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Abstract

Cellular evolutionary algorithms (cEAs) use structured populations whose evolutionary
cycle is governed by local interactions among individuals. This helps to prevent the premature
convergence to local optima that usually takes place in panmictic populations. The present
work extends cEAs by means of a message passing phase whose main effect is a more effective
exploration of the search space. The mutated offspring that potentially replaces the original
individual under cEAs is considered under message passing cellular evolutionary algorithms
(MPcEAs) as a message sent from the original individual to itself. In MPcEAs, unlike in
cEAs, a new message is sent from the original individual to each of its neighbors, representing
a neighbor’s mutated offspring whose second parent is selected from the neighborhood of
the original individual. Thus, every individual in the population ultimately receives one
additional candidate for replacement from each of its neighbors rather than having a unique
candidate. Experimental tests conducted in the domain of real function optimization for
continuous search spaces show that, in general, MPcEAs significantly outperform cEAs in
terms of effectiveness. Specifically, the best solution obtained through MPcEAs has an
importantly improved fitness quality in comparison to that obtained by cEAs.

Keywords: optimization problem, cellular evolutionary algorithm, message passing, effective ex-
ploration.

1 Introduction

Evolutionary algorithms (EAs) [6, 7, 15, 11] use stochastic search methods based on natural evolu-
tion in order to solve optimization problems in fields such as design, learning, or scheduling, among
others. An EA obtains a population of individuals each generation, where an individual repre-
sents a potential solution to the optimization problem. The fitness of an individual determines its
chance to survive and reproduce. Two processes form the basis of EAs: variation (recombination
and mutation) and selection. While the former facilitates diversity and novelty, the latter favors
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quality. Ideally, at the end of running an EA, an individual with optimal or near-optimal fitness
is found.

Premature convergence to local optima is one of the most frequent difficulties that arises
when applying panmictic EAs to complex problems. (In a panmictic EA, any individual can
interact with any other individual in the population.) It occurs when genetic operators can no
longer generate offspring that are fitter than their suboptimal parents. Premature convergence is
associated with the loss of diversity in the population. However, too much population diversity
can lead to a dramatic deterioration of EA efficiency. Therefore, an important issue in the design
and application of EAs is the tradeoff between exploitation of the best individuals and exploration
of alternative regions of the search space.

Landscape orography is one of the main factors determining the type of interaction among
the individuals of a population and has an influence on the distribution of the great diversity
of species in our planet. Cellular evolutionary algorithms (cEAs) [19, 26, 28, 1, 32] constitute a
technique that models how the orographic factor determines the interaction among individuals
and maintains the population diversity. In this technique, parallelism arises due to the fact that
a processing unit can be dedicated to simulate the interactions between an individual and its
neighbors. These local interactions among individuals are the only ones possible in a cEA. The
term “cellular” specifies that each processing unit performs easy and fast computations. In fact,
the equivalence between cEAs and cellular automata was proved in [33].

Several works [10, 5, 31, 12] report that cEAs perform better than panmictic EAs in many cases.
This is due to the fact that cEAs maintain a higher diversity in the population and accomplish a
better tradeoff between exploration and exploitation in the search space. Since individuals interact
locally in a cEA, the genetic information of the fittest individuals spreads slowly throughout the
population, analogously to a diffusion process.

The goal of the present work is to enhance the effectiveness of cEAs to reach good solutions, that
is, to obtain solutions whose fitness is closer to that of the global optimum. This is accomplished by
carrying out additional local interactions among individuals. In a cEA, given the neighborhood
of the original individual, a mutated offspring is generated from the neighborhood in order to
potentially replace the original individual. This operation can be extended by generating a new
mutated offspring for each individual in the neighborhood. The whole process can be developed
in the context of a message passing mechanism, where every individual in the population receives
a candidate individual for potential replacement from each of its neighbors. Thus, the resulting
approach is named message passing cellular evolutionary algorithm (MPcEA). We have conducted
thorough experimental tests in order to compare cEAs and MPcEAs in the domain of real function
optimization. The results show that MPcEAs significantly outperform cEAs in many cases.

Given the promising results provided by MPcEAs in terms of effectiveness in comparison to
those offered by cEAs, MPcEAs constitute a convenient method to be applied to any optimization
problem that can be tackled from an evolutionary perspective. A detailed list of these problems
can be found in the following references: [6, Chapter 2], [9, Chapter 6], and [8]. Thus, in general,
MPcEAs can be used in practice in a broad range of real-world domains of interest.

