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Abstract 9 

This study presents a strategy for differentiating paprika obtained by means of different drying 10 

systems. The differentiation is performed using spectroscopic fluorescence in combination with 11 

multivariate analysis. The two groups of samples (smoked or non smoked paprika) are classified 12 

according to the content of some of their fluorescent compounds presented in each group, among 13 

which several polycyclic aromatic hydrocarbons (PAHs) are included. These compounds are 14 

characteristic in smoked food. The full information of excitation – emission matrices (EEMs) is 15 

processed with the aid of unsupervised parallel factor analysis (PARAFAC), PARAFAC 16 

supervised by linear discriminant analysis (LDA), and discriminant unfolded partial least-squares 17 

(DU-PLS). The last algorithm allows an adequate classification of unknown paprika samples. 18 

Besides, the quantification of several PAHs in paprika was performed by means of unfolded 19 

partial least-squares with residual bilinearization (U-PLS/RBL). On this way, three (fluorene, 20 

phenantrene and anthracene) out of the five (fluorene, phenantrene, anthracene, pyrene and 21 

chrysene) selected analytes were quantified.  22 

 23 
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1. Introduction 26 

Food smoking is an old and traditional technological process widely applied to many foodstuffs 27 

such as meat, fish and cheese, not only for the special organoleptic profiles that it confers, but 28 

also due to the inactivating effect of smoke and heat on enzymes and microorganisms (Ledesma 29 

et al. 2015). Today, smoking technology mainly uses  the special effects of various sensory active 30 

components (phenol derivatives, carbonyls, organic acids and their esters, lactones, pyrazines, 31 

pyrols and furan derivatives), contained in smoke, for aromatization of meat products, to make 32 

food with a specific organoleptic profile, widely demanded on the market (Simko 2002).  33 

Paprika is a product obtained from dehydrated and milled fruits of certain varieties of red peppers 34 

(Capsicum annum L.). There are different drying systems to obtain this product. Thus, for 35 

example, in Spain, there are two main areas where this product is obtained, in La Vera 36 

(Extremadura) and Murcia. In the first one, peppers are smoked-dried (oak or holm wood fire), 37 

while in Murcia, among other places, peppers are sundried (Bartolomé et al. 2011).   38 

Smoking process provided to paprika samples a characteristic flavour and smell. However, this 39 

kind of treatment may produce the presence of unwanted compounds in food, such as polycyclic 40 

aromatic hydrocarbons (PAHs), which present carcinogenic, mutagenic and bioaccumulative 41 

capacities (Purcaro et al. 2013).   42 

Although there are several kinds of pattern recognition methods to be applied in food science, 43 

they essentially differ in the way they achieve the classification. Two main types of methods are 44 

commonly distinguished: those focused on discrimination among classes, for example, linear 45 

discriminant analysis (LDA) or discriminant unfolded partial least-squares (DU-PLS); and those 46 

oriented towards modelling classes, such as soft independent modelling of class analogy 47 

(SIMCA), among others.  Discriminating techniques are used to build models based on all the 48 

categories concerned in the discrimination, whereas disjoint class-modelling methods create a 49 

separate model for each category. One of the drawbacks of discriminating methods is that samples 50 

are always classified into one of the given categories, even if they do not belong to any of them. 51 
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Class-modelling methods consider those objects that fit the model for a category as part of the 52 

model, and classify as non-members those that do not (Berrueta et al. 2007).  53 

These techniques has been amply employed in the classification of food samples according to 54 

their physical and chemical properties, their production processes, their spectroscopic properties 55 

and so on. In this sense, fluorescence coupled with these multivariate analysis techniques have 56 

been commonly used in the last years in the food classification (Berrueta et al. 2007; Sádecká and 57 

Tóthová 2007; Sikorska et al. 2008; Azcarate et al. 2015; Borrás et al. 2015; Da Silva et al. 2015; 58 

