
International Review of Financial Analysis 86 (2023) 102512

Available online 11 January 2023
1057-5219/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

International Review of Financial Analysis

journal homepage: www.elsevier.com/locate/irfa

Where is the distribution tail threshold? A tale on tail and copulas in financial
risk measurement✩

Mariano González-Sánchez a,∗, Juan M. Nave Pineda b

a Business and Accounting Department, School of Economics and Business, National Distance Education University (UNED), Paseo Senda del Rey,
11, 28040 Madrid, Spain
b Economic Analysis and Finance Department, School of Social Science, Castilla La Mancha University (UCLM), Avenida de los Alfares, 42, 16071 Cuenca, Spain

A R T I C L E I N F O

JEL classification:
C58
G10
G14

Keywords:
Tail index
Fat tail
Extreme dependence
Confidence level

A B S T R A C T

Estimating the market risk is conditioned by the fat tail of the distribution of returns. But the tail index
depends on the threshold of this distribution fat tail. We propose a methodology based on the decomposition
of the series into positive outliers, Gaussian central part and negative outliers and uses the latter to estimate
this cutoff point. Additionally, from this decomposition, we estimate extreme dependence correlation matrix
which is used in the measurement of portfolio risk. For a sample consisting of six assets (Bitcoin, Gold, Brent,
Standard&Poor-500, Nasdaq and Real Estate index), we find that our methodology presents better results, in
terms of normality and volatility of the tail index, than the Kolmogorov–Smirnov distance, and its unnecessary
capital consumption is lower. Also, in the measurement of the risk of a portfolio, the results of our proposal
improve those of a t-Student copula and allow us to estimate the extreme dependence and the corresponding
indexes avoiding the implicit restrictions of the elliptic and Archimedean copulas.

1. Introduction

In the field of financial markets, the study of the downside tail of
the distribution of asset returns is a fundamental and essential factor
for the analysis of market risks. This is a consequence of one of the
stylized facts of asset returns, known as fat tail risk. Adequate risk
estimate is fundamental in finance for different reasons such as asset
pricing, portfolio management and financial risk measurement. The
literature has shown that the tail of the distribution of asset returns does
not follow a normal distribution (stylized facts), especially when the
frequency of observation is high (for example, daily versus monthly)
giving rise to a property of returns known as scaling.

The empirical studies (see Jansen et al., 2000) focus on studying
the downward tail of the returns distribution by applying Generalized
Extreme Value (GEV) distribution or Generalized Pareto Distribution
(GPD), since show superior results for estimating risk compared to
other parametric or non-parametric approaches. These distributions are
defined by two parameters known as scale and shape which, as Brooks
et al. (2005) showed, are related. Thus, knowing the shape parameter
we can estimate the scale parameter. Therefore, in order to use extreme
distributions, the shape parameter, also called the inverse of the tail
index, must be estimated beforehand.
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E-mail addresses: mariano.gonzalez@cee.uned.es (M. González-Sánchez), juan.nave@uclm.es (J.M. Nave Pineda).

Hill (1975) is the usual estimator of tail index. However, as this
method of estimation is not without its drawbacks. As Koedijk et al.
(1990) pointed out, the problem lies in selecting an appropriate number
of tail observations to include in the estimate of the tail index, since
if we include too many data then the estimate variance is reduced
but the estimate bias increases. However, if we consider too many
data in the central range of distribution (or too few observations in
tail) then the bias declines but the estimate variance is too large. So,
the estimation of the index of the tail of the distribution presents the
following difficulties: first, the observations should be 𝑖.𝑖.𝑑.; second,
the low sample observations in the tail of the distribution to estimate
the index; and third, the estimate is sensitive to the choice of the
beginning (threshold) of the tail of the distribution. As a consequence
of these difficulties, the literature has developed two approaches to
solve the problems: modifying the method of calculating the tail index
(for example Huisman et al., 2001) and seeking the best approximation
to find the tail threshold of the distribution. Regarding the approach
of using different tail index calculation methods, Fedotenkov (2020)
reviews more than one hundred tail index estimators, discusses their
assumptions and provides closed-form expressions and finds that some
estimators perform better than others. Interestingly, the five estimators
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with the lowest error standard deviation are variants of the Hill esti-
mator and have the same problem, the determination of the threshold
of the tail of the distribution. The Hill estimator also performs well,
with results among the top 10. In short, the problem is not the esti-
mator (Hill) but determining the beginning threshold of the tail of the
distribution. Then, the main drawback is to find the threshold of the
tail distribution (the second approach studied in the literature).

In this context, some empirical studies arbitrarily set the tail thresh-
old of the downward distribution at a percentile for example the
5th (Rhee & Wu, 2020). But, in addition to modifying Hill’s estima-
tor, the literature has also studied two methodologies for estimating
the tail threshold of a distribution: bootstrapping method and fitting
distribution GPD tail. Németh and Zempléni (2020) propose a double
bootstrap method to estimate the Hill tail index but note that the
computation time grows exponentially using either the Kolmogorov–
Smirnov distance or the approximation of Hall (1990) to estimate
the starting threshold of the tail of the distribution and the result
convergence is also conditioned by sample size. Also, Drees et al. (2020)
estimate the threshold value minimizing the Kolmogorov–Smirnov dis-
tance between the empirical distribution of the exceedances and the
Pareto distribution adjusted to the larger order statistics, such that the
threshold is the order statistic with the smallest Kolmogorov–Smirnov
distance. From these empirical studies, we observe that Kolmogorov–
Smirnov distance shows better results and lower computational time
than bootstrap and double bootstrap methods.

In addition to the extreme univariate estimation of risk, the financial
literature on the multivariate analysis of extreme movements in asset
returns is vast. The application of extreme event theory to multivariate
financial problems is a current topic that is being applied increas-
ingly to more and more types of assets (see for example, Chan et al.,
2022). Longin and Solnik (2001) highlight that using extreme value
theory to model the multivariate distribution tails derives in the distri-
bution of extreme correlation for a wide class of return distributions.
Their results reject the null hypothesis of multivariate normality for the
negative tail and they found that correlation increases in bear markets.
However, they arbitrarily choose a logistic distribution (Gumbel cop-
ula) to adapt the extreme dependence. They note that tail index controls
the level of dependence between extreme returns and this parameter is
related with the correlation between extreme returns for pairs of assets.
In addition to the inconvenience of selecting the starting threshold of
the tail of the probability distribution, they use maximum likelihood
procedure to estimate all parameters, so the computation time is very
high. Kole et al. (2007) find that the Gaussian copula underestimates
(too optimistic on diversification benefits) the probability of joint ex-
treme downward movements, while the Gumbel copula overestimates
(too pessimistic) this risk, so the Student’s t copula is superior. To
select copula, they use Kolmogorov–Smirnov and Anderson–Darling
distances, but these measurements are sensitive to outliers. The proce-
dure consists of two phases, estimating the parameters of the marginal
distributions and then estimating the copula parameters, so this ap-
proach is very intensive computationally. To analyze the dependence
between asset returns, Delatte and Lopez (2013) apply Gaussian, Clay-
ton, and Gumbel copulas to consider three types of co-movement: (i)
frequent and symmetrical, (ii) mostly present during extreme events
and either symmetrical or asymmetrical, and (iii) mostly present during
negative and extreme events, i.e. asymmetrical. The procedure consists
of a two-stage maximum likelihood approach. First, they estimate and
select the model that provides the best fit for the individual variables,
and then they estimate the dependence structure of the copula. They
find that the copula parameters are time-dependent and depending on
the assets included in the portfolio then, the extreme dependence may
present either symmetrical or asymmetrical behavior.

As a consequence of the difficulty of selecting a suitable copula for
extreme dependencies by pairs of assets, Zhang et al. (2013) propose a
tail dependence regression. This tail dependence index is modeled as a

linear combination of the predictors through a monotonic transforma-
tion which is estimated by maximum likelihood. The results show that
it captures more information about tail dependence.

In summary, while multivariate parametric risk estimation, such
as the Gaussian, is computationally fast, its estimates underestimate
extreme risk. On the other hand, using multivariate copulas improves
risk estimate but is computationally slower (parameter estimation and
simulation) and some copulas are complex to estimate when there
are more than two assets (e.g. Gumbel). Additionally, Zhang (2008)
and Embrechts et al. (2009) show that extreme dependence index not
only measures the relationship between extreme movements of the
downward tail of the distribution of two assets, but can also occur
between the downward tail of one of the assets and the upward
tail of the other. Thus, we note that in multivariate risk estimation
there are several unresolved main issues: (i) how to approximate the
dependence between assets, either using all observations (parametric)
or only the extreme dependence (copula function); (ii) how to measure
extreme dependence between asset returns; and (iii) the complexity and
computation time of multivariate risk increases as the degree of risk
adjustment improves.

