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Abstract

In this work we use Raman spectroscopy and quantum first-principles calculations

to unveil the experimental spectrum of a complex molecular solid like benzylic amide

[2]catenane, a representative example of a mechanically interlocked molecular architec-

ture. We use large-scale Density Functional Theory calculations to obtain the complete

set of vibrational normal modes of the catenane crystal, whose unit cell contains 544

atoms. Subsequently, we demonstrate that these calculations are able to accurately re-

produce the experimental Raman spectrum of this molecular compound, without intro-

ducing any empirical corrections or fittings in the calculated eigenfrequencies. Thanks

to the good agreement between the experimental and theoretical spectra it is possible

to carry out the complete assignment of the main vibrational modes responsible for the

whole spectrum. A detailed description in terms of the usual internal coordinates is

given for all these representative modes. This description, rather difficult from the ex-

perimental point of view, provides valuable information about the molecular structure

of this compound, compatible with experimental evidences reported in the literature.

Abbreviations
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1 Introduction

The main mechanically interlocked molecular architectures were known from the middle of

the 20th century.1 They are compounds, whose molecular subunits are linked mechanically

as a consequence of their topology, instead of traditional chemical bonds. However, it was

not until the early 90’s when the pioneering work by B. L. Feringa, J. P. Sauvage, and J. F.

Stoddart gave rise to the so-called template directed syntheses based on the preorganization

of the reactants through non-covalent interactions. Thanks to this breakthrough, a precise

control in the final cyclization reactions of the macrocyclic precursors was achieved, leading

to the efficient production of hundreds of mechanically interlocked compounds like catenanes,

rotaxanes and molecular knots.2,3

Compounds owning mechanical bonds display peculiar chemical properties distinctive

from those of typical covalent materials. In particular, the incorporation of moieties with

molecular recognition motifs opens the door to the possibility of building and designing

artificial molecular machines at atomic level.4,5 For this reason, this class of materials is of

extreme importance and, at the same time, represents a challenge from the characterization

point of view (both theoretical and experimental). This is due to their complex structure

and the internal freedom of their building blocks, which includes the ability of the rings to

rotate with respect to one another and other low-energy dynamic processes. This motion

can be detected and measured by magnetic nuclear resonance spectroscopy.6,7

In this work, we focus on the benzylic amide [2]catenane, a representative example of a

large family of molecules, first synthesized in 1995 through a self-assembly procedure.8,9 It

is one of the simplest [2]catenanes, constituted by two identical macrocycles that are me-

chanically interlocked. Each of them, in turn, are formed by four bound aromatic units

(–C6H4–CO–NH-CH2–) or (–C6H4–CH2–NH-CO–), linked in meta or para positions, as de-

picted in Fig. 1. This compound has been extensively characterized by a number of dif-

ferent experimental techniques, including X-ray diffraction,8 magnetic nuclear resonance

spectroscopy,6,9,10 X-ray photoelectron spectroscopy,11 electron energy loss spectroscopy,12
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vibrational spectroscopy13,14 or inelastic neutron scattering.15 In addition, the internal dy-

namics of this catenante has been also investigated with classical molecular dynamics,6,13,16,17

paying special attention to the rotation of the rings. These studies reveal that the benzylic

amide [2]catenane is very sensitive to its chemical environment as a consequence of the pres-

ence of strong polar groups C=O and N–H capable of interact with different external species

via hydrogen bonds.10,14

In this work, we aim to study the vibrational spectrum of this catenane using a combina-

tion of Raman microscopy experiments and quantum first-principles calculation. Unlike in

earlier studies,13,14,16 in which the quantum description of such a large and complex molecu-

lar solid was unaffordable from the computational point of view, we use calculations based on

Density Functional Theory to determine both the vibrational modes of the catenane crystal

and their Raman intensity. So far, this kind of analysis at quantum level had been restricted

to those systems with smaller unit cells, mainly inorganic compounds.18–22 However, in the

present work, we disclose the Raman spectrum of such a complex molecular solid, finding

a very good agreement between the theoretical calculations and the experimental results.