Ledesma et al. 2015; Lenhardt et al. 2015; Sahar et al. 2016). Specifically, chemometric 59 

techniques have been employed in the authentication and determination of contaminants in 60 

condiments, where paprika is included. However, no studies are found about classification 61 

according to the drying system of paprika (Di Anibal et al. 2015; Reinholds et al. 2015). Hitherto, 62 

fluorescence coupled to PARAFAC-LDA and DU-PLS for food sample classification have been 63 

used in very few studies (Azcarate et al. 2015).   64 

On the other hand, if we focus on the use of spectroscopic techniques in combination with 65 

chemometric algorithms to quantify PAHs, we found several recent examples of quantification of 66 

PAHs in food and drinks. In the last years, Bortolato et al. 2008 (Bortolato et al. 2008) have 67 

quantified benzo(a)pyrene and dibenzo[a,h]anthracene in waters, by means of excitation – 68 

emission fluorescence spectroscopy assisted by chemometrics; Ferreto et al. 2014 (Ferretto et al. 69 

2014) have also quantified five PAHs in marine water using excitation – emission matrices 70 

(EEMs) and parallel factor analysis (PARAFAC), and Alarcón et al., 2013 (Alarcón et al. 2013) 71 

have determined PAHs, by means of EEMs, unfolded partial least-squares/residual bilinearization 72 

(U-PLS/RBL), and PARAFAC, in edible oils. However, in the case of paprika samples, no studies 73 

have been found with these techniques. 74 

With this background, the aims of this study were investigating the usefulness of chemometrics 75 

in order to differentiate paprika samples according to their drying system and, taking into account 76 

the presence of PHAs in smoked paprika, quantifying them in this kind of samples, by means of 77 

EEMs, in combination with multivariate chemometric tools.  78 
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2. Materials and methods 79 

2.1. Chemical reagents and samples 80 

Stocks of PAHs (Fluorene (Flu), Phenantrene (Phe), Anthracene (Ant), Pyrene (Pyr) and 81 

Chrysene (Chr)) were obtained from Sigma (Sigma-Aldrich Química, S.A., Madrid). Each 82 

individual standard solution was prepared in acetonitrile (ACN) and stored at 4 ºC until use.  83 

LC-grade acetonitrile solvent was purchased from Sigma (Sigma-Aldrich Química, S.A., 84 

Madrid). LC-grade iso-hexane and diethyl ether were acquired from Panreac (Panreac Química, 85 

S.A.U., Barcelona). High-purity water was obtained from a Milli-Q water system (Millipore 86 

S.A.S., Molsheim, France). Sep-Pak Plus Silica cartridges of 690 mg were obtained from Waters 87 

(Waters Corp., Milford, MA, USA).  88 

Samples of smoked paprika sample are part of the Spanish Protected Designation of Origin (PDO) 89 

“Pimentón de La Vera” and they were obtained from Regulatory Council of the Denomination 90 

of Origin “Pimentón de La Vera” and the non-smoked paprika samples were obtained from local 91 

markets. The origin of the non-smoked paprika samples was not available although in the label 92 

reports packaging in Spain.  93 

 94 

2.2. Instrumentation and software 95 

In order to obtain the fluorescence excitation-emission matrices, a Cary Eclipse VARIAN 96 

spectrofluorimeter equipped with two Czerny-Turner monochromators, a xenon light source and 97 

a photomultiplier tube, as detector, was employed. A 1.0 cm quartz cell was used. Data acquisition 98 

was performed with the Cary Eclipse software.  99 

The software package The Unscrambler® v6. 11 (CAMO A/S Olav Tryggvasonsgt, N-7011, 100 

Trondheim, Norway) was used for the experimental design.  101 

Second order analysis of data was done using MatLab R2008a (MATLAB Version 7.6, The 102 

Marhworks, Natick, Massachusetss, 2010) and the MVC2 routines developed by Oliveri, Wu and 103 

Yu (Olivieri et al. 2009). An in house MatLab routine was used for LDA calculations (Kemsley 104 

1998). 105 
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2.3. Fluorescence excitation-emission matrices  106 

