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Abstract 14 

This study reports the feasibility of using Raman spectroscopy for quantification of soluble solids and 15 

individual sugars in apple. Six different commercial apple varieties were measured by Raman 16 

spectroscopy at three different steps: 1) Intact apples with skin, 2) apples without skin and 3) juices 17 

obtained from apples. Results indicated that it is possible to measure Raman signals to a depth of 8 mm 18 

into the apple with a wide area Raman probe. Multivariate calibration models were established to 19 

evaluate how well Raman spectra can be used to estimate the quality parameters SSC (%), total sugars, 20 

glucose, fructose and sucrose. Estimation accuracy for SSC was comparable with what is achievable 21 

with near-infrared spectroscopy: Root mean square error of cross-validation (RMSECV) = 0.66, 0.46 22 

and 0.72 % and coefficients of determination (R2) = 0.70, 0.85 and 0.63 for intact apples, apples without 23 

skin and juices, respectively. Sucrose and glucose were well estimated with RMSECV of 2.8, 1.9, 2.1 24 

mg/mL for glucose and 5.8, 3.9 and 3.7 mg/mL for sucrose, for the three sample cases, respectively. 25 

Coefficient of determination was higher than 0.82 for all models. Regression coefficients for all 26 

calibration models highlighted identifiable Raman bands that could be related to the target sugars.  27 

 28 
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1. Introduction 36 

Apple is a widely produced and consumed fruit around the world. It is rich in sugar, vitamins, 37 

flavonoids, minerals and other nutrients attributed to health benefits. Sweetness is one of the most 38 

important components of fruit quality that determines the overall acceptability of apples (Harker 39 

et al., 2003; Janick et al., 1996). Sweetness is correlated to soluble solids content (SSC), which 40 

includes total solutes; e.g.; organic acids, amino acids, soluble pectins and has a major 41 

contribution from the sugars fructose, glucose and sucrose (Guan et al., 2015). SSC is an 42 

important parameter to determine flavour, ripeness as well as to predict optimal harvest time for 43 

apples. Refractometry of fruit juice is the standard method for SSC measurement, given as % or 44 

ºBrix, unfortunately a destructive and rather time-consuming procedure. Quantification of 45 

individual sugars (fructose, glucose and sucrose) in apples are also of interest in connection with 46 

phenotyping and breeding programs, as well as for studying carbohydrate metabolism during 47 

ripeness and postharvest storage (Guan et al., 2015).  For industrial purposes, breeding and 48 

research there is a strong need for rapid and non-destructive determination of SSC as well as the 49 

individual sugars in apples.   50 

Near-infrared spectroscopy (NIRS) is already established as an efficient method for determination 51 

of SSC in apples. The method relies on absorption overtones and combination of vibrational bands 52 

mainly associated with -CH and -OH functional groups present in the different carbohydrates 53 

such as glucose, sucrose and fructose (López et al., 2016). Nicolaï et al., 2007 reviewed the status 54 

of non-destructive measurement of fruit quality by means of NIRS, and several studies show that 55 

a typical prediction error (root mean square error of prediction, RMSEP) for SSC is around 0.5 56 

%. But this accuracy is usually obtained for individual apple varieties from the same season and 57 

from the same orchard. When calibrations are validated with apples from different seasons or 58 

origins, the RMSEP usually increases to 1-1.5 %. Nicolaï et al., 2007 concluded that to obtain a 59 

robust calibration model, the calibration data set should be rich in variation and include apples 60 

from different orchards and seasons. They regarded model robustness as the single most important 61 

concern in NIRS of horticultural produce. The use of NIRS for determination of individual sugars 62 
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in intact apples was newly reported by Lan et al. (2020). They collected spectra in the region 900-63 

2500 nm from 840 apples of three varieties. Calibration models for fructose, glucose and sucrose 64 

were obtained with promising results (RMSEP = 1.9, 9.2 and 7.6 g/kg, respectively). The models 65 

were complex and no interpretation of the spectral data was offered (Lan et al., 2020).  66 

Today, grading lines equipped with NIR sensors are commercially available (Nicolaï et al., 2007) 67 

and novel compact sensors have the potential to be used effectively in field and during storage. 68 

