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Abstract

The problem of pedestrian evacuation can be addressed through cellular automata in-
corporating a floor field that indicates promising movements to pedestrians. The two main
types of floor field are the static, which represents the shortest path from each cell to an
exit (and is usually combined with dynamic measures such as the density or distribution
of pedestrians), and the dynamic, which represents the quickest path from each cell to an
exit. The second type has been widely used recently, since it gives rise to more efficient and
realistic simulations of pedestrian dynamics. The goal of these two types of floor field is
to minimize the travel time for each pedestrian; however, this paper tackles the evacuation
problem from a different perspective: The time taken by the whole evacuation process is op-
timized. For that purpose, a floor field is constructed by assigning pedestrians to exits such
that the estimated time for complete evacuation is minimized. An experimental evaluation
is conducted to compare the new fast evacuation method with competitive methods using
floor fields based on quickest paths: Flood Fill and the Fast Marching Method. The results
show that the new method is effective in terms of the number of time steps for complete
evacuation and efficient regarding the total simulation runtime.

Keywords: evacuation, cellular automata, effective floor field, efficient pedestrian assignment.

1 Introduction

The problem of pedestrian evacuation [34, 29] has attracted great interest in the last few years.
The safe and efficient movement of crowds, especially under emergency conditions, is an important
issue in evacuation situations of aircraft, buildings, concerts, or stadiums, among many others.
Specifically, this paper focuses on the version of the problem in which a set of pedestrians move
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in (and have complete knowledge of) a 2D room with obstacles and multiple exits. Since real-
life evacuations are difficult to perform, computer simulations are usually employed to study
evacuation methods.

Different models have been created to simulate and analyze human behavior during evacua-
tion processes. Depending on the level of detail developed, these models can be classified into
microscopic, mesoscopic, or macroscopic [9, 37]. The main microscopic techniques for modeling
the problem of pedestrian evacuation are social forces [18, 16], lattice gas [39, 40, 17, 20], and
cellular automata (CA) [4, 22, 33, 21, 43]. Whereas the social force model represents pedestrians
as particles interacting with the environment under continuous space and time, the CA model
uses discrete floor fields to determine the motion of pedestrians in discrete time. Precisely, the
present paper deals with CA models of evacuation that employ floor fields to indicate promising
movements to pedestrians.

In a discrete floor field, space is partitioned into rectangular cells and a weight is assigned to
each cell at every time step. The movement of pedestrians is determined by the cell weights and
the rules of pedestrian interaction. Generally, a pedestrian moves to the neighboring empty cell
with lowest weight. Whereas a fixed weight is assigned to each cell in a static floor field, in a
dynamic floor field weights evolve with time and can change by the presence of pedestrians. In
the literature, the floor fields for the evacuation problem are based on minimizing the evacuation
time for each pedestrian. Specifically, for each CA cell, either the shortest path to exit [33, 3]
(typically combined with dynamic measures of pedestrian density or distribution) or the quickest
path to exit [24, 25] are calculated. While the shortest path is static and only depends on the
room structure, exit location, and obstacle distribution, the quickest path is dynamic since the
distribution of pedestrians is also taken into account. Due to the typical appearance of congestions
in evacuation processes, considering the quickest path normally leads to more realistic and efficient
simulations.

In this paper, a fast evacuation method is introduced that tackles the evacuation problem from
a different perspective than minimizing the estimated remaining travel time (or travel distance)
for each pedestrian. The new perspective is based on minimizing the estimated duration of the
remaining global evacuation process. A floor field is efficiently calculated at each time step by
assigning pedestrians to exits such that the time steps for complete evacuation are minimized.
In order to do that, a wave is initially propagated from each exit. Every iteration in which a
wavefront expands and reaches unassigned pedestrians, the wavefront stops during a number of
subsequent iterations. In this way, depending on the pedestrian distribution, some wavefronts can
be expanding while others are momentarily stopped. When an occupied or unoccupied cell is first
reached by a wavefront, the cell is assigned to the exit generating that wavefront; consequently,
from that iteration on, the rest of the wavefronts are ignored by the cell. The propagation of
waves across the whole room is performed once for each time step in order to obtain a dynamic
floor field.

The advantages of the new fast evacuation method are twofold. On the one hand, the effec-
tiveness of the evacuation process is improved since a lower number of time steps is necessary
in general. On the other hand, the efficiency is also improved since the running time employed
for each time step is reduced. The O(|C| · log |C|) complexity of the best quickest-path methods
for constructing the floor field at each time step is reduced to O(|C|) in the case of the new fast
evacuation method, where C is the set of cells in the CA. Both advantages are experimentally
evaluated in Section 4 by comparing the new fast evacuation method with competitive methods
using floor fields based on quickest paths: Flood Fill and the Fast Marching Method.