To obtain fluorescence excitation-emission matrices (EEMs), excitation wavelengths were 107 

increased from 230 to 350 at 5 nm steps; for each excitation wavelength, the emission spectrum 108 

was obtained in the range 270-500 nm at 1 nm steps. The instrumental parameters used were as 109 

follow: photomultiplier voltage of 550 V and slit widths of 5 nm. 110 

 111 

2.4. Calibration and test sets for U-PLS/RBL analysis 112 

To assess the ability of the U-PLS/RBL model in the determination of a mixture of PAHs in 113 

paprika, a 18-standards set was built for Flu calibration, and a 22-standards set was built for Phe, 114 

Ant, Pyr and Chr calibration. The analyte concentrations were corresponded with a Fractional 115 

Factorial Design and they were between 0 – 40 µg L-1 for Flu, 0 – 150 µg L-1 for Phe, between 0 116 

– 40 µg L-1 for Ant, between 0 – 40 µg L-1 for Pyr and between 0 – 15 µg L-1 for Cry. Samples 117 

were prepared in acetonitrile taking the corresponding volume of the stock solutions.  118 

Moreover, a set of 15 samples were prepared for validation of the method, with concentrations 119 

different from those employed for calibration, but within their corresponding calibration ranges. 120 

EEMs were measured as it is indicated in the section 2.3. 121 

 122 

2.5. Pretreatment of sample 123 

In order to extract the analytes from paprika samples, 0.2 g precisely weighed aliquot of this 124 

product was extracted with 10 mL of diethyl ether for 10 min in an ultrasonic bath. The extract 125 

solution was centrifuged for 10 min and evaporated to dryness. The residue was suspended in 5 126 

mL of iso-hexane and loaded on a silica cartridge. Then the PAHs were eluted from the cartridge 127 

with 7 mL of iso-hexane. This extract together with the 5 mL fraction initially percolated were 128 

combined, evaporated to dryness and reconstituted in 5 mL of ACN. In the case of smoked paprika 129 

a dilution was employed before registering EEMs, however, the non-smoked samples were 130 

registered without dilution. 131 

 132 
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2.6. Chemometric algorithms  133 

2.6.1. PARAFAC 134 

PARAFAC is one of several decomposition methods for multi-way data, which decompose the 135 

array into sets of scores and loadings that hopefully describes the data in a more condensed form 136 

than the original data array (Bro 1997). Because of the multi-way nature of the data, and the 137 

particular constraints of the PARAFAC model, the solution is unique. What this means in a 138 

practical application is that, ideally, the loading of each factor in each mode represents a pure 139 

component contribution to the fluorescence of the mixture (the fluorescent components recovered 140 

by PARAFAC may actually represent discrete species, covarying species, interacting pairs or sets 141 

of species, or instrumental artefacts). The number of components found are, therefore, only 142 

approximately equal to the actual number of fluorescent chemical species (Hall and Kenny 2007).  143 

A PARAFAC model of a three-way array is given by three loading matrices, A, B and C with 144 

elements ain, bjn, ckn, respectively, where n indicate the component number (Bro 1997). The 145 

trilinear model is found to minimize the sum of squares of the residuals, eijk, in the model  146 

𝑥!"# = ∑ 𝑎!$𝑏"$𝑐#$ + 𝑒!"#%
$&'     (1) 147 

where xijk is the fluorescence intensity for sample i at the emission wavelength j and excitation 148 

wavelength k and eijk indicates an element of the array E, which collects the variability not 149 

accounted by the model. For a given component n, the elements ain, bjn and ckn are arranged in the 150 

score vector an (whose elements are directly proportional to its concentration in each sample) and 151 

the loading vectors bn and cn, which estimate its emission and excitation profiles. The array of 152 

EEMs data is fitted to eq. 1 by least-squares.  153 

 154 

2.6.2. LDA 155 

LDA is probably the most frequently supervised pattern recognition method used. It is based on 156 

the determination of linear discriminant functions, which maximize the ratio of between-class 157 

variance and minimize the ratio of within-class variance using linear combinations of the original 158 

variables to achieve class discrimination (Berrueta et al. 2007; Borrás et al. 2015; Muñoz de la 159 