But the workload of proper calibration and continuous calibration maintenance is a considerable 69 

cost. It is therefore of interest to explore potential alternative non-destructive techniques. Raman 70 

spectroscopy is one such technique that is now available in more affordable and compact 71 

instrumentation. Raman spectra are in general more selective compared to NIR spectra, providing 72 

more narrow spectral bands with abundant and well resolved chemical information which is easier 73 

to interpret. It is well known that Raman spectroscopy is well suited for analysis and 74 

quantification of sugars in complex samples. Özbalci et al., 2013 showed that fructose, glucose, 75 

maltose and sucrose in water solutions can be clearly discriminated, and also quantified in diluted 76 

honey samples by Raman spectroscopy using a laser excitation of 785 nm. Calibration models 77 

based on PLS regression gave correlation coefficients higher than 0.95 for all the individual 78 

sugars (Özbalci et al., 2013). Individual sugars in soft drinks have also been quantified with 79 

Raman, using external calibration curves with sugar standards (Ilaslan et al., 2015). In this case, 80 

Raman spectroscopy performed equally well as high performance liquid chromatography. Raman 81 

spectroscopy is suitable for process monitoring in liquid systems and has been used for real time 82 

quantification of total sugars with high accuracy (R2 = 0.99, RMSECV = 0.17 g/L)  during wine 83 

fermentation (Wang et al., 2014). Total sugars were also determined in wine samples by FT-84 

Raman (RMSEP = 0.85 g/L) and better results were obtained compared to mid IR (RMSEP = 1.2 85 

g/L) and NIRS (RMSEP = 1.4 g/L). Raman spectroscopy has also been used for adulteration 86 

detection of coconut water with different types of sugars and was demonstrated to detect very low 87 

levels of added single sugars, i.e. 2.1 %, 2.6 % and 1.9 % for glucose, fructose and sucrose, 88 

respectively (Richardson et al., 2019). 89 
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One important technical aspect when considering Raman spectroscopy for analysis of intact solid 90 

food matrices is representative sampling. Novel Raman system designs, such as spatially offset 91 

Raman spectroscopy (SORS) and wide area Raman spectroscopy, allow deeper optical sampling 92 

in biological tissues (Esmonde-White et al., 2017; Monago-Maraña et al., 2021). This makes them 93 

highly relevant for measuring internal quality in foods (Afseth et al., 2014). An example is the 94 

use of SORS for evaluation of internal maturity of tomatoes (Qin et al., 2012). As far as we know, 95 

there are no reported studies on the determination of SSC or individual sugars in intact apples by 96 

Raman spectroscopy. Hence, the aim of this study was to elucidate the potential for such an 97 

application. Raman measurements employing a wide area Raman probe were performed on a total 98 

of 60 apples of six different varieties at three steps: 1. intact apples, 2. apples without skin, and 3. 99 

on the juice from the apples. From these measurements, regression models for SSC (%), total 100 

sugars and contents of sucrose, glucose and fructose were obtained. In addition, the optical 101 

sampling depth in apples was investigated.  102 

 103 

2. Materials and methods 104 

2.1. Samples and chemicals 105 

A total of 60 samples were used in this study. Ten apples of six different varieties were selected 106 

from the Norwegian grocery market in 2020: Granny Smith (variety 1), Royal Gala Kanzi (variety 107 

2), Royal Gala (variety 3), Golden Delicious (variety 4), Pink Lady (variety 5) and Ecology Red 108 

apples (variety 6). All samples were purchased May 2020 and could thus be expected to be fully 109 

ripened. They were kept at 4 ºC until further analysis.  110 

Glucose, fructose and sucrose standards were purchased from Merck (Oslo, Norway). Trehalose 111 

was obtained from VWR Life Science (Oslo, Norway). Sodium acetate and sodium hydroxide 112 

solution (50 – 52 % in water), used for the mobile phases, were bought from Merck (Oslo, 113 

Norway). Milli-Q water was obtained from a Milli-Q water system (Merck, Oslo, Norway).  114 

 115 
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2.2. Reference analysis 116 

