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Abstract

The evacuation problem is usually addressed by assuming homogeneous media where
pedestrians move freely in the presence of several exits and obstacles. From a more general
perspective, this work considers heterogeneous media in which the velocity of pedestrians
depends on their location. We use cellular automata with a floor field that indicates promis-
ing movements to pedestrians and, in this context, we extend two competitive evacuation
methods in order for them to be applied to heterogeneous media: the Fast Marching Method
and the Fast Evacuation Method. Furthermore, we evaluate the performance that these two
methods exhibit over different simulated scenarios characterized by the presence of hetero-
geneous media. The resulting winning method in terms of evacuation effectiveness is greatly
influenced by the particular problem being simulated.

Keywords: evacuation, heterogeneous medium, cellular automaton, Fast Marching Method, Fast
Evacuation Method.

1 Introduction

Pedestrian evacuation [Schadschneider et al., 2011, Mart́ınez-Gil et al., 2017, Corrêa et al., 2019]
constitutes a relevant problem that has been extensively studied in the past. In emergency sit-
uations taking place in buildings or means of transport, to mention two of many other potential
evacuation scenarios, it arises the important task of how to safely and efficiently move crowds.
Specifically, the present work deals with the type of evacuation in which a group of pedestrians
move in a two-dimensional environment with known obstacles and exits. Due to the fact that
real-world evacuations are difficult to carry out in practice, computer simulations are normally
used to analyze evacuation methods.

In order to simulate and study human behavior during evacuation processes, several models
have been designed. Depending on the detail level, such models can be classified into microscopic,
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mesoscopic, or macroscopic [Duives et al., 2013, Shiwakoti et al., 2008]. The main microscopic
approaches to modeling pedestrian evacuation are social forces [Helbing and Molnár, 1995, Helbing
et al., 2000], lattice gas [Tajima and Nagatani, 2001, Tajima et al., 2001, Helbing et al., 2003, Isobe
et al., 2004], and cellular automata (CA) [Burstedde et al., 2001, Kirchner and Schadschneider,
2002, Schadschneider, 2002, Kirchner et al., 2003, Varas et al., 2007]. While the social force model
considers pedestrians as particles interacting with the environment under continuous space and
time, the CA model employs discrete floor fields in order to establish how pedestrians move in
discrete time. Precisely, the present work deals with CA evacuation models that make use of floor
fields to indicate promising movements to pedestrians.

In a discrete floor field, space is partitioned into rectangular cells and a weight is assigned
to each cell at every time step. The movement of pedestrians is determined by the cell weights
and the rules of pedestrian interaction. Generally, a pedestrian moves to the neighboring empty
cell with lowest weight. In the literature, the floor fields for the evacuation problem are based
on minimizing the evacuation time for each pedestrian. Specifically, for each CA cell, either the
shortest path to an exit [Schadschneider, 2002, Burstedde et al., 2002] (typically combined with
dynamic measures of pedestrian density or distribution) or the quickest path to an exit [Kretz,
2009a, Kretz, 2009b] are calculated. While the shortest path is static and only depends on the
room structure, exit location, and obstacle distribution, the quickest path is dynamic since the
distribution of pedestrians is also taken into account. Due to the typical appearance of congestions
in evacuation processes, considering the quickest path normally leads to more realistic and efficient
simulations. The most competitive method among those based on quickest paths consists in
applying the Fast Marching Method [Sethian, 1999] to calculate the cell weights. Alternatively, the
Fast Evacuation Method [Galán, 2019] was recently introduced in order to tackle the evacuation
problem from a different perspective than minimizing the estimated remaining travel time (or
travel distance) for each pedestrian. The new perspective is based on minimizing the estimated
duration of the remaining global evacuation process by distributing the workload of pedestrian
evacuation in an equitable way among the available exits. The Fast Evacuation Method has two
important advantages; firstly, the effectiveness of the evacuation process is improved since a lower
number of time steps is necessary in general and, secondly, the efficiency is also improved since
the running time employed for each time step is reduced.

The evacuation problem has been typically tackled in the past by considering homogeneous
media in which pedestrians move freely in the presence of several exits and obstacles. By adopting
a more general perspective, the present work considers heterogeneous media where the velocity
of pedestrians depends on their location. We use CA with a floor field that indicates promising
movements to pedestrians and, in this context, the contributions of this work are twofold:

� On the one hand, we extend two competitive evacuation methods in order for them to
be applied to heterogeneous media: the Fast Marching Method and the Fast Evacuation
Method.

� On the other hand, we conduct an experimental evaluation in order to compare the perfor-
mances of the two extended methods over different simulated scenarios containing hetero-
geneous media. The experimental results show that the particular problem being simulated
has a great influence in determining the winning method in terms of evacuation effectiveness.

