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ABSTRACT The development of the Internet of Things (IoT) benefits from 1) the connections between
devices equipped with multiple sensors; 2) wireless networks and; 3) processing and analysis of the gathered
data. The growing interest in the use of IoT technologies has led to the development of numerous diverse
applications, many of which are based on the knowledge of the end user’s location and profile. This
paper investigates the characterization of Bluetooth signals behavior using 12 different supervised learning
algorithms as a first step toward the development of fingerprint-based localization mechanisms. We then
explore the use of metaheuristics to determine the best radio power transmission setting evaluated in terms
of accuracy and mean error of the localization mechanism. We further tune-up the supervised algorithm
hyperparameters. A comparative evaluation of the 12 supervised learning and two metaheuristics algorithms
under two different system parameter settings provide valuable insights into the use and capabilities of the
various algorithms on the development of indoor localization mechanisms.

INDEX TERMS Indoor positioning, fingerprinting, Bluetooth, classification model, signal processing,
received signal strength indication, multipath fading, transmission power, benchmark, metaheuristic

optimization algorithms.

I. INTRODUCTION

A number of wireless network technologies are currently
available in the market, of which Wi-Fi and Bluetooth are
by far the most popular. This is because most current smart-
phones have Wi-Fi and Bluetooth interfaces. Accordingly,
most research and development efforts in the area of wireless
indoor localization mechanisms have been made using one or
both of these wireless technologies [1]. As for other technolo-
gies, Zigbee has also been explored in the context of wireless
sensor networks [2], [3]. These studies are being conducted
using the received signal strength indication (RSSI) of vari-
ous wireless transmitters as a means of estimating the loca-
tion of a smartphone device [4]. Among the technologies
being considered, over the past years, Wi-Fi networks have
attracted the attention of many researchers and practitioners
who have employed innovative techniques, e.g., machine
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and deep learning [5]. Many experimental studies have been
conducted to construct radio maps and models as a means
to estimate the distance between a reference transmitter and
a smartphone device. Because of the characteristics of the
wireless signal, the use of Kalman filters [6], [7] has been
required to remove the noise. Novel Bluetooth Low-Energy
4.0 (BLE4.0) devices have become a strong alternative to
Wi-Fi-based indoor location mechanisms. Their low cost, low
energy consumption, and the size of the Bluetooth devices are
among the most important design features of battery-operated
mobile devices, mainly smartphones and tablets. Moreover,
these devices have many sensors, e.g., accelerometer, that
can be used to assist the indoor localization process [8].
In this context, Table 1 lists the main characteristics of
these three wireless technologies. In the case of Bluetooth,
the table lists the BLE4.0 specifications. The table also
includes the main algorithmic techniques used in the char-
acterization of RSSI fingerprints generated by the wireless
devices [9], [10].

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

26123

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-1510-1608
https://orcid.org/0000-0001-6243-0864
https://orcid.org/0000-0002-2990-7090
https://orcid.org/0000-0003-3451-7852

IEEE Access

J. Lovén-Melgarejo et al.: Comparative Study of Supervised Learning and Metaheuristic Algorithms

TABLE 1. Comparison of Bluetooth, Wi-Fi and ZigBee technologies.

Bluetooth Wi-Fi ZigBee

Frequency 868MHz (EU)
Band 2.4GHz 2.4/5GHz 915MHz (USA)

2.4GHZ
Data Rate 1Mbps 11/54Mbps 250Kbps

Up to 20Km
Range 10 to 100m Up to 100m (depend of

the frequency)
g‘:)::l:mp. Very low High Very low
Battery Life Multiple months ~ Multiple hours ~ Multiple months
Infrastructure  To be deployed E())(é;t;ng Wi-H To be deployed
Smartphones Supported Supported Not supported
Main Supervised Probabilistic Probabilistic
algorithmic Learning graphical graphical
technique Algorithms. models. models.

. Sensors, WLAN, Industrial control
Typical S .
applications positioning, broadbapd, and monitoring,

peripherals. connections. sensor networks.

Wi-Fi and Zigbee were primarily designed for implement-
ing wireless communications LANSs, including broadband
connections, and the deployment of distributed wireless mon-
itoring and actuator applications, respectively. Due to a large
number of hotspots based on Wi-Fi access points and the
deployment of Zigbee wireless sensor networks, developers
and practitioners are exploring the development of localiza-
tion and tracking mechanisms based on these two wireless
technologies.

Among the different approaches being pursued in the
development of localization mechanisms, those approaches
based on the characterization of RSSI fingerprints have
benefited from the use of probabilistic graphical mod-
els (PGMs) [7], [11] and supervised learning algorithms
(SLAs) [12]. The localization and tracking of a target within
a given area is possible based on the characterization
of the RSSI fingerprints generated by a set of wireless
transmitters [6], [9].

Therefore, the methodology to develop a localization
mechanism based on RSSI fingerprinting using a SLA con-
sists of two main phases: (i) characterization of the distri-
bution of the RSSI in the area enabling the localization of
a given target [4], [13]; and (ii) the evaluation of the accu-
racy and error of the localization mechanism [2]. Brunato
and Battiti [14] presented a set of SLA techniques applied
to Wi-Fi fingerprinting, and a benchmark to compare them,
obtaining good results.

Considering the latest developments and technologies,
i.e., BLE4.0 beacons, hereinafter referred to as bea-
cons, this work is an extension of our previous research
efforts [12], [15]. The two major extensions are: the evalua-
tion of twelve different SLASs: linear, non-linear, and ensem-
ble models; and the use of genetic algorithms (GA) as a
means to reduce the computational cost and the time to opti-
mize the setting of the transmission power levels, hereinafter
referred to as TxPower, of every transmitter. Our proposal
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involves the optimization of the hyperparameters of the vari-
ous algorithms.
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FIGURE 1. Overall schema proposal.