The rest of this paper is organized as follows. Section 2 reviews previous work on cEAs. Section
3 introduces the novel MPcEA approach. Section 4 includes an extensive empirical evaluation of
MPcEAs. Finally, Section 5 contains the main conclusions and discusses future research directions.
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2 Related work on cEAs

In a cEA, each node of a network with fixed structure contains one of the individuals in the
population. Usually, the network structure is designed as a two-dimensional square lattice. Every
individual in the lattice has direct links with a set of neighbors and interacts only with them.
Like in cellular automata, the von Neumann and the Moore neighborhoods are the most popular
ones. In a two-dimensional square lattice, the von Neumann neighborhood is formed by a cell and
its vertical and horizontal neighbors, whereas the Moore neighborhood incorporates the diagonal
neighbors. When periodic boundary conditions are defined for a finite two-dimensional square
lattice using von Neumann neighborhood, the population is structured as a toroid.

Algorithm 1 contains the pseudocode for a canonical cEA. In the first two steps, each lattice
cell is initialized with an individual whose fitness is calculated (see lines 1 and 2). Usually, the
initialization is performed in a random way, although specific knowledge-based methods for the
problem at hand can be used. Then, the following operations are carried out for each individual
at each generation in the typical implementation of a canonical cEA:

1. Two parents are selected from the set formed by the original individual and its neighbors (see
lines 5 and 6). The selection can be conducted in a random way or through any fitness-based
method. Usually, the original individual is chosen as a parent, and one of its neighbors is
selected to act as the other parent.

2. A child is generated by means of recombination, also known as crossover (see line 7).

3. The generated child is mutated, and its fitness is evaluated (see lines 8 and 9).

4. A decision is taken as to whether or not the original individual is replaced by the mutated
child (see line 10). Usually, the replacement takes place when the fitness of the mutated
child improves that of the original individual.

In summary, both parent selection and individual replacement (also known as survivor selection)
are allowed only in the neighborhood of each individual. It is interesting to note that, as discussed
in [29], the operations repeated during a generation over all the cells in the lattice can be per-
formed either sequentially (asynchronously) or in parallel (synchronously). Actually, Algorithm 1
considers synchronous updating of individuals, implemented in a sequential manner. To that end,
an auxiliary population is created that stores the partial results obtained throughout a generation.

2.1 Advanced techniques in cEAs

The canonical cEA has been enhanced with advanced techniques in order to increase both its
effectiveness and its efficiency. An in-depth review of these advanced techniques can be found in
[1, 13].

The structured population makes cEAs appropriate for parallel implementation. Fast parallel
cEAs can be designed from two perspectives: (1) By assigning a single individual to each processor
of massively parallel computers [26], or (2) By evolving several cEAs in parallel and connecting
them in an arbitrary manner (for example, as a ring) in order to allow the occasional migration
of individuals [24, 25]. A detailed survey of parallel cEAs can be found in [1, Chapter 8].

Hierarchical cEAs [22] create a hierarchy in the population such that better individuals are
moved towards the same region of the lattice. In this way, a faster and more effective convergence
of the best individuals is achieved in this region, while the diversity is maintained in other distant
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Algorithm 1 Canonical cEA
Input:
An optimization problem
The usual parameters of a canonical EA
A lattice where each cell will be occupied by an individual at each generation

Output:
The population of individuals in the lattice at the final generation

1: Initialize(population);
2: Evaluate(population);
3: while not stop-condition
4: for i← 1 to population.size
5: neighborhood ← population.individual [i] ∪ CalculateNeighbors(population.individual [i]);
6: parents ← Select(neighborhood);
7: child ← Recombine(parents);
8: Mutate(child);
9: Evaluate(child);

10: auxiliary-population.individual [i] ← Replace?(population.individual [i], child);
11: end-for
12: population ← auxiliary-population ; (synchronous updating)
13: end-while

locations. A hierarchical cEA is similar to a canonical cEA except that the population is rearranged
after every generation with a fitness-based swap operation between contiguous cells in the lattice.

An important issue in EAs is how to achieve a proper tradeoff between exploration and ex-
ploitation during the search process, which depends on the optimization problem at hand and the
elapsed number of generations. The shape of the lattice has a great influence on the exploratory
capabilities of a cEA. For example, in the case of N × M lattices where N and M vary and
N ·M (the population size) remains constant, the linear (N ·M)× 1 lattice produces the highest
degree of exploration, whereas the square

√
N ·M ×

√
N ·M lattice yields the highest degree of

exploitation. In [4, 1], the degree of exploration of a cEA is controlled by modifying the shape
of the lattice or, in other words, by changing N and M such that N ·M is kept constant. This
control can be performed: (1) dynamically at specific generations [4], or (2) adaptively according
to the evolution of population diversity measures like entropy or population convergence measures
like average fitness [1, Section 6.2.2].