Soluble solids content (SSC), expressed in %, was determined at 25 ºC with a RE40 digital 117 

refractometer (Mettler Toledo AS, Oslo) on the fresh juice samples obtained, from peeled apples 118 

after removing the peduncle, with a juice maker. Juices were then frozen for further analysis of 119 

glucose, fructose and sucrose. Individual sugars were determined following the method described 120 

by Helgerud et al., 2016. An aliquot of juice was diluted (1:2000) with Milli-Q water and 121 

containing 10 µg/mL of trehalose as internal standard in each sample. A High-Performance Anion 122 

Exchange Chromatography with Pulse Amperometric Detection (HPAED-PAD) system was 123 

employed (Dionex ICS 5000+, Thermo Scientific Inc., USA). The system was equipped with an 124 

AS-AP autosampler, an ICS 5000+SP pump and an ICS 5000+DC column oven. An ICS 125 

5000+ED pulsed amperometric detector, with an Au working electrode and an Ag/AgCl reference 126 

electrode was used. A CarboPac PA-1 anion exchange column and a CarboPac PA-1 guard 127 

column were used and kept at 25 ºC. Elution was performed in isocratic mode with sodium 128 

hydroxide (100 mM) for 15 min, followed by a washing step for 5 min with sodium hydroxide 129 

(100 mM) in sodium acetate (500 mM). The column was then reconditioned for 5 min with 130 

sodium hydroxide (100 mM) before next injection. Flow rate was set at 1 mL/min and an injection 131 

volume of 20 µL was employed. All samples were analyzed in duplicate.  132 

2.3. Raman spectroscopy 133 

A RamanRXN2TM Hybrid system (Kaiser Optical Systems, Inc., Ann Arbor, MI, USA) was used 134 

to collect the Raman spectra. This instrument was equipped with a wide area non-contact PhAT-135 

probe. A 400 mW laser with a 785 nm excitation wavelength, and a circular spot size of D = 6 136 

mm at a 25 cm working distance was used. Each spectrum was an average of 4x20 sec 137 

accumulations, measured in triplicate, giving a total acquisition time of 320 seconds for each 138 

sample. The average of the three spectra were taken after fluorescence background correction. 139 

The measured spectral range was 200 – 1890 cm-1. All samples were measured during four days 140 

in a random sequence to avoid potential systematic variations between days or varieties. 141 
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To account for possible heterogeneity of samples, apples were spinned around their own axis 142 

during spectral collection. Each sample was first measured with skin. The apples were then peeled 143 

with a vegetable peeler and measured again. Finally, juice from each apple was obtained with a 144 

juice maker (Philips HR1866/00). The peduncle was removed and the remaining of peeled apple 145 

was juiced. The juices were frozen after measuring SSC for further analysis with a different 146 

Raman probe. The time for the entire procedure was less than 20 minutes per apple, avoiding 147 

oxidation of samples with air. 148 

All juice samples were thawed and measured with a Raman immersion ballprobe (Matrix 149 

Solutions, Bothell, WA) suitable for liquids. The ballprobe was 20 cm long and 12.5 mm o.d, 150 

incorporating a spherical lens. The instrumental settings were the same as those used for solid 151 

samples, again performed in triplicates.   152 

 153 

2.4. Depth of Raman measurement 154 

To investigate the sampling depth with Raman in intact apples we performed one simple 155 

experiment. A 25 mm thick slice of apple was placed upon a slice of carrot. The skin side of the 156 

apple was facing the Raman probe (Figure 1). The apple slice was gradually sliced thinner and 157 

thinner from the underside, and for every thickness a Raman spectrum was recorded. The thinnest 158 

slice was 2 mm thick. The experiment was done for two apple slices, one without skin and one 159 

with red skin. The appearance of the beta-carotene peaks at the different sample thicknesses 160 

would give an indication of the sampling depth. Multivariate curve resolution (MCR) was used 161 

to extract the pure carrot and apple signals from the spectra (Tauler, 1995), making it possible to 162 

estimate the relative contributions from carrot and apple as function of apple slice thickness. MCR 163 

was performed in Matlab version R2007b by the PLS_Toolbox (Eigenvector Research Inc., 164 

Manson, WA, USA). 165 

 166 

 167 
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2.5. Multivariate data analysis 168 