The rest of the paper is organized as follows. Section 2 reviews several widely used methods
for solving the evacuation problem. Section 3 explains the new fast evacuation method in detail.
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Section 4 describes a series of experiments for evaluating the new method. Finally, Section 5
summarizes the main results and enumerates future research directions.

2 Related Work

A CA [44, 42, 48] is formed by a regular grid of cells, denoted as C, where each cell c ∈ C
adopts one of a set of states. The three essential characteristics of CA are that they consist
of many identical simple processing cells, that interactions between cells take place in a small
neighborhood compared to the grid size, and that discrete time is used. In a two-dimensional
square grid, the von Neumann neighborhood is formed by a cell and its vertical and horizontal
neighbors, whereas the Moore neighborhood incorporates the diagonal neighbors.

CA for pedestrian dynamics were introduced in the 1990s [11, 12, 13]. Typically, navigation in
the CA employs a floor field representing a scalar function that increases with growing distance
from the exits. Thus, pedestrians move by minimizing the floor field values in a local way.

Schadschneider introduced a sophisticated CA model of evacuation [33, 3] that represented a
breakthrough in the field of pedestrian dynamics. This model probabilistically combines a static
floor field based on shortest paths and long-range pedestrian interactions inspired by the process
of chemotaxis. The static floor field reflects the distribution of exits and obstacles, while the
interactions among pedestrians are implemented through chemotaxis. Other relevant probabilistic
models [28, 7, 27] use a multinomial logit formulation in order to specify the probabilities to select
a cell.

Posteriorly to the appearance of Schadschneider’s model, the introduction of models incor-
porating a dynamic floor field based on quickest paths [24, 25] became the standard method
for modeling evacuation processes. The values of this dynamic floor field highly depend on the
distribution of pedestrians.

Due to their close relationship with the present work, shortest-path and quickest-path floor
fields are reviewed in the rest of this section.

2.1 Floor Fields Based on Shortest Paths

The first static floor field based on shortest paths [31, 33, 3] directly relied on Euclidean distances.
Instead of explicitly specifying a weight (or floor field value) for each CA cell, a navigation field
is constructed in terms of the minimum Euclidean distance to an exit by performing the Dijkstra
algorithm [8] on a visibility graph. In a visibility graph, only the nodes that are visible to each
other (with no obstacles between them) are linked. Unfortunately, this procedure can be rather
slow in complex geometries.

Varas et al. [43] developed a simple and efficient method for creating shortest-path static
floor fields. The method assigns weight 1 to the exit cells, which constitute the initial layer of
cells. Then, according to the costs depicted in Figure 1, the weights of the cells belonging to
successive layers are iteratively updated. (A new layer corresponds to the set of all neighboring
cells of the current layer by considering the Moore neighborhood.) In case of conflict in a cell,
the minimum candidate weight is chosen. The iterative process ends when all the cells have been
updated and gives rise to O(|C|) time complexity, where C is the set of cells. The obstacle cells
are considered not to be part of any layer and are assigned a high enough weight that prevents
pedestrians from occupying them. As summarized in Table 1, this method has been applied by
using different λ ∈ [1, 2] values, where λ is the cost associated to the diagonal links in Figure 1.
Other applications of the original Varas et al. method (using λ = 1.5) can be found in [30, 2, 1].
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Figure 1: Updating of weights under the method of Varas et al. The central cell belongs to the
current layer and has weight w. Its vertical and horizontal neighboring cells in the next layer are
updated with weight w+1. The diagonal neighboring cells are updated with weight w+λ, where
λ = 1.5.

Authors Publication λ

Tissera et al. [41] 1
Varas et al. [43] 1.5

Huang and Guo [19] [1,2]

Kirik et al. [23]
√
2

Table 1: Review of works applying Varas et al. method to calculate static floor fields based on
shortest paths. The specific λ ∈ [1, 2] values employed in each work are included, where λ is the
cost associated to the diagonal links in Figure 1.
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Figure 2: Costs associated to moving to an empty cell (white cell in the left-hand figure) and to
an occupied cell (black cell in the right-hand figure) in the FF method. The parameter γ is chosen
such that γ > 1.

Static floor fields indicating shortest paths are independent of pedestrian presence. Therefore,
they need to be combined with other dynamic measures that take into account pedestrian distri-
bution [32, 45, 49] in order to produce realistic simulations. A simple and efficient alternative that
generates more realistic simulations is to use dynamic floor fields based on quickest paths, which
are explained in the next section.