The remainder of this paper is organized as follows.
Section II reviews the recent BLE4.0 localization literature,
including the techniques followed in our works in the area
of signal processing analysis. Section 3 specifies our indoor
setting and the devices used as transmitters and receivers,
depicted in Figure 1 with blocks called ““Analysis of the Envi-
ronment” and ‘“‘Characteristic of the Signal.” In addition,
RSSI and its behavior, i.e., signal features, are discussed.
Subsequently, Section 4 explains the SLAs used, whose
performance will be evaluated according to the accuracy
and mean error classification metrics, represented in Figure 1
with the block called “Supervised Learning Algorithms.”
Section 5 presents our first set of results using symmet-
ric and asymmetric TxPower configurations of the beacons.
Section 6 introduces and evaluates the performance of the
metaheuristic algorithms and the tuning of the hyperparam-
eter used on the search of the optimal asymmetric TxPower
configuration. This section also includes an analysis of the
computational cost of the twelve SLAs considered in our
study, depicted in Figure 1 as “Optimal Asymmetric Trans-
mission Power.” Finally, Section 7 presents our conclusions
and future work directions.

Il. RELATED WORK

In this section, we introduce the main features of the
BLE4.0 technology and its relevance on setting indoor local-
ization facilities. For better understanding, this section has
been divided into two subsections, which explain the techni-
cal characteristics, limitations, and communication protocol
of BLEA4.0 related to indoor localization techniques.

A. BLE4.0 SIGNAL PROCESSING

BLE4.0 technology has rapidly spread in recent years. It is
available in most mobile devices, such as smartphones,
tablets [16], and electronic development kits [17]. Beacons
emit short packets, characterized by providing ways of deter-
mining zones of proximity through the intensity of the
signal, i.e., RSSI. Beacons have low power consumption
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requirements, making it possible for them to operate for long
periods without the need of replacing their batteries.

BLEA4.0 divides the band into 40 2-MHz channels. Since
Wi-Fi and BLE4.0 operate over the 2.4-MHz band, beacons
make use of channels 37 (2402-MHz), 38 (2426-MHz) and
39 (2480-MHz) to avoid interference between devices and
advertise their presence [18]. Beacons cyclically broadcast on
these channels and use the other channels once paired with
a BLE4.0-equipped device. Beacons can transmit signal in
increments from 100ms to 10.24s, in steps of 0.625m:s.

This parameter directly affects the battery lifetime. The
beacons have configurable TxPower levels that usually range
from —30dBm to 4dBm. The signal strength conditions the
beacons sensing range [17]. Therefore, the distribution of
the RSSI spectrum in the area depends directly with the
TxPower level [12], [15]. BLE4.0 signals are prone to noise
and impairments due to the presence of physical elements
within the coverage area, such as furniture, people, walls,
windows, and other obstacles. This makes it necessary to
conduct RSSI surveys. Some works have reported readings
of a given location with signal level variations of up to 20dB
in less than 20s [9], [10]. The deployment of beacons must be
carefully planned. In particular, the placement and all relevant
system BLE4.0 parameters must be calibrated to meet the
end-user expectations [19].

Multipath fading (MPF) is another major impairment that
has a major impact on the design of indoor wireless local-
ization mechanisms. Recent results have shown that the use
of floor plan as a basis for identifying the multipath com-
ponents may be exploited to enhance the accuracy of wire-
less indoor localization schemes [9], [17], [20]. Although the
use of such schemes is still in its infancy and limited to
wide-band communications, insights into the impact of the
structural features on the RSSI metric have been obtained.
In previous research [9], Faragher and Harle applied the mul-
tipath mitigation algorithm to the RSSI fingerprint of their
BLE4.0 experimental setup.

Various other works have explored the use of different
TxPower and channels to identify the setup offering the best
results. In a previous study [10], the authors analyze the
impact of the channel used for collecting the RSSI samples,
which revealed major differences in the level of the signal
samples. Another research [21] reported that power plays a
major role in terms of system performance, and its results
demonstrated the benefits of using the k-Nearest Neighbors
(k-NN) algorithm as a means to better exploit the information
retrieved from the RSSI fingerprint in the development of
indoor wireless localization schemes.

B. BLE4.0 INDOOR LOCALIZATION ALGORITHMS

Depending on the wireless network technology, the use of a
specific technique/algorithm may be more suitable or feasible
than the use of other techniques. As already stated, most
works to date reported that noise and MPF are two of the
main impairments with a negative impact on the quality of
RSSI fingerprints. Improving or identifying the impact of
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such impairments on the quality of the RSSI fingerprint is
therefore one of the main challenges in the development
of robust and accurate BLE4.0-based indoor localization
mechanisms [4]. Since the structural characteristics and the
layout of objects may play a major role in signal impairments,
the research community is actively working on defining the
best system configuration, e.g., density of beacons and rel-
ative placement [22] and identifying the most suitable data
processing methodologies, i.e., filtering and classification
algorithms.

Recent studies employing SLAs have reported promising
results on characterizing RSSI fingerprints in the presence
of noise and MPF effects. In previous research [14], various
SLAs that were applied to Wi-Fi fingerprints were compared.
In a more recent work [23], a hybrid localization experiment
was conducted using a set of Wi-Fi access points (APs)
accompanied by BLE4.0 devices. The localization mecha-
nism was based on weighted nearest neighbors in the signal
space algorithm. The main objective of this study was to
improve the indoor location by using BLE4.0 devices and
deploying a system that is constantly updated according to
RSSI levels reported by mobile devices (receivers). During
the experiments, two parameters of the BLE4.0 devices were
varied: the scan duration of the RSSI signal and the density.
In contrast, the TxPower was fixed to the maximum level
throughout the experiments.

In[14], in addition to exploring and performing
an extended evaluation of two SLAs, support vector
machine (SVM) and k-NN, the authors also explored the
use of Bayesian modeling and multilayer perceptron (MLP)
algorithms. Although their work is developed for Wi-Fi,
the authors claimed that their regression and classification
algorithms can be applied to the analysis of RSSI fingerprints
created by other wireless technologies.

While most recent works consider k&-NN and SVM as the
two most promising SLAs, other works are exploring the
use of deep learning techniques as another alternative for
improving the quality of the information extracted from RSSI
fingerprints that consider two main metrics: accuracy, and
performance [24].