The fluorescence background in the raw Raman spectra was removed by subtracting a polynomial 169 

fitted to the baseline (Lieber and Mahadevan-Jansen, 2003). The procedure was applied to the 170 

range 300 - 1500 cm-1 because the main information from sugars is in this range. A polynomial 171 

degree of 6 was used. The correction was performed using in-house Matlab scripts (R2007b, The 172 

MathWorks, Inc., Natick, MA, USA).  173 

Principal component analysis (PCA) (Wold et al., 1987) was applied to explore spectral variation 174 

between apple varieties. PCA was performed using The Unscrambler version 6.11 (CAMO 175 

Software AS, Oslo, Norway). Partial least-squares regression (PLSR) (Martens and Næs, 1989) 176 

was used to obtain calibration models between Raman spectra and the quality features.  Full cross-177 

validation and segmented cross-validation (leaving out one apple variety at the time) were used 178 

to determine the number of components to use in the calibrations, and to evaluate the performance 179 

of the models. Multivariate calibration was performed using The Unscrambler version 6.11 180 

(CAMO Software AS, Oslo, Norway). 181 

 182 

3. Results and discussion 183 

3.1. Spectral information 184 

Baseline corrected Raman spectra of apples with and without skin, as well as for apple juice, are 185 

presented in Figure 2 (raw spectra are shown in Figure S1). The spectra clearly reveal that Raman 186 

spectra of apples are rich in bands and thus chemical information on apple composition. Tentative 187 

band assignments are provided in Table 1, and as seen from the list, most bands can be attributed 188 

to the carbohydrates sucrose, fructose and glucose (Ilaslan et al., 2015; Özbalci et al., 2013). The 189 

most intense bands appear at 629 cm-1 and 1459 cm-1. Raman spectra of glucose, fructose and 190 

sucrose standards collected in water solution are provided in Figure S2. By comparing the spectra, 191 

a range of the bands appearing in apple spectra can be identified in the standards: 420 cm-1 192 
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(fructose or glucose); 629 cm-1 (fructose), 1084 cm-1 (fructose), 1124 cm-1 (glucose), 1264 cm-1 193 

(fructose) and 1459 cm-1 (fructose, sucrose or glucose).  194 

Figure 2 reveals notable similarity between apple juice spectra and spectra of apples without skin.  195 

More surprising, taking into account the colorful skin, Raman spectra of apples with and without 196 

skin are also very similar. This similarity could be related to the fact that apple skin is rather thin 197 

and that we were probing considerably deeper into the apple. The few additional bands found in 198 

the spectra of apples with skin is most likely related to skin pigmentation, such as chlorophyll 199 

(i.e. the Raman bands found at 746 cm-1 and 1327 cm-1) (Jehlička et al., 2014). All spectra in 200 

Figure 2 are colored according to SSC (%) values. By visual inspection, a clear trend in the spectra 201 

is observed in some regions around 629, 854, 1084, 1124, 1264 and 1459 cm-1. These bands are 202 

more intense in samples of high SSC. The trend is more apparent for apples without skin and 203 

juices compared with spectra from samples with skin and thus gives initial indications on the 204 

quantitative features of the spectra.  205 

To study potential spectral variation among apple varieties, detect potential outliers and 206 

systematic artifacts in the samples, PCA was applied. For apples with skin, the second and fourth 207 

principal components (PC2 and PC4)), explaining 23 % and 4 % of the variance, respectively, 208 

showed a quite clear clustering of samples according to varieties (Figure 3A).  Loadings for PC2 209 

(Figure 3B) show that the main variables affecting the separation of varieties were 628, 835, 1083 210 

and 1458 cm-1, representing bands from sucrose and fructose. Scores values for PC2 were 211 

generally higher for varieties 2, 3, 5 and 6, which indicates that the concentrations of these 212 

compounds tend to be higher in these varieties. This is in accordance with measured sucrose 213 

(Figure 5). For PC4, the variables resulting in clustering were 420, 628, 745 and 1326 cm-1. 214 

Positive loadings were related with glucose and fructose and negative loadings were related with 215 

chlorophyll, showing higher intensity peaks in variety 1, 3 and 5 for these variables. 216 