The rest of the paper is organized as follows. Section 2 reviews several widely used methods for
solving the evacuation problem. Section 3 explains the extension of the Fast Marching Method and
the Fast Evacuation Method to heterogeneous media. Section 4 describes a series of experiments
for comparatively evaluating the new extended methods. Finally, Section 5 summarizes the main
results obtained in this work and enumerates future research directions.
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2 Related work

The main component of a CA [von Neumann, 1966, Toffoli and Margolus, 1987, Wolfram, 2002,
Hassan and Tazaki, 2010, Ioannidis et al., 2011, Galán, 2020] is a regular grid of cells, denoted as
C, where each cell c ∈ C adopts one of a set of states. Three characteristics of CA are that they
consist of many identical simple processing cells, interactions between cells take place in a small
neighborhood compared to the grid size, and discrete time is used. In a two-dimensional square
grid, the von Neumann neighborhood is formed by a cell and its vertical and horizontal neighbors,
whereas the Moore neighborhood incorporates the diagonal neighbors.

CA for pedestrian dynamics were introduced in the 1990s [Fukui and Ishibashi, 1996, Fukui and
Ishibashi, 1999a, Fukui and Ishibashi, 1999b]. Typically, navigation in the CA employs a floor
field representing a scalar function that increases with growing distance from the exits. Thus,
pedestrians move by minimizing the floor field values in a local way.

Schadschneider introduced a sophisticated CA model of evacuation [Schadschneider, 2002,
Burstedde et al., 2002] that represented a breakthrough in the field of pedestrian dynamics. This
model probabilistically combines a static floor field based on shortest paths and long-range pedes-
trian interactions inspired by the process of chemotaxis. The static floor field reflects the distribu-
tion of exits and obstacles, while the interactions among pedestrians are implemented through
chemotaxis. Other relevant probabilistic models [Lovreglio et al., 2018, Dias and Lovreglio,
2018, Lovreglio et al., 2017] use a multinomial logit formulation in order to specify the proba-
bilities to select a cell.

Posteriorly to the appearance of Schadschneider’s model, the introduction of models incor-
porating a dynamic floor field based on quickest paths [Kretz, 2009a, Kretz, 2009b] became the
standard method for modeling evacuation processes. The values of this dynamic floor field highly
depend on the distribution of pedestrians. Due to their close relationship with the present work,
quickest-path floor fields are reviewed in the next section.

2.1 Fast Marching Method

Congestions or jams around exits are usual in evacuations of large crowds. In a congested en-
vironment, following the quickest rather than the shortest path to an exit is more realistic for
pedestrian dynamics simulation. The quickest path from each location to an exit depends on the
spatial distribution of pedestrians.

The Flood Fill method (FF) [Kretz, 2009a, Kretz, 2009b] employs a floor field that associates
a cost to each CA cell, representing the estimated time spent to move to the cell from any of its
neighboring cells. Specifically, a cost equal to unity is associated to empty cells, whereas occupied
cells are assigned a cost γ > 1. This method uses the neighborhood relationships among cells and
the Dijkstra algorithm in the induced graph to calculate the quickest path from each CA cell to
an exit. The Dijkstra algorithm is an efficient algorithm whose time complexity is O(|C| · log |C|),
where C is the set of cells. This is due to the fact that the list containing the visited cells to be
expanded can be implemented through a heap data structure. The operations of extracting the
best cell from the heap and inserting its neighboring unvisited cells can be efficiently implemented
inO(log |C|) time. An advantage of FF is that the first weight calculated by the Dijkstra algorithm
for a cell does not need to be reconsidered. This is a consequence of the way FF assigns costs to
cells (see Figure 1). However, FF produces somewhat unrealistic movement by pedestrians, which
tend to form square jams around the exits instead of circular ones. This drawback was partially
solved in [Kretz et al., 2010], where the costs associated to the diagonal links in Figure 1 are
multiplied by

√
2. This correction to the diagonal costs provokes that the weights calculated by
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Figure 1: Costs associated to moving to an empty cell (white cell in the left-hand figure) and to
an occupied cell (black cell in the right-hand figure) in the FF method. The parameter γ is chosen
such that γ > 1.

the Dijkstra algorithm for a cell may need to be reconsidered over the course of the execution.
An approach similar to FF that produces more realistic pedestrian dynamics consists in apply-

ing the Fast Marching Method (FMM) [Sethian, 1999] to obtain the cell weights. The underlying
idea, rather than calculating minimum distances in a graph of costs, is to expand a wavefront
from each exit in the two-dimensional domain of interest. Thus, the cell weights are established
as the travel time of the wavefront, which coincides with the shortest distance to an exit when the
wavefront propagates across empty cells with a velocity equal to unity. The arrival time of the
wavefront to point x, T (x), is determined by the eikonal equation:

|∇T (x)| = 1
F (x)

for x ∈ Ω (a two-dimensional open set)

T (x) = 0 for x ∈ δΩ (the boundary of Ω or exit points)
, (1)

where F (x) is the velocity of the wavefront such that F (x) = 0 in obstacle cells, F (x) = 1 in
empty cells, and F (x) = 1/γ (with γ > 1) in occupied cells. FMM efficiently solves the eikonal
equation on a discretized grid (see [Chiang et al., 2007] for a comparison with A* search) through
a finite difference approximation of Equation 1 resulting in the following formula:

{max (0, Tij − Ti−1,j, Tij − Ti+1,j)}2 + {max (0, Tij − Ti,j−1, Tij − Ti,j+1)}2 =
1

F 2
ij

, (2)

where Tij and Fij stand for the value at cell (i, j) of T and F respectively. FMM considers the
von Neumann neighborhood rather than the Moore neighborhood, for example when applying
Equation 2 to calculate a candidate weight Tij for cell (i, j). (Tij is obtained by solving the
quadratic equation defined by Equation 2.) Like FF, the order of cell updating in FMM is
carried out by using a heap data structure, which gives rise to O(|C| · log |C|) time complexity.
Nonetheless, unlike FF under the costs depicted in Figure 1, FMM needs to reconsider some of
the weight updates over the course of its execution. FMM is widely used in evacuation modeling
due to its realistic results.

