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Abstract 

The effect of the structure of copolymers (random, alternate or diblock) on their dynamics has been 

studied by dielectric spectroscopy. Six copolymers of styrene and methyl methacrylate (three diblocks, 

one alternate and two random) have been studied. The results show that the sub-Tg transitions of the 

diblock samples can be described by one asymmetric Havriliak-Negami (HN) function, while two are 

necessary for the rest of the copolymers (β and γ relaxations). The characteristic times of the sub-Tg 

relaxations show an Arrhenius temperature dependence and there is a strong coupling of the α and β 

relaxations at high temperatures. The deconvolution of the merging relaxations has been made in the 

framework of the Williams Ansatz set out in terms of Havriliak-Negami distributions. The γ relaxation 

may be assigned to the rotation of the methyl methacrylate group in a styrene-rich environment. The 

Molecular Dynamics simulations of a poly(methyl methacrylate) homopolymer and of the alternate 

copolymer are in qualitative agreement with the experimental results, although they predict smaller 

values for the activation energy of the sub-Tg relaxations. 

 

 

I. Introduction 

Copolymers have attracted much attention because they can be frequently used to tune the properties 

of a material between those of the corresponding homopolymers, they may be used as compatibilizers, 

and, in the case of block copolymers, they form ordered structures at the nanometer scale below the so-

called order-disorder transition temperature [1,2]. In the case of copolymers, the final value of a given 

property, e.g. the melting, Tm, or the glass transition temperature, Tg, do not only depend on the 

monomer composition, but also on the architecture of the copolymer: random, alternate or block [2,3]. 

In the case of block copolymers in which the two blocks have well separated Tg’s, the dynamics of 

the low-Tg blocks can be affected by the presence of a rigid phase, thus being rather different than the 
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dynamics of the corresponding homopolymer [4-9]. In a recent work, using dielectric relaxation and 

dynamic mechanical spectroscopy techniques, Encinar et al. [10] have studied the dynamics of the 

polystyrene-b-poly(t-butyl acrylate) (PS-b-PtBa) copolymers. They found that the relaxation times of 

the α relaxation of the PtBa blocks are very close to that of the PtBa homopolymer for temperatures that 

are below the Tg of PS but still well above that of PtBa. In the case of PS-co-PtBa random and alternate 

copolymers, which were found to be one phase disordered materials, concentration fluctuations of 

relatively short range played an important role in the dynamic properties leading to a broadening of the 

dynamic relaxations, an effect which is similar to the one described years ago for polymer blends [11]. 

Moreover, they found that the existence of a glassy PS phase modified the relaxation times of the 

β relaxation of the PtBa groups with respect to that of the PtBa homopolymer, a result that was 

somewhat surprising due to the relatively local character of the sub-glass transition. These conclusions 

were qualitatively confirmed by Molecular Dynamics simulations that also showed an unusual behavior 

in the short time range and yielded a semi-quantitative agreement with the experimental data. In recent 

years the equilibrium properties and phase diagram of diblock copolymers formed by styrene and an n-

alkyl methacrylate (n being the number of carbon atoms of the lateral chain) have been studied in detail 

because of their departure from the classical behaviour [12-14]. While the copolymers with methyl 

methacrylate and with n > 5 present an order-disorder transition when the temperature is increased, 

those with 2 ≤ n ≤ 4 are unusual because the transition takes place when the temperature is decreased. 

More recently, Ahn et al. [15] have studied the phase behaviour of polystyrene-b-poly(methyl 

methacrylate) (PS-b-PMMA). In the case of poly(styrene-co-alkyl acrylate) copolymers, the acrylate 

monomers have a dielectric strength one hundred times higher that of the styrene monomers[16]). 

Bergman et al. [17], and Arbe et al. [18] have studied the dynamic behaviour of poly(n-alkyl 

methacrylates) using several experimental techniques. Previous studies by Schmidt-Rohr et al [19], and 

by de Dens et al. [20] have pointed out that the origin of the β transition in PMMA is a 180º flip of the 

OCO plane of the methacrylate group. Moreover, this motion seems to be associated to a distribution of 
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correlation times that appears to be bimodal with both mobile and immobile side groups. The side-group 

flip is accompanied by a main-chain rearrangement which corresponds to a random rotation around the 

local chain axis. More recently, Morais et al. have carried out a detailed study of the dynamics of 

random, alternate and block copolymers made of styrene and methyl methacrylate using dynamical 

mechanical spectroscopy (DMTA) [21]. In contrast to dielectric experiments, polystyrene and 

poly(methacrylate) chains show similar responses to mechanical stimuli. Two well differentiated glass 

transition temperatures were found for two of the three block copolymers studied, while only one was 

reported for the random, alternate, and one of the block copolymers, and all the samples studied were 

found to be thermorheologically complex. In order to describe the behaviour of the relaxation functions 

calculated from the complex Young modulus it was necessary to use two Kohlrausch-Williams-Watts 

functions for each of the temperatures studied. The bimodal character of the transitions is in agreement 

with the NMR study of Ref. [19]. Similar conclusions were reached by Ruzette et al. for diblock 

copolymers of styrene and n-alkyl methacrylates in the disordered state and for temperatures well 

separated from the order-disorder one [12]. They also found thermorheological complexity when the 

copolymers approached the order-disorder transition from the disordered phase. Pakula and Floudas 

[22] have shown that, for block copolymers in the ordered state, it is not possible to build master curves 

for the shear modulus at low frequencies. 

The goal of the present work is to study the dynamics of copolymers made of styrene and methyl 

methacrylate using dielectric spectroscopy, where only the methyl methacrylate monomer is 

significantly active. The results for diblock, random and alternate copolymers will be compared; both 

single phase and microphase separated samples have been studied. It will be shown that for the random 

and alternate copolymers present two sub-Tg dynamic processes, while the block copolymers show only 

one sub-glass transition in the temperature-frequency range studied. Also, in the case of the block 

copolymers, the temperature dependence of the relaxation times of the α and β relaxations is different 
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for the one phase and for the microsegregated samples. Moreover, Dynamic Molecular simulations will 

be performed to qualitatively compare the trends obtained experimentally for the local transitions. 