This fair agreement allows us to perform a complete assignment of all the peaks appearing

in the experimental Raman spectrum, providing the corresponding geometric description of

the relevant modes. Therefore, the interest of this work is twofold. On the one hand, our

study devises a simple procedure to accurately determine the vibrational spectrum of large

systems containing hundreds of atoms in the unit cell. Besides, it is general method, appli-

cable either for molecules or crystalline solids. On the other hand, it represents a significant

progress in Raman spectroscopy, where often the extraction of molecular-scale features of

complex material by spectra analysis might be rather difficult. Since most of the relevant

Raman active modes have been properly assigned, these results will shed new light in further

studies involving related molecular systems.
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2 Experiments

2.1 Synthesis

The synthesis of the benzylic amide [2]catenane (i.e. IUPAC name [2] (1,7,14,20-Tetraaza-

2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-tetrabenzocyclohexacosane)-(1’,7’,14’,20’-tetraaza-2’,6’,-

15’,19’-tetraoxo-3’,5’,9’,12’,16’,18’,22’,25’-tetrabenzocyclohexacosane) catenane) was carried

out following the method described in ref. 13. 0.921 g (14.627 mmol) of triethylamine were

dissolved in 100 mL of anhydrous chloroform, and it was stirred for half an hour in an ar-

gon atmosphere in a three-neck angled round bottom flask. Then, 0.665 g (3.286 mmol) of

p-xylylene diamine and 0.447 g (3.313 mmol) of isophthaloyl chloride were dissolved in two

flasks containing 100 mL of anhydrous chloroform each one. These solutions were transferred

into two isobaric funnels and both were attached to the three-neck round flask. The solutions

were mixed simultaneously for half an hour. The resulting solution was kept in agitation

for 24 hours. Later, the solution was washed with 3×100 mL of HCl (1M) and 3×100 mL

of NaOH (1M). The organic layer was dried with magnesium sulfate and the solvent in this

layer was evaporated in a rotary evaporator. Around one half of the final product was re-

crystallized in order to obtain crystals large enough to facilitate their study by micro-Raman

(µ-Raman). For this purpose, we dissolved the product in methanol and acetone and left it

in a crystallizer for a week.

To confirm that we got the desired catenane, solution Nuclear Magnetic Resonance

(NMR) spectra were recorded on a Bruker DRX 400 (9.4 Tesla, 400.13 MHz for 1H and

100.62 MHz for 13C) using a 5 mm QNP direct-detection probehead equipped with a z-

gradient coil, at 300 K. Chemical shifts (δ in ppm) are given from internal solvent, DMSO-d6

2.49 for 1H and 39.5 for 13C. We got for 1H NMR δ = 8.47 (8H, s), 7.95 (4H, d), 7.80 (8H, d),

7.41 (4H, t), 6.65 (16H, s) and 3.92 (16H, s). For 13C NMR, we got δ = 165.8, 137.2, 134.2,

129.6, 128.2, 126.6 and 42.8. These results are consistent with those of previous works.8,9
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2.2 Raman spectroscopy

The equipment used was a Jobin Yvon spectrophotometer model LabRam-IR HR-800 with

a focal length of 800 mm, a grating of 1800 grooves mm, confocal pinhole set at 100 µm

and a Peltier refrigerated CCD (1024 × 256 pixels). These conditions and excitation with

the 632.8 nm line of a He/Ne laser give rise to an average spectral resolution of 1 cm−1 in

the wavenumber range of 100 − 1700 cm−1. The sine bar linearity of the spectrograph was

adjusted using the fluorescent lamps of the lab (zero-order position) and the lines at 640.22

and 837.76 nm of a Ne lamp. The spectrophotometer was coupled to an Olympus BX41

confocal optical microscope. The confocality of the instrument was refined using the 519.97

cm−1 line of a silicon wafer. The laser effective power at the sample position using 50× and

100× objectives was kept at 250 and 225 µW respectively in order to avoid sample alteration.

The indicated conditions result in a lateral resolving power of ∼ 1 − 2 µm (100× objective

lens) and ∼ 5 µm (50× objective lens) at the specimen. Wavenumber shift calibration23

with 4-acetamidophenol, naphthalene and sulfur in the 150 − 3100 cm−1 range using the

same recording conditions resulted in a mean deviation of ∆νcal−∆νobs = 0.96± 0.75 cm−1

(tStudent of 95%). The spectral integration time was 20 s, and 20 records were accumulated

in order to achieve spectra with an acceptable signal-to-noise ratio.