Parameter control is important for EAs in general and for cEAs in particular. The specific
values assigned to the parameters determine the degree of exploration applied during the search
process. Usually, finding the optimal set of parameter values is a costly and difficult problem for
the user, since it depends on the complexity of the problem at hand. The terrain-based genetic
algorithm [18] is a cEA characterized by spreading a range of parameter values evenly along the
axes of the lattice. Cells in different locations are subjected to different parameter values, although
the parameter values in neighboring cells are similar. The experimental results reported in [18]
indicate that the terrain-based genetic algorithm performs better than the canonical cEA, even
when the latter is assigned parameter values thought to be good in prior studies. Interestingly,
the terrain-based genetic algorithm can be used to automatically determine better parameter
settings for the canonical cEA. The resulting canonical cEA produces even better results than
those achieved by the terrain-based genetic algorithm that found those parameter settings.

A drawback of cEAs is that they slowly converge to near-optimal solutions. Both the efficiency
and the effectiveness of cEAs can be increased by hybridizing them with local search. Cellular
memetic algorithms [17, 2, 21] apply an additional phase of local search improvement to the
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mutated offspring in a cEA. Since an exhaustive local search on all individuals in the population
can be computationally expensive, some methods exist that restrict the local search to a subset
of the individuals [21].

In multiobjective optimization through evolutionary methods, the goal is to estimate the set
of non-dominated solutions (or Pareto set) as accurately as possible. To that end, it is important
to maintain the population diversity throughout the generations, since the shape of the Pareto
front is unpredictable in advance. Due to the fact that structured populations promote diversity
maintenance, cEAs can be effectively applied to multiobjective optimization problems. The first
multiobjective cEA, called cMOGA [3], was used to optimize the broadcasting strategy in ad hoc
mobile networks. A review of relevant multiobjective cEAs, including an improved version of
cMOGA called MOCell, can be found in [1, Chapter 9].

The present work extends cEAs with message passing capabilities. The main goal is to improve
their effectiveness by performing a more elaborate sampling of the search space, as explained in
the next section.

3 Message passing cellular evolutionary algorithms

MPcEAs extend cEAs by introducing message passing into the evolutionary cycle. As described
in Section 2, cEAs perform selection and variation locally in a lattice where each cell is occupied
by an individual. Algorithm 1 in Section 2 specifies the typical local operations that are carried
out in the lattice at each generation. In the rest of this paper, a version of Algorithm 1 will be
assumed that applies the following four operations to each individual:

1. A parent is selected from the neighbors of the original individual.

2. The selected parent is recombined with the original individual in order to generate a child.

3. The child is mutated and evaluated.

4. The mutated child replaces the original individual in the lattice if the fitness of the mutated
child improves that of the original individual.

Under MPcEAs, every time these four operations are applied to an individual, they are also applied
to each of its neighbors. The additional operations are applied to each neighbor by considering
the neighborhood of the original individual, as detailed in Algorithm 2 for a canonical MPcEA.
Thus, as shown in lines 9-16 of Algorithm 2, a new candidate is generated for each of the cells
in the neighborhood of the original individual. In this way, MPcEAs extend the generation of
candidates for replacement as follows:

� In Algorithm 1, only a candidate for cell i is obtained.

� In Algorithm 2, an additional candidate for each neighbor j of cell i is obtained (see line
15). In this case, when a candidate for cell j is generated, one of the two parents used in
recombination is always the individual occupying cell j (see line 10). Throughout this paper,
a recombination probability equal to unity will be used; however, if such a probability was
less than unity and the recombination did not actually take place, the candidate for cell j
would not be generated and the corresponding message would be empty.

As a result, at the end of a generation, every cell in the lattice is assigned a set of candidate indi-
viduals for replacement. Overall, each cell is provided with a candidate by each of its neighboring
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cells plus its own candidate. Thus, the number of candidates to replace the individual located in
a cell is constant across the lattice. For example, if the von Neumann neighborhood is considered,
each cell is assigned five candidates: one candidate sent from the cell itself and four candidates
sent from its North, East, South, and West neighboring cells respectively. As indicated in line 19
of Algorithm 2, the decision function Replace? is applied to each cell of the lattice in order to
select which individual survives among the original one and its candidates. The selected individual
will occupy the cell at the next generation of the evolutionary cycle.