The literature, after the last financial crises, has also focused on
analyzing the extreme dependence relationships between asset re-
turns. Harris et al. (2019) propose new systematic tail risk measures,
but this proposal, as with the estimation of the tail index, has the
disadvantage of fixing a priori the percentile (10th percentile) where
the tail of the distribution begins or the threshold of the downward
tail of the distribution. In addition, the literature has studied the
dependence between assets and cryptocurrencies, as a consequence of
the high volatility of the latter. Thus, Hussein Abdoh (2020) found tail
dependence between returns for Bitcoin and other financial assets using
the quantile cross-spectral dependence approach and, Ahelegbey et al.
(2021) study extreme downside relationship among cryptocurrencies.

From the literature reviewed above, we note that in the individual
risk estimate through applying the extreme event theory (VaR-GPD)
there is a fundamental unresolved problem relating to the threshold
of the tail of the distribution, necessary to estimate the tail index and
keeping in mind that the data used in the estimate should be 𝑖.𝑖.𝑑. In
addition, the analysis of extreme dependence is also conditioned by this
threshold for the beginning of the distribution tail.

In this context, our aim is to develop a simple and computationally
fast methodology to determine the threshold of the tail of the distri-
bution. To do so, we follow González-Sánchez (2022) and divide each
time series of returns into three independent series: Good the positive
outliers, Usual the central part of the distribution with Gaussian behav-
ior, and Bad the negative outliers. We use the methodology proposed
by González-Sánchez (2021), who showed that some characteristics
of asset returns (scaling, autocorrelation and heteroskedasticity) are
caused by outliers.

Then, we compare the results of estimating risk using a VaR-GDP
where the tail index is estimated using different methods and deter-
mining the downside tail starting threshold by minimizing the distance
Kolmogorov–Smirnov with those obtained from the our methodological
approach. Additionally, we analyze the extreme dependence between
Bad–Bad data for each asset pair in a portfolio, since this proposal is
simple and computationally faster than a copula.

Our proposal is tested on a sample of data composed of six assets
traded in USD and representing assets with different characteristics
(Bitcoin, Gold, Brent, Nasdaq index, Standard & Poors-500 index and
Down Jones Real Estate index).

From the empirical results, the main contribution of this study is
a new methodology to find the threshold of distribution tail which
is faster computationally and better performance than Kolmogorov–
Smirnov distance, in terms of tail index behavior (lower variance
and more normality) and in terms of capital consumption due to the
risk measurement. Additionally, our second contribution is a simple
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estimate of the extreme dependence between assets that is compu-
tationally less intensive than copulas, also shows multivariate risk
overestimates lower than a t-Student copula and, unlike the extreme
downside co-moment measures, the extreme dependence percentile is
not a parameter whose value is arbitrarily fixed.

The rest of the paper is structured as follows: Section 2 develops the
estimate methodology, Section 3 describes the sample, Section 4 shows
and discusses the empirical results, and, finally, Section 5 presents the
main conclusions.

2. Methodology

2.1. Methodology for univariate risk

Gençay and Selçuk (2004) noted that there is a simple relationship
between the GPD and GEV distribution and they use GPD to estimate
risk since they are not only interested in the maxima of observations but
also in the behavior of large observations which exceed a high threshold
and then, the Value at Risk using GPD is:

𝑉 𝑎𝑅𝛾 = 𝑟(𝑚) + 𝜎
𝜉
⋅ [(𝛾 ⋅ 𝑇

𝑚
)−𝜉 − 1] (1)

Where 𝜎 is the scale parameter, 𝜉 is the shape parameter, 𝛾 is the
confidence level at which the risk is estimated and, for a sample with
size 𝑇 , 𝑟(𝑚) is the value of returns corresponding to the order statistic
𝑚 (𝑟(1) ≤ 𝑟(2) ≤ ⋯ 𝑟(𝑚) ≤ ⋯ ≥ 𝑟(𝑇 )) or the threshold value where the tail
of the distribution starts.

Since there are few observations in the tail of the distribution, the
estimating the scale and shape parameters by maximum log-likelihood
is complex, hence the method of moments, among others, is used.
But, as Brooks et al. (2005) showed, there is a relationship between
these two parameters, so that, knowing the shape parameter, the scale
parameter is calculated as (see equation 13 in Brooks et al., 2005):

𝜎 = ( 1
𝑚

𝑚
∑

𝑖=1
𝑟
1
𝜉
𝑖 )

𝜉 (2)

Then, we only need to estimate the shape parameter. The inverse
of the shape parameter is known as the tail index of the distribution
(𝛼 = 𝜉−1). Furthermore, when an economic agent estimates the risk of
a portfolio using parametric methods and has to choose a probability
distribution, then the tail index is a key factor, since this index is equal
to the number of defined moments of the observed series of returns
(or the degrees of freedom in the case of a t-Student distribution),
and therefore, it would eliminate from the equation those distributions
that would require more moments than the maximum determined
by this index. This reflection has already been expressed by Koedijk
et al. (1990) which pointed out the impossibility of testing the use
of different non-nested probability distributions to adjust the behavior
of asset returns and as a consequence, they proposed to focus on the
analysis of the tail index.

Hill (1975) shows an approach to infer the tail behavior of a distri-
bution without assuming any global form for the distribution function,
but merely the tail’s form of behavior. From the order statistics of a
series (𝑟(1) ≤ 𝑟(2) ≤ ⋯ 𝑟(𝑚) ≤ ⋯ ≥ 𝑟(𝑇 )), the Hill estimator of shape
parameter (𝜉) is:

𝐻𝑠𝑖𝑚𝑝𝑙𝑒,𝑚 = 1
𝑚

𝑚
∑

𝑖=1
𝑙𝑛 𝑟(𝑖)

𝑟(𝑚)
(3)

From (3), note that, in practice, estimating the tail index is equiva-
lent to determining the starting threshold of the tail of the distribution
(𝑚 or 𝑟(𝑚)).

In this context, Jansen et al. (2000), using Value at Risk (VaR) for
GPD, showed that extreme value theory proves to be a useful procedure
for estimating VaR-efficient portfolios and for describing portfolio risk
for events far out in the tails of the distribution. They estimate the
tail index using the Hill estimator but as they point out (see footnote

8) the method for selecting the distribution tail threshold is not a
universal remedy (function of the root of the sample size). Jondeau and
Rockinger (2003) point out that estimators of tail index present two
important drawbacks: first, the estimators are affected by the choice
of the threshold (starting point of tail distribution) and second, tail
index estimators are biased when the series is not i.i.d. As consequence,
they use an approach does not consider the distribution of the tails
but, rather, the distribution of the maximum or minimum returns over
given subsamples. In this case, the limit distribution of extremes is still
a generalized extreme value distribution, but an additional parameter,
the extremal index, has to be included in the model and estimates by
maximum likelihood. However, they replace the problem of determin-
ing the beginning of the tail of the distribution with the problem of
correctly fixing the size of the subsamples, and the complexity of the
estimate is increased by adding a new parameter and an optimization
to estimate it. But, from Table-2 in Gençay and Selçuk (2004), we
observe that the lower tail is different from the upper one, unlike what
was found by Jondeau and Rockinger (2003), and we also note that
the lower tail is different among assets. Brooks et al. (2005) compare
different extreme value models for determining the value at risk, but
once again the threshold is arbitrarily fixed at the 5th percentile. Rhee
and Wu (2020) estimate a VaR GPD but as they note, following the
common practice in the literature, for each estimate they choose the
same percentile threshold for all assets in the sample (the top and
bottom 20th percentiles as the up and down thresholds, respectively
and with a minimum of 10 observations).