Depolarized Raman spectra of a large series of micro-crystals of the synthesized catenane

have been collected. Raleigh line filter decay at low Stokes wavenumber has been baseline

corrected using the Multi-Point algorithm (option “Level + Zero”) of the Grams/AITM v.

7.00 software, choosing around 10 points in each spectrum. No other numerical treatment

or correction (smoothing, shifting, deconvolution, etc.) has been applied to the spectra.

3 First-principles calculations

In this work we have characterized the benzylic amide [2]catenane crystal by means of Den-

sity Functional Theory (DFT) calculations using the VASP (Vienna Ab Initio Simulation
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Package) code.24 A plane-wave basis sets with a cutoff of 400 eV was used together with

PAW pseudopotentials25,26 for all involved species (C, N, O and H). The PBE (Perdew-Burke-

Ernzerhof) functional27 was employed to reproduce the electronic exchange and correlation

interactions supplemented with the semi-empricial D3 correction by S. Grimme,28 to account

for possible dispersion interactions.

A good equilibrium geometry for the catenane crystal was obtained combining electronic

self-consistent loops (cutoff 10−6 eV) with a conjugate gradient optimization of the structure,

until forces upon atoms were less than 0.005 eV/Å. This strict criterion is imposed to ensure

the success of the subsequent normal mode analysis. During the ionic relaxation the lattice

constants were kept fixed in order to preserve the original symmetry of the crystal structure

and the reciprocal space was sampled with a 2 × 2 × 2 Monkhorst-Pack grid,29 due to the

large size of the unit cell. The starting geometry was obtained from X-ray crystallographic

data8,30 (see Fig. 1c). This is an orthorhombic unit cell (a = 17.4382 Å, b = 12.4628

Å, c = 23.6926 Å, space group Pbcn), which contains four catenane molecules, leading to

136× 4 = 544 total atoms per unit cell. Periodic boundary conditions are used to properly

reproduce the crystal structure of the solid-state catenane.

The normal mode analysis was carried out by direct diagonalization of the Hessian matrix

according to the classical analysis.31,32 Under the harmonic approximation, the vibrational

eigenmodes of a system constituted by N atoms are obtained after solving the corresponding

eigenvalue problem given by

3N∑
j=1

(fjk − λ(n)δjk)Aj,(n) = 0, (1)

where fjk is the mass-weighted Hessian matrix, λ(n) = (2πνn)2 are the eigenvalues, related

to the frequencies νn of the nth mode, and Aj,(n) the elements of the corresponding eigen-

vectors. The Hessian matrix is numerically obtained through finite differences by computing

the second derivatives of the energy with respect to the atomic positions. Six different
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displacements (±0.02 Å) per atom along the three Cartesian components are used in this

algorithm. Notice that only those atoms belonging to the unit cell are considered in this

calculation, giving rise to a total of 544 × 3 − 6 = 1626 normal modes. This procedure to

calculate vibrational normal modes was tested with the benzamide molecule, closely related

to structural building blocks of the catenane. A fair agreement with previous calculations

and experimental Raman and infrared spectra33 was found. See Table S1 in Supporting

Information for further details.

The estimation of Raman intensities was carried out according to the scheme suggested

by D. Porezag and M. R. Pederson.34 In this approach, the scattered intensity In by the nth

mode can be computed in terms of the variation of some elements (αij) of the polarizability

tensor along that vibrational mode. In order to mimic our experimental conditions, we have

to use this equation:35

In ∝
1

45

45

(
dα

dQ

)2

eq

+ 7

(
dβ

dQ

)2

eq

 , (2)

where α y β are two invariants of the polarizability tensor given by:

α =
1

3
(α11 + α22 + α33), (3)

β2 =
1

2
[(α11 − α22)

2 + (α11 − α33)
2 + (α22 − α33)

2 + 6(α2
12 + α2

13 + α2
23)]. (4)