Due to the proximity of the calorimetric Tg’s of PS and PMMA, the analysis of the data in the 

frequency domain (loss modulus vs. frequency curves) has not allowed to resolve the contributions of 

the two different dynamic modes found near the glass transition [23-26]. This is a problem frequently 

found in this type of systems. However, we will point out that the analysis of the data in the time 

domain makes such a task possible, showing that at low temperatures it is necessary to use two 

empirical functions to describe the sub Tg behaviour. Above the glass transition, the merging of the 

segmental and secondary relaxations will be analysed in terms of a Williams Ansatz approximation and 

using Havriliak Negami distributions to describe the time domain relaxation functions. 
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II. Experimental and Molecular Dynamics Methods 

 

The copolymers were purchased from Polymer Source (Canada). Gel permeation chromatography 

using tetrahydrofuran as solvent was used to determine the overall molecular weight, and the 

polydispersity index Mw/Mn. The relative content of the co-monomers was obtained by NMR. The 

characteristics of the different samples are given in Table 1.  

The dielectric spectrometer used was the same of a previous work [28], although in the present work 

case an Alpha-N Novocontrol analyzer was used in the frequency range from 10-2 Hz to 106 Hz. A liquid 

nitrogen cryostat mantained the temperature within ±0.1K. The samples were introduced in a parallel-

plate capacitor (0.1 mm thickness and 30 mm in diameter) and kept under vacuum above the Tg of 

PMMA in order to erase the previous thermal history. All the measurements were carried out in the 

isothermal mode.  

The Molecular Dynamics simulation of atactic PMMA chains and of alternate copolymers chains 

(with regular stereochemistry so that phenyl and ester groups are placed at the same side along the 

polymer backbone) was carried out using the second-generation PCFF forcefield [29] without crossed 

terms. PCFF improves the previous CFF91 forcefield for application to polymers and organic materials 

in calculations of cohesive energies, mechanical properties, compressibilities, heat capacities and elastic 

constants. It handles electron delocalization in aromatic rings by means of a charge library rather than 

bond increments. Simulations were performed for temperatures 500, 600, 700, 800 and 1100 K using a 

step time of 1 fs, the Berendsen thermostat, periodic boundary conditions and the NVT ensemble. High 

enough temperatures were chosen to allow for an accurate characterization of the relaxation of local 

motions within the time range covered by the simulation trajectories. The systems were formed by ten 

chains each containing ten repeating units (or monomers), and were equilibrated with an initial 5 ns 

simulation with density of 0.7 g/cm3 at the highest temperature. Several similar runs were performed to 

reach the desired temperatures, and then NPT simulations were performed at each temperature so that 
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the systems acquired a density close to real. The system properties were analysed from the trajectories 

corresponding to final 5ns NVT production runs, with a step time of 1 fs. These trajectories were saved 

using recording times in the 5-25 ps range. The analysis focused in the ester groups, in particular the 

rotational angle, Φ, defined by the –(C-C-C-O)- bonds partially included in the ester moieties and the 

orientation of the C=O bond. For our atactic PMMA chains we only analysed five ester groups 

stereochemically placed at a given side (which we define as the dextro, or d, stereochemical disposition) 

along an atactic chain backbone. For the alternate chain we analysed the four groups for which the ester 

group is between phenyls. The distribution of rotational angles is very similar for both types of chains, 

showing two minima, separated by a relatively high rotational angle. Considering the d stereochemical 

disposition of the groups, the minima are located at the approximate values Φ= -60º, +120º, separated 

by a relatively high rotational barrier. This is consistent with the common description of the β relaxation 

of PMMA chains as a rotation of about 180º around the C-COO bond, i.e. a two-site jump (or flip) [19]. 

Therefore, we have tried to explain the different experimental behaviors of homopolymer and alternate 

copolymers by studying the time evolution of the C=O orientation along our dynamic trajectories, since 

it has been demonstrated time ago that the dipole moment of the ester group is nearly antiparallel to this 

bond vector [30]. 

 
III. Results and Discussion 

The set of samples studied in this work have been previously characterized by means of differential 

scanning calorimetry and dynamic mechanical analysis [21]. In that work (see Table 2 and Fig. 1 of 

Reference [21]), it was observed that two of the diblock copolymers (D2 and D3) showed two separate 

glass transitions as a consequence of their microphase segregated nature. On the other hand, the D1 

sample (with the smallest PMMA block) shows only one Tg and it was found to be homogeneous at the 

level of a 10 nm scale. Finally, the random and alternate copolymers showed only one glass transition.  
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A. Dielectric Relaxations. A selected set of the dielectric loss curves as a function of frequency are 

presented in Figures 1, 2 and 3 for the samples A1, R2 and D2, respectively. The data correspond to 

temperatures above (a) and below (b) the glass transition region. 

At high temperatures, the alternate copolymer A1 (see Fig. 1a) shows a conductive process (σ) that 

appears as a strong growth of the imaginary part of the permittivity at low frequencies. In this 

temperature range, the α relaxation overlaps the low frequency wing of the β process. A similar 

behaviour was observed for the random copolymers R1 (not shown), R2 (see Fig. 2a) and the disordered 

diblock sample D1 (not shown). On the other hand, the microsegregated diblock samples, D2 (see Fig. 