In the case of apples without skin, PC2 and PC3, explaining 22 and 7 % of variance, respectively, 217 

showed some clustering (Figure 3C). Variety 5 was the most clearly clustered group. For PC3, 218 

the main variables highlighted were 628, 834, 1124 and 1456 cm-1. Positive loadings (1124 cm-1) 219 
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were related with glucose, which was very low for variety 5 (Figure 5C). Negative loadings were 220 

related with sucrose and fructose, and the concentration of sucrose was high in variety 5.   Thus, 221 

even though apple skin clearly introduces additional chemical information in the spectra, clear 222 

chemical features from apple tissue is seen in both sampling approaches.  223 

 224 

3.2. Depth of Raman measurement  225 

A simple experiment was performed to investigate Raman sampling depth in intact apples using 226 

a thick slice of apple on top of a slice of carrot. The carrot exhibits strong Raman scattering at 227 

1007 cm-1 and 1156 cm-1 due to beta-carotene. Figure 4A shows Raman spectra from the apple 228 

slices of varying thickness upon the carrot sample. The intensity of the beta-carotene bands 229 

increased when the thickness of the apple slices decreased. Based on MCR it was possible to 230 

separate the signals from carrot and apple, and the estimated pure spectra are shown in Figure 4B. 231 

The corresponding estimated concentrations of carrot and apple for each apple slice thickness are 232 

plotted in Figure 4C and 4D. The estimated concentrations were normalized with respect to the 233 

signals obtained from pure carrot and apple, respectively, and are therefore estimates of how large 234 

shares of the signal that originated from carrot or apple. For an apple slice of 2 mm without skin 235 

(Figure 4C) about 55 % of the signal came from the carrot, and for a slice of 5 mm as much as 27 236 

% of the signal still came from carrot. At 8 mm thickness the contribution from carrot was 237 

approaching zero. For apple with skin the signal contribution from deeper regions was smaller, 238 

about 30 % at 2 mm and 12 % at 5 mm thickness. It was concluded that the current setup was 239 

sufficient to probe 7-8 mm into the apple and that the skin reduced the signal from deeper regions. 240 

Clearly, most of the Raman signal came from the sample volume close to the apple surface (0-4 241 

mm), but it is interesting that signals are captured from depths down to 8 mm. Similar studies 242 

with NIR spectroscopy on apples indicate a sampling depth of only about 4 mm in the 700–900 243 

nm range (Lammertyn et al., 2000), but sampling depth will always depend on the optical setup. 244 

 245 
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3.3. Quantification of SSC and sugars 246 

The bar charts of Figure 5 show the variation of all the analyzed reference parameters, grouped 247 

by variety. For SSC there are similar ranges (minimum and maximum values) across all varieties 248 

(Figure 5A).  Samples from variety 1 (Granny Smith) and variety 4 (Golden Delicious) had lower 249 

total content of sugars than the other four varieties (Figure 5B). Larger span of variation (both 250 

between varieties and within each variety) is seen for glucose (Figure 5C) and sucrose (Figure 251 

5E) compared to fructose (Figure 5D). Mean values of fructose for each variety were compared, 252 

and statistically differences were found between varieties 6 and 1 and varieties 6 and 5. The 253 

correlations found between different reference parameters in the samples were calculated and are 254 

provided in Figure S3A. As expected, there was a high correlation between SSC (%) and total 255 

sugars. In addition, there were high and positive correlations between sucrose, SSC and total 256 

sugars. A strong negative correlation was found between sucrose and glucose. Fructose did not 257 

present high correlations towards any other parameter. In general, these correlations are important 258 

to take into account when interpreting the calibration models obtained.  259 

Baseline corrected Raman spectra (300 – 1500 cm-1) were used to obtain the calibration models 260 

for all chemical reference parameters (Table 2). The optimal number of components were chosen 261 

based on the explained variance for each component as well as the regression coefficients, making 262 

sure regression coefficients were consisting of distinct spectral features and not only noise. For 263 