2.2 Floor Fields Based on Quickest Paths

Congestions or jams around exits are usual in evacuations of large crowds. In a congested environ-
ment, following the quickest rather than the shortest path to exit is more realistic for pedestrian
dynamics simulation. The quickest path from each location to an exit depends on the spatial
distribution of pedestrians.

The Flood Fill method (FF) [24, 25] employs a floor field that associates a cost to each CA
cell, representing the estimated time spent to move to the cell from any of its neighboring cells.
Specifically, a cost equal to unity is associated to empty cells, whereas occupied cells are assigned
a cost γ > 1. This method uses the neighborhood relationships among cells1 and the Dijkstra
algorithm in the induced graph to calculate the quickest path from each CA cell to exit. The
Dijkstra algorithm is an efficient algorithm whose time complexity is O(|C| · log |C|), where C is
the set of cells. This is due to the fact that the list containing the visited cells to be expanded can
be implemented through a heap data structure. The operations of extracting the best cell from
the heap and inserting its neighboring unvisited cells can be efficiently implemented in O(log |C|)
time. An advantage of FF is that the first weight calculated by the Dijkstra algorithm for a cell
does not need to be reconsidered. This is a consequence of the way FF assigns costs to cells (see
Figure 2). However, FF produces somewhat unrealistic movement by pedestrians, which tend to
form square jams around exits instead of circular ones. This drawback was partially solved in [26],
where the costs associated to the diagonal links in Figure 2 are multiplied by

√
2. This correction

to the diagonal costs provokes that the weights calculated by the Dijkstra algorithm for a cell may
need to be reconsidered over the course of the execution. The method that corrects the diagonal
costs will be denoted as FF√2.

An approach similar to FF that produces more realistic pedestrian dynamics consists in ap-
plying the Fast Marching Method (FMM) [35] to obtain the cell weights. The underlying idea,
rather than calculating minimum distances in a graph of costs, is to expand a wavefront from

1Even though von Neumann or Moore neighborhoods can be used in FF, the Moore neighborhood will be
assumed for this method in the rest of the paper.
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each exit in the 2D domain of interest. Thus, the cell weights are established as the travel time of
the wavefront, which coincides with the shortest distance to exit when the wavefront propagates
across empty cells with a velocity equal to unity. The arrival time of the wavefront to point x,
T (x), is determined by the Eikonal equation:

|∇T (x)| = 1
F (x)

for x ∈ Ω (an open set in 2D)

T (x) = 0 for x ∈ δΩ (the boundary of Ω or exit points)
, (1)

where F (x) is the velocity of the wavefront such that F (x) = 0 in obstacle cells, F (x) = 1 in
empty cells, and F (x) = 1/γ (with γ > 1) in occupied cells. FMM efficiently solves the Eikonal
equation on a discretized grid (see [6] for a comparison with A* search) through a finite difference
approximation of Equation 1 resulting in the following formula:

{max (0, Tij − Ti−1,j, Tij − Ti+1,j)}2 + {max (0, Tij − Ti,j−1, Tij − Ti,j+1)}2 =
1

F 2
ij

, (2)

where Tij and Fij stand for the value at cell (i, j) of T and F respectively. FMM considers the
von Neumann neighborhood rather than the Moore neighborhood, for example when applying
Equation 2 to calculate a candidate weight Tij for cell (i, j). (Tij is obtained by solving the
quadratic equation defined by Equation 2.) Like FF, the order of cell updating in FMM is
carried out by using a heap data structure, which gives rise to O(|C| · log |C|) time complexity.
Nonetheless, unlike FF under the costs depicted in Figure 2, FMM needs to reconsider some of
the weight updates over the course of its execution. FMM is widely used in evacuation modeling
due to its realistic results.

3 The New Fast Evacuation Method

3.1 Overview

The Fast Evacuation Method (FEM) is a CA model of pedestrian evacuation that aims at min-
imizing the duration of the whole evacuation process by employing a dynamic floor field that
distributes the evacuation workload among exits in an equitable way. The floor field defined by
FEM at each time step can be calculated in an efficient manner in time proportional to the number
of CA cells and gives rise to a fast and effective evacuation process.

As in typical CA, discrete time and space are assumed. Space is divided into square cells of
equal size 2 . Each CA cell can be empty, occupied by a pedestrian (only one at a time), represent
an exit, or represent an obstacle. In each time step, the pedestrians are updated asynchronously
in a random order, according to the values contained in a dynamic floor field. Every pedestrian
moves by occupying the neighboring empty cell with a minimum floor field value. Pedestrians are
assumed to know their environment or, equivalently, be in contact with an external agent that
provides them with the floor field information.