3a) and D3 (not shown) do not show an explicit α peak in the glass transition region. The analysis of 

the dielectric loss curves has been made by fitting the experimental results to the equation:  
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k HN k
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where 2 fω π=  is the angular frequency. The first term of the right hand side accounts for the ionic 

conductivity (σ), the deviation of the exponent 0 ≤ s ≤ 1 from the unity (d.c. conductivity) represents the 

effect of blocking phenomena in the migration of charge carriers, and ε0 is the dielectric permittivity of 

the vacuum. The sum describes the relaxation peaks, α and β, as Havriliak Negami (HN) model 

functions [31], εΔ  being the dielectric strength (i.e. the difference of the real part of the dielectric 

permittivity between the relaxed and unrelaxed state); HNτ  is the parametric relaxation time, and a and 

b (0 ≤ a, ab ≤ 1) are the shape exponents, related to the width and asymmetry of the relaxation. It has to 

be stressed that only when the σ, α and β contributions appeared at separate frequencies, all the 

parameters were allowed to be freely fitted. Even when the β relaxation peak is well defined (R2, D1, 

D2 and D3 samples), a complete HN function has been necessary to describe it; the asymmetric nature 

of the secondary relaxation is in agreement with the results found for the PMMA homopolymer [24]. 

When the segmental and secondary relaxations strongly overlap the determination of the shape 
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parameters becomes difficult. In this case, the α relaxation− right wing of the band (exponent bα) and 

the β relaxation−left wing of the band (exponent aβ) were fixed to values extrapolated from low 

temperatures. Finally, it is essential to use the expression (1) to describe the loss curves of the samples 

D2 (see Fig. 3a) and D3, specially the minimum between the conductivity and the secondary process. 

However, in this case a symmetric α peak (aα =bα with fixed value) gave satisfactory results.  

In the sub Tg region, the A1 (Fig. 1b) and R1 (not shown) copolymers show two clear peaks, 

assigned to the β and γ relaxations, respectively; whereas R2 (see Fig. 2b), D1, D2 (Fig. 3b) and D3 

show only a β peak. In the frequency domain the low temperature loss curves of A1 and R1 were 

analyzed in terms of the expression: 

 
, ,(i )

''( ) Im
1 kk

k
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k HN kβ γ ωτ
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where now the HN functions describe the secondary β and γ processes. Both peaks were described 

using asymmetrical functions to ensure a good fitting quality, which is consistent with the asymmetric 

character of the β relaxation at high temperatures. However, when the overlapping is strong, the shape 

parameters bβ and aγ were fixed to estimated values, obtained by means from a first free fitting. As it 

can be seen in the Fig. 2b a single HN function is not appropriate to describe the loss curves of the 

sample R2, underestimating the high frequency flank, whereas it is sufficient for the samples D1, D2 

(Fig. 3b) and D3.  

An alternative analysis of the R2 isotherms can be done in the time domain region, by transforming 

the complex permittivity to retardation spectra using a non linear regularization method [26, 32, 33]. We 

have fitted this set of spectra using a linear combination of two time-domain Havriliak Negami 

distributions, 
,
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with 
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for 0θ> . Otherwise if 0θ < then ,arctan ( , , )k k HN k k kf a bθ τ π⎡ ⎤= +⎣ ⎦ , where ,( , , )k HN k k kf a bτ  is the 

argument of the trigonometric function in Eq. (3b) [34]. The ,( , , , )k HN k k ka bε τΔ  parameters have the 

same meaning as in the frequency domain function, e.g. see Eqs. (1-2). The aγ parameter was fixed to an 

estimated value from a first free fitting. For the sake of example, Figure 4 shows the results obtained by 

this procedure for the temperature 275 K and the existence of two sub Tg processes for the sample R2 is 

clearly visible.  

Following the procedure described above, it was possible to fit all the frequency domain loss curves, 

and to build the relaxation map for the different relaxation processes. Figure 5 plots the temperature 

dependence of the dielectric relaxation strength for the samples A1, R2 and D2. It can be observed that 

the dielectric strength of the secondary relaxations increases slightly in the sub Tg region which is 

consistent with a thermally activated mechanism. The increasing rate of the β relaxation strength is 

higher above Tg due to the lower viscosity. On the other hand, the α relaxation strength for the samples 

A1 and R2 decreases, which is consistent with the free volume activation description of the α transition. 

The tendency of the α process strength of D2 is not clear because the contribution is hidden by the 

secondary relaxation. The rest of the samples show the following trend of the dielectric strengths: R1 ~ 

A1, D1 ~ D2 and D3 ~ D2 (results not shown). The values of the shape parameters of the secondary 

relaxations (aβ, γ ≈ 0.3-0.5, bβ, γ ≈ 0.4-0.6) are rather unusual and decrease with T (not shown). However 

for the segmental relaxation aα ≈ 0.5-0.9 and increases with T thus making the α process narrower; 

finally, bα ≈ 0.3 was almost constant. The mentioned trends are consistent with the interpretation of the 

HN exponents made by Schlosser & Schönhals [35]. Figure 6 shows the inverse temperature 

dependence of the characteristic retardation time, τmax, corresponding to the frequency of the maximum 

of the loss peaks: 
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calculated from a, b and HNτ parameters of the HN expression [35].  

In general, the secondary relaxations (β and γ) exhibit Arrhenius behaviour,  

 max 0, exp A
Arr

B

E
k T

τ τ
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

, (5) 

where τ0,Arr is a preexponential time, kB the Boltzmann constant and EA the activation energy. In the 

merging region with the α mode there are clear deviations of the activation energy for the β relaxation 

for the samples R2 (Fig. 6a) and D3 (Fig. 6b). The origin of the change in the slope can be attributed to 

a physical coupling of the relaxations [37], or to a methodological reason (statistical dependence of the 

relaxation functions [24, 38]). An alternative analysis of the R2 case will be carried out in the section 

III.B.  

