah (2015). Since Feller 
condition is set in continuous time, and the simulation and observations are at 
discrete time, the first two approaches are: Full truncation scheme, where the 
simulated volatility ( �t ) is �t = max(0, �t) , but it generates null values for vola-
tility; and a Reflection scheme defined as �t = |�t| , although it generates high 
positive values when the simulated volatility value is negative. Because of the 
problems in these simple approaches, some authors choose to simulate the 
square root (see Zhu 2010). In this case the drawback is that the mean level 
of volatility becomes stochastic, since it depends on the previous value of the 
volatility. Others simulate the logarithm of volatility to avoid negative values, 
or use other probability distributions (Chi-squared), which increase the num-
ber of parameters to estimate, but convergence is conditioned by the value of 
certain parameters, e.g. the volatility of volatility in Kahl and Jäckel (2006)
ś scheme; or we have to simulate alternative distribution probabilities (e.g. 
Chi-squared and Gamma) lilke (Broadie and Kaya 2006). Additionally, the 
parameters estimate requires a liquid options market, and the results obtained 
by different calibration methods are not always similar (see Rouah 2015, pp. 
123–124). In addition, for both the simulation and the estimate we must add 
one more parameter to the model, the initial value of volatility, which is not 
observable, unlike prices or returns. Our proposal does not add more param-
eters than the strictly defined stochastic processes of return and volatility and 
they are available, as we initially noted, for thinly traded markets where there 
are no options or which are illiquid. We propose the following substitution in 
discrete time: 

 The expression (18) is a proxy of: 

 From (17) and (18), we obtain the following expression for volatility without the 
mean reversion model: 

(18)�∗
t
=

ΔSt√
Δt�S,t

−
�
√
Δt

�S,t

(19)

ΔSt = (� − 0.5�2
t
)Δt + �t

√
Δt�S,t

�t =
�S,t√
Δt

±

�
�2

S,t

Δt
+ 2� − 2

ΔSt

Δt

(20)

ΔSt√
Δt�S,t

−
ΔSt−1√
Δt�S,t−1

= (�� − 0.5�2)Δt + �
√
Δt

�
1

�S,t

−
1

�S,t−1

�
+

�
√
Δt�S,��S,t + �

√
Δt

�
1 − �2

S,�
��,t



	 M. González‑Sánchez et al.

 And (17) and (18) show this expression for volatility with the mean reversion 
model: 

 If we define: x0,t = 1 , x1,t = (
1

�S,t

−
1

�S,t−1

) , x2,t = �S,t , x3,t = ��,t , yt =
ΔSt√
Δt�S,t

 and 

Δyt = yt − yt−1 , then we rewrite the expressions (20) and (21) as: 

 where for both models the estimate of unknown parameters is: 

•	 Model-V. Drift and diffusion are stochastic, and both follow an mean reversion 
process: 

(21)

ΔSt√
Δt�S,t

=
�
√
Δt

�S,t

+ ��[1 − exp(−��Δt)] + exp(−��Δt)

�
ΔSt−1√
Δt�S,t−1

−
�
√
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�S,t−1

�
+

�

�
1 − exp(−2��Δt)

2��
�S,��S,t + �

�
1 − exp(−2��Δt)

2��

�
(1 − �2

S,�
)��,t

(22)

No mean reversion: Δ̂yt = a0x0,t + a1x1,t + a2x2,t + a3x3,t

e1,t = Δyt − Δ̂yt

Mean reversion: ŷt = b0x0,t + b1x1,t + b2x2,t + b3x3,t + cyt−1

e2,t = yt − ŷt

(23)

𝜇̂ =

� a1√
Δt

b1√
Δt

𝜌̂S,𝜎 =
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���(
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a3

)

�
a2

2

a2
2
+a2

3

���(
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)

�
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2
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2
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3

𝜈̂ =

⎧⎪⎨⎪⎩

a2
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√
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1−exp(−2𝛾̂𝜎Δt)
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+ 0.5𝜈̂2
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𝛾̂𝜎 = −
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 Then, as in (18), we define the following volatility proxy: 

 And we obtain the follow expression: 

 And if we operate on expression (26), we obtain the unknown parameters: 

(24)

ΔSt = (rt − 0.5�2
t
)Δt + �t

√
Δt�S,t

rt = �r[1 − exp (−�rΔt)] + rt−1 exp (−�rΔt) + �r

�
1 − exp (−2�rΔt)

2�r
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�
1 − exp (−2��Δt)
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r̂t = a0 + a1 ⋅ rt−1 + a2 ⋅ 𝜖S,t + a3 ⋅ 𝜖r,t
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•	 Model-VI. Constant drift and jump-diffusion as in Bates (1996) or Pan (2002), 
among others. This model is a mix of Model-III (14) and Model-IV (16): 

(27)

𝛾̂r = −
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In this case, first we estimate the parameters without jumps in accordance with 
Model-IV and then, given the independence between the shocks, we estimate the 
parameters of the jump (see Model-III estimate procedure).