The above review has proven useful for defining and guid-
ing the objectives and methodology of our research. After
identifying the major system parameters and impairments,
the experimental setup layout was defined. The following
main system parameters were identified: number of beacons,
TxPower, and advertisement period. In one of our previous
works, we have shown that the use of SLA algorithms may
prove beneficial on mitigating the MPF impairment [15]. The
optimal parameter setting, namely the transmission power
setting of the Bluetooth beacons was conducted using a brute
force approach. In this work, we go a step further by exploring
twelve SLA algorithms following three different paradigms.
We also explore the use of two metaheuristic approaches as a
means to reduce the computational requirements. Our work
the differs from previous works that have mainly focused
on a limited number of SLA algorithms without taking
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into account their underlying features. Furthermore, to the
authors knowledge, no previous works have made use of
metaheuristic algorithms as a means of reducing the compu-
tational requirements on the process of setting the best system
configuration.

Ill. BACKGROUND: TOOLS AND WIRELESS

SIGNAL CHARACTERIZATION

The design and development of BLE4.0 fingerprint local-
ization techniques present major challenges since the indoor
propagation of BLE4.0 signals is highly sensitive to the MPF
effect [25]. It is also widely recognized that the capabili-
ties of the surveying devices will play a major role in the
quantity, quality, and time of the effort invested to produce
valuable RSSI fingerprints. The details about the area, trans-
mitter/receiver, survey campaigns, MPF, and intraday signal
attenuation were analyzed in previous works. Hence, we dis-
cuss additional information about BLE4.0 signal characteri-
zation and conduct an in-depth analysis about the impact of
different materials/structures on RSSI [26], [27].

[~ Beld

FIGURE 2. Beacon indoor experimental area setup.

A. EXPERIMENTAL AREA

Our experiments were conducted in the lab of our research
institute. We placed four beacons at each one of the four
corners of a 9.3m x 6.3m rectangular area. The fifth beacon
was placed in the middle of one of the longest edges of
the room. Figure 2 depicts the experimental area in which
the five Beacons have been labeled as Be07, Be08, Be09,
BelO, and Bell. We divided the experimental area into
15 sectors of 1m?, each separated by a guard distance of
0.5m. A 1.5m-wide strip was left around the experimental
area. This arrangement will allow us to better differentiate
the RSSI level of joint sectors when reporting our results.
Measurements were performed by placing the mobile device
at the center of each one of the 15 sectors, as described
below. The shortest distance between a beacon and a receiver
was limited to 1.5m. Figure 3 shows four views taken from
each one of the four corners of the lab. As shown in the
figure, we placed beacons Bel0 and Bell in front of a win-
dow, Figures 3(d) and 3(b), respectively, while all other bea-
cons were placed in front of the opposite plasterboard wall.
We further noticed that beacon Be08 was placed at the left
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FIGURE 3. Pictures from each one of the four corners of the lab. (a) View
from Be07. (b) View from Be11. (c) View from Be08. (d) View from Be10.

edge of the entrance door, close to the corridor with a glass
wall (Figure 3(c)).

B. TRANSMITTER AND RECEIVER DEVICES
For this experiment, JAALEE beacon devices were used [28].
According to the specifications of the five Beacons used in
our experiments, they may operate at one of eight different
TxPower levels. Following the specifications, the TxPower
levels are labeled in consecutive order from the highest
to the lowest level as TxPower = 0x01, TxPower =
0x02, ..., TxPower = 0x08 (ultra wide range transmission
power: 4dBm to -40dBm), although TxPower = 0x07 and
TxPower = 0x08 were discarded since they did not ade-
quately cover the signal spectrum in the entire area. During
our experiments, we conducted several measurement cam-
paigns by fixing the TxPower level of all beacons at the
beginning of each campaign. Furthermore, all measurements
were performed under line-of-sight conditions.

As a receiver, we used a Raspberry Pi equipped with
a USB BLE4.0 antenna [29], hereinafter referred to as
BLEA4.0 antenna.

C. RSSI FINGERPRINTINGS

It is well known that the floor plan and materials are two
major parameters that have a significant impact on the indoor
propagation of BLE4.0 signals. Since the experiments were
conducted in a single lab and zero occupancy during most tri-
als, the experiment focused on the impact of the surrounding
wall materials.

As shown in Figure 2, we analyzed the four beacons placed
at the corners with TxPower = 0x04 taking the RSSI in
all sectors. Beacon Be09 and other TxPower levels were
omitted because they had similar output and did not add
extra information. Figure 4 depicts the RSSI measurements
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FIGURE 4. RSSI behavior using TxPower = 0x04. (a) Sector 13 for Be08.
(b) Sector 15 for Be10.

taken at Sectors 13 and 15, corresponding to the signals of
Be08 and Bel0, respectively. Bel0 is located at a corner of
a flat wall made of drywall and a window wall located at
the right side of Figure 3. BeOS is placed at the corner of a
flat wall made of drywall and at the entrance of a corridor.
Comparing the RSSI levels captured for Be08 (Figure 4(a)) to
those captured for Bel10 (Figure 4(b), the signal of Bel0 suf-
fers higher attenuation and less RSSI value, a difference of
more than 10dBm, than that experienced for the signal of
Be08. These results clearly show the challenges involved in
accurately characterizing the indoor signal propagation of a
BLE4.0 transmitter.

To gain further insight into the impact of the surround-
ing material on indoor signal propagation, Figure 5 shows
the RSSI fingerprints throughout the experimental area of
Be07 and Bell. In this case, Bell is located at the corner
of a flat wall made of drywall and a window wall located at
the right-hand side in Figure 2. Be07 is placed at the corner of
a flat wall that is solely made of drywall. In this case, we can
see the same behavior of the RSSI which Be07 has a greater
intensity than Bell.

From the results shown in Figures 5 and Figure 5, it is
clear that the materials surrounding BLE4.0 have a major
impact on signal propagation. The main observations can be
summarized as follows:

« The intensity of the RSSI in sectors close to the window
side is lower than that at the sectors close to the drywall
side.
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(@ (b)

FIGURE 5. RSSI fingerprinting for different beacons using
TxPower = 0x 04 for: (a) Be07 and (b) Be11. Axis X and
Y represent the size (in meters) of the experimental area.

o The RSSI levels of the beacons placed at the windows,
namely, Be10 and Be11, experience a higher attenuation
than the beacons placed at the walls made of drywall,
namely BeO7 and Be0S.