The above expression is chosen because it is compatible with our experimental setup of Ra-

man microscopy, in which non-polarized light is used as excitation source and the backscat-

tered radiation (180◦) is detected, leading to a depolarization ratio equals to one. Therefore,

two additional calculations per mode must be carried out in order to determine the Raman

intensity of each vibrational mode. Due to the large size of the system these calculations are

restricted solely to the Γ point in the reciprocal space. In these calculations the polarizability

tensor is calculated36,37 in two different geometries slightly displaced along the corresponding

normal model with respect the equilibrium position. In this way, the derivatives of Eq. (2)

can be evaluated to obtain the Raman intensity. Finally, a discrete collection of scattered
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intensities associated with each normal mode is obtained and the complete spectrum can be

constructed by fitting each eigenfrequency to Lorentzian distributions according to:

Fn(ν; In, νn, γ) =
In
π

γ

(ν − νn)2 + γ2
, (5)

where γ was set to 10−3 cm−1 in order to achieve a good resolution.

4 Results and discussion

Following the synthetic procedure introduced in Sec. 2 we obtained several samples after the

recrystallization process. The obtained crystals display a grain size distribution between 10

µm and 30 µm. They present a number of different morphologies due to their different spatial

orientations and also to the appearance of different crystalline defects, like crystal twinning.

In order to achieve the highest reliability degree in the experimental measurements many

different crystals were analyzed by µ-Raman, including the most representative shapes found

in the samples. In Fig. 2 we have selected four of them. S1 correspond to the amorphous

catenane without further recrystallization, S2 has a rectangular shape, S3 a rhombic one

and S4 is rectangular shaped. Since Raman microscopy allows us to analyze each individual

crystal by focusing the laser beam appropriately, the exact measured points are indicated in

each case with a red cross in Fig. 2.

As a result, four different Raman spectra were selected fulfilling the higuest quality

criteria (i.e. high peak resolution, good signal/noise ratio, large enough intensities, etc.).

They are shown (blue lines) in the left panel of Fig. 2. and are labeled as S1-S4, according

to each microphotography. None of the spectra has been refined except for the removing

of the Rayleigh contribution by subtracting the baselines. All these spectra were carefully

analyzed in order to assign the proper location of all observed peaks, revealing that all of

them are rather similar and essentially display the same features, in good agreement with

previous results reported in the literature.13 Notice that, slight differences in the intensity of
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some peaks are found due to the different relative orientations of each crystal with respect

to the incident radiation of the laser beam, and also the crystallinity degree. To overcome

this issue, an averaged spectrum (red line) was obtained and it will be selected for further

comparisons with the theoretical calculations. As expected this averaged spectrum resembles

very much to S1, obtained from the amorphous sample without recrystalization. This fact

reveals that the Raman fingerprint of this compound is essentially related to their molecular

features and not to the long-range symmetry.

Theoretical calculations were carried out according to the approach detailed in Sec. 3.

Fig. 3 shows the comparison between the theoretical Raman spectrum obtained with DFT

calculations (black line) and the experimental spectrum (red line), the averaged one. We

have chosen the averaged spectrum because in the theoretical calculation is assumed a ran-

dom distribution of the sample dipoles with respect to the incident electromagnetic field,

which is not the case in our µ-Raman experiments of single crystals. As already mentioned,

this circumstance can be compensated by averaging over different spectra. Even so, we

cannot expect, in this respect, a perfect agreement throughout the whole spectrum as a con-

sequence of the intrinsic limitations of Eq. (2), used to calculate the Raman intensity. We

cannot forget that this expression is the result of a relatively simple approximation based

on a first-order approach. Therefore, we find a clear overestimation of the intensities in

the high wavenumber shift region (> 2900 cm−1). Conversely, this is not the case in the

low wavenumber shift region where some intensity differences are expected due to the re-

maining Rayleight contribution to the total intensity in the experimental spectrum, which

is completely absent in the calculations. However, the agreement between both spectra is

remarkable regarding the matching of the peaks locations. Especially, taking into account

that no rescaling fittings have been applied to the obtained eiegenfrequencies. This result

reveals a high accuracy in the determination of the vibrational normal modes of the cate-

nane crystal. Furthermore, we will see that the discrepancies found in the intensities can

be drastically reduced if different regions of the spectrum, belonging to different kinds of
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normal modes, are considered separately.

