
Minimum Modulus Visualization of Algebraic
Fractals*

Severino F. Galán
Artificial Intelligence Dept. at UNED

C/ Juan del Rosal 16, 28040 Madrid (Spain)
E-mail: seve@dia.uned.es

Abstract

Fractals are a family of shapes formed by irregular and fragmented patterns. They can
be classified into two main groups: geometric and algebraic. Whereas the former are charac-
terized by a fixed geometric replacement rule, the latter are defined by a recurrence function
in the complex plane. The classical method for visualizing algebraic fractals considers the
sequence of complex numbers originated from each point in the complex plane. Thus, each
original point is colored depending on whether its generated sequence escapes to infinity. The
present work introduces a novel visualization method for algebraic fractals. This method col-
ors each original point by taking into account the complex number with minimum modulus
within its generated sequence. The advantages of the novel method are twofold: on the one
hand, it preserves the fractal view that the classical method offers of the escape set boundary
and, on the other hand, it additionally provides interesting visual details of the prisoner set
(the complement of the escape set). The novel method is comparatively evaluated with other
classical and non-classical visualization methods of fractals, giving rise to aesthetic views of
prisoner sets.

Keywords: Complex plane, iterated complex function, algebraic fractal, visualization, minimum
modulus.

1 Introduction

Fractal geometry [21, 24, 10, 9, 12] studies shapes characterized by irregular and fragmented
patterns exhibiting certain degree of self-similarity. The term “fractal” [19, 20] was coined by
Benoit B. Mandelbrot in 1975, who formally defined it as a set for which the Hausdorff-Besicovitch
dimension strictly exceeds the topological dimension.

Fractals can be divided into two main categories: geometric and algebraic. Geometric fractals
are generated by means of a fixed replacement rule. In general, an object known as initiator is
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replaced with another object called generator. Then, such a replacement is repeated independently
for several parts of the resulting object. Iterating this process gives rise to a geometric fractal
as illustrated in Section 2.1 for some classical examples. Algebraic fractals are obtained by a
recurrence function in the complex plane. A complex function f(z) is iteratively applied for each
point z0 ∈ C, giving rise to a sequence of complex numbers {z0, f(z0), f(f(z0)), . . .}. Each point z0
is colored depending on whether the modulus of the complex numbers in its associated sequence
escapes to infinity.

The usual method of visualizing algebraic fractals is based on analyzing the sequence of complex
numbers originated from iteratively applying f(z) to each point z0 ∈ C. Typically, each original
point z0 is colored depending on whether or not its generated sequence diverges to infinity, that
is, the modulus of the complex numbers in the sequence originated from z0 becomes greater than
a large enough threshold. As an alternative to binary colors, the time at which the sequence
reaches the threshold is usually employed to scale the color. Other relevant methods for fractal
visualization are based on different techniques like the following:

� At each time, coloring z0 with the phase of the current complex number in its sequence [35].

� Scaling the color for z0 according to the minimum distance to the real or imaginary axes
of the complex numbers in its entire sequence [25, 26]. This method is known as “Pickover
stalks” or “Pickover biomorphs” in the literature.

� Redefining the escape condition for the sequence of complex numbers as falling within a
region in C called “orbit trap”, which can be arbitrarily defined by the user [33].

� Selecting the initial points randomly, iterating only those initial points that escape, counting
the pixels where they land on, and generating a grey-scale image from the hit counts. This
method is called “The Buddhabrot Technique” [13].

� Iterating the “distance ratio” with two points, which generates generalized fractals [37].

This work presents a novel visualization method for algebraic fractals which is similar to that
of C. A. Pickover. The method colors each original point in the complex plane by selecting
the complex number with minimum modulus within its generated sequence. Thus, whereas C.
A. Pickover chooses the complex number in the sequence with minimum distance to the axes
of the complex plane, the novel method picks up the complex number in the sequence with
minimum modulus. (Note that these two complex numbers can be quite different.) The novel
method preserves the fractal view that the classical visualization method offers of the boundary
for the escape set. Furthermore, when compared with the other visualization methods, it provides
aesthetic visual details of the prisoner set that complements the escape set.