To avoid the drawback of tail threshold selection, the literature
searches for other tail index estimation methods. So, Huisman et al.
(2001) proposed a weighted least squared method to estimate the tail
index:

𝐻𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =
𝐾
∑

𝑘=1
𝑤𝑘 ⋅𝐻𝑘 (4)

Where 𝐻𝑘 is the usual simple Hill estimator with starting downside
tail in 𝑘 order statistic, 𝑤𝑘 is the weight calculated as

√

𝑘 and 𝐾 is
the minimum order statistic considered, i.e., the maximum number of
observations assumed in the downward tail of the return distribution.
Thus, we obtain an order-weighted average Hill estimator. Also, Hill
(2010) showed that the Hill estimator of the tail index is uniformly
weakly consistent for processes such as ARFIMA and FIGARCH. This is
because the data series is not 𝑖.𝑖.𝑑. Approaches such as the one used
by McNeil and Frey (2000) present an additional complication and, as
a consequence, Stupfler (2016) proposes an approach to estimate tail
index in the presence of random covariates:

𝐻𝑑𝑜𝑢𝑏𝑙𝑒 = 1 − 1
2
⋅ (𝐻

(1) ⋅𝐻 (1)

𝐻 (2)
)−1, (5)

Where 𝑗 = 1, 2 then:

𝐻 (𝑗) = 1
𝑚

𝑚
∑

𝑖=1
[𝑙𝑛

(𝑟(𝑖))
𝑙𝑛(𝑟(𝑚))

]
𝑗

(6)

In this context, our proposal follows the Good–Usual–Bad (𝐺𝑈𝐵)
decomposition proposed by González-Sánchez (2021, 2022) to estimate
the beginning of the threshold of the tail of the distribution. Thus,
we define 𝑡 as temporary moment of observation from a sample of
size 𝑇 , 𝑝 is the asset log-price and 𝑟 is asset return estimated for
frequency 1-day as 𝑟𝑡 = 𝑝𝑡−𝑝𝑡−1. Then, we use the 𝐺𝑈𝐵 methodology to
divide the original series into three linearly independent sub-series to
reflect positive outliers (Good or 𝐺), normal behavior (Usual or 𝑈) and
negative outliers (Bad or 𝐵). To do this decomposition, first we select
𝜏𝑛, 𝜏𝑎, 𝜏𝑎,2 and 𝜏ℎ as a test of normality, autocorrelation, autocorrelation
for the square of the data and heteroskedasticity, respectively. For a
sample of 𝑟𝑡, first we do 𝑈𝑡 = 𝑟𝑡, run these tests on this sample 𝑈𝑡 and
if any of them show p-values lower than confidence level (for example,
0.05 or 0.1) then we search outliers as:

1. We seek 𝑧𝑡 = 𝑚𝑎𝑥|𝑈𝑡|.
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2. According to the sign of the data, we do 𝐺𝑡 = 𝑧𝑡 (positive) or
𝐵𝑡 = 𝑧𝑡 (negative) and then, we substitute 𝑈𝑡 = 0.

3. After replacement, we re-estimate 𝜏𝑛, 𝜏𝑎, 𝜏𝑎,2 and 𝜏ℎ for the
new series of 𝑈𝑡 and, if we reject any hypotheses on normality,
non-autocorrelation and non-heteroskedasticity, we go to back
step (1). We only stop when all the null hypotheses of the tests
applied on the U series are accepted (for more details on the GUB
decomposition see González-Sánchez, 2021).

Once we have decomposed the original series, if the size of the Bad
series is zero (𝑚𝐵 = 0), i.e., no negative outliers, the down tail index
is 2 since distribution is Gaussian. But if 𝑚𝐵 > 0 then we define the
threshold of the downward tail of the distribution as 𝑢𝑚𝐵

= 𝑚𝑎𝑥(𝐵𝑡) (or
the highest value within the Bad sub-series).1 Finally, we estimate the
GUB tail index (𝛼𝐺𝑈𝐵) as the inverse of Hill index:

𝐻𝐺𝑈𝐵 = 1
𝑚𝐵

𝑚𝐵
∑

𝑖=1
𝑙𝑛

𝐵𝑖
𝑢𝑚𝐵

𝛼𝐺𝑈𝐵 = 𝐻−1
𝐺𝑈𝐵

(7)

Then by applying expression-(2) we estimate the corresponding
scale parameter and using expression-(1) we calculate the market risk.
Note that 𝑢𝑚𝐵

is not conditioned by the threshold arbitrarily set a priori,
as usually in the literature, on the contrary, this threshold depends
on the percentile of the starting point of the downward tail of the
distribution of each asset returns.

2.2. Methodology for multivariate risk

The first multivariate estimate of risk for a portfolio (𝑃 ) is the multi-
variate Gaussian and then, assuming equal weight for all assets results:

𝑉 𝑎𝑅𝛾
𝑃 =

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

𝑉 𝑎𝑅𝛾
1

⋮
𝑉 𝑎𝑅𝛾

𝑁

⎞

⎟

⎟

⎠

⋅𝛺 ⋅
(

𝑉 𝑎𝑅𝛾
1 ⋯ 𝑉 𝑎𝑅𝛾

𝑁
)

⎤

⎥

⎥

⎦

0.5

(8)

Where 𝛾 is the level of confidence at which the risk is estimated, 𝑉 𝑎𝑅𝛾
𝑖

is the estimated Gaussian univariate risk for the asset 𝑖 that is part of the
portfolio (𝑖 = 1,… , 𝑁) and 𝛺 is correlation matrix among the portfolio’s
assets. Since this multivariate estimation assumes Gaussian behavior of
both the individual assets and the portfolio, it has an advantage, fast
computation, and a disadvantage, excess losses, since as we know from
the stylized facts, both the assets and the portfolio do not usually have
returns that fit normal behavior.

So, our proposal to estimate the multivariate risk of the set of assets
(𝑖 = 1,… , 𝑁) that make up a portfolio with equal weighted,2 first we
calculate the GUB decomposition of asset returns time series and then,
we estimate the univariate risk for each 𝑖-asset at confidence level 𝛾 as
described above (𝑉 𝑎𝑅𝛾

𝑖,𝐺𝑈𝐵). Next, we estimate the empirical extreme
dependence among assets as the correlation matrix among the Bad
series (𝛺𝐵) obtained from the decomposition of the returns then, using
the Cholesky decomposition, 𝛺𝐵 = 𝐴𝐵 ⋅𝐴′

𝐵 , so that the portfolio risk is
as follows:

𝑉 𝑎𝑅𝛾
𝑃 ,𝐺𝑈𝐵 =

𝑁
∑

𝑖=1
𝑥𝛾𝑖,𝐺𝑈𝐵 (9)

Where 𝑥𝑖,𝐺𝑈𝐵 is a component of the risk vector:

𝑋𝛾
𝐺𝑈𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐴1,1
𝐵 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮

𝐴1,𝑖
𝐵 ⋯ 𝐴2,𝑖

𝐵 ⋯ 0
⋮ ⋱ ⋮ ⋱ ⋮

𝐴1,𝑁
𝐵 ⋯ 𝐴𝑖,𝑁

𝐵 ⋯ 𝐴𝑁,𝑁
𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑉 𝑎𝑅𝛾
1,𝐺𝑈𝐵

⋮
𝑉 𝑎𝑅𝛾

𝑖,𝐺𝑈𝐵
⋮

𝑉 𝑎𝑅𝛾
𝑁,𝐺𝑈𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(10)

1 Similarly, we define the threshold of the upwarp tail of the distribution
as 𝑢𝑚𝐺

= 𝑚𝑖𝑛(𝐺𝑡)
2 This approach can also be generalized to portfolios with different asset

weights.

Note that this estimate is an empirical 𝐺𝑈𝐵 multivariate risk esti-
mation unlike parametric multivariate (e.g. Gaussian) and multivariate
copulas (such as t-Student). So, this approach allows us to calculate
a simple estimate of the extreme dependence or extreme correlation
matrix among assets, but only using Bad component of original se-
ries of each asset returns. Besides, our proposal, unlike Harris et al.
(2019), does not require setting the threshold of the tail of the distri-
bution a priori, but rather the percentile is determined from the GUB
decomposition of the original series of returns.

3. Data

The empirical study is applied on a sample composed of six assets
traded in USD and selected for their representativeness of the stock
market (Standard&Poors-500), technology companies (Nasdaq), energy
market (Brent), safe-haven assets (Gold), the real estate market (Dow
Jones Real Estate) and the cryptocurrency market (Bitcoin). The sample
is composed of data at daily frequency from April 1, 2011 to May 31,
2022 obtained from Bloomberg. The sample period is justified by the
inclusion of Bitcoin, since although it began trading in April 2010 it
was not until a year later that it began to show any price volatility.

Daily returns are estimated from the daily prices as the daily differ-
ence of the log prices. A summary of the main statistics for daily returns
and equal weighted portfolio is showed in Table 1.

From the results in Table 1, we observe that there are assets (Bit-
coin) more volatile than others (Gold), that all of them are non-
Gaussian and for only some of them (Gold and Brent) do not exist the
autocorrelation problems. Also, the equal-weighted portfolio has the
same statistical characteristics as the assets that compose it. In sum-
mary, the data seem to show the characteristics observed by González-
Sánchez (2021) when studying the scaling property of asset returns and
the effects of outliers. As such, the approach proposed in this empirical
study is fully justified since the time series are not i.i.d., but the GUB
decomposition avoids this problem in the analysis of the tails of the
distribution.