In the low temperature range, one of the most important facts is the existence of two secondary 

processes for the alternate (A1) and random (R1, R2) copolymers, but only one for the diblock samples 

(D1, D2, D3). The activation energy of the β process of the syndiotactic PMMA is 79 kJ mol-1 [24], 

which is very similar to the values obtained for the diblock copolymers (see Table 2). However, for the 

A and R copolymers, EA,β differs from the value of the homopolymer, with values that may be correlated 

to the molar fraction of MMA groups in agreement with previous studies [39]. The samples A1 and R1, 

with almost the same MMA fraction (0.5 and 0.4, respectively), show the same activation energy of the 

β relaxation, 58 kJ mol-1, smaller than the one for β mode of R2 (XMMA=0.75) for which EA,β=75 kJ 

mol-1, a value close to that of PMMA; the preexponential times follow a similar pattern. The γ process 

seems to be more intense for samples A1 and R1 (with nearly equimolar quantities of MMA an S) 

 than for R2 (see Fig. 5). In the former DMTA study [21] the low time KWW contribution, presumably 

related to the secondary relaxations, showed higher activation energies than the β and the γ dielectric 
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processes for the homogeneous samples (A1, R1, R2 and D1), while they were lower for the 

microsegregated samples (D2 and D3).  

The present experimental results do not allow to rigorously determine the molecular origin of the 

additional dielectric mode, γ, but it has to be related to the only polar group, the methylmethacrylate 

monomers. It might result from the incorporation of MMA groups in statistical copolymeric 

architectures which would provide different local environments for the dielectrically active group. The 

possibility that the γ relaxation is related to the styrene fraction is clearly improbable, due to its much 

weaker dielectric response. The β relaxation in the PMMA homopolymer has been attributed to the 

rotation of methacrylate group [19], therefore it might be possible to attribute the origin of the γ 

relaxation to the rotation of the MMA monomers in a local environment rich in styrene (S) monomers, 

while the β relaxation corresponds to the rotation of MMA in local environments rich in MMA groups. 

This idea is supported by the absence of γ modes in diblock samples where the MMA group is mostly 

surrounded by other MMA monomers. Further support to this idea is given by the fact that for the R2 

sample, rich in MMA group, the intensity of the γ relaxation and the corresponding activation energy 

are smaller than for A1 and R1 (see Table 2). These results are in qualitative agreement with the results 

obtained by calorimetry [21]; in effect, the width of the glass transition regions for the PMMA block of 

the D2 and D3 samples are almost equal to that of the PMMA copolymer. Nevertheless, the Tg’s of the 

PMMA blocks in D2 and D3 are clearly shifted to higher temperatures, and for R2 the width of the glass 

transition is almost twice that of the PS homopolymer. All these results are compatible with the fact that 

there may be differences in the local environment of the two monomers as discussed above. However, 

this seems to disagree with the DMTA results of Morais et al. [21] that indicate that there was no clear 

correlation between the MMA content of the polymer and the Tg for the homogeneous samples (A1, R1, 

R2, and D1).  

The temperature dependence of the α relaxation can be described by a VFT equation: 
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 max 0, exp V
VFT

V

DT
T T

τ τ
⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

,  (6) 

where τ0,VFT is a preexponential time, D is the strength parameter which measures the deviation from the 

Arrhenius behaviour, and TV the Vogel temperature or ideal glass transition. For the subset of disordered 

samples (A1, R1, R2 and D1), with only one Tg, the dynamic glass transition is described with the 

following parameters (see Table 2): TV  ≈ 320 K and D ≈ 5-6, which reveal the relatively fragile 

character of these copolymers (D < 10) [40]. The only significant difference becomes from the 

parameter τ0,VFT ≈ 10-13-10-11 s. These results suggest that, despite the cooperative nature of α relaxation, 

for the copolymers studied it does not depend strongly on macroscopic features such as molecular 

architecture or relative composition of polar groups (MMA). Diblock copolymers D2 and D3, due to 

their microsegregated nature, are expected to present values of Tg close to that of PMMA, although it 

has been reported that τ0,VFT ≈ 10-11 s, TV  = 381 K, and D = 2 for syndiotactic homopolymer [24, that are 

rather different from the values of the D2 and D3 samples, even considering the Tg differences. The 

most likely cause of this discrepancy is that in the D2 and D3 samples the α mode has been described 

by a symmetric Cole-Cole peak, whereas the dynamic glass transition is strongly asymmetric in the case 

of PMMA. The accurate prediction of the shape of the α mode in the present samples is strongly 

complicated by the overlapping with a conductive process influenced by the interface blocking effects, 

with exponents far from unity (s ≈ 0.7). Its relatively high intensity at moderate frequencies hides 

completely the α peak (see Fig. 3a), thus complicating the analysis of the data. In contrast for a 

disordered PMMA sample the conductivity is purely ohmic (s ≈ 1) and the overlapping with dielectric 

processes is not critical. Therefore, in the context of the description made here, the α contribution to the 

dielectric loss of D2 and D3 accounts for the influence of the dynamic glass transition in the 

β relaxation through which virtually all the polarization relaxes.  
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B. Merging of the α and β Relaxations in the R2 sample. In the previous section we have used 

the classical additive approach to describe the experimental data, i.e. the relaxation peaks were fitted to 

a sum of HN empirical functions, given by Equation (1), this method will be denoted as SHN 

hereinafter. According to this, the activation energy of the β relaxation seems to be higher when it 

merges with the α relaxation as clearly observed for R2 sample (see Fig. 6). In order to study the 

merging of the relaxations for R2 an alternative analysis has been developed which is based on the 

Williams Ansatz, thus implying that the α and β relaxations are statistically independent processes [27]. 