The rest of the paper is organized as follows. Section 2 reviews the most relevant types of
fractals and how they are visualized. Section 3 describes the new visualization method for algebraic
fractals that is based on the concept of minimum modulus. Section 4 comparatively evaluates the
novel method from a visual perspective. Finally, Section 5 contains the main conclusions and
discusses future research directions.

2 Related work

Fractals are ubiquitous in nature. Physical objects as diverse as coastlines, clouds, mountains,
or trees (among many others) which are difficult to describe through Euclidean geometry, can
be easily modeled by means of fractal geometry. Nonetheless, due to their inherent aesthetic
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properties, the most famous fractals are those that were created by mathematicians and have no
parallel in nature. From a general point of view, depending on the way they are generated, fractals
can be classified into two groups: geometric and algebraic. In the rest of this section, the two
groups are reviewed in turn.

2.1 Geometric fractals

Fractals that can be generated by means of a fixed geometric replacement rule are known as
geometric. Specifically, an object called initiator is considered and replaced with another object
called generator. Next, the mentioned replacement is repeated in an independent way for certain
parts of the resulting object which are similar to the initiator. The final geometric fractal results
from iterating this process over time.

Some relevant examples of geometric fractals, designed by reputed mathematicians over the
past few centuries, are included in Figure 1. The initiator, the generator and the final fractal
are depicted in each case. Since these fractals represented a challenge to the continuity and
differentiability concepts of Euclidean geometry, they were known as “mathematical monsters”.
As described in [21, 24, 29, 12], geometric fractals can also be used to simulate natural objects
exhibiting fractal characteristics like mountains, clouds, plants, etc.

2.2 Algebraic fractals

Algebraic fractals are those generated by the iterative application of a function defined in the
complex plane. For every point z0 within the studied domain, a complex function f(z) is repeatedly
applied with z0 as initial value, originating a sequence of complex numbers {z0, f(z0), f(f(z0)), . . .}.
This technique, called “Picard iteration”, is the option used in the present work. Other types of
iterations employed in fractal geometry can be found in [22, 15, 23, 16, 38, 31, 18, 28].

The visualization of algebraic fractals is performed by analyzing the sequence of complex
numbers originated from iteratively applying f(z) to each point z0. Usually, each original point
z0 is colored depending on whether or not its generated sequence diverges to infinity, that is, the
modulus of the complex numbers in the sequence created from z0 becomes greater than a large
enough threshold. The threshold conditions under which escape is guaranteed to take place for
different complex functions have been extensively studied in the literature [5].

As an alternative to binary colors, given a fixed maximum number of iterations imax, the specific
iteration at which the threshold is reached for a point z0 is typically employed to scale the color
at that point. Thus, if the first and last iterations at which the threshold is reached within the
whole complex domain studied are denoted as ifirst ≤ imax and ilast ≤ imax respectively, shades of
color can be assigned to points. In this way, the shade of color assigned to z0 is proportional to the
iteration at which the threshold is reached by the sequence originated from z0 such that “white”
corresponds to ifirst and “black” corresponds to iterations after ilast. Consequently, prisoner points
are colored in black.

Figure 2 contains several examples of classical visualization of fractals through binary (left
column) and shaded (right column) colors. In the case of shaded colors, a logarithmic scale is
used in order to emphasize the details and, like in the rest of figures in this work, a threshold
equal to 106 is employed. The examples shown in Figure 2 correspond to: (1) Julia fractals [17]
for the functions f(z) = z2 + c and f(z) = z3 + c, where c ∈ C is a constant complex number,
and (2) the Mandelbrot fractal [21] for the function f(z) = z2 + z0 where z0 ∈ C is the complex
number to be colored.
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Initiator Generator Cantor set