Algorithm 2 Canonical MPcEA
Input:
An optimization problem
The usual parameters of a canonical EA
A lattice where each cell will be occupied by an individual at each generation

Output:
The population of individuals in the lattice at the final generation

1: Initialize(population);
2: Evaluate(population);
3: while not stop-condition
4: for i← 1 to population.size
5: population.individual [i].candidates ← ∅;
6: end-for
7: for i← 1 to population.size
8: neighborhood ← population.individual [i] ∪ CalculateNeighbors(population.individual [i]);
9: for current-individual ← neighborhood

10: parent1 ← current-individual ;
11: parent2 ← Select(neighborhood − {current-individual});
12: child ← Recombine(parent1, parent2 );
13: Mutate(child);
14: Evaluate(child);
15: current-individual.candidates ← current-individual.candidates ∪ {child};
16: end-for
17: end-for
18: for i← 1 to population.size
19: population.individual [i] ← Replace?(population.individual [i], population.individual [i].candidates);
20: end-for
21: end-while

An important characteristic of MPcEAs is that every cell sends a message to itself and to
each of its neighbors at each generation. The message from cell i to cell j represents a candidate
individual to occupy cell j in the next generation. This candidate individual is generated from
selection and variation operations applied to individuals located in the neighborhood of cell i,
that is, cell i and its neighbors. Furthermore, one of the two parents of the candidate individual
(previously to mutation) is always cell j. Figure 1 illustrates how the message from cell i to cell j
is generated. Note that the mate for cell j (previously to recombination) is selected from the cells
in the neighborhood of cell i excluding cell j. In Figure 1, such a mate is arbitrarily depicted in
the cell denoted as k.

In MPcEAs, there are two ways of organizing message passing at each generation:

1. Synchronously : The cells of the lattice are visited in an arbitrary order, which can be fixed
from generation to generation. Each visited cell sends its outgoing messages and, once the
last message has been sent in the lattice, every cell updates its individual. Algorithm 2
employs this updating scheme, which will be assumed in the rest of the paper.

2. Asynchronously : The cells of the lattice are visited in a random order, which varies from
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Figure 1: Message sent from cell i to cell j, which correspond to population.individual [i] and
current-individual in Algorithm 2 respectively. Cell j is recombined with cell k, which is selected
from the Moore neighborhood of cell i excluding cell j. The potential mates for cell j are depicted
in gray.

generation to generation. Each visited cell sends its outgoing messages, which are immedi-
ately processed by its neighbors as they arrive: The new individual for each neighboring cell
is the fittest between the new candidate and the present individual in the cell.

A cEA can be considered as an MPcEA where each cell sends a unique message (to itself).
In terms of computational complexity, under MPcEAs each cell executes the same operations as
under cEAs and repeats those operations for each of its neighbors. The expression of the time
complexity for cEAs depends on the particular selection and variation methods used during the
evolutionary cycle [30], although in the general case it has been shown to vary linearly with the
number of cells [5, Section 3.1]. If the Moore neighborhood is considered, an MPcEA executes nine
times the operations carried out by a cEA. These operations include both message passing and
candidate selection for replacement. Therefore, assuming that the genotype length is bounded,
cEAs and MPcEAs have the same order of complexity in terms of the number of cells in the
lattice. Section 4 comparatively evaluates both the efficiency and the effectiveness of cEAs and
MPcEAs through a series of experimental tests.

4 Experimental evaluation

This section compares cEAs and MPcEAs in terms of effectiveness (optimization quality) and
efficiency (running time). A number of tests are designed that deal with the optimization of
real functions defined over continuous domains. Given an n-dimensional function, f : Rn −→ R,
the problem of global optimization consists in determining x∗ ∈ Rn such that f(x∗) ≤ f(x) for
all x ̸= x∗ with x ∈ Rn. This definition corresponds to a minimization problem, which will be
assumed throughout the present section unless otherwise specified.