When only autocorrelation terms are considered, a simplified version of the ansatz states that the whole 

relaxation function in the time domain is given by: 

 ( ) ( )[ (1 ) ( )]t t f f tα α α βφ φ φ= + − , (7) 

where ( )tαφ and ( )tβφ are the relaxation functions of the α and β processes, respectively, and (1 )fα−  

takes into account the partial relaxation through the mechanisms involved in the β process. When both 

modes decay at very different time scales the Eq. (7) reduces to a sum of relaxation functions and, hence 

the SHN method is appropriate. 

The starting point has been to calculate the relaxation function, exp ( )tφ  from the frequency domain 

results making use of the retardation spectra, L(ln τ) in terms of mono-exponential relaxations: 

 1 /( ) (ln ) lntt N L e dτφ τ τ
∞

− −

−∞
= ∫ , (8) 

where the constant N  and the ‘experimental’ spectra (ln )L τ  were obtained from the complex 

permittivity, ( )*ε ω , by means of the method described in the Reference [26]. The algorithm used 

implements the Tikhonov regularization method with a kernel that, besides the relaxational integral 

term, includes a conductivity contribution analogous to the σ term of Eq. (1). The spectra were 

calculated two decades above and below the experimental frequency window in order to avoid spurious 

contributions near the integration limits. Following this approach the retardation spectra for the high 
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temperature isotherms of the R2 sample (Fig. 2a) were obtained, and some of them are shown in the 

inset of the Fig. 7. The normalized relaxation functions of the Fig. 7 were calculated using Eq. (8) with 

(ln ) lnN L dτ τ
∞

−∞
= ∫  and, in this case it can be shown that N ε=Δ , the total dielectric strength. 

The second step is to choose an adequate expression of the Williams Ansatz, or Eq. (7). In previous 

studies of homopolymer systems [24-25] a Kohlrausch-Williams-Watts function was used to describe 

the α contribution, ( )tαφ . However, for multi-component systems, like copolymers, the concentration 

fluctuations broaden the dynamic glass transition and a single KWW function may fail in fitting the α 

relaxation [41]. Concerning the β relaxation the KWW function is a good candidate but it lacks 

information about the asymmetry of the process, i. e. the b exponent contained in the HN function; 

which is a problem because in the present case the β process has revealed to be notably asymmetrical. 

Therefore, we have used the same functional dependency used in the frequency domain additive 

approach (SHN) for ( )tαφ  and ( )tβφ . After combining the Williams Ansatz, the HN distributions and 

Eqs. (7) and (8) the relaxation function can be written as: 

 
1 /

,

1 1 (1/ 1/ ')
, ,

( ) (ln ; , , ) ln

(1 ) (ln ; , , ) (ln '; , , ) ln ln '

t
WA HN

t
HN HN

t f N L a b e d

f N N L a b L a b e d d

τ
α α α α α α

τ τ
α α β α α α α α β β β

φ τ τ τ

τ τ τ τ τ τ

∞
− −

−∞
∞ ∞

− − − +

−∞ −∞

= +

+ −

∫
∫ ∫

, (9) 

where ,(ln ; , , )k HN k k kL a bτ τ  are the HN distributions defined as in Eq. (3) for k=α, β processes and kN  

are normalizing constants.  

Once the experimental relaxation functions, exp ( )jtφ , have been calculated in a set of points 

, 1,...,jt j m= ; the problem is to solve the quadratic minimization: 

 2
exp

1

min | ( ) ( ) |
m

S j WA j
j

t tφ φ
=

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎣ ⎦
∑ , (10) 

where ( )WA tφ  is given by Eq. (9). The minimization is made for the general parameter set 

,( , , , , )k HN k k kS f N a bα τ≡ with ,k α β= . This approach, denoted in the following as WAHN, has been 
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implemented using commercial software (MATLAB 7.6, The MathWorks Inc., Natick, MA, 2000). 

First, the integrals are solved numerically by the composite Boole’s rule and then a sequential quadratic 

programming algorithm is used to carry out the optimization. 

As long as the experimental relaxation functions exp ( )jtφ  are normalized, the terms ( )tαφ  and ( )tβφ  

of the model function ( )WA tφ  can be also considered as normalized. That is, if (ln ) lnN L dτ τ
∞

−∞
= ∫ is 

used in Eq. (7) then the partial constants are 1kN = . The WAHN method has been applied for the 

normalized relaxation functions of R2 (Fig. 7) considering that the time scale values of the β process 

follows the low temperature extrapolated trend. That is, a non linear restriction given by the Eq. (4) has 

been introduced for the reduced parameter set ,' ( , , , )HN k k kS f a bα τ≡ , where the max ( )τ β  values have 

been extrapolated from the Arrhenius behaviour at T<Tg. This constraint reduces the number of degrees 

of freedom to six, the same free parameters used in the fitting procedure to a sum of HN functions in the 

frequency domain (SHN). The results of the WAHN method in the normalized case are shown in Fig. 7, 

where the ( )WA tφ  fits describe satisfactorily the exp ( )tφ  experimental curves. The set 'S  of optimized 

parameters can be directly compared to the parameter values resulting from the SHN method. The time 

scales of the α relaxation in the WAHN framework were calculated through Eq. (4), and, as noted 

before, the values of the β relaxation time were fixed. As can be seen in Fig. 8 the differences in the 

max ( )τ α  values comparing both methods are not systematic and might be attributed to the errors derived 

from the numerical determination of the time domain relaxation functions. It can be stated that the time 

scale of the α relaxation are the same in both approaches within their uncertainties. Furthermore, for the 

WAHN method, the extrapolation of the β relaxation times from low temperature behavior did not 

affect to the α relaxation times. Figure 9 shows the HN exponents derived from both approaches: for 

the SHN method, for T > 400 K, the b exponent of the α mode have been fixed to a mean value, 

= 0.24bα , and the strong overlapping with the β process does not allow describing the right wing band 

of the α peak. For the WAHN method bα fluctuates around 0.3bα = , which is not far from the value 
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obtained by SHN. On the other hand, the aα exponent from the SHN method increases with T, while the 

WAHN analysis predicts a nearly constant value, 0.6aα = . The shape exponents of the β mode 

derived from the SHN analysis does not follow the low temperature trends when both modes overlap 

but show anomalous oscillations. When the WAHN method is used the bβ parameter follows the sub Tg 

tendency while the aβ parameter does not, which may be due to a real change of the shape of the β 

relaxation when it overlaps with the α mode. 