Furthermore, the RSSI fingerprints (Figure 5), illustrate the
challenges involved in characterizing signal propagation. It is
evident that the presence of the MPF effect makes it difficult
to estimate the distance between the receiver and transmitter
based on the RSSI level.

These results clearly show that the setting of the TxPower
levels may prove useful in overcoming the impact of the
MPF effect. The mitigation of this effect will provide us
with the means to improve the accuracy of the classification
algorithms. This finding has motivated most results reported
in our previous works [15].

IV. MACHINE LEARNING MODELS:

PRINCIPLES AND EVALUATIONS

Machine learning techniques include a series of models in
which systems can perform the learning process to make the
best possible decisions or accurate predictions based on the
information extracted from a large dataset. This study was
extended to 12 SLAs, which were grouped as linear, non-
linear, and ensemble models. Moreover, this section explains
the main classification metrics and the data collected during
the survey.

A. SUPERVISED LEARNING ALGORITHMS
For this work, SLAs, specifically classification models,
prove useful in solving indoor location fingerprinting. Hence,
in SLAs, we know the input parameters and the output with
which we iteratively train the dataset. Once the model is
trained, predictions are made and compared with ground truth
values to obtain an estimation of the performance of the
model.

The total analysis of this work has been conducted using
different classification models (explained in Table 2) and
divided into a taxonomy of three models:
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TABLE 2. Definition of the different machine learning models evaluated.

Logistic Regression

For binary classification problems. In this case, this model helps to determine whether the
input belongs to a specific sector. It uses the sigmoid function that has a range of output

Linear (LoR) values between 0 and 1.
Models . . . This model helps to find the maximum separation between data groups to classify them in
Linear Discriminant Analysis Lo X X . . . X
(LDA) classes. Its approach is similar to PCA, which reduces the dimensions of high-dimensional
data via linear combinations, and it can be extended to multiclass classification problems.
. . It is a binary and multiclass classification algorithm useful for large datasets. It performs
Gaussian Naive Bayes . . . . .
classification assuming the independence between the features (naive) and calculates the
(GNB) ; . . i
classes according to the Bayesian probability.
It uses the neuron structure, where the variable input is represented by the dendrites and
Multi-Layer Perceptron the output is calculated via a nonlinear activation function, to first learn and then perform
(MLP) classification. This algorithm uses three types of neuron layers: input layer, hidden
layer(s), and output layer.
. Given the data in the space, it builds hyperplanes in a high-dimensional space with a
Non-Linear Support ?’;{:/tl(\)/lr)Machme maximum gap between them. With the aid of kernel functions, it can perform the
Models classification for high-dimensional data.
. This algorithm classifies the input based on a measure of similarity, which is often the
k-Nearest Neighbors . in th £ th . L ine th
(k-NN) distance in the space of the data points. A prediction is made by choosing the most
frequent class between the k-NN.
Decision Tree A predictive model that places the observations made from the data in the branches;
(DT) these lead to the leaves that are labeled with the correct classification. It uses a discrete
set of values, and the leaves yield the final output.
Each tree of the forest is built from an extract of the data processing
Random Forest and random subset of features. As a result, the bias is slightly high
(RF) in comparison with that observed in a non-random single tree.
Bootstrap Aseresation Overall, this is compensated with a low average variance.
; (BI; i“f )g Extremely Like in RF one subset of features is used; however instead of using
seimng Randomized Trees  the most important, among them it is used as a random set. This
(ET) analysis reduces the model variance more.
In each iteration, the weakest learners are used to improve the model
Adaptive Boosting  according to the misclassified ones. A combination is made for every
(AB) learner based on a weighted sum that yields the final answer of the
Ensemble boosted classifier.
. . . This model makes predictions similar to those made by a set of weak
Models Boosting Gradient Boosting let . icall Tt builds a model in z imal del
Machine earners, typl(?a y DTs. It builds a model in an Op.tll’I.la way to mode
(GBM) like the boosting methods and generalizes the optimization function of
arbitrary loss. It can handle data with atypical values in the output side.
Voting Votm%\(/;éz;smﬁer It is a simple way of combining the predictions of the GBM and ET.

o Linear models: In these models, we may expect the
target value to be expressed as a linear combination of
constant values or the product between a parameter and
a predicting variable. In other words, the predicting vari-
able may be modified, thereby generating more complex
curves or shapes.

o Non-linear models: This models do not make strong
assumptions about the relationship between the input
attributes and the output attribute being predicted.

« Ensemble models: These models combine prediction
models to improve the strength and the performance of
the classification model. The three most popular ensem-
ble models are:

— Bootstrap Aggregation or Bagging involves
taking multiple samples of the training dataset (with
substitution) and forming a model for each sam-
ple. The prediction of the final output is averaged
through the predictions of all sub-models.

— Boosting algorithms create a sequence of models
that attempt to correct the errors of the previous
models in the chain. Once created, these models
make predictions that can be weighted by their
demonstrated accuracy and the results are combined
to generate an output.
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— Voting is the linear combination of different classi-
fiers weighted with different probabilities values in
order to better predict the class labels.

B. CLASSIFICATION METRICS ASSESSMENT

Before the training phase, RSSI measurements are obtained
by placing the receiver at different sectors. The RSSI mea-
surements are then stored in a database during an offline
phase, including the (x,y) coordinates and RSSI level for
each sample. Afterward, the RSSI receiver measures are cap-
tured again in an online phase. These last instances are then
compared with the derived model to predict the location of
the receiver, i.e., to generate RSSI-based location fingerprint-
ing. The selected area with the beacon position can be seen
in Figure 2.

In this context, we have used two metrics related to the

classification models:

o Accuracy: It is the most intuitive performance measure
and it is simply a ratio of correctly predicted observation
to the total observations. The value is calculated in per-
centage (%) for the whole experimental area. It describes
the global accuracy rate of each setup.

¢ Mean error: The average error for the entire exper-
imental area. This error is calculated in meters (m)
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considering the total dimensions of each area, and it is
computed by averaging all absolute differences between
the predicted localization and the central point of each
sector of the experimental area, that is the real position
where each measurement was taken.

Moreover, for this research, the Scikit-learn Python
library [30] was used. In all the experiments we used a 10-fold
cross-validation scheme due to the size of the experimental
data, and the low variance obtained in terms of accuracy and
mean error compared other cross-validation fold values.