Initiator Generator Koch curve

Initiator Generator Peano curve

Initiator Generator Sierpinski gasket

Initiator Generator Sierpinski carpet

Figure 1: Examples of geometric fractals. The initiator, the generator and the final fractal are
illustrated in each row. Note that the generator for the Peano curve consists of nine segments
whose length is equal to one third of the initiator length.
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Julia fractal for f(z) = z2 + 0.25− 0.55i in [-1.25,1.25]x[-1.25,1.25]

6 29.5 53 76.5 100

Julia fractal for f(z) = z3 + 0.1 + 0.8i in [-1.2,1.2]x[-1,1.4]

4 28 52 76 100

Mandelbrot fractal in [-1.5,0.5]x[-1,1]

6 29.5 53 76.5 100

Figure 2: Examples of classical visualization of fractals. The left column corresponds to binary
coloring, whereas the right column corresponds to shaded coloring. A 401x401 grid is used in
discretized space and shown at iteration imax = 100.

5



Figure 3: Correspondence between angles and colors used in this work for the phase plot visual-
ization method.

Other relevant non-classical methods for visualizing fractals have been described in the litera-
ture. Among them, the methods closely related with the present work are the following:

� The phase of the corresponding complex number in the sequence (angle formed by its as-
sociated vector with the real axis) can be employed to color the original point z0 at each
iteration [35]. If the sequence escapes to infinity at iteration t, the phase of the complex
number generated at t − 1 is used to color z0 from iteration t onwards. Figure 3 shows
the correspondence between angles and colors used in the present work for the phase plot
method.

� C. A. Pickover [25, 26] determined the color associated to z0 according to the minimum dis-
tance to the real or imaginary axes of the complex numbers in the entire sequence originated
from z0. This method is called biomorphs in the rest of the paper.

Figure 4 illustrates the examples in Figure 2 visualized through the phase plot method (left
column) and through the biomorphs method (right column). In order to accentuate the details, a
logarithmic scale is applied in the case of the biomorphs method.

3 Visualization by minimum modulus

This section presents a novel visualization method for algebraic fractals whose underlying idea is
more similar to that of the biomorphs method than to that of the classical method. Under the
new method, each original point in the complex plane z0 is assigned the complex number with
minimum modulus within its generated sequence {z0, f(z0), f(f(z0)), . . .}, and z0 is colored with
a shade proportional to the iteration at which such a minimum-modulus complex number was
generated. If more than one complex number in the sequence have the minimum modulus, the
first of the corresponding iterations is chosen.

Algorithm 1 contains the pseudocode for the novel visualization method. Given a fixed maxi-
mum number of iterations imax, the specific iteration at which the minimum modulus is reached
for a point z0 is employed to scale the color at that point. In this way, if the first and last iterations
at which a minimum modulus is reached within the whole complex domain studied are denoted as
ifirst ≤ imax and ilast ≤ imax respectively, shades of color can be assigned to points such that “black”
corresponds to ifirst and “white” corresponds to iterations after ilast (see Step 20 in Algorithm 1).
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Julia fractal for f(z) = z2 + 0.25− 0.55i in [-1.25,1.25]x[-1.25,1.25]

0 0.23 0.46 0.7 0.93

Julia fractal for f(z) = z3 + 0.1 + 0.8i in [-1.2,1.2]x[-1,1.4]

0 0.3 0.6 0.9 1.2

Mandelbrot fractal in [-1.5,0.5]x[-1,1]

0 0.25 0.5 0.75 1

Figure 4: Examples of fractal visualization by means of a phase plot (left column) and a biomorphs
plot (right column). A 401x401 grid is used in discretized space and shown at iteration imax = 100.
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Algorithm 1 Visualization of Algebraic Fractals by Minimum Modulus

Input:
f(z), complex function whose iterative application generates a fractal
D ⊂ C, complex domain of f(z) which is discretized into a series of grid points
imax, maximum number of iterations