Once we have checked the good agreement between calculations and experiments we are

in a position to assign the different vibrational modes corresponding to the experimental

peaks of the spectrum. This theoretical assignment adds valuable information about the

molecular structure of the compound, providing a geometrical description of those vibrational

modes responsible for the experimentally observed peaks in the spectra. However, for such

a complex case like the benzylic amide [2]catenane, this is not an easy task, due to the

large number of degrees of freedom. In particular, 544 atoms per unit cell lead to a total of

1626 normal modes, although only a fraction of them will really contribute with a significant

activity to the Raman spectrum. In order to select these more active modes we proceed by

imposing some cutoffs for the intensity displayed by a given mode. In this way, only those

modes with an intensity larger than the chosen cutoff (expressed with respect to the most

intense mode) were selected for further analysis. Two different optimized values of cutoff

were selected throughout the spectrum fulfilling two opposed requirements: they have to be

low enough to minimize the number of active modes but, at the same time, large enough to

keep the shape of the peaks displayed in the whole spectrum. With these criteria we retained

34 modes in the medium wavenumber shift region (between 600 cm−1 and 1700 cm−1) and

23 modes in the high wavenumber shift part (> 2900 cm−1), using the ∼ 25% and the

∼ 50% of the maximum intensity as cutoff values, respectively. Thank to this procedure, it

is possible to carry out the complete assignment of the main vibrational modes responsible

for the whole spectrum and the subsequent comparison with the experimental results. This

is what is made in Table 1, where the complete mode list, together with a brief geometrical

description of each one in terms of usual internal coordinates, is given with the associated

peaks in both the theoretical and the experimental spectra. Notice that the assignment in

the low wavenumber shift region (< 600 cm−1) is much more complex and it has not been

included in Table 1.

The comprehensive assignment collected in Table 1 discloses the Raman fingerprint of
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this compound in terms of different kinds of vibrations of the catenane crystal. Before a

deeper analysis, it is worth noting that a single peak in the experimental spectrum might

be a complex overlap of several modes, and thus, its location may not exactly coincide with

any normal mode. In addition, due to the crystal symmetry, there is a number of degenerate

modes, which are equivalent and localized in different but equivalent groups of the unit cell

(i.e. aromatic rings, carbonyl groups, etc.). In any case, it has been possible to assign

every peak of the experimental spectrum to one or several discrete modes of the theoretical

calculation. To get further insight of the spectrum we have divided the wavenumber shift

range in four different regions associated with characteristic vibrations: (i) [0, 600] cm−1,

(ii) [600, 1100] cm−1, (iii) [1100, 1700] cm−1 and (iv) [2900, 3500] cm−1. As usual, the empty

region between 1700 cm−1 and 2900 cm−1 has been discarded for further analysis since it

lacks of any relevant Raman fingerprint as shown in Figs. 2 and 3. In Fig 4 we show the

decomposed Raman spectrum in these four regions compared with the theoretical calculation.

Notice that in each region both spectra have been renormalized using the strongest line of

each region, leading to a remarkable overall agreement also in the relative intensities. A

different version of Fig. 4 can be found in the Supporting Information (Fig. S1), including

the discrete set of calculated eigenvalues.

The region (i) corresponds to the very low energy range, typically associated with phonon

modes and complex molecular vibrations based on collective oscillations involving most of

the atoms in the unit cell. For this reason, a more detailed analysis of these complex modes

in terms of normal coordinates is absent. This conclusion is supported by the inspection

of the discrete set of normal models associated with the broad peaks observed in this re-

gion of the spectrum (see Supporting Information). Besides, it is well-known that for low

energy modes the relaxation times involved in vibrational processes play a crucial role in

the construction of the spectrum, leading to a significant variability in widths of the peaks.

Thus, a direct comparison at quantitative level between theory and experiment becomes too

difficult. However, Fig. 4a shows a good matching between µ-Raman and calculated spectra
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at qualitative level.

In the region (ii) a peak-by-peak comparison is indeed possible (see Fig. 4b). According to

our normal modes analysis this region is governed by skeletal modes preferentially involving

the aromatic rings but also the bridging aliphatic chains. These modes include slight planar

and non-planar ring deformations and especially strong centrosymmetric in-plane vibrations,

resembling the typical benzene breathing mode. Notice how the most intense peak in this

region correspond to these latter modes at ∼ 1000 cm−1 in combination with the lowest

energetic stretching modes in the benzene rings.