Table 1 contains the thirteen functions used in the experimental evaluation. These functions,
which are widely used in the literature on EAs (see for example [23]), provide a diverse range
of multimodal problems. All of them have a global minimum whose fitness, f(x∗), is equal to
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Function f(x1, . . . , xn) Domain

Ackley 20 + exp(1)− 20 exp

(
−0.2

(
1
n

n∑
i=1

x2
i

)1/2
)
− exp

(
1
n

n∑
i=1

cos (2πxi)

)
[−32.768, 32.768]n

Alpine1
n∑

i=1

|xi sin (xi) + 0.1xi| [0, 10]n

Griewank 1 + 1
n

n∑
i=1

x2
i −

n∏
i=1

cos
(

xi√
i

)
[−600, 600]n

HappyCat

∣∣∣∣ n∑
i=1

xi
2 − n

∣∣∣∣ 14 + 1
n

(
0.5

n∑
i=1

xi
2 +

n∑
i=1

xi

)
+ 0.5 [−2, 2]n

High Conditioned Elliptic
n∑

i=1

(106)
i−1
n−1 xi

2 [−100, 100]n

Rastrigin 10n+
n∑

i=1

(x2
i − 10 cos (2πxi)) [−5.12, 5.12]n

Rosenbrock
n−1∑
i=1

(
100 (xi+1 − x2

i )
2
+ (xi − 1)2

)
[−5, 10]n

Salomon 1− cos

(
2π

√
n∑

i=1

x2
i

)
+ 0.1

√
n∑

i=1

x2
i [−100, 100]n

Schwefel1.2
n∑

i=1

(
i∑

j=1

xj

)2

[−100, 100]n

Schwefel2.26 418.9829n−
n∑

i=1

(
xi sin

(√
|xi|
))

[−500, 500]n

Sphere
n∑

i=1

x2
i [−5.12, 5.12]n

Weierstrass
n∑

i=1

{
20∑
k=0

[
0.5k cos(2π3k(xi + 0.5))

]}
− n

20∑
k=0

[
0.5k cos(π3k)

]
[−0.5, 0.5]n

Zakharov
n∑

i=1

x2
i +

(
n∑

i=1

0.5ixi

)2

+

(
n∑

i=1

0.5ixi

)4

[−5, 10]n

Table 1: Definition of the functions used in the experimental evaluation. All of them have a
minimum value f(x∗) = 0.

zero. The dimension n = 50 is chosen for the tests, since it gives rise to thirteen optimization
problems of different complexity (from easy to hard) over the functions in Table 1. A real interval
is considered for each dimension of the function domain (see Table 1).

4.1 Implementation

Every point (or individual) in the search space is naturally encoded as a string of n real-coded
variables. Thus, the variation operators must be designed for chromosomes that use real repre-
sentation. A cEA and an MPcEA are implemented with identical evolutionary operators in the
following way:

� The population is distributed in a 10x10 toroid where each of the one hundred individuals is
connected to other eight individuals by means of the Moore neighborhood. Initially, every
cell is assigned an individual whose allele l, with l ∈ {1, . . . , n}, is randomly generated from
a uniform distribution in the domain of variable xl.

� In parent selection, the first parent is always deterministically obtained as explained in
Section 2 for the cEA and in Section 3 for the MPcEA. The second parent is chosen through
tournament selection (without replacement) with tournament size equal to five.
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� Parent recombination is performed, with probability equal to one, by employing the blend
recombination operator (BLX-α) [16] with α = 0.5. Under this operator, the child z ≡
(z1, . . . , zn) is generated from parents x ≡ (x1, . . . , xn) and y ≡ (y1, . . . , yn) such that, for
all l ∈ {1, . . . , n}, zl is randomly generated from a uniform distribution in the real interval
[min(xl, yl) − I · α,max(xl, yl) + I · α], where I = max(xl, yl) − min(xl, yl). BLX-0.5 was
successfully applied in [14] in the context of a simple cellular genetic algorithm for continuous
optimization.

� Child mutation is developed, with probability for each gene equal to 1/n, by means of the
non-uniform mutation operator [27, 20] with b = 1. This operator uses a non-uniform
distribution whose step size is decreased as generations pass, which favors exploration in the
initial stage of the search process and promotes exploitation in the final stage. The degree
of decrease for the step size throughout the generations can be manually adjusted by the
user through parameter b. Like the recombination operator BLX-α, this mutation operator
was successfully applied in [14].

� The replacement policy for each individual in the population at generation t substitutes the
individual only when a better candidate to occupy its cell is found at generation t+ 1.

� The cells in the population are updated synchronously (in a sequential way) at each gener-
ation.

� The algorithms are executed for a fixed number of generations which is specified in advance
by the user.

The evaluated algorithms are implemented within NetLogo [34], an agent-based programming
environment well suited for modeling and inspecting complex systems developing over time. The
tests are carried out on an Intel Xeon processor (2.67 GHz) with 6 Gb of memory.

4.2 Results

When applied to the functions in Table 1, the effectiveness of a cEA and that of an MPcEA
are compared by measuring the best fitness at the final generation. Twenty-five independent
runs are repeated for each particular test. Different seeds for the random number generator are
employed for each run of the algorithms. Tables 2 and 3 show the mean best fitness and its
standard deviation over the twenty-five independent runs. Two different stopping conditions are
considered: one thousand generations (see Table 2) and ten thousand generations (see Table 3).