Output:
A visualization of the fractal in D by minimum modulus

1: i ← 0; // i: current iteration
2: for z ∈ D
3: z.currentIteratedComplexNumber ← z;
4: z.minimumModulusSoFar ← |z|;
5: z.minimumModulusSoFarIteration ← i;
6: end-for
7: do
8: i← i+ 1;
9: for z ∈ D
10: z.currentIteratedComplexNumber ← f(z.currentIteratedComplexNumber);
11: if |z.currentIteratedComplexNumber| < z.minimumModulusSoFar
12: z.minimumModulusSoFar← |z.currentIteratedComplexNumber|;
13: z.minimumModulusSoFarIteration← i;
14: end-if
15: end-for
16: until i = imax

17: ifirst ← minz∈D{z.minimumModulusSoFarIteration};
18: ilast ← maxz∈D{z.minimumModulusSoFarIteration};
19: for z ∈ D
20: Color z’s grid point by using a shade: z.minimumModulusSoFarIteration−ifirst

ilast−ifirst
∈ [0, 1].

21: end-for

As a result, unlike in the classical method, prisoner points receive a wide range of color shades in
the new method and give rise to interesting and diverse patterns. Figure 5, where a logarithmic
scale is used to intensify the details, shows the examples in Figure 2 visualized through the new
method.

Whereas the biomorphs method selects the complex number in the sequence with minimum
distance to the axes, the new method selects the complex number in the sequence with minimum
modulus. Since these two complex numbers can be quite different from each other, the shade
provided by the new method will be in general quite different from that provided by the biomorphs
method. Note also that the classical method and the new method are opposite in nature: Whereas
the classical method analyzes divergence of the complex numbers in the sequence (maximum
modulus), the new method studies closeness to the origin (minimum modulus).

To end this section, an example of minimum modulus visualization is illustrated iteration by
iteration. Thus, Figure 6 contains the first twelve iterations when the method is applied to the
complex function f(z) = z2 + 0.25− 0.55i in [-1.25,1.25]x[-1.25,1.25], whose final visualization at
iteration 100 was illustrated at the top of Figure 5. From the twelve pictures in Figure 6, note that
the minimum modulus method seems to operate like a geometric fractal, although it is difficult to
define exactly what the initiator and generator sets really are in this case.
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Julia fractal for f(z) = z2 + 0.25− 0.55i in [-1.25,1.25]x[-1.25,1.25]

1 25.75 50.5 75.25 100

Julia fractal for f(z) = z3 + 0.1 + 0.8i in [-1.2,1.2]x[-1,1.4]

1 25.75 50.5 75.25 100

Mandelbrot fractal in [-1.5,0.5]x[-1,1]

1 25.75 50.5 75.25 100

Figure 5: Examples of fractal visualization by means of the minimum modulus method. A 401x401
grid is used in discretized space and shown at iteration imax = 100.
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t = 1 t = 2 t = 3

t = 4 t = 5 t = 6

t = 7 t = 8 t = 9

t = 10 t = 11 t = 12

Figure 6: First twelve iterations for the minimum modulus visualization of the function f(z) =
z2 + 0.25 − 0.55i in [-1.25,1.25]x[-1.25,1.25], whose visualization at iteration 100 is shown at the
top of Figure 5. A 401x401 grid is used in discretized space.
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4 Comparative evaluation

In the present section, the novel visualization method for algebraic fractals introduced in Section
3 is comparatively evaluated with the three relevant methods described in Section 2.2: (1) the
classical method based on the iteration at which the sequence escapes to infinity, (2) the phase
plot method, and (3) the biomorphs method by Pickover based on the minimum distance to the
complex plane axes. The evaluated algorithms are implemented within NetLogo1 [36], an agent-
based programming environment well suited for modeling, inspecting and visualizing complex
systems developing over time.

4.1 Visualization results

Figures 7 through 17 contain several visualization examples of fractals corresponding to different
complex functions and domains. Each figure shows the visualization of the four considered meth-
ods (classical, phase, biomorphs, and minimum-modulus) for a specific complex function and
domain in the complex plane.