2.2 Fast Evacuation Method

The Fast Evacuation Method (FEM) [Galán, 2019] constitutes a CA model of pedestrian evac-
uation that aims at minimizing the duration of the whole evacuation process by employing a
dynamic floor field that distributes the evacuation workload among the exits in an equitable way.
The floor field defined by FEM at each time step can be calculated in an efficient manner in time
proportional to the number of CA cells and gives rise to a fast and effective evacuation process.
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As in typical CA, discrete time and space are assumed. Space is divided into square cells of
equal size.1 Each CA cell can be empty, occupied by a pedestrian (only one at a time), represent
an exit, or represent an obstacle. In each time step, the pedestrians are updated asynchronously
in a random order, according to the values contained in a dynamic floor field. Every pedestrian
moves by occupying the neighboring empty cell with a minimum floor field value. Pedestrians are
assumed to know their environment or, equivalently, be in contact with an external agent that
provides them with the floor field information.

In each time step, FEM calculates a complete floor field ϕ previously to moving each pedestrian
to a neighboring cell.2 The floor field ϕ is calculated in an iterative way such that a wavefront
is initiated from every exit cell at the first iteration. The arbitrary neighborhood relationship
established for wavefront propagation determines the wavefront shape. (The Moore and von
Neumann neighborhoods give rise to square wavefronts; however, the probabilistic neighborhood
Nσ=0.2 [Galán, 2019] produces wavefronts more similar to circles.) A wavefront propagates freely
across empty cells and, when occupied cells are reached, the wavefront stops for a number of
iterations equal to the number of pedestrians reached at the current iteration. Thus, it is possible
that some wavefronts keep propagating while others remain stopped. The value of ϕ for a cell is
determined by the iteration in which the first wavefront arrives in the cell.

3 Extending evacuation methods to heterogeneous media

When a homogeneous medium is considered, the CA approach to evacuation modeling assumes
that pedestrians move freely across empty cells at a velocity equal to unity. This velocity is the
maximum possible for pedestrians. In this way, at the next time step, every pedestrian is allowed
to move to one of the empty neighboring cells of its current cell or location.

The CA approach to evacuation modeling can be generalized to heterogeneous media by as-
suming that pedestrians move at a velocity which depends on the current cell where they are
located. For example, pedestrians would move at different velocities (all of them less than unity)
across media containing water, sand, stones, or debris. As a result, getting across one cell would
take a pedestrian more than one time step in general.

In this work, we model heterogeneous media by assigning each cell (i, j) a real number repre-
senting the velocity vij at which a pedestrian (or a wavefront) moves across the cell. Alternatively,
it can be specified the time tij that takes a pedestrian (or a wavefront) to get across the cell hor-
izontally or vertically. If the cell’s size is assumed to be 1x1 then tij = 1/vij.

Figure 2 illustrates how an example of evacuation problem in a homogeneous medium (see
Figure 2a) can be transformed into two evacuation problems in heterogeneous media (see Figures
2b and 2c). In Figure 2a, a 225x150 grid is depicted consisting of the following elements: 746 blue
cells representing border obstacles, 2684 red cells representing pedestrians forming a rectangular
group, and 2 yellow cells representing exits. The rest of cells are depicted in black and constitute
empty cells where pedestrians can move at velocity 1. In Figures 2b and 2c, for each cell (i, j)
which is not an obstacle, its tij values are depicted for two different heterogeneous media such
that:

� Cell (i, j) is depicted in black if tij = 1, the minimum value in the grid.

1Specifically (see for example [Schadschneider, 2002]), it is usual to consider in the literature that every cell is
40cm x 40cm (typical space occupied by a pedestrian in a dense crowd) and a single pedestrian (not interacting
with others) moves at a velocity of one cell per time step. Since the empirical average velocity of a pedestrian is
about 1.3 m/s, this gives an estimated time step of 0.3 seconds.

2In this work, the Moore neighborhood is considered for the movement of pedestrians.
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� Cell (i, j) is depicted in white if tij = tmax
ij , the maximum value in the grid.

� The rest of cells are depicted in shades of gray color proportionally to their tij values in the
range (1, tmax

ij ).

Specifically, Figure 2b employs:

tij = 1 + 2 ·
∣∣∣cos( π

180
· x
3
· y
9

)∣∣∣ , (3)

where x and y are the coordinates of cell (i, j)’s center, and x = y = 0 for the bottom-left cell in
the grid. Likewise, in the case of Figure 2c:

tij = 1 + 2 ·
∣∣∣cos( π

180
· (10x− 100)

)
+ sin

( π

180
· (10y − 50)

)∣∣∣ . (4)

These functions are selected due to two main reasons: (1) They exhibit a high spatial variability for
tij, which helps illustrate the importance of the medium heterogeneity in the evacuation process,
and (2) Since they have the property that tij ∈ [1, 3] and tij ∈ [1, 5] respectively, evacuation times
are kept within fair margins.