4. Results

4.1. Empirical results for univariate estimates

Estimates are made at daily frequency for each of the six assets in
the sample. We made a rolling estimate at each date using a database
of the previous five years, as is usual in the financial field, so that
at daily frequency the number of estimates for each asset is 1522
(2772 observations minus 1250 data from the five years prior to each
calculation date).

First, we estimate the threshold of upside and downside tails distri-
bution of the six assets. Table 2 shows the mean values and standard
deviations (𝑠𝑑) of the 1522 rolling estimates for the six assets in the
sample. We include the mean number of observations that remain in
the tails or extreme values, mean return of threshold, mean percentile
corresponding to threshold, tail index and mean Kolmogorov–Smirnov
(KS) distance according to Drees et al. (2020). Also, we contrast the
normality on the inverse of tail index, as it is well known (see among
others Jansen et al., 2000):

(𝛼̂−1𝑚 − 𝛼−1) ⋅ 𝑚̂
1
2 ∼ 𝐍(0, 𝛼−1𝑚 ) (11)

Where 𝛼̂−1𝑚 is the inverse of tail index estimated at each date, 𝛼−1 is
the mean value of inverse the estimated indexes reported in Table 2,
𝐍 is the cumulative normal distribution of zero mean and standard
deviation 𝛼−1 and, 𝑚̂ is the order obtained in each estimation of the
index as the threshold of the tail. For testing, we assume that mean
value is the unknown true value.

From Table 2, notice that the KS distance obtained from GUB ap-
proach is very similar to minimum KS distance. The minimum average
distances are smaller using the KS distance methodology for Nasdaq,
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Table 1
Summary of statistics for daily returns.

Statistics Bitcoin Gold Brent Nasdaq SP500 Real Estate Portfolio

Observations 2772 2772 2772 2772 2772 2772 2772
min −0.8488 −0.0982 −0.2798 −0.1315 −0.1277 −0.1916 −0.9076
mean 0.0038 0.0001 0.0002 0.0005 0.0004 0.0002 0.0050
std. Dev. 14.742 0.0578 0.2742 0.0893 0.0897 0.0916 0.0876
max. 0.0672 0.0103 0.0241 0.0128 0.0112 0.0127 1.4669
Skewness 28.182 −0.6204 −0.5770 −0.7297 −0.8515 −1.6298 0.3668
Excess Kurt. 29.7711 6.6897 22.3660 9.2408 15.7010 27.7900 40.886
Jarque–Bera 11064 [**] 5346.6 [**] 5793.1 [**] 1010.9 [**] 2880.9 [**] 9042.6 [**] 29314 [**]
LM ARCH(2) 21.542 [**] 26.486 [**] 50.407 [**] 60.002 [**] 77.526 [**] 50.674 [**] 53.331 [**]
Box–Pierce (2) raw 18.475 [**] 3.689 1.421 63.236 [**] 94.5941 [**] 64.079 [**] 29.587 [**]
Box–Pierce (2) squared 44.936 [**] 56.487 [**] 105.433 [**] 121.55 [**] 1463.70 [**] 94.3778 [**] 110.753 [**]

Note: 𝐽𝑎𝑟𝑞𝑢𝑒−𝐵𝑒𝑟𝑎 is a test on the normality of the series and whose null hypothesis is that the data are Gaussian. 𝐿𝑀𝐴𝑅𝐶𝐻(𝑙𝑎𝑔) is a test of heteroscedasticity
whose null hypothesis is the absence of heteroscedasticity. 𝐵𝑜𝑥−𝑃 𝑖𝑒𝑟𝑐𝑒(𝑙𝑎𝑔) raw is a test of the autoregressivity of the series whose null hypothesis is the absence
of autoregressivity. 𝐵𝑜𝑥− 𝑃 𝑖𝑒𝑟𝑐𝑒(𝑙𝑎𝑔)𝑠𝑞𝑢𝑎𝑟𝑒𝑑 is a test on the autoregressivity of the square of the series whose null hypothesis is the absence of autoregressivity.
[∗] and [∗∗] show that the null hypothesis of the test is rejected at 5% or 1%, respectively.

Table 2
Threshold results.

Threshold method Estimates Bitcoin Gold Brent Nasdaq SP500 Real Estate

Upside tail

KS distance

mean observations 232 200 73 77 82 64
mean threshold percentile 0.1740 0.1430 0.0570 0.0470 0.0510 0.0390
mean threshold value 0.0344 0.0083 0.0305 0.0169 0.0138 0.0163
sd threshold value 0.0031 0.0009 0.0012 0.0015 0.0010 0.0019
mean tail index 1.6485 2.8435 2.3326 2.8041 2.5391 2.5517
sd tail index 0.3617 0.5413 0.3068 0.8422 0.5730 0.6053
mean KS 0.0861 0.0257 0.0549 0.0221 0.0124 0.0251
Jarque–Bera 10.0066 [0.007]** 5.8388 [0.054] 2.113 [0.348] 6.4066 [0.041]* 6.5581 [0.038]* 9.849 [0.007]**
mean computing time 3 min 6 s 2 min 52 s 2 min 55 s 2 min 49 s 2 min 54 s 3 min 2 s

GUB

mean observations 219 71 69 135 160 128
mean threshold percentile 0.1629 0.0605 0.0622 0.1052 0.1155 0.0929
mean threshold value 0.0374 0.0150 0.0302 0.0130 0.0099 0.0117
sd threshold value 0.0093 0.0033 0.0048 0.0040 0.0023 0.0026
mean tail index 1.5659 2.0550 2.3602 2.9377 2.7010 2.6508
sd tail index 0.1839 0.0669 0.2624 0.7407 0.6366 0.7550
mean KS 0.0857 0.0255 0.0547 0.0260 0.0134 0.0266
Jarque–Bera 7.598 [0.022]* 5.4345 [0.066] 1.3174 [0.518] 4.9234 [0.085] 5.7016 [0.058] 5.3984 [0.067]
mean computing time 1 min 55 s 1 min 46 s 2 min 3 s 2 min 11 s 1 min 52 s 2 min 8 s

Downside tail

KS distance

mean observations 192 97 91 128 131 139
mean threshold percentile 0.8580 0.9340 0.9210 0.9150 0.9130 0.9030
mean threshold value −0.0315 −0.0131 −0.0289 −0.0131 −0.0102 −0.0114
sd threshold value 0.0031 0.0015 0.0021 0.0016 0.0010 0.0011
mean tail index 1.4916 3.2625 2.6110 2.1259 1.8755 2.1141
sd tail index 0.331 0.853 0.458 0.695 0.554 0.566
mean KS 0.089 0.0483 0.0139 0.0625 0.0646 0.0914
Jarque–Bera 6.3796 [0.041]* 3.015 [0.221] 3.5313 [0.171] 4.8281 [0.089] 2.5218 [0.283] 6.346 [0.042]*
mean computing time 3 min 8 s 2 min 57 s 3 min 4 s 2 min 38 s 2 min 46 s 2 min 59 s

GUB

mean observations 166 80 88 130 133 136
mean threshold percentile 0.8759 0.9376 0.9239 0.9066 0.9052 0.8995
mean threshold value −0.0374 −0.0149 −0.0300 −0.0130 −0.0099 −0.0117
sd threshold value 0.0093 0.0032 0.0046 0.0040 0.0023 0.0025
mean tail index 1.3452 2.7091 2.4949 2.1382 1.8912 2.1241
sd tail index 0.1584 0.2828 0.2478 0.2170 0.3555 0.1159
mean KS 0.086 0.0474 0.0132 0.064 0.0661 0.0917
Jarque–Bera 6.11 [0.047]* 3.9687 [0.137] 1.8415 [0.398] 4.3855 [0.112] 2.129 [0.345] 5.9305 [0.052]
mean computing time 2 min 4 s 1 min 48 s 1 min 53 s 2 min 6 s 1 min 57 s 1 min 54 s

Note: 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is Kolmogorov–Smirnov minimum distance method, 𝐺𝑈𝐵 is Good–Usual–Bad method, 𝑚𝑒𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 is the mean number of observations in the tail of the
distribution, 𝑚𝑒𝑎𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 is the mean starting percentile of the distribution tail, 𝑚𝑒𝑎𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is the value corresponding to the mean starting percentile of
the tail, 𝑠𝑑 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 is the standard deviation of all estimated tail starting values, 𝑚𝑒𝑎𝑛 𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 is the mean tail index estimated as a Hill indicator, 𝑠𝑑 𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 is the
standard deviation of the estimated Hill indexes, 𝑚𝑒𝑎𝑛 𝐾𝑆 is the mean value of the Kolmogorov–Smirnov distance between the tail of the distribution and a GPD distribution,
𝐽𝑎𝑟𝑞𝑢𝑒 − 𝐵𝑒𝑟𝑎 is the test of normality on inverse of tail index estimates, 𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 is the mean time of the estimates.