Finally, herein, data preprocessing was not performed.
In other words, raw data or data as collected have been used
for all experiments carried out. Table 3 lists the total number
of datasets for each TxPower.

TABLE 3. Sample sizes of the RSSI captured using BLE4.0 at different
transmission power (TxPower) levels.

Transmission Power  Sample Size per Beacon

TxPower=0x01 5004
TxPower=0x02 5246
TxPower=0x03 4844
TxPower=0x04 5134
TxPower=0x04 4697
TxPower=0x06 4198

V. EXPERIMENTAL RESULTS

In this section we present the results obtained in the experi-
ments that we have carried out. First, we present a comparison
of localization performance using symmetric and asymmetric
TxPower setups. Here, the results obtained with a symmetric
TxPower setup are considered as the baseline results.

A. BASELINE RESULTS: SYMMETRIC

TRANSMISSION POWER SETUPS

In Table 4 the localization accuracy obtained for each sym-
metric TxPower configuration is presented for every classifi-
cation models tested. As can be seen, linear models present
the worst performance results. On the contrary, ensemble
models have better accuracy, very similar to that of non-linear
models, except for MLP, of which k-NN provides the best
results. In addition, we can see that the GBM model obtains

TABLE 4. Accuracy (%) for each classification model. best values for each
TxPower are highlighted in bold.

Model 0x01  0x02 0x03 0x04 0x05 0x06
LoR 60.50 4930 50.80 5720 48.90 60.30
LDA 63.80 52.00 5790 62.60 5430 66.70
GNB 7390 6480 7220 73.60 65.00 77.70
MLP 56.00 4530 44.00 5320 43.80 55.40
SVM 7220 6870 7490 74.10 6720 79.20

DT 73.80 69.70 72770  75.00 64.20 78.20
k-NN 7750 72770 77.00 75.70 70.00 81.10
RF 79.10 76.50  79.10 79.80 71.30  83.60
ET 78.50 7490 7920 78.70 7130 84.20
GBM  81.70 78.80 82.00 8230 76.50 86.10
AB 80.00 7530 80.00 78.70 72.10 83.70
VC 79.40 7620 80.00 80.10 73.80 84.70
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the best accuracy, followed by VC. With respect to the
TxPower, using a TxPower = 0x05 give the worst results
for all classification models, followed by TxPower = 0x02
and TxPower = 0x01. In this context, we can see that for
TxPower = 0x06, the best results are obtained with GBM
with an accuracy of 86.10% and the worst results are obtained
with MLP with an accuracy of 55.40%. Another aspect to
take into account is the behavior in terms of variance, mean,
and accuracy range. This analysis can be seen in Figure 6,
which shows the accuracy for each TxPower level in a box-
plot graphics for TxPower = 0x06 and TxPower = 0x02
(see Figures 6(b) and 6(a)). In this figure, the remaining
TxPower has not been included for a better understanding.
On performing an analysis in the entire TxPower group,
we observe that the non-linear and ensemble models have a
constant behavior in average as well as a minimum variance,
especially ET.

Regarding the mean error, Table 5 lists the results obtained
for each classification model and TxPower used. The results
show that the ranking of the different algorithms is straight-
forward, i.e, the ensemble models exhibit the best results,
followed by the non-linear models while the linear models
report the worst results. This is true independently of the
power transmission being used except for the case of the MLP
algorithm. We also notice that the results reported by the dif-
ferent algorithms belonging to the non-linear and ensemble,
differ by no more than one per cent, except once again in the
case of the MLP algorithm. Similar conclusions can be drawn
from the mean error results, see Table 5.

TABLE 5. Mean error (m) for each classification model. best values for
each TxPower are highlighted in bold.

Model 0x01  0x02 0x03 0x04 0x05 0x06
LoR 0933 1270 1.433 1.111 1.605 1.104
LDA 0.869 1.162 1309 0937 1387 0912
GNB 0.644 0.835 0885 0.674 0.991 0.649
MLP 1.078 1.190 1.650 1.191 1.765 1.131
SVM 0.772 0.766  0.783  0.753 1.056  0.636

DT 0.623 0.706 0.882 0.640 1.024 0.583
k-NN 0.555 0.702 0.660 0.594 0.958 0.525
RF 0.526 0.570 0.660 0.529 0.892  0.499
ET 0.516 0.585 0.647 0.525 0927 0.490
GBM 0426 0.536 0.561 0463 0.714 0.384
AB 0.522  0.603 0.628 0.505 0.832 0.532
VC 0.502 0592 0597 0491 0.852  0.490

Comparing Table 4 with 5 shows that in our setting the
worst results in both accounts, accuracy and mean error are
reported for the case when TxPower = 0x05. However, more
importantly, we can conclude from a more in-depth analysis
of the results that a given power level does not guarantee the
best results in both accounts. As far as the more appropriate
algorithm, the GBM algorithm report the best results in terms
of the two metrics of interest. In summary, to improve the
accuracy and mean error, it is worth to explore the asymmetric
transmission power setting of the beacons as a means to
mitigate the multipath fading effect.
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FIGURE 6. Accuracy boxplots of classification models using symmetric TxPower setups: (a) TxPower = 0x02 and (b) TxPower = 0x 06.

B. NUMERICAL RESULTS - ASYMMETRIC

TRANSMISSION POWER SETUPS

Previously, it has been exposed the importance of using dif-
ferent TxPower levels for each beacon (hereinafter referred to
as asymmetric TxPower configuration) to mitigate the MPF
effect, which has an impact on the final localization results.
Given this premise, five beacons with six TxPower levels
(i.e. from TxPower = 0x 01 to TxPower = 0x06) account for
a total of 7776 combinations. In this section we will evaluate
all these combinations to identify which configuration is the
best for each classification model.

Table 6 summarizes the results of all Asymmetric TxPower
configuration combinations evaluated. A specific TxPower
configuration is represented as a vector that contains the
TxPower level assigned to each beacon in this order: Be07,
Be08, Be09, BelO, and Bell (e.g. [6-1-3-3-5]). The table
shows the accuracy (%) and mean error (m) results for each
classification model using the best asymmetric TxPower
configuration.

