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Abstract: Dementia disease research encompasses diverse data modalities, including advanced
imaging, deep phenotyping, and multi-omics analysis. However, integrating these disparate data
sources has historically posed a significant challenge, obstructing the unification and comprehensive
analysis of collected information. In recent years, knowledge graphs have emerged as a powerful
tool to address such integration issues by enabling the consolidation of heterogeneous data sources
into a structured, interconnected network of knowledge. In this context, we introduce DemKG, an
open-source framework designed to facilitate the construction of a knowledge graph integrating
dementia research data, comprising three core components: a KG-builder that integrates diverse
domain ontologies and data annotations, an extensions ontology providing necessary terms tailored
for dementia research, and a versatile transformation module for incorporating study data. In contrast
with other current solutions, our framework provides a stable foundation by leveraging established
ontologies and community standards and simplifies study data integration while delivering solid
ontology design patterns, broadening its usability. Furthermore, the modular approach of its com-
ponents enhances flexibility and scalability. We showcase how DemKG might aid and improve
multi-modal data investigations through a series of proof-of-concept scenarios focused on relevant
Alzheimer’s disease biomarkers.

Keywords: knowledge graphs; ontologies; graph databases; data modeling; dementia; omics

1. Introduction

The dawn of “omics” technologies, accompanied by advancements in imaging, clinical
data collection, laboratory testing, and phenotyping, has profoundly influenced biomedical
research [1–7]. This multi-modal setting has provided an unprecedented, comprehensive
view of complex biological systems, thereby inspiring a shift towards a more integrated
understanding of diseases. However, the introduction of data from diverse modalities
also presents unique challenges. Effectively integrating and interpreting the sheer volume,
complexity, and diversity of data generated by these sources requires sophisticated compu-
tational tools. Moreover, the data, which are often distributed across various databases,
publications, and repositories, pose considerable barriers to seamless data integration.
Even more daunting is the task of transforming multi-modal data into clinically action-
able insights, requiring the ability to connect data from molecular to clinical scales, a feat
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complicated by the enormous diversity and complexity of individual diseases. These
hurdles highlight the need for innovative strategies and tools to harness the potential of
multi-modal data in propelling the field of precision medicine.

Since biological reality is often modeled as a network or graph [8,9], one technological
approach that has gained significant traction is the use of knowledge graphs (KGs) [10],
which allow for the integration and organization of diverse biomedical data types, facilitat-
ing their analysis and interpretation.

After Google introduced the knowledge graph in 2012, highlighting the advantages of
the approach [11], KGs have become increasingly popular, finding adoption in industry
with subsequent launches by companies such as Microsoft, Amazon, Airbnb, and Face-
book [12], as well as in academia [13,14]. Nonetheless, the definition of KGs can vary based
on the application context. In biomedicine, they can be characterized as data structures
meant to gather and disseminate real-world knowledge, where nodes depict significant
biomedical entities and the edges delineate diverse relationships that could exist between
these entities [15]. KGs embody a methodological transition toward a more comprehensive
representation of reality, facilitating the integration of heterogeneous data types and pro-
viding an intuitive, graph-based structure for representing intricate relationships between
diverse biomedical entities.

Constructing a KG entails a series of methodological and technological decisions
that profoundly impact the utility and effectiveness of the resulting product. A pivotal
consideration in this process is the selection of a graph paradigm, which provides the
theoretical and practical foundation for the structure and function of the KG. There are two
primary approaches in this regard: Resource Description Framework (RDF) and Labeled
Property Graphs [16–18]. Both of these approaches offer robust technological solutions,
but each has its own strengths and weaknesses. While RDF offers standardization and
robustness ideal for semantic applications, it may suffer from verbosity and computational
inefficiency. Conversely, LPGs excel in their flexibility and intuitive structure, which allow
for the straightforward representation of complex relationships and properties on both
nodes and edges, but they may struggle in scenarios demanding high interoperability and
standardization. Thus, the choice often hinges on the specific project requirements and
constraints.

In addition to choosing a graph paradigm, selecting a data model or graph schema
is another critical decision for building a KG. This model dictates how entities of interest
and their relationships are represented within the KG. This aspect can be approached in
two main ways: using an ad hoc data model tailored to the project’s specific needs or
adopting a standard model such as ontologies. In particular, biomedical ontologies have
emerged as essential tools in standardizing terminology, modeling biological realities [19],
supporting data annotation [20–23], and facilitating biomedical text mining [24,25]. With
ongoing concerted efforts from the scientific community, these ontologies have evolved to
incorporate fine-grained knowledge across various biomedical subdomains, as exemplified
by initiatives such as the Open Biological and Biomedical Ontologies (OBO) Foundry [26]
and the National Center for Biomedical Ontology (NCBO) [27] and its BioPortal [28]. More-
over, using logical modeling and annotation, biomedical ontologies make assertions that
span and connect levels of biological organization, from the molecular level to pheno-
type and disease definitions. This ability to traverse and link multiple scales of biological
information makes ontologies an invaluable resource for the construction of KGs for
biomedical research.