SP500 and Real Estate, but larger than those resulting from using
the GUB methodology for Bitcoin, Gold and Brent. Now, when we
contrast the normality of the inverse of the tail index, we find that both
methodologies reject the hypothesis for Bitcoin but, in addition, the KS
distance does so for Nasdaq, SP500 and Real Estate in the upside tail
and for Real Estate in the downside tail.

As for the tail index, note that the average value is above 2 in both
tails and for all assets except for Bitcoin and for the SP500 down tail.
Now, if we consider (𝑚𝑒𝑎𝑛− 2 ⋅ 𝑠𝑑), then all assets could have an index
below 2.

We also note that in both the upside and downside tails for Bit-
coin, Gold and Brent, the KS distance methodology considers a higher
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Table 3
Analysis of central part of distribution.

Threshold method Estimates Bitcoin Gold Brent Nasdaq SP500 Real Estate

KS distance

mean observations 826 953 1090 1045 1037 1047
Jarque–Bera 42.2391 [0.000]** 112.97 [0.000]** 0.9921 [0.609] 12.621 [0.001]** 47.565 [0.000]** 26.177 [0.000]**
LM ARCH(2) 6.9457 [0.001]** 0.3876 [0.678] 1.9173 [0.1472] 0.0712 [0.931] 0.5993 [0.549] 1.5634 [0.209]
Box–Pierce (2) raw 11.1351 [0.004]** 3.855 [0.145] 7.3927 [0.025]* 3.4901 [0.174] 2.5393 [0.281] 0.6576 [0.719]
Box–Pierce (2) squared 14.0646 [0.001]** 0.7829 [0.676] 3.9143 [0.141] 0.1463 [0.929] 1.2172 [0.544] 3.2179 [0.201]

GUB

mean observations 865 1099 1093 985 957 986
Jarque–Bera 3.0468 [0,137] 0.6036 [0.739] 1.7324 [0.421] 3.3450 [0.188] 2.1536 [0.341] 4.8531 [0.089]
LM ARCH(2) 2.9172 [0.098] 0.5691 [0.566] 1.4447 [0.236] 2.2719 [0.103] 1.5026 [0.223] 0.3592 [0.698]
Box–Pierce (2) raw 2.9598 [0.206] 2.1501 [0.341] 4.1965 [0.115] 4.6971 [0.129] 2.5305 [0.282] 0.1291 [0.937]
Box–Pierce (2) squared 3.8961 [0.158] 1.1378 [0.566] 2.9182 [0.232] 4.7019 [0.095] 2.9597 [0.228] 0.7433 [0.689]

Note: 𝐽𝑎𝑟𝑞𝑢𝑒 − −𝐵𝑒𝑟𝑎 is a test on the normality of the series and whose null hypothesis is that the data are Gaussian. 𝐿𝑀𝐴𝑅𝐶𝐻(𝑙𝑎𝑔) is a test of heteroscedasticity whose null
hypothesis is the absence of heteroscedasticity. 𝐵𝑜𝑥 − −𝑃 𝑖𝑒𝑟𝑐𝑒(𝑙𝑎𝑔) raw is a test of the autoregressivity of the series whose null hypothesis is the absence of autoregressivity.
𝐵𝑜𝑥 − 𝑃 𝑖𝑒𝑟𝑐𝑒(𝑙𝑎𝑔)𝑠𝑞𝑢𝑎𝑟𝑒𝑑 is a test on the autoregressivity of the square of the series whose null hypothesis is the absence of autoregressivity. [∗] and [∗∗] show that the null
hypothesis of the test is rejected at 5% or 1%, respectively.

Fig. 1. Thresholds of the downward tail of the distribution of daily returns.

number of observations in the tails, while it includes a lower number
than the GUB methodology in the cases of Nasdaq, SP500 and Real
Estate. This difference in the volume of data included in the tails in
each methodology means that the higher the number of observations
in the tail, the higher the estimated index, logically since the distances
between the threshold and the values of the last orders of the series
is greater. Therefore, as Huisman et al. (2001) noted the number of
observations included in the estimation conditions the result and the
variability of the result. Regarding the latter, note that the standard
deviation of the estimated tail index is lower in all cases using the
GUB methodology than using the KS distance, probably because while
the KS distance seeks to fit as well as possible the observations of
the tail to a GDP, but with the drawback of using a low number of
observations, the GUB methodology on the contrary, fits the central
part of the distribution to a normal distribution i.i.d., logically using a
larger volume of data, since it analyzes the whole series.

In short, the number of observations included in the tail conditions
the value of the index, its volatility, the KS distance and the Gaussian
behavior of the inverse of the tail index. To check this conclusion in
Table 3 we show the average statistical tests of the central part of the

returns series, i.e. the returns lower than the threshold of the up-tail
and higher than the threshold of the down-tail.

From Table 3, note that the central part of the distributions fits quite
well to a normal i.i.d., as indicated by González-Sánchez (2021), this
is due to the exclusion of the outliers that make the statistical tests
reject all hypotheses (compare with the results in Table 1). Now, the
KS distance methodology fails to make the central part of the Bitcoin
and Brent distribution i.i.d., as they reject the hypotheses of absence of
autocorrelation (Brent and Bitcoin) and heteroscedasticity (Bitcoin). In
addition, the KS distance, unlike the GUB methodology, does not accept
the hypothesis of normality of the central part of the distribution and
therefore, this indicates that either extreme values have been included
in the central part or some others that do fit the Gaussian behavior have
been excluded.

In summary, the GUB methodology performs better than the KS
distance methodology for estimating the tail threshold of a distribution
because it considers the entire data series, instead of using only the
extreme values. In addition, it is computationally faster.

Fig. 1 shows the evolution of thresholds of down tail for each asset
obtained by GUB methodology for daily frequency and thus check how
it adjusts to the behavior of the returns series.
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Table 4
Tail index results.

Method Statistics Bitcoin Gold Brent Nasdaq SP500 Real Estate

Upside tail

Simple

mean index tail 1.5659 2.0550 2.3602 2.9377 2.7010 2.6508
sd index tail 0.1839 0.0669 0.2624 0.7407 0.6366 0.7550
min index tail 1.1815 1.9630 1.8551 1.8335 1.8026 1.8581
max index tail 2.0744 2.2265 3.0293 4.9766 4.5898 4.0456

Double

mean index tail 1.5276 2.2195 2.5111 3.0940 2.9544 2.6715
sd index tail 0.2195 0.0748 0.2902 0.9186 0.8153 0.8167
min index tail 1.0966 1.9057 1.5448 1.3498 1.7394 1.8291
max index tail 2.5853 2.4685 3.4774 5.1531 3.9669 3.8802

Weighted

mean index tail 1.2617 2.4012 2.5647 3.0098 2.6861 2.6724
sd index tail 0.2339 0.0877 0.3172 0.8961 0.7733 0.7976
min index tail 1.0717 1.9390 1.4414 1.3019 1.8981 1.8462
max index tail 2.8951 2.5189 3.5196 5.0932 4.1925 3.9605

Downside tail

Simple

mean index tail 1.3452 2.7091 2.4949 2.1382 1.8912 2.1241
sd index tail 0.1584 0.2828 0.2478 0.2170 0.3555 0.1159
min index tail 1.1694 1.8178 1.7864 1.5188 1.3136 1.8141
max index tail 1.8167 3.4631 3.0311 2.7327 2.8447 2.4548

Double

mean index tail 1.3016 2.8478 2.6405 2.2808 2.1253 2.1255
sd index tail 0.1938 0.2886 0.2742 0.3945 0.5326 0.1769
min index tail 1.0835 1.7517 1.4629 1.0310 1.2441 1.7708
max index tail 2.3229 3.7014 3.4548 2.9033 2.2041 2.2757

Weighted

mean index tail 1.0347 3.0247 2.6940 2.2014 1.8613 2.1371
sd index tail 0.2065 0.3012 0.2995 0.3705 0.4877 0.1580
min index tail 1.0586 1.7902 1.3631 0.9823 1.4048 1.7878
max index tail 2.6215 3.7405 3.5003 2.8265 2.4327 2.3650

Note: 𝑆𝑖𝑚𝑝𝑙𝑒 is estimated using expression-(3), 𝐷𝑜𝑢𝑏𝑙𝑒 by expression-(5) and 𝑊 𝑒𝑖𝑔ℎ𝑡𝑒𝑑 according to expression-(4). For rolling estimates: 𝑚𝑒𝑎𝑛
is the average value, 𝑠𝑑 is standard deviation, 𝑚𝑖𝑛 is minimum value and 𝑚𝑎𝑥 is maximum value.