TABLE 6. Accuracy (%) and mean error (m) results for each classification
model using asymmetric TxPower configuration. the values of the best
classification model are highlighted in bold.

Model TxPower Acc ME

LoR [4-1-2-3-1] 70.85 0.647
LDA [6-1-3-3-5] 77.18 0.486
GNB [4-1-2-6-1] 86.01 0.289
MLP [4-1-4-6-1] 68.18 0.692
SVM [6-1-6-6-1] 83.49 0.460
DT [6-1-3-6-5] 8595 0.289
k-NN [6-1-3-6-1] 87.78 0.264
RF [6-1-3-3-5] 89.84 0.228
ET [6-1-3-3-5] 89.25 0.197
GBM [6-1-3-3-5] 9145 0.185
AB [6-1-3-6-5] 89.40 0.234
vC [6-1-3-3-5] 90.43  0.200

Comparing these results with the ones obtained with
symmetric TxPower configurations, that is results shown
in Tables 4 and 5, we can see similar behaviors with respect
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the type of SLA used. In this respect, ensemble algorithms
obtain the best results and the linear algorithms, except MLP,
obtain the worst results. GBM continues to predominate in
terms of accuracy and low mean error (91.45% and 0.185m,
respectively), while MLP presents the worst results with an
accuracy and mean error of 68.18% and 0.692m, respec-
tively. As for the TxPower, except for AB which has a
[6-1-3-3-5] configuration, we can observe how configura-
tion [6—1-3—6-5] is the most repeated, the best configuration
for ensemble algorithms. Regarding the linear and non-linear
algorithms, we observe different optimal configurations.

In addition, we can observe common behavioral patterns
in general lines for the different beacons:

o For BeO7, TxPower = 0x06 predominates, with
TxPower = 0x04 predominating to a relatively lesser
extent.

o Be08 has TxPower = 0xO01, the best TxPower level
configured for all models.

o« Be09 is has the greatest variation of TxPower
(TxPower = 0x02, TxPower = 0x03, TxPower =
0x04 and TxPower = 0x06), although there is a
majority of TxPower = 0x03.

« In BelO, we see equal alternation between TxPower =
0x03 and TxPower = 0x06 configurations.

o Bell has an alternation between TxPower = 0x01 and
TxPower = 0x05.

Regarding accuracy, as summarized in Table 6, there is a
considerable improvement in the values obtained from each
of the models. With these results and taking into account the
symmetric TxPower results for TxPower = 0x06, we can
see how the models have improved on average in terms of
accuracy and mean error: (i) linear models improved by 10%
and 0.500m; (ii) non-linear improved by 9% and 0.340m;
and (iii) ensemble models improved by 5% and 0.260m.

However, following a brute-force search to find the optimal
TxPower configuration is computationally unfeasible given
that the search space (combinations of beacons and TxPower)
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grows exponentially with the number of beacons. Then,
in order to search for the optimal asymmetric TxPower con-
figuration we need to rely on metaheuristic search techniques.
This issue is addressed in the next section in order to apply
this techniques to real time indoor localization applications.

VI. OPTIMAL TXPOWER CONFIGURATION:
METAHEURISTIC OPTIMIZATION AND

PARAMETER TUNING

It is worth mentioning that the search for an optimal TxPower
configuration requires high computational resources. Con-
sequently, metaheuristic optimization algorithms may prove
effective on computing the optimal asymmetric TxPower
setup.

A. METAHEURISTIC ALGORITHMS

Here we discuss two metaheuristic approaches: (i) evolution-
ary algorithms (EAs), specifically genetic algorithms (GA);
and (ii) estimation of distribution algorithm (EDAs).

Case 1 (Estimation of Distribution Algorithm): EDAs are
stochastic optimization methods to search the optimum solu-
tion by building and sampling explicit probabilistic models
of promising candidate solutions. In our case the algorithm
randomly initializes the population (e.g., using a normal dis-
tribution) and, then, assesses it (evaluating the fitness of the
current probability distribution) [31], [32]. Therefore, itera-
tively, a new population of individuals is generated sampling
the current probability distribution, governed by the previ-
ously calculated parameters, and then evaluated.

This process is depicted in Algorithm 1, where: population
denotes the list of individuals (default value: 100); bpopu-
lation denotes the best chosen individuals from the popula-
tion; select_ratio is the ratio for choosing the bpopulation
(default value: 0.5); reduction() reduces the population based
on select_ratio; estimate_params() adjust the distribution
parameters (with mean (u) and standard deviation (o)); and
re_sample() generates the new population based on the new
parameters found.

Algorithm 1 Estimation of Distribution Algorithm

1: population < initialize(i, o)

2: evaluate(population)

3. while condition_not_met

4:  bpopulation < reduction(population, select_ratio)
5. (u,0) < estimate_params(bpopoulation)

6:  population < re_sample(i, o)

7:  evaluate(population)

8: end while

Case 2 (Evolutionary Algorithm): EA is a generic
population-based metaheuristic optimization algorithm that
uses mechanisms inspired by biological evolution, such as
reproduction, mutation, recombination, and selection. Can-
didate solutions to the optimization problem are the individu-
als of a population, and the evaluation function determines
the quality of each solution. Evolution of the population
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then takes place after the repeated application of the above
operators.

This process is depicted in Algorithm 2 [33], [34], where:
population denotes a list of individuals (default value: 100);
cxpb is the probability of crossing two individuals (default
value: 0.5); mutpb is the mutation probability (default value:
0.3); ngen is the number of generations (default value: 12);
bNGF() (buildNextGenerationFrom) computes the next gen-
eration population applying crossing and mutation operations
to the selected population, validates the new individuals, and
computes the statistics of this new population.

Algorithm 2 Evolutionary Algorithm

1: evaluate(population)

2: for g in range (ngen)

3:  population = select(population, len(population))
4:  offspring = bNGF (population, cxpb, mutpb)

5. evaluate(offspring)

6:  population = offspring

7: end for

In our experiments we used a GA, which is an specific
instance of an EA. In Table 7 the fundamental entities of a GA
for the asymmetric indoor localization problem are defined.

TABLE 7. Fundamental entities of the genetic algorithm evaluated.