In each time step, FEM calculates a complete floor field ϕ previously to moving each pedestrian
to a neighboring cell.3 The floor field ϕ is calculated in an iterative way such that a wavefront
is initiated from every exit cell at the first iteration. The arbitrary neighborhood relationship

2Specifically (see for example [33]), it is usual to consider in the literature that every cell is 40cm x 40cm (typical
space occupied by a pedestrian in a dense crowd) and a single pedestrian (not interacting with others) moves at a
velocity of one cell per time step. Since the empirical average velocity of a pedestrian is about 1.3 m/s, this gives
an estimated time step of 0.3 seconds.

3In this work, the Moore neighborhood is considered for the movement of pedestrians.
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established for wavefront propagation determines the wavefront shape. (The Moore and von Neu-
mann neighborhoods give rise to square wavefronts; however, in Section 3.3 two more convenient
neighborhoods are defined for the evacuation problem which produce wavefronts more similar to
circles.) A wavefront freely propagates across empty cells and, when occupied cells are reached,
the wavefront stops for a number of iterations equal to the number of pedestrians reached at the
current iteration. Thus, it is possible that some wavefronts keep propagating while others remain
stopped. The value of ϕ for a cell is determined by the iteration in which the first wavefront
arrives in the cell.

3.2 Pseudocode

Figure 3 contains the pseudocode of the FFFEM algorithm, which calculates the floor field ϕ used
by FEM at each time step. First, lines 1-8 in Figure 3 initialize the exit cells. Likewise, the rest of
non-obstacle cells in the grid are initialized in lines 9-11. Then, an iterative process takes place in
lines 12-38. This iterative process corresponds to the propagation of wavefronts across the grid.

The following variables and functions are used by FFFEM:

� c.assignedExit: Variable that contains the exit assigned to a cell c. This exit is the origin
of the wavefront that first arrived in the cell.

� c.isUpdated?: Variable that stores whether or not the floor field value of a cell c has
already been calculated.

� delayOfExit[]: Array indexed by an exit that specifies the number of remaining iterations
that the wavefront originated at the given exit will be stopped.

� wavefront[]: Array indexed by an exit that stores the cells that are part of the current
wavefront originated at the given exit.

� goOn?: Variable used for the termination condition. The algorithm ends after the current
iteration (see line 35 in Figure 3) if no wavefront is delayed and no wavefront has propagated
at the current iteration.

� activeCells: Variable that contains those cells in wavefront[] whose assigned exit is not
delayed.

� updateExitDelays1: Function that carries out the normal updating of delays for the exits
after one iteration (see line 17 in Figure 3). For example, if there are five exits whose delays
are stored in the array [0 5 0 4 1], the new delays for the exits will be [0 4 0 3 0]. Therefore,
the delays equal to 0 are not changed, while the rest of delays are decremented by 1.

� NFEM: Function that returns the cells that belong to the neighborhood of activeCells and
have not been updated yet (see line 15 in Figure 3). Several types of neighborhood can
be arbitrarily used in this function. In Section 3.3, two convenient alternatives to the von
Neumann and Moore neighborhoods are introduced that give rise to wavefronts more similar
to circles.

� newCells: Variable that stores the cells generated after activeCells expansion through
NFEM. Note that each of these cells is assigned an exit in line 21. If the cell belongs to the
Moore neighborhoods of wavefront cells with different assigned exits, it is finally assigned
the exit of its nearest wavefront cell. (The Euclidean distance δEuclidean from the cell to a
neighboring wavefront cell can only be 1 or

√
2.)
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Floor Field Method Time Complexity

Varas et al. (shortest path) O(|C|)
FF (quickest path) O(|C| · log |C|)

FMM (quickest path) O(|C| · log |C|)
FEM O(|C|)

Table 2: Time complexity of several floor field methods.

� c.isOccupied?: Variable that determines whether or not a cell c is occupied by a pedestrian.

� updateExitDelays2: Function that develops the updating of delays when none of them is
equal to zero (see line 29 in Figure 3). For example, if there are five exits whose delays are
stored in the array [2 5 6 4 2], the new delays for the exits will be [0 3 4 2 0]. Thus, the
delays are decremented by the minimum of them. This operation improves the efficiency of
the algorithm, since it makes no sense that all the wavefronts are stopped at the same time.