The biomedical field is rich in open databases that offer scientific knowledge from
various subdomains, including molecular biology (genomics, proteomics, and pathways),
drugs, and disease characterization. These sources hold the potential for a more compre-
hensive understanding of biomedical phenomena; however, their value is often hindered
by their dispersal across different platforms. KGs have emerged as instrumental tools for
integrating and exploiting these disparate sources, fostering a multitude of projects that
aim to unify the spread-out biomedical knowledge.
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A prime example of such an initiative is the Monarch Initiative [29], which integrates
genetic, phenotypic, and disease-related data to facilitate the identification of disease
genes and variants. Similarly, the Clinical Knowledge Graph (CKG) [30] is an open-
source platform that integrates proteomics, public databases, and literature. It effectively
utilizes KGs to augment and enrich biomedical data, thereby facilitating informed clinical
decision-making. Likewise, PrimeKG [31] is a multimodal KG that integrates a multitude
of high-quality resources, representing various biological scales, i.e., from genotypes to
clinical phenotypes. The scalable precision medicine open knowledge engine (SPOKE) [32]
also integrates multiple biological data sources to provide structured knowledge ranging
from low-level molecular biology to pharmacology and clinical practice. Furthermore, the
KG-COVID-19 [33] project responded to the COVID-19 crisis by building a unified KG from
disparate biomedical information about SARS-CoV-2, illustrating how KGs can effectively
drive knowledge synthesis, particularly in emergent health situations.

As the number of available KGs increases, it has become evident that social and
technical limitations exist, especially the need for standardization in entity naming and
graph representation approaches [34,35]. Regarding modeling standardization, the Biolink
Model [36] has emerged as a high-level data model that provides standard terms and
relations for describing biological entities and their relationships for organizing data in
biomedical KGs. Biolink serves both as a map for bringing together data from different
sources under one unified model and as a bridge between ontological domains. As a similar
initiative to OBO, centered around KGs, the KG-Hub project [37] provides a collection of
tools and libraries for building interoperable KGs and a mechanism for sharing them to
foster their reuse.

In addition to their ability to model and query data, graph analytics and graph machine
learning techniques have made notable advancements [38,39], supported by open-source
libraries such as GRAPE [40] and KGTK [41]. One technique particularly relevant in the
biomedical domain is graph embedding [42–47], which allows us to capture complex graph
structures into lower-dimension vectors. Exploiting these features to integrate specific
patient data with large biomedical KGs has already shown promising results in deriving
actionable clinical outputs, as evidenced by advancements in understanding diseases such
as multiple sclerosis [42] and Alzheimer’s disease [48]. Recent dementia research uses
multi-modal data to understand the condition from various aspects, including genomics,
transcriptomics, metabolites, imaging, and clinical features. Having a framework that
enables the systematic construction and instantiation of research and clinical data in a
standardized manner offers significant benefits.

This paper introduces DemKG, a KG framework designed specifically for dementia
research needs. The framework leverages reference ontologies from OBO, standard KG
technologies from KG-Hub, and an instantiation tooling to transform source data into the
KG following sound design patterns within the ontological model. DemKG reuses most of
its knowledge sources, provides specific terminological extensions to cover gaps identified
in the scope of dementia, and ingests biological databases of interest, resulting in an
integrative KG that covers the multiple data modalities involved in the research, including
genomics, proteomics, imaging, fine-grained phenotyping, and clinical tests. Thanks to its
design, DemKG is easily extensible, delivering means to customize and deploy in modern
graph databases for enhanced data querying and retrieval. The expressive knowledge
model supports advanced analytics through graph and network algorithms, which play an
active role in the progression of research and better patient care through the implementation
of precision medicine.

2. Related Work

Advancements in storage and graph technologies, coupled with the increasing avail-
ability of open scientific data, have led to the emergence of multiple biological KGs [49].
Projects such as the Monarch Integrated Knowledge Graph, the Clinical Knowledge Graph
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(CKG), PrimeKG, and the scalable precision medicine open knowledge engine (SPOKE),
previously introduced in the introduction, bear similarities to our initiative.

The Monarch Integrated Knowledge Graph [29] is a notable example of biological
KGs, which assimilates various data types (including genotype, phenotype, and disease)
from multiple sources into a unified semantic graph model. The Monarch KG has been
instrumental in our project, DemKG, as it not only serves as a primary data source but also
offers an array of tools we utilize. Our philosophy aligns closely with that of the Monarch
KG, emphasizing a robust semantic foundation while integrating data from a variety of
external sources, including other ontologies and extensions. We build upon this work to
extend it with dementia-related knowledge and provide means for integrating study data.