Entity Definition
The representative unit of an entity that will evolve
Individuals  to the optimum. In this case, individuals will be the

different combinations of TxPower levels.

The minimum representation of a characteristic
Gene of an individual. In this case, each beacon will have
six different TxPower levels.
The set of individuals to be evaluated.
This process consists of transmitting the genes from
one generation to the next. In this case, new
individuals are generated, inheriting some genes
from their parents.
This process involves the variation of genes in the
genetic chain of the individual. The problem here is
the change of a certain gene randomly in some
individual(s) in the population.
This process consists of calculating or estimating
how optimal (fitness) each individual of the
population is. The accuracy of the algorithm with
the individual parameters is obtained.
This process, as its name suggests, consists of
separating the top optimal individuals for the next
generation. It corresponds to the selection of
individuals of the new generation that offer better
accuracy.

Population

Crossing

Mutation

Evaluation

Selection

With these initial definitions of both algorithms, the results
obtained for both cases are discussed below.

B. METAHEURISTIC OPTIMIZATION RESULTS

As we already said above, the main challenge we faced with
is to find an algorithm able to search for the optimal TxPower
configuration and performing the minimum number of eval-
uations. In other words, the fewer evaluations a metaheuristic
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TABLE 8. Experimental results using EDA and GA metaheuristic
optimization algorithms. in bold are highlighted the results that obtained
identical results as the brute-force search (see Table 6).

M-H Model TxPower Acc. ME Eval. Gen.
LoR [6-1-2-3-5] 70.00 0.721 768 4
LDA [5-1-3-3-1] 73.60 0.611 782 5
GNB [6-1-3-3-1] 84.70  0.358 749

—_
—_

MLP [4-1-2-1-1] 66.90 0.892 785 12
SVM [6-6-3-3-5] 83.00 0.512 808 9
EDA DT [6-1-3-3-3] 84.31 0.388 775 4
k-NN [6-1-2-3-1] 86.63 0.306 672 4
RF [6-1-3-3-3] 87.83  0.229 710 4
ET [4-1-3-3-5] 86.86  0.260 702 2
GBM [6-1-3-3-5] 9145 0.185 926 9
AB [6-1-3-3-3] 87.68 0.254 808 5
vC [6-1-2-3-5] 88.62  0.263 866 6
LoR [4-1-2-3-1] 70.85 0.647 334 6
LDA [6-1-3-3-5] 77.18 0.486 460 6
GNB [4-1-2-6-1] 86.01 0.289 439 7
MLP [4-1-4-6-1] 68.18 0.692 386 8
SVM [6-6-3-3-5] 8296 0512 402 2
GA DT [6-1-3-3-5] 8525 0.282 421 9
k-NN [6-1-3-6-1] 87.78 0.264 368 2
RF [6-1-3-3-5] 89.84 0.228 408 6
ET [6-1-3-3-5] 89.25 0.197 341 4
GBM [6-1-3-3-5] 9145 0.185 425 9
AB [6-1-3-3-1] 87.88  0.291 358 5
vVC [6-1-3-3-5] 90.43 0.200 426 5

algorithm performs the better, as long as the same solution
to the problem is obtained. In this sense, Table 8 shows the
results obtained with EDA and GA for each classification
model. It is important to note that the value of the evaluation
function used in both algorithms is the accuracy obtained for
each specific classification model of each individual of the
population, i.e., for each candidate solution to the problem.
According to these results, we can observe how EDA needs
more number of evaluations than GA, see column Eval, but
both algorithms mainly need the same number of generations
to converge, see column Gen. Also, in general EA obtains
better TxPower configurations that EDA, obtaining in most of
the cases (except for SVM, DT, and AB) the optimal solution.
This fact can be observed when comparing Table 8 with 6.

C. HYPERPARAMETER TUNING

Tuning is the optimization or adjustment process for the
hyperparameters of a model. It involves the comparison of
cross-validation results for the selected metric under dif-
ferent types of adjustments. The objective is to choose the
best combination of hyperparameters to maximize the cho-
sen metric and accuracy for the best TxPower obtained by
the metaheuristic algorithms. In our experiments, the ““Grid-
searchCV” function of the Scikit-learn library [30] has been
used.

Table 9 lists all hyperparameters for each of the clas-
sification models assessed. Also, the search range of each
hyperparameter and the selected value for the best accuracy
results are shown.

Table 10 summarizes the results obtained with the GA
algorithm with the selected optimized/tuned hyperparameters.
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TABLE 9. Search range and selected hyperparameter for each model.

Model Hyperparameters Range Selected
multi_class ["ovr’, "multinominal’] [’multinomial’]

LoR solver ['newton-cg’, "1bfgs’, ’sag’] Egn’c;wton—
C [0.8,0.9, 1.0, 1.1, 1.2] [0.9]
warm_start [True, False] [True]

LDA  solver [’svd’, ’1sqr’, "eigen’] [eigen’]

GNB  priors [None] [None]
hidden_layer_sizes [10, 20, 50, 100] [100]
activation [’identity’, ’logistic’, ’tanh’, [’tanh’]

MLP ‘relu’]
solver ['Ibfgs’, ’sgd’, adam’] [’adam’]
learning_rate [’constant’, ’invscaling’,  [’invscaling’]

*adaptive’]
alpha [10e=5, 10e~3, 10e~!, [10e~%]
10e!, 10€3]
shrinking [True, False] [True]
kernel [’linear’, ’poly’, ’sigmoid’, [’rbf’]

SVM Tbf’]
degree [-,3,4,5] [-]
function_shape ["ovo’, "ovr’] ["ovo’]

C [1,2,5,10, 50, 100] 10
gamma [’auto’, 0.1, 0.01, 0.001] [0.01]
n_neighbors [1,3,5,7,9,11] [5]

k-NN  weights ["uniform’, *distance’] [’distance’]

algorithm ["ball_tree’, ’kd_tree’,  [’ball_tree’]
“brute’]

max_features [’sqrt’, "log2’, None] [None]

splitter ["best’, ‘random’] ["best’]

DT criterion [’gini’, "entropy’] ["entropy’]
class_weight [None, ’balanced’] [None]
max_depth [2, 3, 10, 50, 100] [10]
n_estimators [5, 10, 15, 30] [30]
criterion [’gini’, "entropy’] [*gini’]