The comparison of the cEA and the MPcEA in terms of efficiency is developed by measuring
running times in the same tests already described when comparing effectiveness. Table 4, for
the case of one thousand generations, and Table 5, for ten thousand generations, contain the
mean running time and its standard deviation when the cEA and the MPcEA are applied to the
functions in Table 1.

It is interesting to compare MPcEAs and cEAs with a panmictic EA (pEA). Basically, in this
work a pEA differs from MPcEAs and cEAs in the way the second parent is selected for each
individual in the population previously to recombination. In the case of pEAs, the second parent
is obtained through tournament selection (without replacement and with tournament size equal
to five) from the whole population (excluding the first parent). Tables 2-5 have been extended
to include the experimental results for pEAs. Additionally, the progress curves for the three
algorithms are included in Figures 2 and 3. These curves plot, generation by generation, the mean
fitness for the best individual in the population over the twenty-five independent runs.
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Function cEA MPcEA pEA

Ackley 1.221E–5 (3.781E–6) 5.977E–15 (1.176E–15) 4.667E–7 (1.6126E–7)

Alpine1 3.798E–7 (5.373E–8) 9.842E–30 (2.094E–30) 3.533E–8 (6.047E–9)

Griewank 1.069E–3 (3.256E–3) 0 (0) 1.182E–3 (4.069E–3)

HappyCat 4.242E–1 (6.054E–2) 2.029E–1 (3.046E–2) 3.409E–1 (4.204E–2)

High Conditioned Elliptic 2.01E–6 (1.046E–6) 8.211E–63 (8.259E–63) 3.058E–9 (1.585–9)

Rastrigin 46.905 (6.887) 2.693 (2.588) 39.176 (14.294)

Rosenbrock 106.609 (40.271) 56.171 (23.695) 77.493 (35.725)

Salomon 4.349E–1 (5.408E–2) 2.199E–1 (4E–2) 3.12E–1 (3.246E–2)

Schwefel1.2 7186.355 (1881.995) 51.93 (36.233) 4864.633 (1201.887)

Schwefel2.26 1585.176 (201.377) 137.601 (166.63) 2458.142 (761.406)

Sphere 1.613E–11 (9.035E–12) 5.596E–68 (6.524E–68) 2.434E–14 (1.023E–14)

Weierstrass 2.095E–3 (3.521E–3) 0 (0) 6.756E–5 (2.198E–5)

Zakharov 53.64 (7.661) 1.807E–4 (9.166E–5) 50.324 (10.177)

Table 2: Mean best fitness (and its standard deviation in parentheses) for the thirteen functions
in Table 1 when the stopping condition is one thousand generations. The best result in each
row is highlighted in bold.

Function cEA MPcEA pEA

Ackley 6.217E–15 (3.155E–30) 5.791E–15 (1.154E–15) 6.075E–15 (6.962E–16)

Alpine1 9.208E–76 (3.921E–76) 2.016E–302 (1.194E–302) 1.152E–85 (6.389E–86)

Griewank 5.91E–4 (2.895E–3) 0 (0) 2.958E–4 (1.449E–3)

HappyCat 2.178E–1 (2.84E–2) 1.2E–1 (1.721E–2) 1.785E–1 (2.365E–2)

High Conditioned Elliptic 4.151E–116 (9.142E–116) 0 (0) 1.076E–144 (1.603E-144)

Rastrigin 3.186E–1 (5.524E–1) 2.979E–13 (6.012E–13) 4.625 (5.225)

Rosenbrock 63.501 (27.819) 13.296 (9.211) 55.397 (24.122)

Salomon 2.919E–1 (3.919E–2) 2.119E–1 (3.25E–2) 2.199E–1 (4E–2)

Schwefel1.2 26.204 (26.498) 2.816E–17 (5.065E–17) 8.637E–1 (4.09E–1)

Schwefel2.26 3.493E–3 (5.751E–3) 6.364E–4 (3.254E–12) 279.8 (336.971)

Sphere 1.604E–121 (3.162E–121) 0 (0) 4.008E–149 (1.375E–148)

Weierstrass 4.011E–4 (8.462E–4) 0 (0) 0 (0)

Zakharov 3.709E–5 (2.031E–5) 1.607E–64 (1.827E–64) 7.161E–6 (3.518E–6)

Table 3: Mean best fitness (and its standard deviation in parentheses) for the thirteen functions
in Table 1 when the stopping condition is ten thousand generations. The best result in each
row is highlighted in bold.