3.1 FMM for heterogeneous media

FMM can be extended to be applied to heterogeneous media in a straightforward manner. Since
each particular cell (i, j) ∈ C is assigned a specific arbitrary value vij = Fij ≥ 1 representing the
velocity of a wavefront when traveling in that cell, such a value can be directly substituted in
Equation 2 provided that cell (i, j) is empty; otherwise, if cell (i, j) is occupied by a pedestrian
and Fij > 1/γ then Fij is decreased such that Fij = 1/γ in Equation 2, where γ > 1 is defined in
Section 2.1. Figure 3 illustrates the resulting FMM floor fields for the evacuation problems defined
in Figure 2. A value of γ = 2 is arbitrarily assigned to occupied cells in Figure 3. Note that this
figure illustrates the initial configuration of pedestrians, in which nobody has started moving yet.

3.2 FEM for heterogeneous media

FEM is extended to heterogeneous media by assigning the variable tij to each cell cij ∈ C (see
Section 3). When a pedestrian enters cell cij, tij is initialized with the user-defined time period
that such an individual will remain moving in that cell before leaving to a neighboring cell. As
time goes by, tij is reduced by one at every time step. As long as tij > 0, the pedestrian is not
allowed to leave cell cij; otherwise, if tij ≤ 0, the pedestrian moves to an empty neighboring cell
c′ij. In the latter case, cell c′ij is initialized with t′ij + tij rather than with only t′ij, where t′ij is
defined by the user for c′ij and tij is a negative value at this time step.

Figure 4 contains the pseudocode of the FFFEM (Floor Field for FEM) algorithm, which cal-
culates the floor field ϕ used by FEM for a heterogeneous medium at each time step. First, lines
1-8 in Figure 4 initialize the exit cells. Likewise, the rest of non-obstacle cells in the grid are ini-
tialized in lines 9-11. Then, an iterative process takes place in lines 12-38. This iterative process
corresponds to the propagation of wavefronts across the grid.

The following variables and functions are used by FFFEM:

� c.assignedExit: Variable that contains the exit assigned to a cell c. This exit is the origin
of the wavefront that first arrived in the cell.
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(a) Homogeneous medium

(b) Heterogeneous medium defined by Equation 3

(c) Heterogeneous medium defined by Equation 4

Figure 2: Evacuation problems for a rectangular group of pedestrians in three different media.
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(a) Homogeneous medium

(b) Heterogeneous medium defined by Equation 3

(c) Heterogeneous medium defined by Equation 4

Figure 3: FMM floor fields for γ = 2 and the three evacuation problems in Figure 2.
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� c.isUpdated?: Variable that stores whether or not the floor field value of a cell c has
already been calculated.

� delayOfExit[]: Array indexed by an exit that specifies the number of remaining iterations
that the wavefront originated at the given exit will be stopped.

� wavefront[]: Array indexed by an exit that stores the cells that are part of the current
wavefront originated at the given exit.

� goOn?: Variable used for the termination condition. The algorithm ends after the current
iteration (see line 35 in Figure 4) if no wavefront is delayed and no wavefront has propagated
at the current iteration.

� activeCells: Variable that contains those cells in wavefront[] whose assigned exit is not
delayed.

� updateExitDelays1: Function that carries out the normal updating of delays for the exits
after one iteration (see line 17 in Figure 4). For example, if there are five exits whose delays
are stored in the array [0 5 0 4 1], the new delays for the exits will be [0 4 0 3 0]. Therefore,
the delays equal to 0 are not changed, while the rest of delays are decremented by 1.

� NFEM: Function that assigns the new tij values to all cij ∈ activeCells according to the
explanation in the first paragraph of Section 3.2. Next, this function returns the neighboring
cells of those cells cij ∈ activeCells whose new tij value becomes negative or equal to
zero, and these latter cells are removed from the wavefronts. In this work, we employ the
probabilistic neighborhood Nσ=0.2 [Galán, 2019], which gives rise to wavefronts similar to
circles in an efficient way.

� newCells: Variable that stores the cells generated after activeCells expansion through
NFEM that have not been updated yet (see line 15 in Figure 4). Note that each of these cells
is assigned an exit in line 21. If the cell belongs to the Moore neighborhoods of wavefront
cells with different assigned exits, it is finally assigned the exit of its nearest wavefront cell.
(The Euclidean distance δEuclidean from the cell to a neighboring wavefront cell can only be
1 or

√
2.)

� c.isOccupied?: Variable that determines whether or not a cell c is occupied by a pedestrian.

� updateExitDelays2: Function that develops the updating of delays when none of them is
equal to zero (see line 29 in Figure 4). For example, if there are five exits whose delays are
stored in the array [2 5 6 4 2], the new delays for the exits will be [0 3 4 2 0]. Thus, the
delays are decremented by the minimum of them. This operation improves the efficiency of
the algorithm, since it makes no sense that all the wavefronts are stopped at the same time.