The region (iii), which includes the wavenumber shifts between 1100 cm−1 and 1700 cm−1,

is the region which contains the largest amount of information in Raman spectroscopy, and

therefore involves the largest number of Raman active modes. As it is observed in Table 1,

there are still present some modes associated to the rings, mainly antisymmetric in-plane

distortions, leading to a strong band in the spectrum around 1300 cm−1, in combination

with in plane CCN vibrations. However, in this region we have other typical vibration

modes like torsion or CH2 wagging, responsible for one strong peak at ∼1350 cm−1. For

higher wavenumber shifts in this region, benzene rings vibrations become progressively less

prominent in favour of more energetic stretching modes of CN and CO, located at ∼ 1530

cm−1 and ∼ 1600 cm−1, respectively (see Fig. 4c). This fact is in good agreement with

previous experimental evidences in which it is demonstrated a systematic shift of these

bands depending on the presence of different cations.13,14 Since they come from strong polar

bonds, it is expected a high interaction with ions via hydrogen bonds. Therefore, a high

chemical sensitivity to the environment is displayed.

Lastly, the region (iv) correspond to the most energetic vibrations > 2900 cm−1. Note in

Fig. 4d that here a slight discrepancy between calculated eigenfrequencies and experimental

peaks is found. As it can be seen, the shape of both renormalized spectra is the same but a

displacement between 50 and 80 cm−1 is found between both sets of peaks in Fig. 4d. How-

ever, in this high-energy region of the spectrum, such differences in Raman shifts represent
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in the worse cases less than a 3% of uncertainty in the determination of the eigenfrequencies.

Thus, we can still consider an accuracy level sufficient to proceed with the assignment. This

region is essentially characterized by two different kinds of stretching vibrations: a strong

stretching of CC in the aromatic rings located at [2900 − 3000] cm−1 and the stretching of

NH bonds located at [3300− 3400] cm−1.

In summary, in this work we have carried out the assignment of the observed Raman bands

of benzylic amide [2]catenane, which establishes a fundamental and useful basis for future

studies on interactions, reactions and structural alterations of this compound by vibrational

spectroscopy. Furthermore, this band assignment based on the geometrical description of

most relevant normal modes involved, could very very helpful in further spectroscopic studies

of related compounds.

5 Conclusions

In this work, we have performed a comprehensive characterization of the Raman spectrum of

solid-state benzylic amide [2]catenane by means of µ-Raman experiments and first-principles

calculations. Despite the complexity of this compound, the agreement found between ex-

perimental spectra and calculations is excellent, which allows us to carry out the complete

assignment of the main vibrational modes responsible for the Raman spectrum. Additionally,

a detailed geometrical description of these modes in terms of the usual normal coordinates

is provided. Furthermore, these findings about the molecular structure of this compound

could be of great interest in further studies involving the interaction of other mechanically

interlocked molecules with their chemical environment or subsequent characterization works

using spectroscopic techniques. Finally, the computational approach devised in this work is

completely applicable to other systems expecting results with a similar accuracy.
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Peaks (cm−1) Mode νn Description

(exp.) (calc.) (No.) (cm−1)

636
641

1146 638 a-in-plane-rd + r-νCH

649 1126 666 s-out-of-plane-rd + πCNCC

808 815 986 815 s-in-plane-rd + δNCC + s-r-νCH

874 874 921 874 s-in-plane-rd + πCNCC + δHCH

999 1001

792 1000 s-in-plane-rd + s-r-νCH

789 1001 s-in-plane-rd + s-r-νCH

788 1004 s-in-plane-rd + s-r-νCH

786 1004 s-in-plane-rd + s-r-νCH

785 1004 s-in-plane-rd + s-r-νCH

1044 1033 756 1044 δCNC + νCN + s-in-plane-rd

1202 1213
622 1208 s-in-plane-rd + δCCN

619 1211 s-in-plane-rd + δCCN

1282


1306

570 1267 δCCN + a-in-plane-rd

558 1287 δCCN + a-in-plane-rd

1301



549 1294 δCCN + a-in-plane-rd

537 1305 δCCN + a-in-plane-rd

532 1306 δCCN + a-in-plane-rd

521 1311 δCCN + a-in-plane-rd

1322 519 1317 τCCNC

1362 1349
491 1348 δCCNC

481 1354 ωCH2 + δCCN + a-in-plane-rd

1530 1531

340 1523 νCN + δCCN

333 1529 νCN + νCC

328 1533 νCN + νCC

Table 1 (Continued on next page)
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Continued from previous page