� updateExitDelays3: Function that carries out the updating of delays when newCells is
empty and at least one exit delay is greater than zero (see line 33 in Figure 3). For example,
under the mentioned conditions, if there are five exits whose delays are stored in the array
[0 0 0 4 2], the new delays for the exits will be [0 0 0 2 0]. Therefore, the delays greater than
zero are decremented by the minimum of them, which makes it possible that a wavefront
assigned to a new exit is checked for expansion at the next iteration.

The time complexity of FFFEM is O(|C|), where C is the set of CA cells. As shown in Table 2,
this constitutes an improvement of efficiency in comparison with the floor fields based on quickest
paths (see Section 2.2), whose time complexity is O(|C| · log |C|). The additional log |C| factor
is a consequence of applying the Dijkstra algorithm. Figure 4 contains an example of application
of FFFEM to a 16x11 grid with pedestrians depicted in black, obstacles in dark gray, exits in
light gray, and empty locations in white. For the sake of simplicity, the Moore neighborhood is
employed in Figure 4 for wavefront propagation.

3.3 Neighborhood for Wavefront Propagation in FEM

In line 15 of algorithm FFFEM (see Figure 3),NFEM calculates the neighborhoods of the propagating
wavefronts. The most immediate option is to use either the von Neumann neighborhood or the
Moore neighborhood; however, these two options tend to produce wavefronts and jams of square
shape, which is not realistic. Furthermore, some preliminary experiments conducted in the context
of this work show that wavefronts more similar to circles allow both more realistic and faster
evacuations to be obtained. In this way, two interesting options were initially considered: (1) nearly
octagonal wavefronts generated by alternately applying the von Neumann neighborhood and the
Moore neighborhood (see Figure 5) and (2) nearly circular wavefronts generated by applying a
probabilistic neighborhood. The latter turned out to produce results somewhat better than those
produced by the former; thus, this paper assumes that a probabilistic neighborhood is employed
for wavefront propagation in FFFEM. The probabilistic neighborhood is introduced in the rest of
this section and, to the best of the author’s knowledge, is a novel contribution of this work.

The probabilistic neighborhood of a cell c ∈ C is denoted as Nσ(c), where σ ∈ [0, 1]. A cell

8



Algorithm FFFEM: Generation of the FEM Floor Field

Input: A CA with non-obstacle cells M ⊂ C and exit cells E ⊂M
Output: A floor field ϕ defined over M

% Initial updating of E
1: i ← 0
2: for c ∈ E
3: ϕ(c) ← i
4: c.assignedExit ← c
5: c.isUpdated? ← true
6: delayOfExit[c] ← 0
7: wavefront[c] ← {c}
8: end-for

% Initial updating of M \ E
9: for c ∈M \ E

10: c.isUpdated? ← false
11: end-for

% Main loop
12: goOn? ← true
13: while goOn? = true
14: ActiveCells ← {x ∈ wavefront[c] | delayOfExit[c] = 0} ∀c ∈ E
15: updateExitDelays1
16: newCells ← {x ∈ NFEM(ActiveCells) | x.isUpdated? = false}
17: if newCells ̸= ∅
18: i ← i+ 1
19: for c ∈ newCells
20: ϕ(c) ← i
21: c.assignedExit ← c′.assignedExit | c′ = argmin

x
{δEuclidean(c, x)} ∀x ∈ NMoore(c) ∩ActiveCells

22: c.isUpdated? ← true
23: if c.isOccupied?
24: delayOfExit[c.assignedExit] ← delayOfExit[c.assignedExit] + 1
25: end-if
26: wavefront[c.assignedExit] ← wavefront[c.assignedExit] ∪ {c}
27: end-for
28: if @c ∈ E | delayOfExit[c] = 0
29: updateExitDelays2
30: end-if
31: else
32: if ∃c ∈ E | delayOfExit[c] > 0
33: updateExitDelays3
34: else
35: goOn? ← false
36: end-else
37: end-else
38: end-while

Figure 3: Pseudocode for the FFFEM algorithm that generates the floor field used by FEM in each
time step.
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Figure 4: Example of application of FFFEM, the algorithm in Figure 3 that is executed at each
time step to calculate the dynamic floor field used by FEM. For the sake of simplicity, the Moore
neighborhood is employed for wavefront propagation.