Results

This section contains two empirical parts. The first consists of an experimental anal-
ysis in which the robustness of our methodology is contrasted using simulated series 
for the different models analyzed, so that we test whether the estimated parameters 
are statistically equal to those used in the simulation (real). In the second part, the 
proposed methodology is applied to a real series of a financial asset to analyze which 
model shows the best fit and check the risk estimates.

Experimental analysis

First, we simulate 10,000 time series for each model using VBA software, then we 
estimate the parameters with recursive regression initializing the estimate with 50% 
of the sample. We also use software to make the estimates (Ox), so that the random 
number simulators are different. Table 1 shows the results by quantiles of the esti-
mated parameters by least squares and we define the goodness of fit of each model 
as R2 = 1 −

∑
t e2

t∑
t y2

t

 , where e is the least squares estimation error and y is the simulated 
value.

The results of Table 1 show that the goodness of fit of the models is between a 
minimum of 90.32% and a maximum of 99.84%, which means that the proposed 

(28)
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methodology shows a high level of explanation of the stochastic models in dis-
crete time. Table 2 shows the estimated parameters for models with jumps by least 
squares.

Finally, Table 3, we show the mean value of parameters for each stochastic model 
from transforming the previous estimated parameters by least squares. We also esti-
mate the standard deviation for these transformed parameters and then test if we 
reject the null hypothesis that the mean value of the estimated parameters is equal to 
the real value used to generate the simulations.

Note that the individual hypothesis of equality between the real parameter ( � ) 
used for the simulation and the estimated parameter ( ̂𝜃 ) is accepted in all cases.

Market data analysis

We apply the methodology to a sample that consists of daily market prices of Bit-
coin, Brent, Eurostoxx-50 and Gold from January 1, 2014 to December 31, 2020. 
These data are obtained from Bloomberg.

First, we select the best model for each asset depending on adjusted R2 . Table 4 
show the results.

Next, we simultaneously estimate market and model risk. Once the model of 
each asset (highest adjusted R2 ) has been selected, we divide the sample into two 
parts: the sample to estimate parameters (from January 1, 2014 to December 31, 
2018) and the sample to calculate and compare risks (from January 1, 2019 to 
December 31, 2020). For each date of the second sample, we apply a recursive 
procedure in three stages: first we estimate the model’s parameters with the infor-
mation available to date (the first estimate is with the first part of the sample, 
from January 1, 2014 to December 31, 2018). Second, we generate 10,000 simu-
lations to estimate risk at two confidence levels (95% and 99%) and two time 

Table 2   Parameters of jumps Quantile jump+ jump−

a b a b

Model-III
   min 0.046 0.037 − 0.04 0.033
   Q1 0.05 0.05 − 0.038 0.046
   Q2 0.059 0.054 − 0.037 0.057
   Q3 0.069 0.082 − 0.032 0.064
   max 0.081 0.09 − 0.019 0.076

Model-VI
   min 0.034 0.041 − 0.003 0.027
   Q1 0.044 0.057 − 0.064 0.041
   Q2 0.057 0.065 − 0.073 0.062
   Q3 0.064 0.086 − 0.094 0.889
   max 0.084 0.102 − 0.137 0.138
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Table 3   Parameters of simulated models

parameters True value ( �) Model Description Mean ( ̂𝜃) std. dev. t-prob ( 𝜃 = 𝜃̂)