CKG [30] is an open-source platform designed to harmonize a wide range of “omics”
data types into a coherent structure, including genomics, transcriptomics, proteomics, and
metabolomics. CKG favors a custom data model formed from a selected set of concepts
and relationships from specific ontologies. On top of the KG, CKG integrates statistical
and machine learning algorithms to streamline the analysis and interpretation of typical
proteomics workflows. DemKG resonates with CKG’s mission to improve the modeling
and integration of omics data. However, it deviates fundamentally from its approach to
data modeling, wherein CKG employs a more circumscribed model.

PrimeKG [31] is a multimodal KG for precision medicine analyses. Like its counter-
parts, it integrates a plethora of resources to describe a broad spectrum of diseases with
relationships across major biological scales. One of them is combining the entire range of
approved drugs with their therapeutic action, distinguishing it from other systems. More-
over, unlike DemKG, PrimeKG employs a custom approach to its data model, incorporating
ten types of nodes and thirty types of undirected edges extracted from reference ontologies.
Furthermore, it lacks a systematic schema to integrate experimental and study data.

SPOKE [32] is a KG that connects information from 41 biological data sources, struc-
tured as 21 different node types and 55 edge types, ranging from low-level molecular
biology to pharmacology and clinical practice. It uses 11 different ontologies to organize
the data semantically meaningfully and, in its last iteration, also integrates the Biolink
model whenever it is found to be practical. SPOKE is implemented as a Neo4j database
built from a collection of Python scripts and provides a graphical user interface and a REST
API for end-user access. Our method stands distinct from SPOKE in several crucial aspects.
Primarily, it offers an open toolkit for KG construction and personalization, ensuring both
platform and representational paradigm autonomy. Moreover, despite utilizing a compara-
ble modeling approach, DemKG fosters a closer connection with a vast array of domain
ontologies by preserving links to explicitly defined terms and relationships. Finally, our
framework provides a flexible and robust module for research data integration.

In summary, our work distinguishes itself from similar efforts through a comprehen-
sive approach that integrates a well-established terminological foundation and community
standards, follows design patterns conducive to data integration, and defines terminologi-
cal extensions specific to the dementia domain, facilitated through a dedicated low-code
solution for seamless study data integration.

3. Materials and Methods
3.1. Terminological Foundation

In the construction of the knowledge graph, the initial and pivotal decision revolves
around selecting an appropriate graph schema to provide a solid conceptual base that
effectively captures data entities drawn from the array of biological subdomains pertinent
to dementia research. This choice presents a dichotomy: one option involves creating
a flexible, ad hoc schema tailored to the identified needs, while the alternative entails
adopting a more structured strategy that employs standard terminologies and ontologies.
Our methodology aligns with the latter approach, and a fundamental design principle
in the construction of our KG is the utilization of domain reference ontologies to ensure
the following:
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1. The concept definitions are concise, accurate, and relevant;
2. There exists an active community keeping the ontology updated;
3. They are widely recognized, cross-referenced, and follow consistent design patterns.

The criteria set forth are congruent with the guiding principles of the OBO foundry.
OBO endorses an extensive range of domain-specific ontologies that are distinguished by
well-demarcated scopes, the reutilization of concepts across ontologies, and alignment
with a unified upper-level model, specifically the Basic Formal Ontology (BFO) [50], and
relations are defined in the Relations Ontology (RO). Given these attributes, we gave
preferential consideration to OBO ontologies during our selection process.

As the KG must cater to a variety of domains, adopting this approach enables us to
concentrate mainly on integration and only define new terms when detecting a gap. Some
notable examples of the employed OBO ontologies include the Gene Ontology [51,52],
Chemical Entities of Biological Interest (CHEBI) [53], and Protein Ontology (PR) [54] for
the genetic and molecular domain. For the phenotype and disease domain, we utilize the
Monarch Disease Ontology (MONDO) [55], Human Phenotype Ontology (HP) [56,57], and
Phenotype And Trait Ontology (PATO) [58]. In the area of anatomy, we incorporate the Uber-
Anatomy Ontology (UBERON) [59,60] and the Foundational Model of Anatomy (FMA) [61].
For neuropsychological tests and their relations, we include the Neuropsychological Testing
Ontology (NPT) [62] and the Neurocognitive Integrated Ontology (NIO) [63]. For modeling
experimental settings, the Ontology for Biomedical Investigations (OBI) [64,65] plays a
central role.

These ontologies provide a significant level of detail, and reusing or referencing
concepts between them expands the knowledge network, facilitating the exploitation of
multi-domain and multi-level relations. For example, this interconnectedness simplifies
navigation from HP phenotypes referenced in a disease definition in MONDO to specific
genes in GO, proteins in PR, and molecular entities in CHEBI. Furthermore, we also include
relevant Monarch data and annotation ingestions; specifically, gene and gene-phenotype
annotations, filtered protein–protein interactions from the STRING database [66], and
pathway knowledge from the Reactome pathway knowledgebase [67]. The complete list of
knowledge sources and annotations is listed in Table 1.