Peaks (cm−1) Mode νn Description

(exp.) (theory) (No.) (cm−1)

1582



1597

303 1575 νCC + s-in-plane-rd + νCO

301 1575 νCC + δCCN + in-plane-rd

1599



286 1592 νCC + νCO + δCNC + a-in-plane-rd

285 1592 νCO + νCC + δCCN + a-in-plane-rd

276 1597 νCC + νCO + δCNC + a-in-plane-rd

261 1610 νCC + νCN + δCCN + s-in-plane-rd

260 1611 νCO + νCN + νCC + δCCN + s-in-plane-rd

1628


243 1620 νCO + νCC + νCN+ δCCN + s-in-plane-rd

236 1625 νCO + νCN + δCCN + a-in-plane-rd

232 1634 νCO + νCN + δCNC + a-in-plane-rd

2878 2968

220 2965 s-νCH2

219 2966 s-νCH2 + δCCN

218 2968 s-νCH2 + δCCN + νCC + νCN

217 2968 s-νCH2 + δCCN + νCC + νCN

213 2970 s-νCH2 + δCCN + νCC + νCN

2927

3007

202 2995 s-νCH2 + δCCN + νCC + νCN

2948



134 3105 a-r-νCH + a-in-plane-rd

117 3114 s-r-νCH

115 3115 s-r-νCH

110 3118 r-νCH + in-plane-rd

3009


3140

79 3138 s-r-νCH + in-plane-rd

75 3138 s-r-νCH + in-plane-rd

73 3139 r-νCH + in-plane-rd

3033



63 3146 s-r-νCH + in-plane-rd

54 3147 r-νCH + in-plane-rd

50 3147 r-νCH + in-plane-rd

42 3151 r-νCH + in-plane-rd

38 3170 r-νCH + in-plane-rd

Table 1 (Continued on next page)
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Continued from previous page

Peaks (cm−1) Mode νn Description

(exp.) (theory) (No.) (cm−1)

3291 3310
32 3309 νNH + νCN + δCNC

31 3309 νNH + νCN + δCNC

3322 3340 20 3340 νNH + νCN

3362 3410
8 3410 νNH

5 3410 νNH + νCN

Table 1: Comparison between the main peaks of the experimental Raman spectrum and
those of the theoretical calculation. The assignment of the selected normal modes are given in
terms of usual internal coordinates of vibration. They are ordered by decreasing contribution
to the corresponding normal mode. Internal coordinates: ν, stretching; δ, in-plane bending;
π, out-of-plane bending; τ , torsion and ω wagging. Additional labels: a, antisymmetric; r,
benzene ring; rd, benzene ring deformation; s, symmetric.
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Figure 1: Molecular and crystal structure of the benzylic amide [2]catenane: Molecular
structure as embedded in the crystal structure, ball-and-stick model (a) and two-color sim-
plified model showing the two different macrocycles (b). Crystal packing of the molecules
in the crystalline state (c). Some macrocyclic units are highlighted in colors to ease the
visualization.

Figure 2: Raman spectra (S1-S4 and averaged) of several crystals of benzylic amide [2]cate-
nane with different shapes, according to the microphotographs shown in the right panel.
These microphotographs were made with an LWD eyepiece (50×) and the exact location
where the spectra were recorded are depicted with a red cross.
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Figure 3: Comparison between the calculated Raman spectrum (black line) and the exper-
imental averaged spectrum (red line) obtained by µ-Raman.

Figure 4: Comparison between the calculated Raman spectrum (black line) and the exper-
imental averaged spectrum (red line) after renormalization in different wavenumber regions.
See text for further details.
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