RE max_features [None, ’sqrt’, "log2’] [’sqrt’]
class_weight [’balanced_subsample’, [None]

None, "balanced’]
max_depth [2, 5, 10, 20] [20]
warm_start [True, False] [True]
n_estimators [10, 12, 15, 18, 20] [20]
criterion [’gini’, "entropy’] ["gini’]
min_samples_leaf [1,2, 3,4, 5] [3]

ET max_leaf_nodes [3,5,7,9, None] [None]
max_depth [2, 3,4, 5, None] [None]
max_features [None, ’sqrt’, "log2’] [’sqrt’]
class_weight [’balanced_subsample’, [None]

None, "balanced’]
n_estimators [100, 200, 250] [100]
max_depth [3,6,9] [3]

GBM  jcaming rate [0.001,0.1,0.2, 03] [0.1]
max_features [’sqrt’,’log2’, None] [’sqrt’]
algorithm [SAMME’, 'SAMME.R’] ['SAMME’]

AB n_estimators [50, 100, 500] [500]
learning_rate [0.01, 0.1, 1.0, 2.0] [2.0]

vC voting ["hard’, *soft’] [’soft’]

Comparing evaluation metric values with those presented
in Table 8, we can see how most models have improved in
terms of accuracy and how most models have reduced the
mean error. Specifically, for the VC classification model an
improvement of 1.65% in terms of accuracy and a reduction
of 0.019m in the mean error was obtained, outperforming the
best result achieved so far by the GBM classification model
in accuracy but not in mean error.

In addition, Figure 7 graphically represents these boxplot
results. The variance for most of these latter results is consid-
erably lower than the one reported in Figure 6(a).

VOLUME 7, 2019



J. Lovdn-Melgarejo et al.: Comparative Study of Supervised Learning and Metaheuristic Algorithms

IEEE Access

TABLE 10. Experimental results of the GA algorithm using tuned
hyperparameters, for each classification model. best result is
shown in bold.

Score

Model TxPower Setting Acc ME RT

LoR [4-1-2-3-1] 76.71  0.487  10.001
LDA [6-1-3-3-5] 77.60  0.481  0.031
GNB [4-1-2-6-1] 86.01  0.289  0.020
MLP [4-1-4-6-1] 7221  0.613  3.660
SVM [6-6-3-3-5] 83.00 0512  2.881
DT [6-1-3-3-5] 85.80 0326  0.020
k-NN [6-1-3-6-1] 87.87 0249  0.031
RF [6-1-3-3-5] 90.56  0.201  0.082
ET [6-1-3-3-5] 91.03 0.209  0.050
GBM [6-1-3-3-5] 91.87 0.180  3.269
AB [6-1-3-3-1] 89.24  0.242  3.907
vVC [6-1-3-3-5] 92.08 0.181 3.365
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FIGURE 7. Accuracy results of optimal asymmetric transmission power
for the GA.

Furthermore, Table 10 clearly shows that the run time

required, RT in seconds (s), to find the best combination of
TxPower by GA is substantially shorter than the required
by EDA and, obviously, by the brute-force search process.
For instance, in the case of the GBM model, the GA per-
formed 425 combinations in 3.269s for a total time of

17

389.325s (23.155min). However, the EDA and brute-force,

their RTs were 3, 027.094s (50.452min) and 25, 419.744s
(423.662min), respectively.

Finally, we can observe how the boosted aggregation

(bagging) models, i.e., RF and ET, obtained very good per-
formance and a very low RT. The DT and k-NN mod-
els, although presenting a lower performance between 5%
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FIGURE 8. Benchmark of the different classification models: (a) Energy
consumption, (b) Inst/Cycle and (c) CPU.

cycle (inst/cycle) and CPU percentage of usage (% CPU).
Figure 8 shows the results of the benchmark test for the results
obtained in Table 10.

Regarding energy consumption (Figure 8(a)), the ensem-

and 3% very closely by DT, k-NN, and RF. These four
models are good alternatives for real-time localization,

although.

D. BENCHMARKING RESULTS

Being able to evaluate the computational cost with respect
to the accuracy of each model should provides us further
insights on the computational requirements of the 12 models
under study. Towards this end, we performed a benchmark
test using the Perf software package on a computer equipped

with 8GB RAM and an Intel i7 3.60GHz x8 processor.

Our computational cost analysis included the evaluation
of the energy consumption in Joules (J), instructions per
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ble algorithms, except the bagging algorithm, have a very
high consumption for LoR, MLP, and SVM classification
models. In Inst/cycle and % CPU, Figures 8(b) and 8(c),
similar results were found. The best results wre reported
for the ET model, followed very closely by DT, k-NN, and
RF. These four models are good alternatives for real-time
localization.

VIl. CONCLUSIONS AND FUTURE WORK

This paper contributed to the mitigation of the MPF effect
based on asymmetric TxPower setups. Twelve different SLA
algorithms belonging to three different taxonomies have been
studied. The results showed a remarkable improvement in
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the accuracy of the classification models. Therefore, to per-
form an optimized search between the different beacons and
TxPower levels, two algorithms based on metaheuristics were
evaluated: Estimation of Distribution Algorithm (EDA) and
Genetic Algorithm (GA). The experimental results carried
out exhibited that GA achieved optimal TxPower setup in
most of the cases, reducing the number of evaluations con-
siderably in comparison with the brute-force or exhaustive
search approach.

To further improve the performance of the localization
mechanism, a benchmark test was performed on energy
and CPU consumption as well as Inst/cycle, the results of
which confirmed that the boosted aggregation algorithm has
a useful relationship between metrics and computational
resource consumption. All studied algorithms, especially the
non-linear and ensemble models, are a good option, although
their very high computational resource consumption opens a
new challenge in the actual deployment based on embedded
devices.

Finally, the development of the distributed platform has the
main purpose of developing indoor localization applications
based on fog computing architecture. Traditional approaches
use a cloud-like architecture for data storage and processing,
while a future work of this research will perform data pro-
cessing at the edge level, i.e., taking final decisions near to the
receiver not in the cloud. Moreover, to minimize the energy
consumption at the edge level, microcomputers can be used
to make real-time decisions.
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