� updateExitDelays3: Function that carries out the updating of delays when newCells is
empty and at least one exit delay is greater than zero (see line 33 in Figure 4). For example,
under the mentioned conditions, if there are five exits whose delays are stored in the array
[0 0 0 4 2], the new delays for the exits will be [0 0 0 2 0]. Therefore, the delays greater than
zero are decremented by the minimum of them, which makes it possible that a wavefront
assigned to a new exit is checked for expansion at the next iteration.
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Algorithm FFFEM: Generation of the FEM Floor Field for a Heterogeneous Medium

Input:
A CA with non-obstacle cells M ⊂ C and exit cells E ⊂M
The user-defined {tij} values for all cij ∈M

Output:
A floor field ϕ defined over M

% Initial updating of E
1: k ← 0
2: for c ∈ E
3: ϕ(c) ← k
4: c.assignedExit ← c
5: c.isUpdated? ← true
6: delayOfExit[c] ← 0
7: wavefront[c] ← {c}
8: end-for

% Initial updating of M \ E
9: for c ∈M \ E

10: c.isUpdated? ← false
11: end-for

% Main loop
12: goOn? ← true
13: while goOn? = true
14: activeCells ← {x ∈ wavefront[c] | delayOfExit[c] = 0} ∀c ∈ E
15: newCells ← {x ∈ NFEM(activeCells,{tactiveCells}) | x.isUpdated? = false}
16: if newCells ̸= ∅
17: updateExitDelays1
18: k ← k + 1
19: for c ∈ newCells
20: ϕ(c) ← k
21: c.assignedExit ← c′.assignedExit | c′ = argmin

x
{δEuclidean(c, x)} ∀x ∈ NMoore(c) ∩ activeCells

22: c.isUpdated? ← true
23: if c.isOccupied?
24: delayOfExit[c.assignedExit] ← delayOfExit[c.assignedExit] + 1
25: end-if
26: wavefront[c.assignedExit] ← wavefront[c.assignedExit] ∪ {c}
27: end-for
28: if ∄c ∈ E | delayOfExit[c] = 0
29: updateExitDelays2
30: end-if
31: else
32: if ∃c ∈ E | delayOfExit[c] > 0
33: updateExitDelays3
34: else
35: goOn? ← false
36: end-else
37: end-else
38: end-while

Figure 4: Pseudocode for the FFFEM algorithm that generates the floor field used by FEM in each
time step of the evacuation process taking place in a heterogeneous medium.
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In line 15 of algorithm FFFEM (see Figure 4), NFEM calculates the neighborhoods of the prop-
agating wavefronts. The most immediate option is to use either the von Neumann neighborhood
or the Moore neighborhood; however, these two options tend to produce wavefronts and jams of
square shape in homogeneous media, which is not realistic. In order to produce nearly circular
wavefronts in the specific case of homogeneous media, a probabilistic neighborhood Nσ=2 [Galán,
2019] is employed for wavefront propagation in FFFEM.

The time complexity of FFFEM is O(k · |C|), where C is the set of CA cells and the constant
k ∈ [1,maxij{tij}] depends on the specific medium where the evacuation takes place. For k ≳ 1,
this constitutes an improvement of efficiency in comparison with the algorithms calculating floor
fields based on quickest paths (see Section 2.1), whose time complexity is O(|C| · log |C|). The
additional log |C| factor is a consequence of applying the Dijkstra algorithm.

Figure 5 contains the resulting FEM floor fields for the evacuation problems defined in Figure
2. In Figure 5, the initial configuration of pedestrians is depicted (no movement has taken place
yet). Note that FEM produces in Figure 5 a more equitable distribution of pedestrians among the
two exits in comparison to FMM in Figure 3. Specifically, while all the pedestrians would head to
the left exit in the case of FMM, some of them would head to the right exit in the case of FEM.
As a result, FEM ultimately produces a faster evacuation of the pedestrians. In order for FMM
to be comparable to FEM in these evacuation problems, the value of γ should be increased.

3.3 Application example of FMM and FEM for heterogeneous media

Consider a 225x150 grid with the distribution of pedestrians, exits, and obstacles illustrated in
Figure 6 for t = 0. There are 584 pedestrians distributed in nine groups. Two exits are located at
coordinates (20, 75) and (205, 77) respectively, where (0, 0) corresponds to the coordinates of the
bottom left cell. While the border of the grid is occupied by obstacles, the black cells correspond
to the heterogeneous medium defined by Equation 3.

In Figure 6, the extended FMM and FEM methods explained in Section 3 are compared for
time steps t ∈ {10, 50, 250, 400}. Note that FMM is sensitive to parameter γ (the cost for each
occupied cell), and establishing a satisfactory γ value is problem-dependent and time-consuming
for the user. This is an important advantage for FEM, which requires no parameter fine-tuning.
In the problem presented in Figure 6, γ = 60 constitutes an appropriate value for FMM.