10



Function cEA MPcEA pEA

Ackley 12.776 (2.255E–2) 102.742 (9.217E–2) 12.351 (1.909E–2)

Alpine1 13.045 (1.592E–2) 104.656 (8.653E–2) 12.539 (1.982E–2)

Griewank 12.965 (2.219E–2) 103.89 (9.325E–2) 12.461 (2.015E–2)

HappyCat 10.794 (1.918E–2) 90.39 (1.707E–1) 11.459 (2.684E–2)

High Conditioned Elliptic 11.916 (3.615E–2) 97.658 (1.581E–1) 12.506 (3.076E–2)

Rastrigin 12.17 (2.147E–2) 101.529 (1.504E–1) 11.708 (2.929E–2)

Rosenbrock 12.963 (4.725E–2) 107.259 (2.289E–1) 12.635 (2.138E–2)

Salomon 11.184 (2.107E–2) 92.405 (9.481E–1) 10.765 (1.583E–2)

Schwefel1.2 33.868 (2.65E–2) 295.668 (1.451E–1) 33.265 (2.632E–2)

Schwefel2.26 12.161 (1.929E–2) 102.232 (1.175E–1) 11.886 (5.001E–2)

Sphere 11.468 (1.672E–2) 94.64 (1.325E–1) 11.114 (1.997E–2)

Weierstrass 107.006 (1.087E–1) 978.498 (5.66E–1) 106.991 (2.241E–1)

Zakharov 11.8 (1.594E–2) 99.842 (1.689E–1) 11.615 (2.552E–2)

Table 4: Mean running time in seconds (and its standard deviation in parentheses) for the
thirteen functions in Table 1 when the stopping condition is one thousand generations. The
best result in each row is highlighted in bold.

Function cEA MPcEA pEA

Ackley 120.967 (1.701E–1) 1010.377 (4.096E–1) 117.222 (1.458E–1)

Alpine1 129.478 (9.83E–2) 1062.073 (4.943E–1) 124.398 (9.9295E–2)

Griewank 122.824 (1.985E–1) 1029.409 (6.673E–1) 117.886 (1.1323E–1)

HappyCat 106.937 (1.384E–1) 901.171 (8.147E–1) 112.56 (2.044E–1)

High Conditioned Elliptic 118.371 (1.235E–1) 1002.246 (1.668) 123.58 (1.452E–1)

Rastrigin 120.053 (1.696E–1) 1008.852 (1.801) 116.755 (2.681E–1)

Rosenbrock 129.7 (3.877E–1) 1072.378 (1.687) 124.452 (1.794E–1)

Salomon 109.844 (1.424E–1) 924.811 (3.244E–1) 105.386 (1.41E–1)

Schwefel1.2 332.893 (2.026E–1) 2954.541 (4.918E–1) 322.786 (3.989E–1)

Schwefel2.26 120.741 (2.69E–1) 1010.413 (1.39) 116.456 (3.346E–1)

Sphere 114.638 (1.216E–1) 968.51 (7.133E–1) 110.645 (1.841E–1)

Weierstrass 1102.688 (1.949) 9949.105 (42.284) 1110.117 (9.289E–1)

Zakharov 118.224 (1.344E–1) 995.046 (1.647) 114.606 (1.629E–1)

Table 5: Mean running time in seconds (and its standard deviation in parentheses) for the
thirteen functions in Table 1 when the stopping condition is ten thousand generations. The
best result in each row is highlighted in bold.
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Figure 2: Progress curves (1 of 2) when cEAs, MPcEAs, and pEAs are applied to the functions in
Table 1. A logarithmic scale is used. Generation 1 represents the first generation after population
initialization.
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Figure 3: Progress curves (2 of 2) when cEAs, MPcEAs, and pEAs are applied to the functions in
Table 1. A logarithmic scale is used. Generation 1 represents the first generation after population
initialization.
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Table p
2 0.00148
3 0.03318
4 0.00148
5 0.00148

Table 6: The four p-values obtained by applying Wilcoxon tests (with significance level α = 0.05)
on columns “cEA” and “MPcEA” in Tables 2-5.

4.3 Analysis

Before discussing the experimental results obtained for cEAs and MPcEAs in Tables 2-5, their
statistical significance needs to be established. Thus, for each of the four tables, it needs to
be determined whether or not the data (grouped by columns “cEA” and “MPcEA”) come from
the same distribution and, therefore, the differences are due to random effects (null hypothesis).
Wilcoxon tests are applied to each of the four tables, and the probability p of the corresponding
result assuming the null hypothesis is shown in Table 6. When probability p is less than a small
threshold (typically, α = 0.05 is used in the literature), it is justified to reject the null hypothesis.
The values of p in Table 6 are small enough to discard the null hypothesis.