Peña et al. 2016). 160 
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In LDA, categories are supposed to follow a multivariate normal distribution and be linearly 161 

separated. LDA can be considered, as PCA, as a feature reduction method in the sense that both, 162 

LDA and PCA, determine a smaller dimension hyperplane on which the points will be projected 163 

from the higher dimension. However, whereas PCA selects a direction that retains maximal 164 

structure among the data in a lower dimension, LDA selects a direction that achieves maximum 165 

separation among the given classes. The latent variable obtained in LDA is a linear combination 166 

of the original variables. This function is called canonical variate (CV), ant its values are the roots. 167 

Being k classes, k-1 canonical variates can be determined if the number of variables is larger than 168 

k (Berrueta et al. 2007).  169 

With the A score matrix of PARAFAC and the I x g dummy matrix Y of binary digits representing 170 

the group assignments (g is the number of categories), the best representation is obtained if the 171 

ratio of the between-class variance Bc matrix and the within-class variance Wc matrix is 172 

maximized. Suitable expressions for the matrices Bc and Wc are given by the following 173 

expressions (Arruda et al. 2003):  174 

𝐵( = (𝑔 − 1))'𝐴*𝑌(𝑌*𝑌))'𝑌*𝐴    (2) 175 

𝑊+ = (𝐼 − 𝑔))'[𝐴*𝐴 − (𝑔 − 1)𝐵+]   (3) 176 

The canonical variate (CV) scores contain the successively maximized ratios between-groups 177 

variance/within-groups variance. They are obtained by PCA of the matrix (Wc-1 Bc) and 178 

projection of the data matrix A onto the first loadings. The samples are then plotted on a two- or 179 

three-dimensional space defined by the first CV scores of each sample.  180 

2.6.3. DU-PLS 181 

U-PLS was originally developed for multivariate calibration purposes (Indahl 2014; Azcarate et 182 

al. 2015), however, it has been also employed for the classification of samples. The main 183 

difference between U-PLS and discriminant U-PLS (DU-PLS) consists in the building of the 184 

dependent variable y. For model calibration purposes, the variable y contains concentration 185 

values. For discriminant analysis purposes, y contains a coding integer representing the class label 186 
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of the samples. PLS regression is conducted between the instrumental response in X block (built 187 

with the unfolded original second-order matrix data) and the class label in y block using training 188 

samples, and the optimal number of latent variables is chosen based on the error range by cross-189 

validation. The final model for A latent variables is used to predict the class label in the test set 190 

according to the following:  191 

𝑦,-., =	 𝑡,-.,*𝑣	      (4) 192 

where ytest is the label class predicted, ttest
T are the scores of test samples obtained by projection of 193 

xtest onto the training loadings, and v is the vector of the regression coefficients. In the ideal case 194 

scenario, the calculated values of ytest, for two classes of samples, are 1 or 2; in practice, ytest values 195 

are often close to 1 or 2. Therefore, in order to assign a test sample to a given class, it is necessary 196 

to establish thresholds for the ytest predicted values. The threshold is defined as the value that 197 

minimizes the number of false positives and false negatives.  198 

 199 

3. Results and discussion 200 

3.1. Preliminary considerations 201 

Taking into account a previous study performed (data send to publish), with the sample treatment 202 

described in the section 2.4., it can be secured that PAHs are present in smoked paprika extracts. 203 

For this reason, the target analytes in this study were the majority PAHs present in paprika 204 

samples: Fluorene, Phenantrene, Anthracene, Crysene and Pyrene. EEMs of each PAHs were 205 

registered with the selected conditions indicated in the section 2.3. and they are shown in the 206 

Figure 1. Besides, in this figure, EEMs of a smoked and a non-smoked paprika samples are shown. 207 

It can be observed that smoked paprika presents fluorescence intensity in the same zone than 208 

PAHs. The PARAFAC, PARAFAC-LDA and DU-PLS analysis which are shown in the after 209 

sections follow the same strategies than Muñoz de la Peña et al. (Muñoz de la Peña et al. 2016). 210 

 211 

 212 

 213 
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3.2. PARAFAC analysis 214 