In Fig. 1, the closer to 100%, the more Gaussian the distribution will
be, therefore, the fewer the outliers. For example, in the first estimates
the threshold for Gold is at the 86th percentile, and from October
2017 onwards it is around 97th. In contrast, Bitcoin is around the 86th
percentile until October 2021, at which time it begins to rise to the
96th percentile.

Once we have contrasted that the GUB methodology shows better
results for estimating the tail threshold of the distribution, we analyze
whether using different methods for calculating the tail index with GUB
threshold, the variability of the estimates is lower than the simple Hill
index. Table 4 shows the results:

From Table 4 we observe that Hill-𝑠𝑖𝑚𝑝𝑙𝑒 is the least volatile indi-
cator (lower standard deviation or 𝑠𝑑) and shows the lowest amplitude
(max–min) for all assets. In short, if the threshold is well-fitted, it is not
necessary to apply modifications to the Hill estimator to obtain a tail
index with low variability.

Finally, we test the effectiveness of the GUB methodology (for
estimating the threshold of the downside tail of returns) from the
degree of fit of the univariate risk estimation using the expression-
(1) and previously calculating scale parameter by expression-(2). We
compare the results with KS distance. Table 5 shows the results:

Note, in the results in Table 5, that both methods of estimating the
tail threshold obtain a percentage of exceeded losses lower than exceeds
the maximum limit (1 minus the confidence level both at 95% and
99%), except KS distance method for Bitcoin and at 99% confidence
level. Bitcoin is the asset with highest percentage of exceeded losses:
for GUB method is 2.081% and 0.874% at 95% and 99% confidence
level, respectively; while for KS distance is 3.043% and 1.237%.

For GUB method, we observe that the average excess of realized
losses per $100 invested is between $-9.92 (Bitcoin) and $-2.35 (Gold)
at 95% confidence level and, between $-5.86 (Bitcoin) and $-1.22
(Gold) at 99%; while for KS distance method is between $-12.35
(Bitcoin) and $-2.79 (Gold) at 95% and $-7.09 (Bitcoin) and $-1.48
(Gold) at 99%.

Regarding the average overestimate of risk, note that, for GUB
method, the values are between $7.28 (Bitcoin) and $1.96 (SP500) at

95%, while at 99% confidence level the range is $3.17 (Bitcoin) and
$0.71 (SP500). For KS distance method, the range are $9.21 (Bitcoin)
and $2.14 (SP500) at 95%, while at 99% the values are between $4.52
(Bitcoin) and $0.88 (SP500).

In short, when we use the GUB methodology to estimate the tail
index then, we obtain a VaR GPD with a percentage of exceeded losses
does not exceed for any asset and confidence level the limit of (1 — con-
fidence level) and lower percentage of exceeded losses than KS distance
method. Also, both overestimation and underestimation of risk over
the actual outcome for GUB method is lower than using KS distance
method. Finally, we compare the ratio of capital consumption due to
risk overestimation over risk underestimation for both methods and we
find that, for all assets, if we use the KS distance method, the capital
consumption due to risk overestimation for $1 of risk underestimation
is higher than using the GUB method. Therefore, the results of the GUB
method in the estimation of univariate risk by VaR GPD are better than
those obtained by the KS distance method.

4.2. Empirical results for multivariate estimates

To analyze the multivariate GUB results in risk measurement, we
first show in Table 6 the mean correlations among asset returns. We
estimate the correlation as Kendall rank correlation since (Embrechts
et al., 2009), among others, pointed out that this estimation method
produces less volatile (more robust) results with respect to outliers than
other methods such as Pearson’s correlation.

The results in Table 6 shows that in daily frequency estimating
the correlation matrix over the total sample either using Kendall’s
coefficient underestimates the extreme dependence between assets.
For example, in the case of Gold, if we use the whole sample, the
correlations are negative with the majority of assets, which would
indicate that on average it is a safe haven asset, which is useful to
know for pricing assets; but if we estimate the correlation using only the
negative outliers of the series (Bad data), we find that the correlation
is positive in all cases, so that Gold behaves like the other assets in the
sample when faced with extreme events.
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Table 5
Value at Risk estimate per $100 invested in each asset.

Method Level Estimate Bitcoin Gold Brent Nasdaq SP500 Real Estate

KS distance scale mean value 1.1142 0.9571 0.9823 0.9138 0.9017 0.9109
GUB mean 1.0131 0.9252 0.9557 0.9346 0.9221 0.9245

KS distance
95%

% excess 3.043% 1.357% 1.602% 1.596% 1.538% 1.872%
mean exc. −12.35 −2.79 −3.98 −3.91 −3.94 −5.38
mean over. 9.21 2.61 2.37 2.66 2.14 4.31
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 0.75 0.94 0.60 0.68 0.54 0.80

99%
% excess 1.237% 0.622% 0.611% 0.495% 0.513% 0.894%
mean exc. −7.09 −1.48 −1.95 −1.93 −1.97 −2.94
mean over. 4.52 1.36 1.01 1.23 0.88 2.29
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 0.64 0.92 0.52 0.64 0.45 0.78

GUB

95%
% excess 2.081% 1.231% 1.613% 1.657% 1.526% 1.789%
mean exc. −9.92 −2.35 −4.19 −4.07 −3.84 −5.21
mean over. 7.28 2.06 2.44 2.72 1.96 3.99
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 0.73 0.88 0.58 0.67 0.51 0.77

99%
% excess 0.874% 0.412% 0.643% 0.557% 0.486% 0.766%
mean exc. −5.86 −1.22 −1.99 −2.03 −1.82 −2.79
mean over. 3.17 1.05 1.02 1.28 0.71 2.11
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 0.54 0.86 0.51 0.63 0.39 0.76

Note: %𝑒𝑥𝑐𝑒𝑠𝑠 is the ratio of the number of dates on which the outcome was worse than the estimated risk to the total number of dates; 𝑚𝑒𝑎𝑛
𝑒𝑥𝑐. is the average excess of actual losses over estimated risk when such losses were worse than the risk; 𝑚𝑒𝑎𝑛 𝑜𝑣𝑒𝑟. is the average excess of
the risk over the actual result when such risk was lower than the result obtained (overestimate).

Table 6
Mean Kendall correlation matrix.

Assets Bitcoin Gold Brent Nasdaq SP500 Real Estate

For all data

Bitcoin 1 0.0308 0.0206 0.0512 0.0503 0.0389
Gold 0.0308 1 0.0441 −0.0292 −0.0314
Brent 0.0206 0.0441 1 0.1694 0.2058 0.1148
Nasdaq 0.0512 −0.0292 0.1694 1 0.7911 0.4230
SP500 0.0503 −0.0314 0.2058 0.7911 1 0.4996
Real Estate 0.0389 0.0427 0.1148 0.4230 0.4996 1

For Bad data

Bitcoin 1 0.0459 0.0676 0.1191 0.1331 0.1104
Gold 0.0459 1 0.0758 0.0640 0.0831 0.1482
Brent 0.0676 0.0758 1 0.2501 0.3058 0.2327
Nasdaq 0.1191 0.0640 0.2501 1 0.8764 0.5092
SP500 0.1331 0.0831 0.3058 0.8764 1 0.5971
Real Estate 0.1104 0.1482 0.2327 0.5092 0.5971 1

Now, based on the individual asset risk estimates and using the
correlation matrices estimated in each moment of sample period, we
calculate the risk of the equal-weighted portfolio for a time horizon of 1
day and confidence levels of 95% and 99%. To do so, we apply the GUB
methodology described above (see expressions (9) and (10)) and for
comparison, we also estimate multivariate Gaussian risk (see expression
(8)) and t-Student copula with 10,000 simulations and fitting the
freedom degree by maximum log-likelihood. The results are shown in
Table 7.

The results in Table 7 show that only the Gaussian multivariate
estimate exceeds the allowed percentage of loss (1 minus confidence
level). Also, we note that t-Student copula shows lower number of
excess on losses than GUB method, as a consequence, we observe that
the mean excess of realized loss over estimated loss for the t-Student
copula is lower than for the GUB methodology, but the overestimation
of risk over actual return (when the actual return is no worse than
the estimated loss) for the t-Student copula is higher than for the GUB
methodology. Therefore, GUB method consumes less capital unneces-
sarily (overestimation) per $1 of loss in excess of the estimated loss than
the t-Student copula, in particular, while GUB approach show values
of $1.16 and $1.46 at 95% and 99%, respectively; t-Student copula
presents values of $1.98 (95%) and $3.07 (99%). In short, the risk
overestimation of the t-Student copula versus the GUB method is much
higher than the excess loss of the latter versus the t-Student copula, so
that the higher unnecessary capital consumption of the copula makes

its performance lower than the GUB approach. In addition, the GUB
approach is computationally faster than the t-Student copula.