� 5% 0 Drift 4.95% 0.0025 0.856
� 20% 0 Volatility 19.70% 0.0038 0.433
� 5% 1 Reversion drift 6.12% 0.013 0.376
� 10.50 1 Drift 10.506 0.026 0.834
� 20% 1 Volatility 20.60% 0.020 0.765
�r 5% 2 Drift of drift 5.59% 0.014 0.668
�r 10% 2 Volatility of drift 8.25% 0.026 0.507
�r 15% 2 Reversion drift 15.23% 0.021 0.915
� 20.0% 2 Volatility 19.75% 0.020 0.903
�r,S 25% 2 Correlation return & drift 21.96% 0.041 0.466
� 5% 3 Drift 3.99% 0.012 0.390
� 20% 3 Volatility 22.19% 0.043 0.615
�+ 2.50 3 Jump up 2.19 0.232 0.184
�+ 10% 3 Mean jump up 7.66% 0.018 0.194
�+ 5% 3 Deviation jump up 4.03% 0.016 0.538
�− 2.00 3 Jump down 1.896 0.137 0.449
�− -8% 3 Mean jump down − 6.23% 0.016 0.283
�− 3% 3 Deviation jump down 2.67% 0.012 0.792
� 5% 4 Drift 3.96% 0.009 0.237
�� 20% 4 Drift of volatility 19.86% 0.036 0.969
� 10% 4 Volatility of volatility 9.37% 0.009 0.488
�� 2% 4 Reversion volatility 1.84% 0.005 0.738
�S,� − 25% 4 Correlation return & volatility − 20.29% 0.033 0.153
�r 5% 5 Drift of drift 5.33% 0.004 0.385
�r 10% 5 Volatility of drift 10.82% 0.019 0.663
�r 15% 5 Reversion drift 13.95% 0.053 0.843
�� 20% 5 Drift of volatility 18.19% 0.030 0.545
� 10% 5 Volatility of volatility 11.23% 0.028 0.659
�� 2% 5 Reversion volatility 2.23% 0.002 0.297
�r,S 25% 5 Correlation return & drift 20.83% 0.072 0.563
�S,� − 25% 5 Correlation return & volatility − 21.32% 0.049 0.452
�r,� − 15% 5 Correlation drift & volatility − 14.40% 0.006 0.332
� 5% 6 Drift 5.60% 0.016 0.703
�� 20% 6 Drift of volatility 19.34% 0.013 0.625
� 10% 6 Volatility of volatility 11.27% 0.065 0.845
�� 2% 6 Reversion volatility 2.36% 0.007 0.620
�S,� − 25% 6 Correlation return & volatility − 21.74% 0.020 0.113
�+ 2.50 6 Jump up 2.25 0.501 0.613
�+ 10% 6 Mean jump up 11.47% 0.044 0.739
�+ 5% 6 Deviation jump up 4.89% 0.002 0.556
�− 2.00 6 Jump down 1.95 0.162 0.757
�− − 8% 6 Mean jump down − 8.22% 0.002 0.344
�− 3% 6 Deviation jump down 6.43% 0.025 0.182



	 M. González‑Sánchez et al.

horizons (1 day and 5 days). For these simulations, we use the mean and percen-
tile (95% and 99%) values of the parameters to calculate the market risk (M) and 
market plus model risks (Mm), respectively. For the selected model of each asset, 
Table 5 shows the mean and standard deviation of the parameters.

Figure 1, for example, shows daily market price, daily simulated prices at 95% 
confidence level from M and Mm methodologies, respectively. To make the visu-
alization easier, we only present the last quarter of 2020 for the Eurostoxx-50 and 
Gold.

Tables 6 and 7 present risk estimates for time horizons of 1 day and 5 days, 
respectively.

For Tables 6 and 7, note for all sample confidence levels, time horizons and 
assets, the number of cases in which realized losses exceed those estimated is 
higher for the market risk estimate (M) than for the joint estimate of market and 
model risks (Mm). This means that the percentage of excesses is higher than 
expected (minus 1 confidence level) when estimating market risk, while if esti-
mating market and model risks it is not exceeded in any case. The excess of real-
ized loss beyond the estimated (excess loss) is also greater for M than for Mm. 
Finally, we verify that the cost of risk overestimate (cases in which the realized 
loss is less than the estimated loss), measured as an average of oversetimate

exceeded loss
 , is also 

higher when we only estimate market risk.
In summary, including the model risk with the market risk provides the estimate 

procedure with a degree of flexibility setting the models and their parameters that 
allows meeting the requirements of the percentage of cases with excess losses (1 
minus level of confidence) and at the same time presents lower excess losses and 
lower cost of overestimate over exceeded losses.