Some of the examples included in Figures 7-17 correspond to fractals generated from higher-
order polynomials, since this kind of relevant fractals have been extensively studied in the lit-
erature. For instance, cubic polynomials are addressed in [2, 3, 11], quartic polynomials are
analyzed in [11], and more general polynomial functions for fractal generation are studied in
[27, 8, 14, 32, 6, 4, 34, 30, 1].

The following important consequences can be derived from Figures 7-17:

1. The novel visualization method preserves the fractal view that the classical method offers
of the escape set boundary in all the examples. Therefore, since this boundary is the most
relevant region under the classical method, the visualization quality offered by the classical
method is not reduced by the novel method.

2. Remarkable aesthetic visual details of the prisoner set (the complement of the escape set)
are provided by the novel visualization method in all the examples. Obviously, these details
are missing under the classical visualization method. In the examples where the prisoner
set occupies most of the complex domain studied and, consequently, the classical method
generates almost entirely black visualizations (see Figures 13-16), the new method produces
instead interesting details of this set.

3. In general, the biomorphs method offers interesting details of the prisoner set in all the
figures. However, in Figures 14 and 15 the results are very poor. Even for these cases, the
novel method produces images with rich details.

4. With respect to the phase plot method, the novel method offers in general much more
elaborate and aesthetic details of the prisoner sets.

5. Finally, the novel method generates attractive visualizations which are captivating by its
aesthetic richness.

1The NetLogo model used in this work can be downloaded from http://www.ia.uned.es/~seve/PDFs/

minimum-modulus.zip
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classical phase

6 28.25 50.5 72.75 95

biomorphs minimum-modulus

0 0.23 0.46 0.7 0.93 1 25.75 50.5 75.25 100

Figure 7: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2 + 0.25 − 0.5i over the domain [-1.25,1.25]x[-
1.25,1.25]. A 401x401 grid is used in discretized space and shown at iteration imax = 100.

12



classical phase

6 29.5 53 76.5 100

biomorphs minimum-modulus

0 0.24 0.48 0.73 0.97 1 25.75 50.5 75.25 100

Figure 8: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2 + 0.35 − 0.35i over the domain [-1.25,1.25]x[-
1.25,1.25]. A 401x401 grid is used in discretized space and shown at iteration imax = 100.
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classical phase

6 29.25 52.5 75.75 99

biomorphs minimum-modulus

0 0.22 0.44 0.67 0.89 1 25.75 50.5 75.25 100

Figure 9: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2 + 0.12 + 0.59i over the domain [-1.25,1.25]x[-
1.25,1.25]. A 401x401 grid is used in discretized space and shown at iteration imax = 100.
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classical phase

6 29.5 53 76.5 100

biomorphs minimum-modulus

0 0.24 0.49 0.73 0.98 1 25.75 50.5 75.25 100

Figure 10: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2 + 0.38 − 0.29i over the domain [-1.25,1.25]x[-
1.25,1.25]. A 401x401 grid is used in discretized space and shown at iteration imax = 100.
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classical phase

6 19.75 33.5 47.25 61

biomorphs minimum-modulus

0 0.25 0.5 0.75 1 1 14.75 28.5 42.25 56

Figure 11: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2−0.9+0.2i over the domain [-2,2]x[-1,1]. A 401x201
grid is used in discretized space and shown at iteration imax = 100.
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classical phase

6 29.5 53 76.5 100

biomorphs minimum-modulus

0 0.35 0.7 1.06 1.41 1 25.75 50.5 75.25 100

Figure 12: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z2− z+0.25− 0.55i over the domain [-1,2]x[-1.5,1.5].
A 401x401 grid is used in discretized space and shown at iteration imax = 100.
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classical phase

2 24.25 46.5 68.75 91

biomorphs minimum-modulus

0 0.1 0.21 0.31 0.42 1 25.75 50.5 75.25 100

Figure 13: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = 1

(z+z0)3
over the domain [-1.21,1.2]x[-1.21,1.2], where

z0 ∈ C is the complex number to be colored. A 401x401 grid is used in discretized space and
shown at iteration imax = 100.
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classical phase