Finally, to analyze the versatility of the GUB methodology, we esti-
mate the extreme dependence indexes between the assets that make up
the portfolio. From Zhang (2008) and Embrechts et al. (2009), we know
the total tail dependence for a pair of assets is the extreme dependence
between up–up, up–down, down–up and down–down tails (for more
details see expressions 5.1 to 5.4 in Embrechts et al., 2009). Besides,
these empirical research point out that Archimedean copulas have no
negative tail dependence and, elliptical distribution has symmetrical
extreme dependence, i.e., up–down dependence is equal to down–
up for each pair of assets. Thus, compared to this methodology, the
GUB decomposition is more flexible since it allows determining the
extreme dependencies (correlations) and also the extreme dependence
indexes empirically. GUB approach is more ease and does not assume
the symmetry of the elliptic distributions nor the non-negativity of
the extreme dependence of the Archimedean copulas. Then, extreme
dependence indexes (𝜆) between two pair of assets 𝑖 and 𝑗 are:

𝜆
𝑧𝑖 ,𝑧𝑗
𝑖,𝑗 = 1

𝑇

𝑇
∑

𝑡=1
𝟏(𝑧𝑖,𝑡 ⋅ 𝑧𝑗,𝑡 ≠ 0) (12)

Where 𝑧 is Good, Usual or Bad values for 𝑖-asset and 𝑗-asset and
then, we obtain nine dependence index, i.e., extreme dependence in-
dexes (Good–Good, Good–Bad, Bad–Good and Bad–Bad) and, we also
find the normal dependence (Usual–Usual, Usual–Good, Usual–Bad,
Good–Usual and Bad–Usual).

Table 8 shows the Kendall rank correlation for all combinations
(Good–Usual–Bad) and for each pair of assets.

From results in Table 8, we note that when the decomposition
component of the series is the same (e.g. Good–Good), the correlation
matrix is symmetric, whereas when the decomposition component is
different (e.g. Good–Usual) the correlation matrix is asymmetric. For
example, the Good–Good correlation between SP500 and Real Estate is
0.62, whereas the Good (SP500)-Bad(Real Estate) correlation is 0.0825,
while the Good (Real Estate)-Bad(SP500) correlation is 0.0778. There-
fore, GUB methodology is flexible enough to measure the dependence
between assets and respecting the lack of asymmetry between the
different parts of the probability distributions.

Analyzing the results of Table 8, we observe that when both assets
show the same behavior (Good–Good, Usual–Usual and Bad–Bad) the
significant correlations occur between Brent, Nasdaq, SP500 and Real
Estate. In the case of Good–Usual and Usual–Good, Brent is the only
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Table 7
Results for multivariate estimate of risk per $100 invested in equal-weighted portfolio.

Method Confidence Level Estimate Value

Gaussian multivariate

95%

% excess 5.945%
mean excess −13.32
mean overestimate 13.45
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 1.01
mean computing time 2 min. 18 s

99%

% excess 1.315%
mean excess −9.82
mean overestimate 15.61
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 1.59
mean computing time 2 min. 21 s

t-Student copula

95%

% excess 1.022%
mean excess −8.17
mean overestimate 16.22
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 1.98
mean computing time 18 min. 52 s

99%

% excess 0.938%
mean excess −6.25
mean overestimate 19.21
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 3.07
mean computing time 18 min. 56 s

GUB decomposition

95%

% excess 1.735%
mean excess −8.81
mean overestimate 10.23
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 1.16
mean computing time 12 min. 33 s

99%

% excess 0.980%
mean excess −7.64
mean overestimate 11.17
|

𝑚𝑒𝑎𝑛𝑜𝑣𝑒𝑟.
𝑚𝑒𝑎𝑛𝑒𝑥𝑐.

| 1.46
mean computing time 12 min. 41 s

Note: %𝑒𝑥𝑐𝑒𝑠𝑠 is the ratio of the number of dates on which the outcome was worse than the estimated risk
to the total number of dates; 𝑚𝑒𝑎𝑛 𝑒𝑥𝑐. is the average excess of actual losses over estimated risk when such
losses were worse than the risk; 𝑚𝑒𝑎𝑛 𝑜𝑣𝑒𝑟. is the average excess of the risk over the actual result when
such risk was lower than the result obtained (overestimate), 𝑚𝑒𝑎𝑛 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 is the mean time of the
estimates.

asset that shows a relationship with the rest, except for Gold and Real
Estate. When the relationship is Usual–Bad and Bad–Usual, Gold is the
only asset that shows no relationship in any sense with the rest. Finally,
in the Good–Usual and Usual–Good relationships, Gold and Real Estate
are the ones that show this type of dependence with respect to the rest
of the assets except Bitcoin and Brent. In summary, Bitcoin does not
show a significant relationship with any of the other assets except in the
Usual situation and with Brent. Brent shows relationship with all assets
except Gold for Good and Usual situation. The highest correlations are
observed between SP500 and Nasdaq. Finally, Gold, and to a lesser
extent Real Estate, are the only assets that show a significant Good–Bad
relationship.

Finally, Table 9 shows the dependency indexes for each pair of
assets using expression-(12).

From the results of the Table 9, note that, when the behavior of
the assets is the same (Good–Good, Usual–Usual and Bad–Bad), Gold is
the only asset that does not show a significant dependence index with
the rest of the assets. When the relationship is one of the following:
Good–Usual (Usual–Good) and Bad–Usual (Usual–Bad) then, we find
that Bitcoin shows the most significant dependence indexes, i.e., in a
Usual situation, investors seek a more extreme position (Good or Bad)
that can bring them higher profits by assuming greater risks. Finally,
in the Good–Bad (Bad–Good) situation, we again find that, as with the
correlations, Gold is the asset with the highest number of significant
extreme dependence indexes, this mean that the investor perceives it
as a safe-haven asset in situations of extreme risk.

5. Conclusions

The estimate of the market risk of assets is a field of research within
finance that is constantly evolving in response to the needs of economic
agents in asset management and compliance with risk regulations.

Unlike asset pricing, which analyzes the entire distribution of re-
turns, risk analysis focuses on the downside tail of returns. Further-
more, this analysis involves two parameters that are usually set a priori:
the time horizon and the confidence level. While the former must
take into account the economic agent’s investment term policy and
the liquidity of the asset, the latter does not seem to depend on any
objective criterion. Moreover, in common practice, both parameters are
usually set arbitrarily in financial regulation.

The objective of this empirical study is to help economic agents
and regulators to objectively determine the level of confidence in risk
estimates. To do so, we analyze the index of the downside tail of the
return’s distribution.

There is a vast literature on estimating the tail index, but there
is no consensus on how to determine the threshold of the downside
tail of the returns, i.e., where the tail of the distribution begins and
therefore with what data we have to carry out the estimate of the
index. This is highly relevant, since the literature has shown that risk
estimates using the generalized Pareto distribution to adjust the tail of
the distribution obtain more consistent results than other proposals that
adjust the total distribution. However, using this distribution requires
an adequate estimate of the beginning of the tail, since this conditions
the subsequent estimate of the tail index, and this, in turn, conditions
the estimate of the scale parameter.

We propose a method to determine the beginning of the downward
tail of the distribution that is based on González-Sánchez (2021) and
that allows us to separate the return series of an asset into three linearly
independent components (GUB) so that the tails would be reflected by
the positive and negative outliers, respectively, while the central part
of the distribution is adjusted to a normal distribution.

For a sample of six USD-quoted assets representative of differ-
ent markets and with different characteristics (Bitcoin, Gold, Nasdaq,
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Table 8
Kendall correlation for GUB decomposition time series.