Table 3   (continued)
Trueparameters are the actual values used in the simulation. mean is the mean of the estimated and trans-
formed parameters, std.dev. is the standard deviation of the estimated parameters and t-prob is is t-value 
test

Table 4   Selection of models 
using adjusted R2

Model Bitcoin Brent Euro/Dollar Eurstoxx-50 Gold

Model-0 81.96% 92.04% 96.77% 91.64% 74.28%
Model-I 87.24% 90.47% 97.69% 91.66% 74.39%
Model-II 89.14% 90.39% 90.78% 87.45% 84.92%
Model-III 84.81% 91.05% 96.53% 91.65% 74.33%
Model-IV 90.15% 89.28% 83.37% 94.22% 78.47%
Model-V 81.35% 86.35% 92.03% 83.26% 83.72%
Model-VI 93.65% 91.43% 92.32% 93.16% 89.51%
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Conclusions

Since the last financial crisis in 2008, major legal changes have taken place in esti-
mating risks by high-ranked financial institutions. This study focuses on the model 
risk implicit in the market risk estimates.

Fig. 1   Real prices and simulated prices from Market and Market+model risk methodologies
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There is no consensus in the financial literature on the best methodology to meas-
ure market and model risk jointly, although most studies point to the Monte Carlo 
simulation as the most suitable.

Following this alternative, this empirical study proposes a least squares method-
ology and a Monte Carlo simulation to select the stochastic model in discrete time 
that best adjusts to the behavior of asset market prices and at the same time esti-
mates the corresponding parameters. Next, using the average values of these param-
eters, we calculate the market risk and using the percentiles (according to the desired 

Table 6   Results of risk estimates for 1-day time horizon

M is market risk results, Mm is market and model risks joint estimation

Estimation M at 95% M at 99% Mm at 95% Mm at 99%

Brent
Number of losses exceeded 42 34 25 5
Average loss exceeded 1.17 1.14 1.06 1.03
Av. loss exceeded/av. overestimate − 0.61 − 0.52 − 0.53 − 0.46
% losses exceeded 8.22% 6.65% 4.89% 0.98%
Average loss exceeded/mean price 2.17% 2.12% 1.97% 1.93%

Bitcoin
Number of losses exceeded 48 26 25 5
Average loss exceeded 315.18 304.86 306.19 294.00
Av. loss exceeded/av. overestimate − 0.65 − 0.56 − 0.63 − 0.54
% losses exceeded 9.39% 5.09% 4.89% 0.98%
Average loss exceeded/mean price 3.39% 3.28% 3.30% 3.17%

Euro/Dollar
Number of losses exceeded 43 31 24 5
Average loss exceeded 0.07 0.05 0.05 0.04
Av. loss exceeded/av. overestimate − 1.61 − 0.91 − 0.96 − 0.69
% losses exceeded 8.41% 6.07% 4.70% 0.98%
Average loss exceeded/mean price 0.59% 0.41% 0.45% 0.35%

Eurostoxx-50
Number of losses exceeded 18 13 14 3
Average loss exceeded 66.71 48.16 58.97 40.62
Av. loss exceeded/av. overestimate − 0.59 − 0.38 − 0.51 − 0.31
% losses exceeded 3.52% 2.54% 2.74% 0.59%
Average loss exceeded/mean price 1.99% 1.44% 1.76% 1.21%

Gold
Number of losses exceeded 11 8 9 4
Average loss exceeded 15.88 10.87 10.40 8.80
Av. loss exceeded/av. overestimate − 0.30 − 0.18 − 0.19 − 0.14
% losses exceeded 2.15% 1.57% 1.76% 0.78%
Average loss exceeded/mean price 0.98% 0.67% 0.64% 0.55%
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level of confidence) of the estimated parameters we jointly determine the market and 
model risk.

First, we test this methodology on simulated data from previously selected mod-
els and parameters. The statistical results do not reject the null hypothesis about the 
equality of the real and the estimated parameters.