The relaxation function in the frequency domain is defined as *( ) ( *( ) ) / Nω ε ω ε∞Φ = − , where  

ε∞ is the high frequency limit of the permittivity and N is a constant. This function is related to the time 

domain response through *( ) ( )i tωω φ⎡ ⎤Φ = −⎢ ⎥⎣ ⎦L , where iωL is the Laplace transform with the imaginary 

exponent iω , and /d dtΦ = Φ . Therefore, the transformation of the WAHN equation (9) into the 

frequency domain yields: 

 1 1 1* **( ) ) ( )(1 efff N f N Nα α α α β βαω ω− − −Φ = Φ − Φ− , (11a) 

where the term related to the α relaxation can be expressed as 

 /
,

* ( ) 1 (ln ; , , ) lnt
i HNi L a b e dτω α α α αα ω ω τ τ τ

∞
−

−∞

⎡ ⎤Φ = − ⎢ ⎥⎢ ⎥⎣ ⎦∫L , (11b) 

using the property [ ]1z zf z f⎡ ⎤ = −⎢ ⎥⎣ ⎦L L , and the β effective relaxation have been defined as 

* ( ) ( ) /eff i d dtβ ω α βω φ φ⎡ ⎤Φ = −⎣ ⎦L  and can be expressed as [25]: 

 
( )

,
, 11 1

* (ln ; , , )
( ) (ln ; , , ) ln ' ln

1 '
HN

HNeff
L a b

L a b d d
i

β β β β
α α α αβ

τ τ
ω τ τ τ τ

ω τ τ

∞ ∞

−− −−∞ −∞

⎡ ⎤
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥+ +⎢ ⎥⎣ ⎦

∫ ∫ . (11c) 

In the normalized case N ε=Δ  and 1kN = . The β effective process, from the α βφ φ  term in the 

Williams Ansatz must be understood as the partial β relaxation in the fixed environment given by the α 

mechanism. In practice, this effective mode represents the link between both methods. Comparing the 

relaxational terms of  Eq. (1) with Eq. (11a) the β effective relaxation of the WAHN approach is related 
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to the β relaxation of the classical SHN approach. The apparent change of molecular mechanisms 

responsible of the β process in the additive approach is solved in the Williams Ansatz framework 

through the presence of a β effective process, originated from the statistical independence of the 

relaxations. 

In the non normalized scheme the frequency domain relaxation function is *( ) *( )ω ε ω ε∞Φ = −  and 

their imaginary part is the dielectric loss. In this case the kN parameters are non trivial and comparing 

again Eq. (11) to Eq. (1) the following identification can be made (SHN↔WAHN): 

 1 1 1; (1 )f N f N Nα α α β α α βε ε− − −Δ ↔ Δ ↔ − . (12) 

In order to get these intensities the WAHN method has been applied to the non normalized 

relaxation functions of R2, i. e. the exp ( )jtφ were calculated through Eq. (8) with 1N = . The full set 

,( , , , , )k HN k k kS f N a bα τ≡  must be taken into account but the subset ,' ( , , , )HN k k kS f a bα τ≡  has been 

fixed to the values obtained in the previous normalized analysis. Only the kN constants have been 

optimized. To check the validity of the procedure, instead of showing the non normalized time domain 

relaxation functions the optimized parameters have been used to numerically integrate the Eq. (11) and 

hence to complete the transformation to the frequency domain. The results are shown in the Fig. 10 

compared to the experimental dielectric loss curves, to which the conductivity contributions from the 

SHN analysis have been subtracted. The overall quality of the fittings is not as good as in the 

normalized case (see Fig. 7), so the determination of the kN constants is compromised by the goodness 

of fit in this case. On the other hand the optimized ,( , , , )HN k k kf a bα τ  parameters are related to the better 

goodness of fit of the normalized analysis. Anyway, the maximum of the β (effective) peak are well 

described, validating the constraint in max ( )τ β  values extrapolated from low temperatures. There is an 

important deviation for the lowest temperature around the α peak, possibly due to the introduced error 

when subtracting the conductivity. Also for the highest temperature curve the fit is poor because the β 

peak is almost outside the window and, in addition a strong overlapping exists. Concerning the 
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dielectric strength information, the assignations made in Eq. (12) should be considered indeed as 

equalities, and Fig. 11 shows that the WAHN parameter combination describe very well the trends of 

the dielectric strengths obtained from the SHN method.  

 

C. Molecular Dynamic Simulation of the Secondary Relaxations. In a simplified picture, where 

the intermolecular correlations are neglected and assuming a high dielectric strength, the macroscopic 

relaxation function can be directly identified with a microscopic magnitude given by the molecular 

dipole time-correlation function [36].  The time-correlation function A(t) of the orientation of the ester 

bond vector C=O, C O=b , allows us to calculate the characteristic relaxation time of the nearly 

antiparallel ester group dipole moment that can be related to the experimental magnitudes for the β 

relaxations. Therefore, A(t) has been fitted to the a sum of KWW exponentials: 

 ( ) ( ) ( ) ( ) ( )2 exp / i

C O C O C O i i
i

A t t A t βτ τ τ τ= = =
⎡ ⎤≡ ⋅ + = −⎢ ⎥⎣ ⎦∑b b b . (13) 

Parameters Ai, τi and βi are obtained by means of a direct non-linear fitting procedure, considering 

one or two stretched exponentials; the results for the PMMA chains can be satisfactorily fitted to a 

single exponential. This is illustrated in the inset of the Figure 12, where ln[A(t)] vs. tβ is shown, with 

the customary β=0.5 value for PMMA and for the alternate copolymer at 600 K. It can be observed that 

the PMMA chain has a single exponential behaviour, while for the alternate copolymer a fit to two 

exponentials is clearly required, which agrees with the more complex secondary relaxation of observed 

in the analysis of our experiments for the copolymers. 