Bitcoin Gold Brent Nasdaq SP500 Real Estate

Good–Good

Bitcoin 1 0.0492 −0.0217 0.0267 0.0133 0.0105
Gold 0.0492 1 0.0498 0.0917 0.1048 0.1124
Brent −0.0217 0.0498 1 0.1482[**] 0.1754[**] 0.1052[**]
Nasdaq 0.0267 0.0917 0.1482[**] 1 0.826[**] 0.5207[**]
SP500 0.0133 0.1048 0.1754[**] 0.826[**] 1 0.62[**]
Real Estate 0.0105 0.1124 0.1052[**] 0.5207[**] 0.62[**] 1

Usual–Usual

Bitcoin 1 0.0214 0.0296[*] 0.0108 −0.008 −0.0169
Gold 0.0214 1 0.0552 −0.0328[*] −0.04 0.0394[**]
Brent 0.0296[*] 0.0552 1 0.1101 0.1454[**] 0.0542[**]
Nasdaq 0.0108 −0.0328[*] 0.1101 1 0.6372[**] 0.2089[*]
SP500 −0.008 −0.04 0.1454[**] 0.6372[**] 1 0.2777[**]
Real Estate −0.0169 0.0394[**] 0.0542[**] 0.2089[*] 0.2777[**] 1

Bad–Bad

Bitcoin 1 0.0459 0.0676 0.1191 0.1331 0.1104
Gold 0.0459 1 0.0758[*] 0.064 0.0831 0.1482[*]
Brent 0.0676 0.0758[*] 1 0.2501[*] 0.3058[**] 0.2327[*]
Nasdaq 0.1191 0.064 0.2501[*] 1 0.8764[**] 0.5092[**]
SP500 0.1331 0.0831 0.3058[**] 0.8764[**] 1 0.5971[**]
Real Estate 0.1104 0.1482[*] 0.2327[*] 0.5092[**] 0.5971[**] 1

Good–Usual and Usual–Good

Bitcoin 0 0.0171 −0.0218[*] 0.0221 0.0106 −0.0076
Gold 0.0141 0 0.003 −0.0226 −0.0139 0.0016
Brent 0.0239[*] 0.0223 0 0.0175 0.0269 0.0410
Nasdaq 0.0011 −0.0347 0.0559[**] 0 0.078 0.0892
SP500 0.0085 −0.0284 0.0677[**] 0.1072 0 0.1045
Real Estate 0.0051 0.0103 0.0119 0.0953 0.0691 0

Good–Bad and Bad–Good

Bitcoin 0 −0.0076 0.0129 −0.0099 −0.005 0.0137
Gold 0.003 0 −0.0313 −0.1017[**] −0.1282[**] −0.0654[**]
Brent 0.0065 0.0049 0 0.0113 0.0219 −0.0078
Nasdaq 0.023 −0.0573 0.0231 0 0.0835 0.0749
SP500 0.0189 −0.0712 0.0255 0.0875 0 0.0825
Real Estate 0.0248 −0.0735 −0.0034 −0.0728[**] −0.0778[**] 0

Usual–Bad and Bad–Usual

Bitcoin 0 0.0291 0.0037 0.0366[*] 0.0364[**] −0.0004
Gold −0.0035 0 −0.0004 −0.0534 −0.0573 0.0153
Brent 0.0146 0.0297 0 0.1005[**] 0.1141 0.055[**]
Nasdaq 0.0112 0.0281 0.0791 0 0.1283 0.13[**]
SP500 0.0178 0.0179 0.0908[**] 0.1033 0 0.129[**]
Real Estate −0.0126 0.0244 0.0156 0.1271 0.1379[**] 0

Note: [**] and [*] mean significant at 1% and 5%, respectively.

S&P-500, Brent and Dow Jones Real Estate), we compare the results
obtained from the usual minimum KS distance and GUB method and
find that the thresholds estimate using GUB method are lower volatile
and more Gaussian. Besides, risk univariate estimate using GUB ap-
proach show lower excess of realized loss and lower overestimates. We
conclude that GUB method shows better results than KS distance since
it is a methodology that fits the central part of the distribution, while KS
only fits the data from the tail of the distribution and, as a consequence,
GUB uses a larger number of observations than KS distance.

In addition, we analyze the results for risk measurement of a port-
folio composed of the six assets above using 3 multivariate method-
ologies: multivariate normal distribution, t-Student copula and multi-
variate dependence GUB decomposition. We find that our approach,
without exceeding the excess loss limit (unlike the multivariate nor-
mal), is more economical in terms of capital consumption than the
t-Student copula. Moreover, the GUB decomposition allows us to an-
alyze the extreme dependence of asset returns without selecting a
priori the starting percentile of the tail, as the extreme dependence
co-movements measures do, and also allows us to estimate empirically
the extreme dependence indexes, avoiding the implicit restrictions of
the elliptic and Archimedean copulas. The results show that Gold is

safe-have asset when the relationship is Good–Bad, whereas if the
relationship is of the type Usual–Bad, the investors replace equities
for Bitcoin, seeking potentially higher returns in trade-offs for higher
risk-taking.

Finally, from the results obtained by applying the proposed method-
ology based on a low computational intensity partitioning of the series
of individual asset returns, we provide answers to several relevant
questions: estimating the threshold for the beginning of the tail of
the distribution and analysis of the extreme dependence between the
different components into which the original series of returns of the
assets, included in the portfolio, are divided.
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Table 9
Dependence indexes for GUB decomposition time series.

Bitcoin Gold Brent Nasdaq SP500 Real Estate

Good–Good

Bitcoin 0.1629[**] 0.0146 0.0072[**] 0.0186 0.0186[*] 0.0145[**]
Gold 0.0146 0.0605 0.0063 0.0076 0.009 0.0083
Brent 0.0072[**] 0.0063 0.0622[**] 0.0144[*] 0.0181[**] 0.0113[*]
Nasdaq 0.0186 0.0076 0.0144[*] 0.1052[*] 0.0763[*] 0.0405[*]
SP500 0.0186[*] 0.009 0.0181[**] 0.0763[*] 0.1155[**] 0.0509[**]
Real Estate 0.0145[**] 0.0083 0.0113[*] 0.0405[*] 0.0509[**] 0.0929[**]

Usual–Usual

Bitcoin 0.6973[**] 0.6166[**] 0.5953[**] 0.5579[**] 0.5501[**] 0.5586[**]
Gold 0.6166[**] 0.8718[**] 0.7524[**] 0.7037[**] 0.6994[**] 0.7108[**]
Brent 0.5953[**] 0.7524[**] 0.8539[**] 0.7002[**] 0.6943[**] 0.7023[**]
Nasdaq 0.5579[**] 0.7037[**] 0.7002[**] 0.8001[**] 0.7357[**] 0.688[**]
SP500 0.5501[**] 0.6994[**] 0.6943[**] 0.7357[**] 0.7882[**] 0.6911[**]
Real Estate 0.5586[**] 0.7108[**] 0.7023[**] 0.688[**] 0.6911[**] 0.8044[**]

Bad–Bad

Bitcoin 0.1248[**] 0.0077 0.0151[**] 0.0134[**] 0.0141[**] 0.0147[*]
Gold 0.0077 0.0632 0.0093 0.0059 0.0073 0.0105[*]
Brent 0.0151[**] 0.0093 0.077[**] 0.0193[**] 0.0227[**] 0.0171[*]
Nasdaq 0.0134[**] 0.0059 0.0193[**] 0.0942[**] 0.0709[**] 0.0394[**]
SP500 0.0141[**] 0.0073 0.0227[**] 0.0709[**] 0.0956[**] 0.0457[**]
Real Estate 0.0147[*] 0.0105[*] 0.0171[*] 0.0394[**] 0.0457[**] 0.1013[**]

Good–Usual and Usual–Good

Bitcoin 0.1374[**] 0.1435[**] 0.1282[**] 0.1276[**] 0.1335[**]
Gold 0.0352 0.047 0.0435 0.0399 0.0448
Brent 0.0473[**] 0.0524[**] 0.0422[**] 0.0398[**] 0.0438[**]
Nasdaq 0.0759 0.0895 0.0846 0.029 0.0626
SP500 0.084[**] 0.0961[*] 0.0906[**] 0.0391 0.063[*]
Real Estate 0.0687[*] 0.0771[*] 0.0732[*] 0.0509 0.0417

Good–Bad and Bad–Good

Bitcoin 0.0091 0.0069 0.0095[*] 0.0116[*] 0.0075[*]
Gold 0.0109 0.0112[**] 0.0161[**] 0.0167[**] 0.0149[*]
Brent 0.0073[**] 0.0033 0.0056 0.0044 0.0071[**]
Nasdaq 0.0098 0.0081 0.005 0.0010 0.002
SP500 0.0116[**] 0.0101[*] 0.0059 0.0002 0.0015
Real Estate 0.0089 0.0073[*] 0.0078 0.0015 0.0002

Usual–Bad and Bad–Usual

Bitcoin 0.0417 0.0498[**] 0.0631[*] 0.0626[**] 0.0697[**]
Gold 0.1074[**] 0.0608[**] 0.0781[*] 0.0757[**] 0.0828[**]
Brent 0.1016[**] 0.0504 0.0691[*] 0.0683[**] 0.0771[**]
Nasdaq 0.1017[**] 0.0492 0.0522[**] 0.0247 0.0599[**]
SP500 0.0992[**] 0.0458 0.0484[**] 0.0231 0.054[**]
Real Estate 0.1004[**] 0.0452 0.0521[**] 0.0534[*] 0.0497[**]

Note: [**] and [*] mean significant at 1% and 5%, respectively.
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