Later we apply the same methodology to market data. We select different kinds 
of assets (Bitcoin, Brent, Euro/Dollar exchange rate, Eurostoxx-50 and Gold) and a 
period between January 1, 2014 and the December 31, 2020. The results show that 
although we selected the stochastic model that best fits the data in discrete time, the 

Table 7   Results of risk estimates for 5-days time horizon

M is market risk results and Mm is market and model risks joint estimation

Estimation M at 95% M at 99% Mm at 95% Mm at 99%

Brent
Number of losses exceeded 55 48 50 38
Average loss exceeded 4.12 3.23 3.41 3.05
Av. loss exceeded/av. overestimate 1.17 1.14 1.06 1.03
% losses exceeded 10.85% 9.47% 9.86% 7.50%
Average loss exceeded/mean price 7.67% 6.02% 6.35% 5.67%

Bitcoin
Number of losses exceeded 45 24 22 5
Average loss exceeded 566.12 545.94 543.96 530.47
Av. loss exceeded/av. overestimate 315.18 304.86 306.19 294.00
% losses exceeded 8.88% 4.73% 4.34% 0.99%
Average loss exceeded/mean price 6.10% 5.88% 5.86% 5.71%

Euro/Dollar
Number of losses exceeded 44 29 21 4
Average loss exceeded 0.06 0.05 0.04 0.03
Av. loss exceeded/av. overestimate 0.07 0.05 0.05 0.04
% losses exceeded 8.68% 5.72% 4.14% 0.79%
Average loss exceeded/mean price 0.50% 0.42% 0.36% 0.23%

Eurostoxx-50
Number of losses exceeded 16 12 13 3
Average loss exceeded 213.77 200.87 202.02 188.98
Av. loss exceeded/av. overestimate 66.71 48.16 58.97 40.62
% losses exceeded 3.16% 2.37% 2.56% 0.59%
Average loss exceeded/mean price 6.37% 5.99% 6.02% 5.63%

Gold
Number of losses exceeded 5 4 4 3
Average loss exceeded 49.74 38.11 39.62 27.23
Av. loss exceeded/av. overestimate 15.88 10.87 10.40 8.80
% losses exceeded 0.99% 0.79% 0.79% 0.59%
Average loss exceeded/mean price 3.08% 2.36% 2.46% 1.69%
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estimate of market risk using the mean value of the parameters exceeds the maxi-
mum number of excess loss cases (1 minus confidence level) for all confidence lev-
els and time horizons. However, the same is not true when we estimate the market 
risk and the joint model. The average excess of loss over the average price of the 
corresponding asset is always higher when we only estimate the market risk. Finally, 
we study whether the market risk methodology together with the model methodol-
ogy leads to an overestimate of risk. We analyze the mean overestimate of the aver-
age exceeded losses and we verify that the cost of the overestimate of the proposed 
methodology is lower than that of estimating only the market risk.

This empirical work provides a methodology to jointly estimate market and 
model risks in a flexible, feasible and easy-to-implement manner. Our methodol-
ogy presents consistent results that are superior to measuring market risk alone. The 
results of this empirical research are relevant for economic agents since the meth-
odology presented allows them to use the same simulation procedure to calculate 
the risk of their portfolios and the risk of the model they assume in the valuation of 
their portfolios, thus complying with Basel regulatory requirements. In addition, this 
study also opens up the possibility of applying this methodology to other types of 
risk such as credit and operational.

References

Andersen, L. 2008. Efficient simulation of the Heston stochastic volatility model. Journal of Computa-
tional Finance 11 (3): 1–42.

Avellaneda, M., R. Buff, C. Friedman, N. Grandchamp, L. Kruk, and J. Newman. 2000. Weighted 
Monte Carlo: A new technique for calibrating asset-pricing models. International Journal of 
Theoretical and Applied Finance 4 (1): 91–119.

Bachelier, L. 1990. Théorie de la spéculation. In The random character of stock market prices, ed. P. 
Cootner, 22–38. Cambridge: MIT Press.

Bakshi, G., C. Cao, and Z. Chen. 1997. Empirical performance of alternative option pricing models. 
The Journal of Finance 52 (5): 2003–2049.

Ball, C., and W. Torous. 1983. A simplified jump process for common stock returns. Journal of 
Financial and Quantitative Analysis 18 (1): 53–165.

Basel Committee on Banking Supervision of Bank International Settlement. 2009. Revisions to the 
Basel II market risk framework (final version). http://www.bis.org/publ/bcbs158.pdf. Accessed 
24 Nov 2009.

Basel Committee on Banking Supervision of Bank International Settlement. 2009. Supervisory guid-
ance for assessing banks financial instrument fair value practices (final version). http://www.bis.
org/publ/bcbs153.htm. Accessed 11 Dec 2009.