The results in Tables 2 and 3 show that the MPcEA clearly outperforms the cEA in terms
of effectiveness. Furthermore, for six of the thirteen functions (Ackley, Griewank, HappyCat,
Rosenbrock, Salomon, and Weierstrass), the results reported for the MPcEA after one thousand
generations (see Table 2) are even better than those reported for the cEA after ten thousand
generations (see Table 3). Note that a diverse range of behaviors regarding convergence is obtained
in Tables 2 and 3: While some functions have reached convergence to value zero after one thousand
generations of the MPcEA, other functions still have room for improvement after ten thousand
generations of the MPcEA. Comparing cEAs and MPcEAs for problems of different complexity
and for different stages of the search process is precisely one of the main goals of our experimental
evaluation. Finally, regarding the pEA, it exhibits a performance which is closer to that of the
cEA. Which method between the cEA and the pEA is better depends on the particular function
being optimized.

The progress curves in Figures 2 and 3 clearly illustrate how MPcEAs achieve a convenient
tradeoff between exploration and exploitation for the considered functions. Thus, with respect
to cEAs and pEAs, MPcEAs converge to solutions of higher quality in fewer generations. The
cellular characteristic of MPcEAs allows diversity to be properly maintained in the population,
while the message passing phase contributes to an effective search of the solution space.

Tables 4 and 5 show that the cEA is more efficient than the MPcEA. In these two tables, the
magnitude of runtime improvement for the cEA with respect to the MPcEA is in accordance with
the number of (fitness) function evaluations carried out by each of these EAs. In general, given
a population whose size is denoted by s, the following number of function evaluations have been
performed after generation t by the two algorithms:

FcEA(t) = s+ s ∗ t
FMPcEA(t) = s+ 9 ∗ s ∗ t ,

where it is assumed that the population is initialized at generation t = 0. Thus, for a fixed number
of generations, the number of function evaluations is O(s) under both EAs.
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5 Conclusion and future research

With respect to panmictic EAs, cEAs maintain a higher diversity in the population and accomplish
a better balance between exploration and exploitation during the search process. As a consequence,
cEAs perform better than panmictic EAs in many optimization problems.

This work extends cEAs by designing more elaborate local operations for each individual in
the population. These new local operations are carried out in MPcEAs through message passing
techniques.

As shown experimentally in this work, MPcEAs are much more effective than cEAs at the
expense of reducing efficiency. As a result, MPcEAs produce a convenient tradeoff between effec-
tiveness and efficiency. Furthermore, any advanced evolutionary technique designed for cEAs (see
Section 2.1) can be easily applied to MPcEAs as well.

The present work opens up the following research directions:

� Additional experimental tests in new domains can be conducted in order to thoroughly
evaluate MPcEAs. In this way, other different evolutionary operators from those employed
in this paper could be tested and the influence of other neighborhoods (different from the
Moore neighborhood) could be investigated.

� An interesting topic for future research is to apply the advanced evolutionary techniques
explained in Section 2.1 to MPcEAs. For example, the use of parallel computing in the
context of MPcEAs could be investigated in order to improve the computation time for
larger populations.
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[7] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Evolutionary Computation 2: Advanced
Algorithms and Operators. Institute of Physics Publishing, 2000.

[8] R. Chiong, T. Weise, and Z. Michalewicz. Variants of Evolutionary Algorithms for Real-World
Applications. Springer, Berlin, 2012.

15



[9] C. A. Coello, D. A. van Veldhuizen, and G. B. Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic Publishers, 2002.

[10] R. J. Collins and D. R. Jefferson. Selection in massively parallel genetic algorithms. In
Proceedings of the 4th International Conference on Genetic Algorithms (ICGA-91), pages
249–256, 1991.

[11] K. A. de Jong. Evolutionary Computation: A Unified Approach. The MIT Press, 2006.

[12] T. Dittrich and W. Elmenreich. Comparison of a spatially-structured cellular evolutionary
algorithm to an evolutionary algorithm with panmictic population. In Proceedings of the 12th
International Workshop on Intelligent Solutions in Embedded Systems (WISES 2015), pages
145–149, 2015.

[13] B. Dorronsoro. Diseño e Implementación de Algoritmos Genéticos Celulares para Proble-
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