Twelve EEMs of each group of paprika samples studied were registered in the selected conditions, 215 

as it is indicated in the section 2.3. Spectral decomposition of EEMs was performed via 216 

PARAFAC with all matrices registered. PARAFAC was first applied without supervision. Non-217 

negativity constraints were applied on all three modes for the estimation of the model.  218 

The number of principal components was estimated according to the core consistency diagnostic 219 

(CORCORDIA) (Bro and Kiers 2003) and the analysis of residuals (Bro 1997). Thus, the number 220 

of optimum components was four. Figure 2 shows the excitation – emission loadings 221 

corresponding to the different components found. According to the shape of the different loadings, 222 

only the first one could be related with a combination of the different PAHs, which exhibit 223 

fluorescence intensity in this zone. The fourth loading presents fluorescence intensity in the same 224 

zone that Fluorene, but the shape of the EEM does not correspond with Fluorene EEM.   225 

Taking into account that four components were the optimum, scores of one of these four 226 

components was removed to make the corresponding plots. The removal order was: firstly, the 227 

scores corresponding to the fourth component, secondly, the scores corresponding to the third 228 

component, thirdly, the scores corresponding to the second component and, finally, the scores 229 

corresponding to the first component. In all cases, the samples were clustering in two groups. 230 

Figure 3 shows the tridimensional plots of PARAFAC scores of 1, 2 and 3 components, such as 231 

an example of the classification, for each group of samples investigated. Besides, the projections 232 

of the 95% ellipses over the different planes defined by the corresponding axes to offer a better 233 

visualization of the formed groups. The prediction interval for the multivariate normal distribution 234 

yielded an ellipse consisting of x vectors satisfying the following equation: 235 

(𝑥 − 	µ)* ∑ (𝑥 − µ) ≤ 𝜒#/(𝑝)
)'     (5) 236 

where µ is the mean, Σ is the covariance matrix and χ2
k(p) is the quantile function for probability 237 

p of the χ2 distribution with k degrees of freedom, where k is the dimension of the data. The axes 238 

are defined by the eigenvectors of the variance matrix and the radius of each axis is equal to 2.796 239 

times the square root of the corresponding eigenvalue. The value 2.796 is obtained from the square 240 
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root of the χ2 distribution with three degrees of freedom and 95 % confidence interval (Slotani 241 

1964). 242 

In a previous study, one differentiation was performed due to the fluorescence signal of paprika 243 

sample without treatment (Monago Maraña et al. 2016). However, the differentiation could not 244 

be attributed to the same components because the sample treatment was different and the loading 245 

shape was also different. In this case, it is known that some of components present in this extract 246 

are PAHs, furthermore, these compounds exhibit fluorescence in the working excitation – 247 

emission wavelengths.  248 

 249 

3.3. PARAFAC-LDA 250 

Usually, applying a supervised technique, as LDA is, improves the screening capabilities (Muñoz 251 

de la Peña et al. 2016). In this case, the results obtained for the discrimination between smoked 252 

and non-smoked paprika were similar to the previous case (PARAFAC). In the Figure 4, it is 253 

shown these results obtained, with the same procedure that in the previous case, removing the 254 

scores corresponding to one of four each time. Two clearly defined clusters appears in both 255 

regions, one corresponding to the smoked paprika and other one corresponding to the non-smoked 256 

paprika samples.  257 

No significant differences are found respect the PARAFAC analysis. Also, it can be said that 258 

there is a clear difference between both groups according to the first component, which was 259 

previously related to the presence of PHAs. Thus, it is a fact that both groups can be differentiated 260 

by the presence of PAHs in the case of smoked paprika because of these compounds are formed 261 

in the smoked drying system.  262 

 263 

3.4. DU-PLS 264 

In the case of DU-PLS, the regions employed were the same that the previous cases. The number 265 

of optimum latent variables (h) was estimated via the leave-one-sample-out cross-validation 266 

approach (Haaland and Thomas 1988) using a 24-samples set (12 of each group of paprika 267 
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samples studied).  The optimum number of latent variables were those corresponding to the model 268 

given a PRESS value (PRESS value is defined as PRESS = Σ (ci,act – ci,pred)2) statistically no 269 

different to the minimum PRESS value (F-ratio probability falling below 0.75). Hence, one factor 270 

was found. This fact could mean that samples are differentiated according to one of the 271 

components present in them. For the discriminant analysis, the variable y of the model contains a 272 

coding integer representing the class label of the sample. In this case, the labels were 1 or 2. 273 