It can be observed in Figure 6 that all the pedestrians head to the left exit at t = 10 in
the case of FMM. This is due to the fact that, at the first ten time steps, the quickest path for
each pedestrian ends at the left exit. At t = 50, the pedestrians are near the left exit, where
a congestion is starting to form. At t = 250, the jam around the left exit provokes that some
peripheral pedestrians head to the right exit, which is now more promising in terms of evacuation
time. Finally, at t = 400, the right exit is at last about to receive pedestrians, and 276 pedestrians
remain to be evacuated.

In the case of FEM, Figure 6 shows that a subset of the pedestrians head to the right exit at
t = 10. This is because, even at the first ten time steps, both exits have been assigned pedestrians.
At t = 50, some pedestrians are on their way to the right exit, much earlier than under FMM. At
t = 250, a jam around the right exit appears, again much earlier than under FMM. Finally, at
t = 400, only 90 pedestrians remain to be evacuated (276 under FMM at this time step) and are
equally distributed between both exits.

In summary, for the evacuation problem illustrated in Figure 6, FEM develops a more effec-
tive evacuation process compared to FMM with optimized γ. At t = 400, 186 out of the 584
initial pedestrians have been evacuated under FEM, but remain on the grid under FMM. In the
next section, a comparative evaluation is carried out of the extended FMM and FEM methods.

11



(a) Homogeneous medium

(b) Heterogeneous medium defined by Equation 3

(c) Heterogeneous medium defined by Equation 4

Figure 5: FEM floor fields for the three evacuation problems in Figure 2.
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t = 0

FMM, t = 10 FEM, t = 10

FMM, t = 50 FEM, t = 50

FMM, t = 250 FEM, t = 250

FMM, t = 400 FEM, t = 400

Figure 6: Example of evacuation simulation in a heterogeneous medium for 584 pedestrians,
distributed in 9 groups, through two exits (top figure). FMM (with fine-tuned cost γ = 60 for
each occupied cell) and FEM are compared for time steps t ∈ {10, 50, 250, 400}.
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Evacuation Problem Grid Pedestrians Exits Obstacles

1group 225x150 2684 2 746
9groups 225x150 584 2 746
4groups 225x150 1205 9 746

lecture-hall 225x150 8760 33 9473
corner 225x150 8436 109 9182
U-turn 225x150 7210 77 849

random500 225x150 500 4 746
random500bottlenecks 225x150 500 4 1210

obstacles1 225x150 510 4 812
obstacles2 225x150 621 4 3188

Table 1: Structural characteristics of the ten evacuation problems illustrated in Figure 7.

Evacuation effectiveness and simulation runtime are analyzed over a set of evacuation problems
in heterogeneous media.

4 Experimental evaluation

This section comparatively evaluates the extended versions of FMM and FEM to heterogeneous
media. The two evaluated algorithms are implemented within NetLogo [Wilensky, 1999], an agent-
based modeling and programming environment well suited for modeling and inspecting complex
systems developing over time. The experiments are carried out on an Intel Core i5 processor (2.67
GHz) with 8 Gb of memory.

Ten different evacuation problems are used for the comparative evaluation and combined with
the two heterogeneous media defined in Section 3: (1) the problem illustrated in Figure 3 and
in Figure 5, (2) the problem depicted in Figure 6, (3) a problem consisting of four groups of
pedestrians around a central exit and eight lateral exits, (4) three problems widely used in the
literature for evacuations in a lecture hall, a corner, and a U-turn [Burstedde et al., 2002, Kretz
et al., 2011], (5) two problems with initial randomly distributed pedestrians, and (6) two additional
problems with a high presence of obstacles near the exits. Figure 7 illustrates the homogeneous
versions of these ten evacuation problems, and Table 1 shows their main structural characteristics.
These problems cover a wide range of crowd motion features as classified in [Chen et al., 2018,
Duives et al., 2016, Duives et al., 2013, Helbing, 2001, Helbing et al., 2005, Shi et al., 2018,
Shiwakoti et al., 2019], with the peculiarity that the present work deals with evacuation processes.
For example, some of the motion cases covered in this work are: entering, exiting, rounding a
corner, and straight flow.

The best values for parameter γ in FMM are selected via manual fine-tuning. This constitutes a
costly and problem-dependent task for the user and is an important disadvantage of this algorithm
with respect to FEM, which requires no parameter fine-tuning. The selected γ values (see Table
2) are those leading to the best results regarding the average number of time steps necessary
to evacuate a pedestrian in a simulation, which is called “mean evacuation time steps” later in
Section 4.1.

There are two main aspects to be considered when the performance of an evacuation method
is evaluated: on the one hand, the effectiveness of the evacuation process and, on the other hand,
the efficiency of the simulation. These two aspects are explored in the following two sections, in
which every single considered measure is averaged over ten evacuation simulations.
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1group (2 exits) 9groups (2 exits)

4groups (9 exits) lecture-hall (33 exits)

corner (109 exits) U-turn (77 exits)

random500 (4 exits) random500bottlenecks (4 exits)

obstacles1 (4 exits) obstacles2 (4 exits)

Figure 7: The ten homogeneous versions of the evacuation problems used in the experimental
evaluation.
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Evacuation Problem γ (FMM)

1group Eq3 18
1group Eq4 17
9groups Eq3 60
9groups Eq4 60
4groups Eq3 25
4groups Eq4 33

lecture-hall Eq3 4
lecture-hall Eq4 5

corner Eq3 5
corner Eq4 4
U-turn Eq3 7
U-turn Eq4 8

random500 Eq3 45
random500 Eq4 50

random500bottlenecks Eq3 66
random500bottlenecks Eq4 15

obstacles1 Eq3 4
obstacles1 Eq4 4
obstacles2 Eq3 6
obstacles2 Eq4 3

Table 2: Manually fine-tuned best γ values for each evacuation problem in Figure 7 under FMM.