Table 1. List of DemKG knowledge sources.

Source Source Identifier Reference

Basic Formal Ontology BFO [50]
Biolink model biolink [36]

Chemical Entities of Biological
Interest CHEBI [53]

Cell Ontology CL [68]
Evidence and Conclusion

Ontology ECO [69]

Environmental Factor
Ontology EFO [70]

Gene Ontology GO [52]
Gene Ontology Annotations GOA -
Human Phenotype Ontology HP [57]
Human Phenotype Ontology

Annotations HPOA -

Information Artifact Ontology IAO -



Appl. Sci. 2023, 13, 10497 6 of 23

Table 1. Cont.

Source Source Identifier Reference

Mass Spectrometry Ontology MS [71]
Mondo Disease Ontology MONDO [55]

Monarch KG Monarch [29]
Neurocognitive Integrated

Ontology NIO [63]

Neuropsychological Testing
Ontology NPT [62]

Ontology of Biological
Attributes OBA [72]

Ontology for Biomedical
Investigations OBI [65]

Ontology for General Medical
Science OGMS [73]

Ontology of Medically
Related Social Entities OMRSE [74]

Phenotype And Trait
Ontology PATO [58]

Phenomics Integrated
Ontology PHENIO -

Protein Ontology PR [54]
Relations Ontology RO -

Reactome Reactome [67]
Scientific Evidence and
Provenance Information

Ontology
SEPIO -

STRING database ingestion STRING [66]
Uber Anatomy Ontology UBERON [59]

While the standardization offered by domain ontologies is undoubtedly a strength, it
can also impose limitations due to the inherent trade-off with flexibility. This high level of
detail can complicate the integration of non-OBO ontologies and external datasets. Addi-
tionally, querying the graph requires a comprehensive understanding of the underlying
model. We employ the Biolink model as our high-level data model to mitigate these issues.
Biolink offers a means to utilize higher-level concepts from its “category” hierarchy while
still allowing references to more specific ontology terms. The same versatility is available
for relationships through the use of the “related_to” hierarchy, thus providing a balance
between standardization and flexibility in our knowledge graph.

3.2. Terminological Extensions

OBO covers most of the conceptualization needs, but gaps remain relevant to the
implementation. To overcome this issue, we implement an application ontology that is also
one of the inputs of the merging process. The primary interventions relate to phenotypic
normality, as well as to the necessary assay and platform definitions missing from OBI.

HP and MONDO thoroughly model disease states, conditions, and abnormal phe-
notypes, leaving out any reference to normal counterparts. To allow the categorization
of instances of normal/healthy cases, we introduced a “Phenotypic normality” hierarchy.
This new hierarchy is modeled as a sibling branch of the HP “Phenotypic abnormality”,
mirroring its hierarchy to allocate the “normality” concepts of interests.

In dementia research, the utilization of neuropsychological assessments such as the
Mini-Mental State Examination (MMSE) [75], the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) wordlist memory test (WLT) [76], Visual Object and Space
Perception (VOSP) battery [77], Trail Making Test (TMT) [78], Clock Drawing Test [79], and
Controlled Oral Word Association Test (COWAT-FAS) [80] is instrumental in quantifying
cognitive function domains and tracking disease progression. We have implemented the
necessary concepts to cover CERAD, VOSP, and COWAT-FAS tests, with the primary classes



Appl. Sci. 2023, 13, 10497 7 of 23

allocated under the “cognitive function assay” branch of NPT, while also relating to the
mental and cognitive functions they assess.

The AT(N) classification system [81] is another tool of great importance for assessing
the subject’s biological state and understanding the intricate relationships between key
biomarkers and their impact on disease evolution. AT(N) categorizes biomarkers according
to their role in the disease progression, namely, Beta-amyloid deposition (A), pathologic
tau (T), and neurodegeneration (N). Within each biomarker category, values can be positive
or negative (+/−), derived from defined normal or abnormal cut points, resulting in
the creation of eight distinct AT(N) “biomarker profiles” (Table 2). To provide proper
terminological coverage, we have defined new classes for each biomarker profile and
phenotype terms related to abnormal CSF protein concentration phenotypes related to
phosphorylated tau (P-tau) and total tau (T-tau) missing from HP. Each biomarker profile
is defined under the “value specification” class from OBI, with asserted logical axioms to
associate them with the specific phenotype.

Table 2. AT(N) biomarker profiles and categories as defined by the NIA-AA Research Framework.
Each biomarker profile is modeled as a descendant of the “value specification” class defined in OBI.