However, when unknown samples are predicted, they are classified as 1 or 0. It can be explained 274 

due to the fact that only one component was found as optimum, so the model predicts the samples 275 

as the presence or not of this component. A good prediction of the unknown samples was found, 276 

as can be observed in the Figure 5. Hence, this strategy can be useful to predict if some samples 277 

have been smoked dried or not.  The confidence interval for each category was estimated as the 278 

product of the calculated standard deviations of the results for the training samples and the Student 279 

t-value with n-1 degrees of freedom for each category. These confidence intervals were 1.09 ± 280 

0.33 and 0.06 ±0.15 for smoked and non-smoked categories, respectively. In the case of training 281 

samples, 100 % of smoked paprika samples and 92 % (11 out of 12) of non-smoked paprika 282 

samples were well classified. For unknown samples, 88 % of smoked paprika samples and 100 % 283 

of non – smoked paprika samples were correctly classified.   284 

 285 

3.5. U-PLS/RBL analysis 286 

Because the presence of PAHs in smoked paprika samples has been demonstrated, the 287 

quantification of these analytes (Flu, Phe, Ant, Pyr and Chr) using multiway chemometrics was 288 

intended. Thus, U-PLS/RBL algorithm was employed to achieve this aim.  289 

Taking into account the region of fluorescence of each compound (Figure 1), two initial regions 290 

were stablished. One corresponding to the analysis of Flu, and another one corresponding to the 291 

rest of analytes.  292 

Thus, two calibration sets were constructed. In the case of Flu, a set of 18 calibration samples 293 

were employed  and, in the case of Phe, Ant, Pyr and Chr, a set of 22 calibration samples was 294 
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employed, as it is described in the section 2.4. The range of each calibration curve was chosen 295 

according to the real concentration determined in the samples by means of a LC-FLD method 296 

previously developed (data send to publish).  297 

Firstly, the cross-validation and the Haaland and Thomas criterion (Haaland and Thomas 1988) 298 

was used to choose the optimum number of factors as it was said before, in the previous section.  299 

With the aim of validating the proposed method, a set of  tests samples containing a mixture of 300 

Phe, Ant, Pyr and Chr, in the same range of concentrations that the calibration samples, were 301 

analysed. In the case of Flu, it was not necessary to build a validation set because of it was the 302 

only analyte present in its range of calibration. In the case of Phenantrene, the range of 303 

wavelengths to quantify it (λexc = 320 – 340 nm, λem = 350 – 400 nm) was chosen according to 304 

the selectivity of this range, with the aim to avoid the presence of matrix interferences in real 305 

samples. Table 1 shows the optimum number of factors for each analyte, in their range of 306 

wavelengths. Also, in the Table 2, figures of merit of this methodology are shown (Olivieri and 307 

Escandar 2000).  308 

In order to get further insight into the accuracy and precision of the algorithm analyzed, nominal 309 

versus found concentration values of the test samples were compared by application of the EJCR 310 

(Elliptical Joint Confidence Region) test (Riu and Rius 1997; Del Rio et al. 2001). The 311 

corresponding plots are shown in the Figure 6. The prediction values for all analytes are in good 312 

agreement with the nominal values. Besides, all confidence regions contain the ideal point of unit 313 

slope and zero intercept (indicating accuracy). These results are confirmed with the statistical 314 

results, with very satisfactory values for the root mean square error of prediction (RMSEP) and 315 

relative error of prediction (REP) for the four analytes taking into account other similar studies 316 