4.1 Evacuation effectiveness

In this section, the mean evacuation time steps (mets) is the measure used to evaluate evacuation
effectiveness. It is defined as the average number of time steps that it takes a pedestrian to exit
the grid of cells in an evacuation simulation. In each time step, the floor field is calculated for
the whole grid and, subsequently, each pedestrian moves to one of the empty neighboring cells
according to the floor field values calculated for that time step. Table 3 contains the mets obtained
for FMM and FEM when applied to the evacuation problems defined in Table 1. In order to clearly
show the degree of improvement obtained by the best of the two methods for a particular problem,
Table 3 includes ∆(mets(FMM),mets(FEM)), where ∆(a, b) is defined as follows for two positive
real numbers a and b:

∆(a, b) =
|a− b|

max(a, b)
· 100%.

As a complementary measure, the global evacuation time steps (gets) are included in Table 4.
This measure represents the number of time steps that it takes the grid to become empty in a
simulation.

The example described in Section 3.3 showed that, for the 9groups evacuation problem, FEM
develops a more effective evacuation process compared to FMM. This preliminary result is now
confirmed by the measures reported in Tables 3 and 4 for the 9groups problem.

The following conclusions can be derived from the results shown in Tables 3 and 4:

1. Both methods win in a similar number of evacuation problems. In Table 3, whereas FMM
wins in nine cases, FEM wins in eleven. Likewise, in Table 4 the two methods win in ten
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Evacuation Problem mets(FMM) mets(FEM) ∆(mets(FMM),mets(FEM))

1group Eq3 854.13 862.06 0.92%
1group Eq4 844.56 855.40 1.27%
9groups Eq3 353.50 285.08 19.35%
9groups Eq4 337.73 275.90 18.31%
4groups Eq3 236.37 202.78 14.21%
4groups Eq4 194.33 175.46 9.71%

lecture-hall Eq3 409.63 422.01 2.93%
lecture-hall Eq4 440.54 471.28 6.52%

corner Eq3 480.37 487.01 1.36%
corner Eq4 457.90 492.89 7.10%
U-turn Eq3 661.98 653.39 1.30%
U-turn Eq4 673.93 725.51 7.11%

random500 Eq3 116.25 105.46 9.28%
random500 Eq4 100.89 95.37 5.47%

random500bottlenecks Eq3 156.50 141.38 9.66%
random500bottlenecks Eq4 152.98 145.87 4.65%

obstacles1 Eq3 181.63 190.50 4.66%
obstacles1 Eq4 183.79 192.36 4.45%
obstacles2 Eq3 515.3 475.54 7.72%
obstacles2 Eq4 487.86 455.07 6.72%

Table 3: Mean evacuation time steps obtained for the evaluated methods over the evacuation
problems defined in Table 1. The best result in each row appears highlighted in bold.

Evacuation Problem gets(FMM) gets(FEM) ∆(gets(FMM), gets(FEM))

1group Eq3 1643 1680 2.20%
1group Eq4 1628 1670 2.51%
9groups Eq3 576 459 20.31%
9groups Eq4 588 450 23.47%
4groups Eq3 375 316 15.73%
4groups Eq4 302 296 1.99%

lecture-hall Eq3 691 865 20.11%
lecture-hall Eq4 753 886 15.01%

corner Eq3 718 824 12.86%
corner Eq4 745 850 12.35%
U-turn Eq3 985 991 0.60%
U-turn Eq4 988 1236 20.06%

random500 Eq3 281 232 17.44%
random500 Eq4 217 202 6.91%

random500bottlenecks Eq3 364 265 27.20%
random500bottlenecks Eq4 302 275 8.94%

obstacles1 Eq3 260 269 3.35%
obstacles1 Eq4 263 290 9.31%
obstacles2 Eq3 692 641 7.37%
obstacles2 Eq4 667 578 13.34%

Table 4: Global evacuation time steps obtained for the evaluated methods over the evacuation
problems defined in Table 1. The best result in each row appears highlighted in bold.
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Evacuation Problem runtime(FMM) runtime(FEM) ∆(runtime(FMM), runtime(FEM))

1group Eq3 1870.73 457.18 75.56%
1group Eq4 1982.17 485.11 75.53%
9groups Eq3 640.11 129.96 79.70%
9groups Eq4 688.19 135.83 80.26%
4groups Eq3 442.49 77.08 82.58%
4groups Eq4 371.05 78.30 78.90%

lecture-hall Eq3 534.29 220.26 58.77%
lecture-hall Eq4 609.96 235.42 61.40%

corner Eq3 578.81 273.02 52.83%
corner Eq4 602.89 305.27 49.37%
U-turn Eq3 1021.37 386.74 62.13%
U-turn Eq4 1101.34 483.21 56.12%

random500 Eq3 331.82 63.84 80.76%
random500 Eq4 266.87 60.22 77.43%

random500bottlenecks Eq3 410.92 74.63 81.84%
random500bottlenecks Eq4 343.86 83.45 75.73%

obstacles1 Eq3 296.16 71.14 86.11%
obstacles1 Eq4 322.14 82.86 74.28%
obstacles2 Eq3 707.92 163.84 76.86%
obstacles2 Eq4 705.11 154.88 78.03%

Table 5: Runtimes in seconds obtained for the evaluated methods over the evacuation problems
defined in Table 1. The best result in each row appears highlighted in bold.

cases. Therefore, deciding which method is better regarding evacuation effectiveness seems
to be problem dependent.