AT(N) Profiles Biomarker Category

A-T-(N)- Normal AD biomarkers

A-+T-(N)- Alzheimer’s pathologic
change

Alzheimer’s continuum

A+T+(N)- Alzheimer’s disease
A+T+(N)+ Alzheimer’s disease

A+T-(N)+
Alzheimer’s and concomitant
suspected non-Alzheimer’s

pathologic change
A-T+(N)- Non-AD pathologic change
A-T-(N)+ Non-AD pathologic change
A-T+(N)+ Non-AD pathologic change

3.3. Technical Implementation

The implementation consists of three main software pieces covering different parts
of the KG generation, integrated into a building pipeline: the extensions ontology builder,
the KG-builder, and the data transformer module. To maximize effectiveness and repro-
ducibility, in all three sub-projects, we employ state-of-the-art ontology and graph tooling
maintained by the community and relevant projects such as Monarch and the “universal
biomedical data translator” from the National Center for Advancing Translational Sciences
(NCATS) [82].

The extensions ontology builder produces an OWL ontology using the Ontology
Development Kit (ODK) v1.4.1 [83] as the building framework. The ODK provides a
pre-configured, standardized environment with a set of tools that support all stages of the
ontology lifecycle (creation and editing, building, and testing, and releasing with version
control) and ensures a systematic approach to ontology maintenance. When possible, we
define new classes that follow a pattern using the Dead Simple OWL Design Patterns
(DOS-DP) v0.1.10 [84], reducing manual editing and consequently reducing errors and
improving reproducibility. All the axioms are kept under OWL2 [85] DL profile.

The KG-builder is responsible for obtaining the different sources of knowledge and
merging them into the terminological KG. Built upon the KG-Hub tooling ecosystem, the
main configuration inputs are the merge and download YAML descriptor files, guiding the
download and merge steps. When available, the ontologies are downloaded from the KG-
Hub repository [86]. OBO ontologies are already maintained as Biolink-compliant graphs
in the Knowledge eXchange Format (KGX) [87] in the KG-OBO project [88] and are directly
merged from each specific release artifact. The merging step includes all downloaded
sources and the extensions ontology to obtain a final KGX graph.
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One challenge when converting OWL ontologies into a graph structure lies in the
difficulty of accessing class relationships established through subclass and class equivalence
axioms. These assertions hold significant value in capturing the biomedical knowledge
outlined in the comprehensive OBO ontologies. To address this situation, both the ontology
and builder modules materialize class equivalence axioms. In the context of the extensions
ontology, we utilize the relation-graph [89] library during the later stages of the construction
process. In the case of OBO ontologies, the KG-builder retrieves a subset of links from the
materialization output within Ubergraph [90], which also employs relation-graph.

The transformer module is a Python solution that provides an accessible approach
to generating graph data in KGX format from tabular source input. This module adopts
a YAML-based transform definition schema, mirroring the approach of other tools in the
pipeline. This schema adheres to a standardized structure wherein users can define map-
pings from columns to specific classes paired with various instantiation design patterns.
The schema effectively models common research entities, including medical history, physi-
cal examination, and measurement assays, all aligned with dedicated instantiation patterns
that are further elaborated upon in the subsequent subsection.

The builder pipeline integrates all steps and can be configured to generate two artifacts:
solely the terminological graph or the terminological graph with data instantiation.

3.4. Data Transformation Design Patterns

One of the aims of the KG is to integrate raw research data to enable explicit connec-
tions with knowledge concepts. We propose a set of design patterns to support the data
instantiation of patient/subject study visits, phenotype observations arising from these
visits, measurements/analyses derived from samples collected from different specimens,
and neuropsychological test results. In all these patterns, OBI is the central ontology em-
ployed to enable the relating of clinical and research concepts with specific entities of the
biomedical domain. Figures 1–3 illustrate the main patterns through simplified concept
map figures, depicting the main ontology classes and properties involved, identified with
a pseudo-CURIE of the format PREFIX, namely, “class label”, where prefix is the OBO
ontology prefix.
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The first pattern models the relations between study protocol/visit encounters, the
agents involved, and the resulting outputs. The pattern mainly utilizes concepts defined
in the Neurodegenerative Disease Data Ontology (NDDO) [91] (integrated in NIO) and
the Ontology for General Medical Science (OGMS). The pattern supports a proper logical
definition of longitudinal protocols, common in dementia research studies.
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Clinical history phenotypes are characterized through observations at a study visit or
from existing records. The framework leverages a pattern that relates visits with specific
clinical administration, the finding, and the observed phenotype, usually a phenotype or
disease concept from MONDO or HP. Relevant metadata can also be linked to the OGMS
clinical entities, such as dates, agents involved, and locations. This pattern is shared across
medical history, physical examination, and diagnosis processes. Figure 1 illustrates both
the visits and clinical patterns.

A critical component of research data encompasses various assay measurements and
proteomic datasets. We employ OBI’s assay design patterns [92] to capture the multiple
aspects involved in this process. These patterns enable the comprehensive integration of
data pertaining to the assay, the specimen, and the molecule or material under examination,
such as a protein or leukocyte count. Several relevant ontologies, including GO, PR, and Cell
Ontology (CL), supply the necessary terminologies. We leverage entities from UBERON
to denote the anatomical origin of the sample. This pattern facilitates the preservation
of crucial metadata about processes, encompassing information about the type of assay,
the specimen or sample employed, experimental conditions such as freeze–thaw cycles,
and the date and time of collection. Such metadata is of considerable value for resource
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management and can significantly aid research analyses. For instance, the type of tube
in which a sample was collected could influence assay results and should be accounted
for in linear models. Overall, it provides a more comprehensive context of the conditions
under which experiments are conducted, enhancing the reproducibility and reliability of
experimental outcomes.