 

Figure 5: Nearly octagonal wavefront generated by alternately applying the von Neumann neigh-
borhood (in white) and the Moore neighborhood (in black).
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σ = 0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

σ = 0.6 σ = 0.7 σ = 0.8 σ = 0.9 σ = 1

Figure 6: Examples of wavefront generated through Nσ for σ ∈ {0, 0.1, . . . , 0.9, 1}. Each wavefront
corresponds to one hundred iterations using a 201x201 grid.

c′ ∈ C belongs to Nσ(c) with a probability defined by the following expression:

P (c′ ∈ Nσ(c)) =


0 if c′ /∈ NM(c)
1 if c′ ∈ NN(c)
σ if c′ ∈ NM(c) \ NN(c)

,

where NN(c) and NM(c) represent the von Neumann and Moore neighborhoods of c respectively.
Note that Nσ is a generalization of NN and NM, since Nσ ≡ NN if σ = 0 and Nσ ≡ NM if
σ = 1. Figure 6 contains several examples of wavefront generated by applying Nσ for one hundred
iterations and σ ∈ {0, 0.1, . . . , 0.9, 1}. In this paper, Nσ=0.2 is the neighborhood selected for
wavefront propagation with promising results.

3.4 Example of Application of FEM

Consider a 225x150 grid with the distribution of pedestrians, exits, and obstacles illustrated in
Figure 7 for t = 0. In this figure, empty cells are depicted in white, exits in light gray, obstacles
in dark gray, and pedestrians in black. There are 584 pedestrians distributed in nine groups. Two
exits are located at coordinates (20, 75) and (205, 77) respectively, where (0, 0) corresponds to the
coordinates of the bottom left cell. The border of the grid is occupied by obstacles.

In Figure 7, the competitive FMM method explained in Section 2.2 and the FEM method
are compared for time steps t ∈ {10, 50, 125, 300}. Note that FMM is sensitive to parameter γ
(the cost for each occupied cell), and establishing a satisfactory γ value is problem-dependent
and time-consuming for the user. This is an important advantage for FEM, which requires no
parameter fine-tuning. In the problem presented in Figure 7, γ = 50 constitutes an appropriate
value for FMM.

It can be observed in Figure 7 that all the pedestrians head to the left exit at t = 10 in
the case of FMM. This is due to the fact that, at the first ten time steps, the quickest path for
every pedestrian ends at the left exit. At t = 50, the pedestrians are near the left exit, where
a congestion is starting to form. At t = 125, the jam around the left exit provokes that some
peripheral pedestrians head to the right exit, which is now more promising in terms of evacuation
time. Finally, at t = 300, both exits are congested and 301 pedestrians remain to be evacuated.

In the case of FEM, Figure 7 shows that a subset of the pedestrians head to the right exit at
t = 10. This is because, even at the first ten time steps, both exits have been assigned pedestrians.
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t = 0

FMM, t = 10 FEM, t = 10

FMM, t = 50 FEM, t = 50

FMM, t = 125 FEM, t = 125

FMM, t = 300 FEM, t = 300

Figure 7: Example of evacuation simulation for 584 pedestrians, distributed in 9 groups, through
two exits (top figure). FMM (with cost γ = 50 for each occupied cell) and FEM are compared for
time steps t ∈ {10, 50, 125, 300}.
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Evacuation Problem Grid Pedestrians Exits Obstacles

9groups 225x150 584 2 746
lecture-hall 225x150 8760 33 9473

corner 225x150 8436 109 9182
u-turn 225x150 7210 77 849

random500 225x150 500 4 746
random500bottlenecks 225x150 500 4 1210

Table 3: Structural characteristics of the six evacuation problems illustrated in Figure 8.

At t = 50, some pedestrians are on their way to the right exit, much earlier than under FMM.
At t = 125, a jam around the right exit starts appearing, again much earlier than under FMM.
Finally, at t = 300, only 198 pedestrians remain to be evacuated (301 under FMM at this time
step) and are equally distributed between both exits.

In summary, for the evacuation problem illustrated in Figure 7, FEM develops a more effective
evacuation process compared to FMM. At t = 300, 103 out of the 584 initial pedestrians have been
evacuated under FEM, but remain on the grid under FMM. In the next section, a comparative
evaluation is carried out of FEM, FMM, and other evacuation methods. Evacuation effectiveness
and simulation runtime are analyzed over a set of evacuation problems.

4 Experimental Evaluation

This section comparatively evaluates FEM with three competitive evacuation methods using dy-
namic floor fields based on quickest paths (see Section 2.2): FF, FF√2, and FMM. The four
evaluated algorithms are implemented within NetLogo [47], an agent-based modeling and pro-
gramming environment well suited for modeling and inspecting complex systems developing over
time. The experiments are carried out on an Intel Core i5 processor (2.67 GHz) with 8 Gb of
memory.