(Bortolato et al. 2008; Alarcón et al. 2013). These results were 2.9 (Phe), 1.1 (Ant), 1.1 (Cry) µg 317 

mL-1 and 0.70 (Pyr) for RMEP and 4 (Phe), 5 (Ant), 5 (Cry), 7 (Pyr) % for REP. Taking into 318 

account these good results, this methodology was employed for the quantification of these 319 

analytes in real paprika samples. 320 
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In this case, it was necessary to assess a number of unexpected components to be employed in the 321 

RBL procedure (Olivieri and Escandar 2000), taking into account the presence of matrix 322 

interferences, as it can be appreciated in the Figure 1. This number of unexpected components 323 

was different according to the analyte. The new factors are shown in Table 1.  324 

In the case of Flu, Phe and Ant, good results were found and their concentrations were well-325 

correlated with those found by a LC-FLD method, previously developed. However, in the case of 326 

Pyr and Chr, only 6 or 7 samples were well-correlated. This fact could be due to the low 327 

concentration of these analytes and the presence of the interferences. Table 3 shows the 328 

correlation between results obtained by both methods. These results corresponding to the smoked 329 

samples. 330 

In order to stablish the LOD and LOQ for real samples, a non-smoked sample, whit a low 331 

concentration of PAHs was extracted according to the described procedure. The procedure was 332 

applied five times with the same sample, and the concentration of each analyte was predicted with 333 

these algorithms. The limit of detection (LOD) and quantification (LOQ) were calculated as three 334 

and ten times the standard deviation of the different extractions, respectively. With this, the LOD 335 

of this method and samples, for the different analytes, were 2 µg L-1 (Flu), 18 µg L-1 (Phe), 4 µg 336 

L-1 (Ant), 18 µg L-1 (Pyr) and 12 µg L-1 (Cry) and the LOQ were 8 µg L-1 (Flu), 60 µg L-1 (Phe), 337 

13 µg L-1 (Ant), 60 µg L-1 (Pyr) and 40 µg L-1 (Cry). These samples were register without a 338 

previous dilution due to their low concentration. Taking into account these results, only the 339 

smoked samples were quantified, because the non-smoked samples presented PAHs 340 

concentrations lower than LOQ of the method. 341 

 342 

4. Conclusions 343 

EEMs in combination with different chemometric tools have been employed to demonstrate the 344 

successful discrimination between paprika samples obtained by different drying systems.  On the 345 

one hand, PARAFAC (unsupervised technique) has allowed discriminating and classifying 346 

paprika samples. Also, on the other hand, good results have been obtained with PARAFAC-LDA 347 
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(supervised technique). In the case of DU-PLS, its ability to distinguish smoked or non-smoked 348 

paprika was assayed and unknown samples were well-classified.  349 

Finally, a method based on EEMs coupled to U-PLS/RBL has been employed to quantify 350 

Fluorene, Phenantrene and Anthracene in smoked paprika samples. Results obtained showed 351 

good correlations with a previous developed LC-method.  352 
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Figure captions 

 

Figure 1. Excitation – emission matrices corresponding to Fluorene (10 µg mL-1), Phenantrene 

(100 µg mL-1), Anthracene (20 µg mL-1), Pyrene (100 µg mL-1) and Chrysene (100 µg mL-1), a 

smoked paprika sample, non-smoked paprika sample (sample registered without previous 

dilution).  



21 
 

 

Figure 2. Structures of the four PARAFAC components (loadings corresponding to different 

components) obtained by multiplying the corresponding vectors. 
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Figure 3. PARAFAC scores (3 first model’s components) for 24 samples (12 corresponding to 

smoked paprika and 12 corresponding to non-smoked paprika). The three-dimensional projection 

of the 95% confidence ellipse of the data collected from each type of paprika is included to 

facilitate visualization of the obtained results.  
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Figure 4. LDA CV scores (3 first model’s components) for 24 samples (12 corresponding to 

smoked paprika and 12 corresponding to non-smoked paprika). The three-dimensional projection 

of the 95% confidence ellipse of the data collected from each type of paprika is included to 

facilitate visualization of the obtained results. 
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Figure 5. Plot of the DU-PLS (1 component model) predicted vs nominal coded values for 21 

smoked paprika samples (12 calibration samples = blue circles; 9 validation samples = blue 

crosses) and 21 non-smoked paprika samples (12 calibration samples = red squares; 9 validation 

samples = red crosses). 
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Figure 6. Plots of Phe (pink), Ant (blue), Cry (green) and Pyr (red) predicted concentrations as a 

function of the nominal values (left) and the corresponding elliptical joint regions (at 95% 

confidence level) for the slopes and intercepts of the regressions (right). Theoretical point 