SCC, the results were good compared to reported studies based on NIRS (Fan et al., 2020; Lan et 264 

al., 2020; Li et al., 2018). In general, results based on apples without skin were better than apples 265 

with skin. This result could be expected since having to penetrate the skin adds complexity to the 266 

spectroscopic measurements. Moreover, reference measurements were obtained from the peeled 267 

apples, so a better match could be expected. However, results for the measurements on apples 268 

with skin are still acceptable. Regression coefficients for all calibration models for apples without 269 

skin are provided in Figure 6. For the SSC regression coefficients (Figure 6A), the main variables 270 

affecting the models were found at 834, 1070, 1130 and 1460 cm-1. These variables have been 271 

attributed to sucrose in solution (Figure S2C). This result is in accordance with the correlation 272 
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found between SSC and sucrose content (Figure S3). Overall, the regression coefficients for total 273 

sugars emphasized similar chemical bands as those for SSC.  274 

For glucose and sucrose, good calibration models were obtained, both on apples with and without 275 

skin. The regression coefficients for glucose and sucrose were dominated by the same Raman 276 

bands, but inversely correlated. This could be expected since the reference values were negatively 277 

correlated (Figure S3A). The correlations between the predicted values from these calibration 278 

models are shown in supplementary Figure S3B and S3C.  Since these correlation coefficients 279 

were similar to those obtained for the reference values, it is most likely possible to predict the 280 

individual content of sugars independently of the variation of other sugars or total sugars. The 281 

poorest regression results were obtained for fructose for all sample types. However, note that the 282 

regression coefficients obtained (Figure 6D) (including the following Raman shifts:  423, 523, 283 

629, 1268 and 1460 cm-1) closely resembles the Raman spectrum of aqueous fructose (Figure 284 

S2B and Table 1). This means that the model is based on chemical information from fructose. 285 

One explanation for poor accuracy is the narrow variation range of fructose, as seen in Figure 5D.  286 

Calibration models for juice were included as benchmarks for the other sampling approaches, 287 

since juice samples are more homogeneous without the complex sample matrix of intact apples. 288 

Surprisingly, for SCC and total sugars, regression results were better for apples without skin than 289 

for juice samples. For single sugars, the regression results obtained on apples without skin were 290 

very similar to those of juice. It is difficult to point on one single explanation for these results. 291 

For bulk parameters like SCC and total sugars it could be hypothesized that apple matrix bands 292 

not directly related to sugars are used indirectly to improve modelling of bulk parameters in the 293 

peeled apples. Such matrix bands are obviously not present in juice spectra. Regardless, the results 294 

clearly suggest that apple measurements perform as well as juice measurements, which is 295 

encouraging for future development of this application.  296 

In this study, all Raman spectra were pre-processed using a standard baseline correction. 297 

Additional tests employing a normalization routine (extended multiplicative scattering correction) 298 

led to less accurate calibration models (data not shown). Normalization could remove relevant 299 
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chemical variation in the Raman spectra. The exploration of pre-processing steps, including 300 

baseline correction and normalization, will be an essential part of future development of this 301 

approach. Moreover, in order to evaluate the robustness of the Raman measurements, regression 302 

models were validated by leaving out one apple variety at a time (i.e. 17 % of the samples were 303 

left out each time). As provided in Table S1, these results were mainly the same as for full cross-304 

validation. Since robustness across varieties is a major challenge when using NIR spectroscopy, 305 

this suggests that Raman could be a beneficial alternative. However, more data is needed to 306 

explore this possibility.  307 

To validate current results, sample sets and variation ranges should be extended with new 308 

varieties. As only ripe apples with very low starch contents were used, the inclusion of apples 309 

from different stages of ripening would also be very interesting. Starch exhibits distinct Raman 310 

bands that certainly will affect the overall Raman fingerprints. Another interesting aspect is 311 

looking into alternative Raman sampling possibilities. SORS could potentially provide deeper 312 

optical sampling than the wide area Raman probe used in the present study, and this might 313 

improve current results. SORS is expected to be particularly beneficial in measurements of intact 314 

apples, since the SORS approach would enable efficient penetration and suppression of signals 315 

from the skin layer.  316 

Compared to NIRS, Raman systems are generally limited by weaker signals. Prolonged exposure 317 

times is a common way of compensating for this. The exposure times used in the current study 318 