Six different evacuation problems are used for the comparative evaluation: (1) the problem
presented in Section 3.4, (2) three problems widely used in the literature for evacuations in a
lecture hall, a corner, and a u-turn, and (3) two problems with initially randomly distributed
pedestrians. Figure 8 illustrates the six evacuation problems, and Table 3 shows their main
structural characteristics. These problems cover a wide range of crowd motion features as classified
in [5, 10, 9, 14, 15, 36, 38], with the peculiarity that the present work deals with evacuation
processes.

The best values for parameter γ in FF, FF√2, and FMM are selected via manual fine-tuning.
This constitutes a costly and problem-dependent task for the user and is an important disadvantage
of these three algorithms with respect to FEM, which requires no parameter fine-tuning. The
selected γ values (see Table 4) are those leading to the best results regarding the average number
of time steps necessary to evacuate a pedestrian in a simulation, which is called “mean evacuation
time steps” later in Section 4.1.

There are two main aspects to be considered when the performance of an evacuation method
is evaluated: on the one hand, the effectiveness of the evacuation process and, on the other hand,
the efficiency of the simulation. These two aspects are explored in the following two sections, in
which every single considered measure is averaged over ten evacuation simulations.
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9groups lecture-hall

corner u-turn

random500 random500bottlenecks

Figure 8: The six evacuation problems used in the experimental evaluation. The empty cells of
the 225x150 grid are depicted in white color, the exits in light gray, the obstacles in dark gray,
and the pedestrians in black.

Evacuation Problem γ (FF) γ
(
FF√2

)
γ (FMM)

9groups 51 53 50
lecture-hall 1.75 1.5 1.5

corner 3.75 3.25 3.5
u-turn 7.5 7.25 6

random500 32 30 31
random500bottlenecks 32 24 30

Table 4: Manually fine-tuned best γ values for each evacuation problem in Figure 8 under FF,
FF√2 , and FMM.
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Evacuation Problem mets(FF) mets(FF√2) mets(FMM) mets(FEM)

9groups 311.707 353.317 291.197 246.808
lecture-hall 291.123 286.966 282.136 286.714

corner 359.721 327.936 296.405 271.820
u-turn 469.697 452.804 398.804 397.668

random500 86.020 88.318 83.430 77.172
random500bottlenecks 101.940 101.530 102.928 97.740

Table 5: Mean evacuation time steps obtained for the evaluated methods over the six evacuation
problems defined in Table 3. The best result in each row appears highlighted in bold.

Evacuation Problem gets(FF) gets(FF√2) gets(FMM) gets(FEM)

9groups 551 674 469 427
lecture-hall 587 557 533 548

corner 598 564 491 454
u-turn 739 719 624 660

random500 202 222 217 168
random500bottlenecks 233 236 252 231

Table 6: Global evacuation time steps obtained for the evaluated methods over the six evacuation
problems defined in Table 3. The best result in each row appears highlighted in bold.

4.1 Evacuation Effectiveness

In this section, the mean evacuation time steps (mets) are the measure used to evaluate evacuation
effectiveness. It is defined as the average number of time steps that it takes a pedestrian to exit
the grid of cells in an evacuation simulation. In each time step, the floor field is calculated for
the whole grid and, subsequently, each pedestrian moves to one of the empty neighboring cells
according to the floor field values calculated for that time step. Table 5 contains the mets obtained
for FF, FF√2, FMM, and FEM when applied to the evacuation problems defined in Table 3.

As a complementary measure, the global evacuation time steps (gets) are included in Table 6.
This measure represents the number of time steps that it takes the grid to become empty in a
simulation.

The example described in Section 3.4 showed that, for the 9groups evacuation problem, FEM
develops a more effective evacuation process compared to FMM. This preliminary result is now
confirmed by the measures reported in Tables 5 and 6 for the 9groups problem.

From the results in Tables 5 and 6, FMM and FEM clearly outperform FF and FF√2 in terms
of effectiveness. Furthermore, regarding the mets measure in Table 5, FEM is the best method in
five out of the six evacuation problems.

4.2 Simulation Efficiency

This section employs the simulation runtime to evaluate the efficiency of the evaluated evacuation
methods. Table 7 includes the running times obtained for FF, FF√2, FMM, and FEM when
applied to the evacuation problems defined in Table 3.