Analyses derived from neuroimaging techniques, including segmentation measure-
ments from tools such as Freesurfer [93] and Automatic Sub Hippocampal Segmentations
(ASHS) [94], along with white matter evaluations from Diffusion Tensor Imaging (DTI) [95]
and peak width of skeletonized mean diffusivity (PSMD) [96], play an indispensable role in
dementia research. The pattern supporting this data modality follows a similar approach
to the previous one, illustrated in Figure 2. To associate the measured anatomical enti-
ties, we utilize the FMA, which offers precise terms to align with the parcellation regions
delineated by the widely used brain atlases in segmentation software, particularly for
hemisphere-specific terms. More general terms from UBERON can be obtained using the
“xref” property, employed for mapping concepts between different ontologies.

The last design pattern focuses on effectively relating the information content of a
given test with the cognitive domain, providing means by which to stratify subjects via
cognitive staging and the specific domain or phenotypic abnormality from HP at query time.
This pattern exploits the axioms that connect cognitive tests with the
evaluated domains.

4. Results

We have developed a KG framework that harmonizes biomedical knowledge and evi-
dence from various sources, coupled with a transformation module designed to streamline
the integration of multi-modal and omics data in dementia research. The core components
of the framework encompass the extensions ontology builder, which provide ontological
definitions to fill identified gaps from the domain ontologies; the KG-builder, in charge of
obtaining, merging, and producing the KG; and the data transformer module, a low-code
interface to transform source study data. All components are publicly accessible on GitHub
(https://github.com/demkg-framework/, accessed on 30 August 2023). This trio of tools
forms an intuitive building pipeline and also offers flexibility for customization, enabling
users to construct the graph from scratch, adapt it to specific requirements, and deploy it
on their preferred platform and graph database.

The backbone of our implementation is rooted in established community standards,
technologies, and methodologies. The initial step involved the selection of a comprehensive
array of domain reference biomedical ontologies, primarily from OBO, to form an expres-
sive knowledge model for our primary KG. These ontologies offer a variety of well-defined
concepts across varying levels of granularity, encapsulating intricate details of biological
reality in the form of hierarchical relationships and concept networks.

To facilitate a consistent term mapping across various ontologies and mitigate compu-
tational demands, we utilized pre-built KGs from the KG-Hub initiative and the KG-OBO
subset as our foundation, employing the KGX tool for the merging phase of the KG-builder
pipeline. The KG-Hub initiative utilizes the Biolink model as its high-level data model,
which we adopted to introduce greater flexibility and provide a comprehensive yet adapt-
able terminology overlay on the ontological model. The Biolink model facilitated the
creation of both relaxed and detailed modeling and query capabilities, thereby enhancing
the standardization and flexibility of our model. The default KG consists of 1.5 M nodes
and 11.5 M edges.

To fill the identified gaps in the foundational model, we developed specific termino-
logical extensions through the extensions ontology. We employed ODK to systematically
introduce new terms, leveraging the OBO ecosystem to import and extend relevant external
terms using DOS-DP whenever feasible.

Finally, the transformation module provides a low-code solution to transform tab-
ular source data and generate necessary instance nodes and edges by following specific

https://github.com/demkg-framework/
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design patterns that effectively depict study visits, phenotype observations, measure-
ments/analyses derived from samples, and neuropsychological test results. These design
patterns promote efficient data instantiation under the ontological model of the source
research data, interconnecting various aspects of the study design outputs and providing
a robust platform for data querying and network-oriented analyses. Figure 4 shows an
overview of the framework components.
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4.1. Use Case: Graph-Enabled Phenotype, Flow, and Protein Exploration from AT(N)
Biomarker Profiles

To validate the DemKG framework, we applied it to the Dementia Disease Initia-
tion (DDI) study data, a multi-site longitudinal observational study aimed at identifying
early biomarkers for patients at risk of developing dementia [97]. The DDI dataset en-
compasses a range of clinical items, including medical history, standardized physical,
neurological, and cognitive examinations, as well as laboratory and proteomic assays de-
rived from blood and cerebrospinal fluid (CSF) samples, MRI, FDG-PET, and amyloid PET
imaging, along with genomic analyses. We integrated these diverse data modalities and
explored various aspects of the key biomarkers of the AD continuum, as categorized by the
AT(N) classification.