2. The performance difference is greater when FEM wins: (1) In Table 3, an average ∆ = 4.04%
is obtained when FMM wins compared to an average ∆ = 9.67% when FEM wins, and (2) In
Table 4, an average ∆ = 9.84% results when FMM wins compared to an average ∆ = 14.27%
when FEM wins. Consequently, FEM clearly exhibits a more robust behavior.

3. In this section, we obtain the optimized results for FMM after a careful and costly fine-tuning
of γ, which is not necessary in the case of FEM.

4.2 Simulation efficiency

This section employs the simulation runtime to evaluate the efficiency of the evaluated evacuation
methods. Table 5 includes the running times obtained for FMM and FEM when applied to the
evacuation problems defined in Table 1.

Additionally, it is interesting to calculate the runtime (see Table 5) divided by the evacuation
time steps (see Table 4). Table 6 shows these results for each problem simulation, which give an
idea of the efficiency of the methods to carry out the tasks included in one time step.

Table 5 shows that, for the global evacuation process, FEM is the most efficient method.
Exclusively in terms of one time step, these same conclusions can be obtained from Table 6 as
well.
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Evacuation Problem runtime
gets

(FMM) runtime
gets

(FEM) ∆
(

runtime
gets

(FMM), runtime
gets

(FEM)
)

1group Eq3 1.14 0.27 76.31%
1group Eq4 1.22 0.29 76.23%
9groups Eq3 1.11 0.28 74.77%
9groups Eq4 1.17 0.30 74.36%
4groups Eq3 1.18 0.24 79.66%
4groups Eq4 1.23 0.26 78.86%

lecture-hall Eq3 0.77 0.25 67.53%
lecture-hall Eq4 0.81 0.27 66.67%

corner Eq3 0.81 0.33 59.26%
corner Eq4 0.81 0.36 55.56%
U-turn Eq3 1.04 0.39 62.50%
U-turn Eq4 1.11 0.39 64.86%

random500 Eq3 1.18 0.27 77.12%
random500 Eq4 1.23 0.30 75.61%

random500bottlenecks Eq3 1.13 0.28 75.22%
random500bottlenecks Eq4 1.14 0.30 73.68%

obstacles1 Eq3 1.14 0.26 77.19%
obstacles1 Eq4 1.22 0.29 76.23%
obstacles2 Eq3 1.02 0.26 74.51%
obstacles2 Eq4 1.06 0.27 74.53%

Table 6: Running times in Table 5 divided by the global evacuation time steps in Table 4. The
best result in each row appears highlighted in bold.

5 Conclusion and future research

Evacuation problems are usually tackled by considering homogeneous media where pedestrians
move freely in the presence of exits and obstacles. From a more general viewpoint, heterogeneous
media are characterized by the fact that the velocity of pedestrians depends on their location.
The specific structure of the heterogeneous medium has a great influence on how pedestrians can
be evacuated in a more effective way, even if both exits and obstacles remain unchanged.

FMM and FEM are two competitive methods for evacuation problems in homogeneous media.
The present paper extends FMM and FEM to heterogeneous media and evaluates them over a
set of simulated scenarios. Even though deciding which method outperforms the other is problem
dependent, FEM has a more robust behavior over the whole set of simulated heterogeneous sce-
narios. Besides, contrarily to FMM, FEM has the important advantage of not requiring any kind
of fine-tuning previously to its execution.

The present work opens up the following research directions:

� It would be interesting to investigate whether the extended versions of FMM and FEM to
heterogeneous media can be adapted to the context of the Social Force Model for pedestrian
dynamics.

� The extended versions of FMM and FEM can be easily applied to dynamic environments
where exits, obstacles, and the medium change over time. This could produce important
applications with a high impact on society.

� The viability and benefits of the static version of FEM [Galán, 2019] could be investigated
for evacuation problems in heterogeneous media. Static FEM uses the floor field created in
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the initial time step as the floor field for the whole evacuation process. This static version
would be much faster than FEM, although it would be subject to some inaccuracies.

� In order to perform a thorough evaluation of the new versions of FMM and FEM, their sim-
ulation results should be compared with existing empirical data [Shi et al., 2018, Wijermans
et al., 2016] and extended to other different media (see Equations 3 and 4) and evacuation
problems (see Figure 7) from those used in this work.

� Regarding the practical application of the extended versions of FMM and FEM, it remains
to study how these new methods can be achieved in real-life evacuation scenarios [Wijermans
et al., 2016].
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