Bates, D.S. 1996. Jumps and stochastic volatility: Exchange rate processes implict in Deusche Mark 
option. Review of Financial Studies 9 (1): 69–107.

Bignozzi, V., and A. Tsanakas. 2016. Parameter uncertainty and residual estimation risk. Journal of 
Risk and Insurance 83 (4): 949–978.

Black, F., and M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political 
Economy 81 (3): 637–659.

Boucher, C.M., J. Danielsson, P.S. Kouontchou, and B.B. Maillet. 2014. Risk models-at-risk. Journal 
of Banking & Finance 44: 77–92.

Breuer, T., and I. Csiszar. 2016. Measuring distribution model risk. Mathematical Finance 26 (2): 
395–411.

Broadie, M., and Ö. Kaya. 2006. Exact simulation of stochastic volatility and other affine jump diffu-
sion processes. Operations Research 54 (2): 217–231.



	 M. González‑Sánchez et al.

Brotcke, L. 2018. Assessment of model risk in the aggregate: Contribution of quantification. Journal 
of Risk Management in Financial Institutions 12 (1): 16–43.

Broze, L., O. Scaillet, and J.M. Zakoian. 1998. Quasi-indirect inference for diffusion processes. 
Econometric Theory 14 (2): 161–186.

Carcano, N. 2009. Yield curve risk management: Adjusting principal component analysis for model 
errors. The Journal of Risk 12 (1): 3–16.

Chan, N.H., and H.Y. Wong. 2015. Simulation techniques in financial risk management, 1st ed. New 
Jersey: Wiley.

Chan, K.C., G.A. Karolyi, F.A. Longstaff, and A.B. Sanders. 1992. An empirical comparison of alter-
native models of the short-term interest rate. The Journal of Finance 47 (3): 1209–1277.

Cohort, P., P. E. Levy Dit Vehel, and P. Patras. 2013. Toward model value-at-risk: Bespoke CDO 
tranches: A case study. Journal of Risk Model Validation 7 (3): 21–34.

Cont, R. 2006. Model uncertainty and its impact on the pricing of derivative instruments. The Journal 
of Risk 16 (3): 519–547.

Cox, J.C., J.E. Ingersoll, and S.A. Ross. 1985. A theory of the term structure of interest rates. Econo-
metrica 53 (2): 385–407.

Danielsson, J., K.R. James, M. Valenzuela, and I. Zer. 2016. Model risk of risk models. Journal of 
Financial Stability 23: 79–91.

Derman, E. 1996. Model risk. Technical Report, 1st ed. New York: Goldman Sachs.
Deryabin, M.V. 2012. On bounds for model calibration uncertainty. Journal of Risk Model Validation 

6 (1): 27–45.
Detering, N., and N. Packham. 2016. Model risk of contingent claims. Quantitative Finance 16 (9): 

1357–1374.
Dixit, A.K., and R.S. Pindyck. 1994. Investment under uncertainty, 1st ed. New Jersey: Princeton 

University Press.
Elices, A., and A. Giménez. 2014. Applying hedging strategies to estimate model risk and provision 

calculation. Quantitative Finance 13 (7): 1015–1028.
Feng, Y., R. Rudd, C. Baker, Q. Mashalaba, M. Mavuso, and E. Schlögl. 2021. Quantifying the model 

risk inherent in the calibration and recalibration of option pricing models. Risks 9 (13): 1–20.
Fiorentini, G., A. León, and G. Rubio. 2002. Estimation and empirical performance of Heston’s stochastic 

volatility model: The case of a thinly traded market. Journal of Empirical Finance 9 (2): 225–255.
Frey, R., and C.A. Sin. 2001. Bounds on European option prices under stochastic volatility. Mathematical 

Finance 6 (1): 97–116.
Gatheral, J. 2006. The volatility surface: A practitionerś guide, 1st ed. New York: Wiley.
Glasserman, P., and X. Xu. 2014. Robust risk measurement and model risk. Quantitative Finance 14 (1): 

29–58.
Gouriéoux, C., and A. Monfort. 1996. Simulation base econometric methods, 1st ed. Oxford: Oxford Uni-

versity Press.
Gupta, A., C. Reisinger, and A. Whitley. 2010. Model uncertainty and its impact on derivative pricing. 