4.1.1. Experimental Setup

The central DDI data platform is the XNAT archiving system [98], which is comple-
mented by tailored customizations and data export functionalities, including automatic
biomarker-based AT(N) classification, and population-adjusted norming for pertinent
screening tests such as CERAD [99,100], VOSP [77], and TMT [78,101]. We implemented
the transformation descriptor for the DDI data, involving direct mappings from clini-
cal codes and rules to translate assay and experiment results into specific phenotype
and disease entities. We then fed the descriptor along with the aggregated Comma-
separated values (CSV) dump from XNAT to the transformation module to obtain the
graph representation.
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The DDI cohort graph comprises 96,939 nodes and 362,824 edges, whereas an average
subject subgraph with four visits has 3469 nodes and 8284 edges. This transformed graph
was merged into the final DDI-KG, which we ingested using the KGX module into a Neo4j
Community instance deployed in a Podman container configured with eight cores and
16 GB of RAM, running on the secured servers of the TSD (Tjeneste for Sensitive Data)
facilities managed by the University of Oslo. We opted for Neo4j due to its widespread
adoption, the capabilities of its Cypher query language, and its reliable performance.
Furthermore, KGX automatically creates node indices and constraints to improve loading
and query performance for this platform.

Taking advantage of these features, the setup proves efficient with the resultant graph
model, particularly for queries with clearly defined traversals and designated node labels.
Figure 5 offers a preliminary analysis for estimating query performance, tracing the time
consumed in navigating paths that extend from one to ten hops from subject nodes to
various relevant node types in the graph. As anticipated, the number of target nodes
considerably affects query performance, primarily driven by the increased number of edges
to evaluate and traverse, coupled with the augmented data volume to handle. This scenario
is especially pronounced in the most populated and interconnected node types, namely,
proteins, genes, and diseases. Therefore, queries involving numerous or unrestricted
quantities of such nodes require thoughtful design.
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4.1.2. Experimental Results

A key objective of the DDI study is to comprehend the evolution of subjects across
different disease states within the biological reality, and the AT(N) classification system is
a pivotal reference point. The developed design patterns facilitate connections at various
levels, enabling the exploration of individual and group trajectories across visits and
expediting the retrieval of relevant phenotypes using graph queries (Figure 6).
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Figure 6. A DDI subject subgraph that illustrates study visits and associated phenotypes, visualized
with Neo4j Bloom and further edited for readability. (a) An overview of longitudinal visits. Subjects
are connected to each visit via the “biolink:participates_in” predicate. The logical sequencing of
visits is established through the “biolink:precedes” predicate, facilitating query traversal. Clinical
entity nodes represent associated medical processes (medical history, cognitive screenings, lab assays,
and more), serving as the source of observations and conclusions while also supplying context and
metadata for encounters and experimental setups. These nodes link to phenotype and disease entities
to depict the outcomes of the clinical/research processes. (b) A specific visit branch tracing the
path from the individual subject to the evaluated phenotypes and diseases noted during a medical
history recording. Additional data from clinical entities are omitted to maintain clarity and uphold
subject privacy.

Using the AT(N) entities defined in the extensions ontology, we queried the graph
database to investigate the flow between the different biomarker profiles. This exploration
helped unravel the transitions between them at the cohort level, aiding in data filtering for
parallel research endeavors. Moreover, presented visually (Figure 7), the outcomes of these
queries proved instrumental in quality control efforts by highlighting unlikely transitions
from pathological to normal states. Such interventions are vital since AT(N) profiles derive
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from biomarker measurements, where unexpected transitions may result from issues or
errors in the respective assays.
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in biomarker profiles. (b) The Cypher query utilized to calculate transition counts based on the
predefined AT(N) biomarker profiles in the ontology.

As shown in Figure 7b, one of the valuable attributes of KGs that incorporate do-
main ontologies is richer semantic querying. Leveraging the hierarchical structure within
phenotype and disease ontologies, we exploited semantic querying to gather phenotypes
spanning different domains and visualized their prevalence across the AT(N) profiles. As
depicted in Figure 8, we focused on phenotypes extracted from the “Abnormality of higher
mental function” class within the HP ontology. Phenotypes related to memory, language,
and executive function were referenced based on the rules established for the norming
items in the cognitive screening section of the dataset descriptor.
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To capture complex graph structures into low-dimensional vector space, we utilized
the GRAPE library to create node embeddings using the node2Vec algorithm [102] with
Skip Gram [103] and applied them to evaluate various aspects of the AT(N) biomarkers.

We conducted an interesting experiment to investigate if the embeddings of subject
visits showed any patterns in the low-dimensional space or were influenced by specific
AT(N) profiles. Using t-SNE [104] to reduce the embeddings to two dimensions, we
observed a clear tendency for Tau pathology to group together in the embedding space,
suggesting shared characteristics among the phenotypes assessed in those visits. The
visit node embeddings are visualized in Figure 9, accompanied by a decision boundary
computed through a logistic regression model.