The final numerical fits are actually carried out by considering a free variation of parameters τ1 and 

β1. The fits for the alternate chains are performed by fixing the exponent value for longer times, β2, to be 

the same obtained for PMMA systems at the same temperature (except for the T=500 K, case that 

requires a higher value) while the rest of parameters (coefficients, relaxation times and β1) are freely 

varied. 
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The described fitting procedures are satisfactorily used for the systems at different temperatures. 

(See for example Figure 12). It should be remarked that most values of the βi are in the range 0.4-0.6, 

while the Ai coefficients for the two exponential fits are always close to the 0.5 values. The ratios 

between values corresponding to the first and second relaxation time in any given alternate chain system 

are similar to those found in our analysis of the experimental data. 

The activation energies for the two types of systems can be calculated from the Arrhenius fits of the 

τmean values that depend on τ, and β (see Figure 13 and Eq. (5)). The value obtained for the PMMA 

systems, EA = 48 kJ mol-1 is significantly higher than the results obtained for the alternate copolymers, 

EA = 23 kJ mol-1 for the slower mode and EA = 16 kJ mol-1 for the faster mode. The experimental data 

show also higher activation energy for the slower mode. Although the values predicted from the 

experimental relaxations are generally higher (see Table 2), the experimental and simulation results for 

the activation energies are relatively close, considering the great influence that some details in the 

molecular model (such as the forcefield parameters) may have on the final simulation results.  

 

IV. Conclusions 

Dielectric relaxation experiments of six styrene-co-methyl methacrylate (MMA) copolymers with 

different architectures (random, alternate and diblock) haven been carried out over the 193 ≤ T / K ≤ 

423 and 0.01 ≤ f / Hz  ≤ 106 ranges. Two of the diblock copolymers are microsegregated, while the other 

four copolymers present a homogeneous phase. 

The ε” vs. f curves clearly show two differentiated sub-Tg relaxations for the alternate and the 

styrene-richest random copolymers, while for the rest only one β process can be distinguished. The 

analysis of the data in both the frequency and time domains indicate that to describe the sub-Tg 

transitions within the experimental precision two asymmetric Havriliak-Negami functions have to be 

used (corresponding to the β and γ relaxations for the alternate and the random copolymers). However, 
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only one β relaxation seems to exist within the experimental window for the three block copolymers 

and the PMMA homopolymer. 

The relaxation times of the α-relaxation present a VFT temperature dependence, while the sub-Tg 

transitions follow an Arrhenius dependence. The activation energy, EA, of the β relaxations for the 

diblock- and the MMA-rich random copolymers are very close to that of the PMMA homopolymer, 

while for the alternate and the styrene-rich random copolymer a lower EA value is obtained. It is 

suggested that the origin of the γ-relaxation might be the rotation of the MMA groups in a styrene-rich 

environment. 

An alternative analysis to the classical additive approach has been applied to the α and β merging 

relaxations of the R2 sample. This method is based on the simplified Williams Ansatz developed in 

terms of Havriliak Negami distributions. This framework postulates the existence of an effective 

β process originated from the intersection of statistical independent α and β modes. This effective 

mode is responsible of the apparent change of activation energy of the β relaxation in the merging 

region, from the classical additive point of view. Nevertheless, the deviations on the low temperature 

trends of the relaxation shape parameters are only partially corrected. A consistency test consisting of a 

frequency domain transformation has been developed, and it reproduces the dielectric strengths trend of 

the additive analysis. 

Finally, the Molecular Dynamics simulations of PMMA and an alternate copolymer are in a 

relatively good qualitative agreement with the low temperature experimental results, although the 

predicted values for EA for the simulations are smaller than the experimental values.  
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Table 1. Characteristics of the different polymer samples 

Sample Mw (kDa) Mw / Mn Mw (PS)(kDa) Mw (PMMA) (kDa) Type XMMA 

A1 382 1.49 - - Alternate 0.50 

R1 71.3 1.86 - - Random 0.40 

R2 305 1.83 - - Random 0.75 

D1 179.3 1.04 172 7.3 Diblock 0.04 

D2 547.1 1.05 154.8 392.3 Diblock 0.73 

D3 503 1.10 253 250 Diblock 0.51 

 

Mw is the weight average molecular weight, Mw/Mn is the polydispersity index, and XMMA is the mole 
fraction of methylmethacrylate groups. 
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Table 2. Fitting parameters for the temperature dependence of the characteristic retardation time for the 

α [Eq. (6)] and β, γ  [Eq. (5)] modes for all the copolymers. Abbrev. [DS]: Dielectric Spectroscopy 

experimental results. [MDS]: Molecular Dynamics Simulation results. 