(intercept = 0, slope = 1) is marked in the figure by the black point.  
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Table 1. Optimum number of factors for each analyte in their range of wavelengths in the U-
PLS/RBL analysis and number of unexpected components found for each analyte in real 
samples.  

Analyte λexc (nm) λemis (nm) Components RBL 
Flu 250 - 275 300 - 350 2 2 
Phe 320 - 340 350 - 400 1 2 
Ant 240 - 260 395 - 410 5 1 
Chr 250 - 275 355 - 410 5 2 
Pyr 235 - 255 345 - 380 3 2 

 

Table 2. Figures of merit for the different analytes using U-PLS/RBL (Olivieri and Escandar 
2000). 

 Flu Phe Ant Cry Pyr 
SEN 9.1 1.3 4.7 6.7 1.9 
g 12 1.6 2.8 5.7 0.93 

LOD 0.27 2.1 1.2 0.58 3.6 
LOQ 0.80 6.2 3.5 1.7 11 

SEN: Sensitivity (AU mL ng-1); g: Analytical sensitivity (mL ng-1); LOD: limit of detection (ng mL-1); 
LOQ: limit of quantification (ng mL-1).  

 

Table 3. Concentrations (mg kg-1) obtained for each analyte by both methods and the error percentages 
between both methods. 

  

Fluorene Phenantrene Anthracene 
HPLC-FLD- 
MCR-ALS U-PLS/RBL  % E HPLC-FLD- 

MCR-ALS U-PLS/RBL % E HPLC-FLD- 
MCR-ALS U-PLS/RBL % E  

1.91 1.98   3.6 11.00 12.24  11.3 2.47 2.59  4.9 

2.01 2.19   8.9 11.81 11.67  1.2 2.64 2.76  4.5 
2.95 3.38   13.4 16.69 12.51  25.0 4.14 3.87  6.5 

3.48 2.23   35.9 13.04 13.89  6.5 2.95 2.81  4.7 
2.09 2.00   4.5 10.41 11.82  13.5 2.37 2.43  2.5 

1.83 2.00   9.3 11.27 9.92  11.9 2.54 2.97  16.9 
2.70 2.45   9.3 16.50 9.13  44.7 4.23 3.15  25.6 

2.51 2.88   14.7 16.63 11.92  28.3 4.29 4.11  4.2 
2.52 2.30   8.7 14.97 13.34  10.9 3.13 2.96  5.4 

2.17 1.93   11.1 12.16 12.16  0 2.83 2.34  17.3 
1.77 1.75   2.0 9.80 11.46  16.9 2.30 2.19  4.8 

2.29 1.88   17.9 18.89 19.19  1.6 4.33 3.01  30.5 
1.57 1.23   21.6 11.48 10.17  11.4 2.44 1.97  19.3 

1.78 2.43   36.5 12.10 14.16  17 2.74 2.87  4.7 
1.98 2.24   13.1 12.50 12.39  0.88 2.79 2.93  5.0 

1.86 1.74   6.5 10.92 10.63  2.7 2.37 1.93  18.5 
2.63 2.67   1.5 10.00 9.00  9.0 2.06 1.97  4.4 

2.26 3.07   35.8 18.56 17.25  7.1 4.36 3.09  29.1 
2.30 3.13   36 17.27 17.53  1.5 4.00 3.66  8.5 

1.43 2.03   41.9 13.53 13.10  3.2 3.14 2.66  15.3 
2.22 3.10   39.6 14.76 15.78  6.9 3.32 2.82  15.1 

 