Additionally, it is interesting to calculate the runtime (see Table 7) divided by the evacuation
time steps (see Table 6). Table 8 shows these results for each problem simulation, which give an
idea of the efficiency of the methods to carry out the tasks included in a time step.
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Evacuation Problem runtime(FF) runtime(FF√2) runtime(FMM) runtime(FEM)

9groups 306.996 499.337 444.941 96.263
lecture-hall 238.542 285.889 348.135 86.660

corner 242.668 291.510 325.499 88.848
u-turn 401.885 498.482 562.977 153.309

random500 117.942 165.926 201.833 34.727
random500bottlenecks 132.516 171.931 235.217 47.847

Table 7: Runtimes in seconds obtained for the evaluated methods over the six evacuation problems
defined in Table 3. The best result in each row appears highlighted in bold.

Evacuation Problem runtime
gets

(FF) runtime
gets

(FF√2)
runtime
gets

(FMM) runtime
gets

(FEM)

9groups 0.557 0.741 0.949 0.225
lecture-hall 0.406 0.513 0.653 0.158

corner 0.406 0.517 0.663 0.196
u-turn 0.544 0.693 0.902 0.232

random500 0.584 0.747 0.930 0.207
random500bottlenecks 0.569 0.728 0.933 0.207

Table 8: Running times in Table 7 divided by the global evacuation time steps in Table 6. The
best result in each row appears highlighted in bold.

Table 7 shows that, for the global evacuation process, FEM is the most efficient method with
FF in second place. It is interesting to observe that FEM turns out to be more efficient than
FMM. Exclusively in terms of one time step, these same conclusions can be obtained from Table
8 as well.

4.3 Visual Evaluation

Systems are also evaluated by visualizing snapshots of them at particular time steps. In order to
do that, Figure 9 illustrates a comparison of FEM and FMM in which an evacuation snapshot is
included for both of them when applied to the six problems defined in Table 3. FMM is employed
in this section because it constitutes the most widely used method for evacuation simulation,
due to its realistic and competitive results. The specific number of time steps selected for each
snapshot in Figure 9 corresponds to half the time steps reported for gets in Table 6.

Figure 9 shows that FEM forms jams around the exits earlier than FMM. For example, this
can be clearly observed in the case of 9groups and random500bottlenecks. Furthermore, FEM
develops a pretty homogeneous use of all the available exits in the evacuation process. In particular,
this is more evident in the case of corner.

5 Conclusion and Future Research

This paper introduces a novel evacuation method called FEM which is based on distributing
pedestrians among exits in a homogeneous way, so that the evacuation workload is shared by the
exits in an effective fashion. FEM efficiently creates a dynamic floor field by expanding from each
exit a wavefront that stops when new pedestrians are reached. The new method is experimentally
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FMM, 9groups, t = 234 FEM, 9groups, t = 213

FMM, lecture-hall, t = 266 FEM, lecture-hall, t = 274

FMM, corner, t = 245 FEM, corner, t = 227

FMM, u-turn, t = 312 FEM, u-turn, t = 330

FMM, random500, t = 108 FEM, random500, t = 84

FMM, random500bottlenecks, t = 126 FEM, random500bottlenecks, t = 115

Figure 9: Visual comparison between FEM (right) and FMM (left) for the six evacuation problems
defined in Table 3. For each case, a snapshot is included correponding to half the number of time
steps reported in Table 6.
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evaluated and compared with other competitive evacuation methods with promising results. In
particular, FEM outperforms FMM in most of the tested evacuation problems. This is a remark-
able result since FMM is one of the most widely used methods for evacuation simulation, due to
its efficiency and realistic results. An important advantage of FEM is that, contrarily to FMM,
no parameter fine-tuning is required.

This paper also introduces the concept of probabilistic neighborhood, which generalizes the typ-
ical von Neumann and Moore neighborhoods in CA. The application of the probabilistic neighbor-
hood in wavefront propagation allows FEM to simulate circular wavefronts in a very simple way,
even in the presence of any kind of obstacles. Circular wavefronts give rise to realistic evacuation
dynamics and are also simulated in competitive methods like FMM.

The present work opens up the following research directions:

� It would be interesting to investigate whether FEM can be easily adapted to the context of
the Social Force Model for pedestrian dynamics.

� FEM can be easily applied to dynamic environments where exits and obstacles change over
time. This could produce important applications with a high impact on society.

� The viability and benefits of the static version of FEM for some evacuation problems could
be investigated. Static FEM would use the floor field created in the initial time step as the
floor field for the whole evacuation process. This static version would be much faster than
FEM, although it would be subject to some inaccuracies.

� In order to perform a thorough evaluation of FEM, its simulation results should be compared
with existing empirical data [36, 46].

� Regarding the practical application of FEM, it remains to study how this new method can
be achieved in real-life evacuation scenarios [46].
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