 A1 R1 R2 D1 D2 D3 PMMA 

α relaxation [DS] Ref [24] 

log τ0,VFT (±0.5) -11.1 -13.6 -10.5 -12.9 -10.9 -11.2 -10.8 

D (±0.5) 4.4 6.2 4.7 5.1 9.7 14.7 2.3 

TV (±2 K) 322 318 316 324 274 232 370 

β relaxation [DS]  

log τ0,β (±0.3) -14.4 -14.4 -15.4 -15.8 -15.7 -15.6 -15.3 

EA,β (±0.5 kJ mol-1) 58.0 57.8 75.1 77.0 80.8 79.0 79.4 

γ relaxation [DS]  

log τ0,γ (±0.6)a -16.4 -14.0 -12.5 - - - - 

EA,γ (±0.5 kJ mol-1)a 54.8 44.0 38.0 - - - - 

 Alternate chains Homopolymeric chains 

Slower contribution [MDS] 

log τ0 (±0.4) -11.1 -13.4 

EA (±1 kJ mol-1) 23 48 

Faster contribution [MDS] 

log τ0 (±0.4) -11.7 - 

EA (±0.5 kJ mol-1) 16 - 

a The uncertainties for the sample R1 are: log τ0,γ (±1) ; EA,γ (±2 kJ mol-1) 
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Legends for the Figures 

Figure 1. Selected isotherms of the imaginary part of the dielectric permittivity as a function of the 

frequency for the sample A1 in two regions: (a) near and above Tg, showing the segmental process, α, 

secondary relaxations, β and the conductivity, σ; and (b) below Tg, where the two secondary processes, 

β and γ, are present. The dotted lines correspond to the different contributions, σ, α, β and γ of the 

fitting (continuous line) following the Eq. (1) for the example isotherm at 399 K, and the Eq. (2) for the 

temperature 259 K. Note: In Fig. 1b the y-scale of the γ contribution is related to the right axis, while 

the left axis is used for the rest of the curves. 

 

Figure 2. Selected isotherms of the imaginary part of the dielectric permittivity as a function of the 

frequency for the sample R2 at temperatures (a) near and above Tg, showing the segmental process, α, 

secondary relaxations, β and the conductivity, σ. Here, the dotted lines correspond to the different 

contributions of the fitting (continuous line) in the Eq. (1), σ, α and β for the example isotherm 391 K. 

Figure (b) correspond to isotherms below the glass transition, where a main sub-Tg relaxation, β, is not 

completely described with only one HN model function (dotted curves for the isotherms 243 K and 259 

K). 
 

Figure 3. Selected isotherms of the imaginary part of the dielectric permittivity as a function of the 

frequency for the sample D1 in two regions: (a) near and above Tg, where a dominant β relaxation and a 

conductive process, σ, are present. Here, the dotted lines correspond to the different contributions of the 

fitting (continuous line) in the Eq. (1), σ and β and also a contribution related to the hidden α relaxation 

for the example isotherm 415 K. Figure (b) represents selected loss curves below Tg, where the β peak 

is described with only one HN model function (dotted curve) as it can be seen for the 275 K and 307 K 

isotherms. 
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Figure 4.  Retardation time spectra corresponding to the 275 K isotherm of the dielectric permittivity of 

the sample R2. The line is a fitting to a sum of two HN contributions (dotted lines), one describing the 

high time (low frequency) β process and another one at low times (high frequencies) corresponding to 

the weak γ relaxation. 
 

Figure 5. Temperature dependency of the dielectric strength for the different dynamic processes of the 

samples A1, R2 and D2. The error bars, when not explicitly drawn, are smaller than the size of the 

symbols  

Figure 6. Relaxation maps for the samples: (a) A1, R1 and R2; (b) D1, D2 and D3 as stated in the 

legends. The error bars, when not explicitly drawn, are smaller than the size of the symbols. The 

continuous lines are Arrhenius fits, Eq. (5) for the secondary relaxations, and VFT fits, Eq. (6), for the 

α relaxation. The dashed lines are the α and β relaxation tendencies for the syndiotactic PMMA (taken 

from the reference [24]). 

 

Figure 7. Normalized time domain relaxation functions calculated from the experimental results 

(symbols). The different curves correspond to the temperatures from right to left: 389, 397, 409, 419, 

429 and 435 K. The continuous lines are the fittings to the WAHN model described by the equations (9-

10). The vertical dashed line delimitates the high frequency limit of the experimental window. Inset: 

Retardation time spectra obtained from the complex permittivity for selected temperatures. 

 

Figure 8. Relaxation map at T>Tg for R2 copolymer. The relaxation times are calculated by means of 

Eq. (4) using the parameter values obtained from the SHN method (closed symbols, Eq. (1)) and, 

alternatively, from the WAHN method in the time domain (open symbols, Eqs. (9-10). The time scale of 

the β process in the WAHN approach is extrapolated from the sub Tg Arrhenius trend (continuous line). 
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Figure 9. Havriliak- Negami shape parameters for the α and β processes of the R2 copolymer obtained 

from the SHN method (closed symbols, Eq. (1)) and, alternatively, from the WAHN method (open 

symbols, Eqs. (9-10)). The line represents the extrapolation of the sub Tg trend of the a and b parameters 

of the β mode. Some representative error bars are drawn. 

 

Figure 10.  Experimental dielectric loss curves without the conductivity contribution of the R2 sample 

(symbols). The continuous lines are the fittings according the WAHN method (minimization: Eq. (10); 

and frequency domain transformation: Eq. (11)). The different curves correspond to the temperatures 

from right to left: 389, 397, 409, 419, 429 and 435 K. 

 

Figure 11. Temperature dependency of the dielectric strengths for the α and β processes of the R2 

copolymer obtained from the SHN method (closed symbols, Eq. (1)). They are compared to the 

magnitudes for the α and βeff  processes from the WAHN method (open symbols, Eqs. (9-11)) by means 

of the Eq. (12). 

 

Figure 12. Direct fitting (continuous lines) of the correlation functions for the PMMA and alternate 

chains at 600K to the Eq. (13) (only one KWW is used in the homopolymer case). Inset: logarithmic 

plot of the correlation functions. The abscissa is the time (in picoseconds) elevated to the stretching 

exponent, chosen as 0.5. 

 

Figure 13. Arrhenius plots of the KWW mean relaxation times for the two alternate modes and the 

PMMA mode.  
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Figure 3b. 
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Figure 6a. 
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Figure 6b. 
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Figure 7.  
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Figure 11. 
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Figure 12. 
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Figure 13. 

 
 