2 11 20 29 38

biomorphs minimum-modulus

0 0.12 0.25 0.37 0.5 1 25.75 50.5 75.25 100

Figure 14: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = 1

(z+0.5+0.5i)3
over the domain [-3.76,3]x[-3.76,3]. A

401x401 grid is used in discretized space and shown at iteration imax = 100.
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classical phase

2 26.5 51 75.5 100

biomorphs minimum-modulus

0 0.03 0.06 0.1 0.13 1 25.75 50.5 75.25 100

Figure 15: Example of fractal visualization through four different methods. This Newtonian
algebraic fractal [7] corresponds to the complex function f(z) = z − z4−1

4z3
over the domain [-

0.701,0.7]x[-0.701,0.7]. A 401x401 grid is used in discretized space and shown at iteration imax =
100.
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classical phase

2 26.25 50.5 74.75 99

biomorphs minimum-modulus

0 0.06 0.12 0.18 0.24 1 25.75 50.5 75.25 100

Figure 16: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = z

ez+z0
over the domain [-2,0]x[-1,1], where z0 ∈ C is

the complex number to be colored. A 401x401 grid is used in discretized space and shown at
iteration imax = 100.
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classical phase

2 26.5 51 75.5 100

biomorphs minimum-modulus

0 0.37 0.75 1.12 1.5 1 25.75 50.5 75.25 100

Figure 17: Example of fractal visualization through four different methods. This algebraic fractal
corresponds to the complex function f(z) = ez0·z

2
over the domain [-1.5,1.5]x[-1.5,1.5], where

z0 ∈ C is the complex number to be colored. A 401x401 grid is used in discretized space and
shown at iteration imax = 100.
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4.2 Computational complexity

The time complexity of the four analyzed visualization methods is dominated by two variables (see
Algorithm 1): imax, the maximum number of iterations that the function f(z) is applied within each
sequence, and card(D), the cardinality or number of elements of the discretized complex domain
D where f(z) is defined. Since each of the four visualization methods only needs to perform a
few elementary operations in order to color z0 ∈ D each time a new complex number is generated
within its sequence, the time complexity of the four methods is O(imax ·card(D)). Specifically, the
mentioned elementary operations have to do with calculating the modulus of a complex number
and comparing it with the threshold (in the classical method), calculating the phase of a complex
number (in the phase plot method), calculating the minimum distance of a complex number to the
real or imaginary axes and comparing it with the minimum distance found so far in the sequence
(in the biomorphs method), or calculating the modulus of a complex number and comparing it
with the minimum modulus found so far in the sequence (in the minimum-modulus method).

Likewise, the space complexity of the four studied visualization methods is O(card(D)), since
a new complex number in the sequence needs to be stored for every z ∈ D at each iteration.

In summary, the computational complexity is the same for all the analyzed visualization meth-
ods. Even if different elementary operations are executed depending on the method every time
a grid point needs to be colored, these elementary operations are irrelevant regarding complexity
calculation.

5 Conclusion and future research

Fractal geometry constitutes a field that has acquired great relevance in the last few decades.
Fractals are ubiquitous in nature and can also be generated from iterated complex functions.

This work introduces a new visualization method for algebraic fractals generated in the complex
plane. Unlike the classical visualization method, which considers the escape set to infinity, the new
method deals with the minimum-modulus complex number in the sequence originated from each
point in the complex plane. This allows the prisoner set to be colored in aesthetic ways, giving rise
to interesting new shapes. Thus, one of the strengths of the minimum-modulus method is that
it offers a unique and useful alternative to how existing methods tackle the fractal visualization
problem.

As a future research direction, new complex functions could be studied in order to discover
additional shapes generated by the novel visualization method. Another idea worth analyzing is
the application of alternative iteration techniques to the Picard iteration used in this work (see
Section 2.2). Finally, it could also be interesting to consider the second lowest value of the modulus
in the sequence (instead of the minimum value) in order to determine the iteration for coloring.
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