(i.e. 320 seconds) were not optimized with respect to speed, but an achievable aim should be to 319 

reduce exposure times down to 2-5 seconds. Furthermore, Raman measurements are very 320 

sensitive to ambient light. In this study the measurements were done in a dark room with 321 

negligible ambient light, while in field or in processes this has to be solved with proper 322 

shielding. In addition, Raman systems tend to be more expensive than NIR systems. The 323 

development of Raman technology is currently happening at a steady pace, and it is likely that 324 

more affordable systems with improved sampling opportunities and signal efficiency will be 325 

available in the near future.  326 
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4. Conclusions 327 

This study illustrates the feasibility of using Raman spectroscopy for quantification of SSC and 328 

individual sugars (glucose, fructose and sucrose) in apples with and without skin. By using a wide 329 

area Raman probe, it is possible to measure at least 8 mm into an apple, through the skin. 330 

Calibration models for SSC provided an accuracy comparable with what is achievable with NIRS. 331 

In addition, good calibration models were obtained for glucose and sucrose. Poorest models were 332 

obtained for fructose. This could be related to the poor variation range of this component in the 333 

current sample set. Extending sample sets with new varieties at different stages of ripeness is 334 

needed to further validate the feasibility of Raman spectroscopy for use in apple quality 335 

evaluation.  336 
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Table 1. Tentative assignment of Raman bands found in apple samples. 

Wavenumber 
(this work) 

(cm-1) 

Wavenumber 
reference 

(cm-1) 
Vibration Compound 

assigned Reference 

420 
415 

419 

d(C2 - C1-O1) 

d(C - C-O) 

Glucose 

Fructose 

(Ilaslan et al., 2015) 

(Özbalci et al., 2013) 

519 523 Skeletal vibration Glucose (Ilaslan et al., 2015) 

629 631 d(C–C–O) Fructose (Ilaslan et al., 2015) 

802 800 n(C-C) Sucrose (Ilaslan et al., 2015) 

854 856  d(C1 – H1) b-glucose (Özbalci et al., 2013) 

1084 1082 n(C-O) Fructose (Söderholm et al., 
1999) 

1124 1127 - b-glucose (Cael et al., 1974) 

1264 
1263 

1264 
- 

b-glucose 

Fructose 

(Cael et al., 1974) 

(Delfino et al., 2011) 

1459 
1459 

1460 

 

-CH2 

Fructose 

Glucose 

 

(Delfino et al., 2011) 

(Söderholm et al., 
1999) 

414 
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Table 2. Results obtained for the different models. 

  Apples with 
skin 

Apples without 
skin Juices 

SSC 
Comp. 2 1 4 

RMSECV (%) 0.66 0.46 0.72 
R2 0.70 0.85 0.63 

Total 
sugars 

Comp. 2 2 2 
RMSECV (mg/L) 9.7 7.5 9.3 

R2 0.57 0.74 0.61 

Glucose 
Comp. 6 3 3 

RMSECV (mg/L) 2.8 1.9 2.1 
R2 0.82 0.91 0.90 

Fructose 
Comp. 3 4 3 

RMSECV (mg/L) 6.2 5.6 6.0 
R2 0.27 0.40 0.32 

Sucrose 
Comp. 5 3 2 

RMSECV (mg/L) 5.8 3.9 3.6 
R2 0.89 0.95 0.96 

 415 
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Figure captions 416 

Figure 1. Sketch of sampling approach for the depth measurement study. 417 

Figure 2. Baseline-corrected Raman spectra from apples with skin (A), apples without skin (B) and 418 

apple juices (C). Spectra are colored according to SSC.  419 

Figure 3. Scores values (A and C) and loadings (B and D) obtained from PCA analysis of apples with 420 

skin (A and B) and without skin (C and D).  421 

Figure 4. Baseline-corrected Raman spectra obtained for the different slices of apples without skin (A). 422 

Estimated pure spectra obtained by MCR (B). Estimated concentrations by MCR for apple without skin 423 

(C) and with skin (D). 424 

Figure 5. Bar charts for the different parameters studied: SSC (A), total sugars (B), glucose (C), fructose 425 

(D) and sucrose (E). Light colors represent the minimum values, dark colors represent the maximum 426 

values and medium color represents the mean value. The error bars represent the standard deviation in 427 

each case.  428 

Figure 6. Regression coefficients for the models obtained for apples without skin: SSC (A), total sugars 429 

(B), glucose (C), fructose (D) and sucrose (E). 430 
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