In Re-thinking risk measurement, management and reporting: Uncertainty, Bayesian analysis and 
expert judgemen, ed. K. Böcker, 625–663. London: Risk Books.

Hénaff, P., and C. Martini. 2011. Model validation: theory, practice and perspectives. Journal of Risk 
Model Validation 6 (1): 3–15.

Heston, S.L. 1993. A closed-form solution for options with stochastic volatility with applications to bond 
and currency options. Review of Financial Studies 6 (2): 327–343.

Heston, S., and S. Nandi. 2000. A closed-form solution for options with stochastic volatility with applica-
tions to bond and currency options. Review of Financial Studies 6 (2): 327–343.

Ho, T.S.Y., and S.B. Lee. 1986. Term structure movements and pricing interest rate contingent claims. 
The Journal of Finance 41 (5): 1011–1029.

Hull, J., and A. White. 1987. The pricing of options on assets with stochastic volatilities. The Journal of 
Finance 42 (2): 281–300.

Kahl, C., and P. Jäckel. 2006. Fast strong approximation Monte Carlo schemes for stochastic volatility 
models. Quantitative Finance 6 (6): 513–536.

Kato, T., and T. Yoshiba. 2000. Model risk and its control. Monetary and Economic Studies 18 (2): 
129–158.

Kerkhof, J., B. Melenberg, and H. Schumacher. 2010. Model risk and capital reserves. Journal of Bank-
ing & Finance 34 (1): 264–279.

Lindley, D.V. 2006. Understanding uncertainty, 1st ed. New York: Wiley.



Market and model risks: a feasible joint estimate methodology﻿	

Longstaff, F.A., and E. Schwartz. 2001. Valuation american options by simulation: A simple least-squares 
approach. Review of Finance Studies 14 (1): 113–147.

Lord, R., R. Koekkoek, and D. Van Dijk. 2010. A comparison of biased simulation schemes for stochastic 
volatility models. Quantitative Finance 10 (2): 177–194.

Merton, R. 1974. On the pricing of corporate debt: The risk structure of interest rates. The Journal of 
Finance 29 (2): 449–470.

Merton, R. 1976. Option pricing when underlying stock return are discontinuous. Journal of Financal 
Economics 3 (1): 125–144.

Morini, M. 2011. Understanding and managing model risk: A practical guide for quants, traders and 
validators, 1st ed. West Sussex: Wiley.

Osborne, M.F.M. 1959. Brownian motion in the sotck market. Operation Research 7 (2): 145–173.
Pan, J. 2002. The jump-risk premia implicit in options: Evidence from an integrated time-series study. 

Journal of Financial Economics 63 (1): 3–50.
Rebonato, R. 2003. Theory and practice of model risk management. In Modern risk management: A his-

tory, ed. R. Rebonato, 223–248. London: Risk Books.
Rouah, F.D. 2015. The Heston model and its extension in VBA, 1st ed. New York: Wiley.
Runaru, R., and T. Zheng. 2017. Parameter estimation risk in asset pricing and risk management: A 

Bayesian approach. International Review of Financial Analysis 53: 80–93.
Samuelson, P. 1965. Rational theory of warrant pricing. Industrial Management Review 6 (2): 13–32.
Schwartz, E. 1997. The stochastic behavior of commodity prices: Implications for valuation and hedging. 

The Journal of Finance 52 (3): 923–973.
Scott, L.O. 1987. Option pricing when the variance changes randomly: Theory, estimation and an appli-

cation. Journal of Financial and Quantitative Analysis 22 (4): 419–438.
Sibbertsen, P., G. Stahl, and C. Luedtke. 2008. Measuring model risk. Journal of Risk Model Validation 

2 (4): 65–81.
Stein, E.M., and J.C. Stein. 1991. Stock price distributions with stochastic volatility: An analytic 

approach. Review of Financial Studies 4 (4): 727–752.
Van Haastrecht, A., and A. Pelsser. 2010. Efficient, almost exact simulation of the Heston stochastic vola-

tility model. International Journal of Theoretical and Applied Finance 13 (1): 1–21.
Zhu, J. 2010. Applications of Fourier transform to smile modeling: Theory and implementation, 2nd ed. 

New York: Springer.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Market and model risks: a feasible joint estimate methodology
	Abstract
	Introduction
	Methodology to measure the model risk
	Base Line model risk
	Generalized model risk

	Results
	Experimental analysis
	Market data analysis

	Conclusions
	References