Lastly, we combined the graph query capabilities, node embeddings, and topological
metrics to obtain a broader overview of the relationships between assay proteins and the
AT(N) protein biomarkers to assist in decision-making processes that could steer future
analyses. Since the graph provides explicit links between available assays and the analytes
being evaluated, we gathered CSF-derived ELISA and proteomics target proteins for
comparison, focusing on the shared network encompassing GO biological processes (BPs).

For assessing protein relationships, we employed a simple pair-wise cosine similarity
measure. This allowed us to quickly gauge how closely protein nodes were related and
then rank the proteins that were most closely associated with the AT(N) panel (Figure 10).

To examine shared BPs between AT(N) and the assessed proteins, we employed a
graph query to obtain the extensive network of protein activities. Given that proteins
participate in thousands of such processes, to enhance navigability, we used GRAPE to
calculate node betweenness and closeness centrality metrics, utilizing them as indicators of
node relevance for prioritizing and narrowing down the pool of BPs to be investigated. A
snapshot of this process is depicted in Figure 11.
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Figure 9. t-SNE visualizations of node embeddings. (a) Scatter plot output from GRAPE for all node
embeddings from the KG representing the topological connectivity, colored by node type. It displays
similarity and some possible clusters (Balanced accuracy: 60.32% ± 1.25%); separability consideration
derives from evaluating a Decision Tree trained on five Monte Carlo holdouts, with a 70/30 split
between training and test sets. (b) Visit node embeddings with nodes labeled by their associated T
biomarker from AT(N) (pathologic tau). The dashed line marks the decision boundary between node
types computed from a logistic regression model, with an accuracy of 0.831.
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5. Discussion

In our work, we introduce DemKG, a KG framework designed to integrate various
ontologies and knowledge sources to focus on dementia research data. This framework
aims to cover terminological and design needs for multi-modal and omics data, with
additional terminological extensions developed when necessary. We also followed specific
patterns to cater to typical dementia research data outputs.

A key advantage of DemKG is its flexibility and ease of extension or customization
to adapt to particular needs, made possible by the generalizable and pattern-based tech-
nologies employed in different components of the framework. Another relevant feature of
DemKG is the friendly interface of the transformation module, which lowers the technical
barrier to effectively integrating study research data in the KG.

However, there exists an important limitation in its implementation: once built, the
KG does not support modifications without risking underlying integrity, forcing a complete
build and possibly ingestion when new versions become available. This limitation, a
consequence of using KGX as the backbone for merging and building operations, may
ultimately limit projects with streamed or on-demand data ingestion needs.

Nevertheless, our implementations remain open-source, primarily based on open
knowledge sources, and the building pipelines employ systematic approaches with tem-
plating engines that are easily customizable. While our focus is dementia research, the
broad biomedical ontologies forming the foundation of our terminological model make
our KG applicable to other biomedical research datasets as well.

Thus, the broader implications of our work extend beyond the application of the KG.
Large biomedical KGs are proving to be an excellent tool for biomedical research, especially
in domains requiring knowledge across different fields. The capacity to integrate disparate
data and knowledge opens up opportunities for insights that were previously challenging
to achieve. Approaches such as Precision Medicine greatly benefit from the implementation
of KGs in their workflow.

This benefit is especially pronounced in dementia research, where the number of newly
discovered biomarkers, phenotypes, and life conditions rapidly increases. These elements
become part of the knowledge base that can be applied to the patient’s biological signature.
In this context, a KG like ours can play a crucial role in advancing our understanding of
dementia and potentially informing patient care strategies.

6. Conclusions

In conclusion, DemKG presents a flexible and integrative approach to handle the
ever-increasing complexity and multi-modality of dementia research data by leveraging a
KG representation and relation capabilities.

The DemKG framework offers several distinct advantages over other solutions cur-
rently available. First, it is constructed based on well-established ontologies and adheres
to recognized community standards, guaranteeing a solid and interoperable foundation.
This is further enhanced by ontological extensions specifically crafted to facilitate detailed
dementia research data analysis, filling a critical gap in the existing frameworks.

In addition to the above, DemKG integrates a low-code transformer module, simplify-
ing the integration of study data and making the framework accessible to researchers with
various levels of expertise. This module significantly reduces the time and technical know-
how needed to merge study data, streamlining the data integration process considerably
when compared to other solutions.

Furthermore, DemKG employs tooling to generate knowledge graphs in the platform-
agnostic KGX format. This approach allows for easy deployment in a platform of the
user’s choice, offering flexibility in how and where the data can be used, and ensuring that
the framework is adaptable to existing systems and future technological advancements.
Enhancing its flexibility, the framework offers an open-source and customizable design,
facilitating easy adoption and adaptation not only for dementia research but also potentially
extending its utility to research into other diseases.
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While there are limitations to the support for post-build modifications in its current
iteration, addressing these in future work could broaden its applicability further. De-
spite these challenges, DemKG and similar KGs hold significant potential for propelling
biomedical research and patient care advancements, extending from dementia to other
medical conditions.
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