
����������
�������

Citation: Díez, F.J.; Arias, M.;

Pérez-Martín, J.; Luque, M. Teaching

Probabilistic Graphical Models with

OpenMarkov. Mathematics 2022, 10,

3577. https://doi.org/10.3390/

math10193577

Academic Editor: Ana Isabel Molina

Received: 29 July 2022

Accepted: 21 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Teaching Probabilistic Graphical Models with OpenMarkov
Francisco Javier Díez 1,* , Manuel Arias 1 , Jorge Pérez-Martín 1 and Manuel Luque 2

1 Department of Artificial Intelligence, Universidad Nacional de Educación a Distancia (UNED),
28040 Madrid, Spain

2 Department of Statistics, Operations Research and Numerical Calculation, Universidad Nacional de
Educación a Distancia (UNED), 28040 Madrid, Spain

* Correspondence: fjdiez@dia.uned.es

Abstract: OpenMarkov is an open-source software tool for probabilistic graphical models. It has
been developed especially for medicine, but has also been used to build applications in other fields
and for tuition, in more than 30 countries. In this paper we explain how to use it as a pedagogical
tool to teach the main concepts of Bayesian networks and influence diagrams, such as conditional
dependence and independence, d-separation, Markov blankets, explaining away, optimal policies,
expected utilities, etc., and some inference algorithms: logic sampling, likelihood weighting, and arc
reversal. The facilities for learning Bayesian networks interactively can be used to illustrate step by
step the performance of the two basic algorithms: search-and-score and PC.

Keywords: OpenMarkov; Bayesian Networks; d-separation; inference; Learning Bayesian Networks

MSC: 68T37

1. Introduction

Bayesian networks (BNs) [1] and influence diagrams (IDs) [2,3] are two types of proba-
bilistic graphical models (PGMs) [4–6] widely used in artificial intelligence. Unfortunately,
the mathematical theory that supports them may be tough for beginners. Our computer
science students, despite having a relatively strong mathematical background, find it hard
to intuitively grasp some of the fundamental concepts, such as conditional independence
and d-separation. Additionally, we have been teaching PGMs to health professionals, most
of them physicians, for more than 25 years, and although we avoid the more complex
aspects (for instance, we do not mention d-separation and only teach them the variable
elimination algorithm), some of the basic notions important for them, such as conditional
independence, are difficult to convey. In this paper we show how OpenMarkov, an open-
source tool with an advanced graphical user interface (GUI), has allowed us to explain
more intuitively some concepts that we found very difficult to explain before we had it.

This article is an extended version of the paper “Teaching Bayesian networks with
OpenMarkov”, presented at the 9th International Conference on Probabilistic Graphical
Models, Prague, 2018 [7].

The rest of this paper is structured as follows: Section 2 introduces the background
(notation, definitions, and an overview of OpenMarkov); Sections 3 and 4, the core of the
paper, explain how to teach BNs and IDs respectively; Section 5 contains a brief discussion
and the conclusion.

2. Background
2.1. Basic Definitions about Probability and Graphs

In the literature about PGMs it is usual to represent variables with capital letters (X)
and their values with lower-case letters (x). A bold upper-case letter (X) denotes a set
of variables and a bold lower-case letter (x) denotes a configuration of them, i.e., the

Mathematics 2022, 10, 3577. https://doi.org/10.3390/math10193577 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10193577
https://doi.org/10.3390/math10193577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9855-9248
https://orcid.org/0000-0003-2405-6677
https://orcid.org/0000-0002-3588-7233
https://orcid.org/0000-0003-3018-3760
https://doi.org/10.3390/math10193577
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10193577?type=check_update&version=3

Mathematics 2022, 10, 3577 2 of 20

assignment of a value to each variable in X. In this paper we assume that all the variables
are discrete, i.e., each variable has a finite set of values, called states. When a variable X
is Boolean, we denote by +x the state “true”, “present”, or “positive”, and by ¬x the state
“false”, “absent”, or “negative”.

Definition 1 (Conditional independence). Given a probability distribution P, two variables X
and Y, and a set of variables Z containing neither X nor Y, we define IP(X, Y | Z) as follows:

IP(X, Y | Z) ⇐⇒ ∀x, ∀y, ∀z, P(x, y | z) = P(x | z) · P(y | z) . (1)

When IP(X, Y | Z) holds, we say that X and Y are conditionally independent given Z. In
this case, if P(y) 6= 0 for a particular value of Y, then

∀x, P(x | z, y) = P(x | z) , (2)

i.e., if we already know Z = z, knowing later that Y = y does not alter the probability of X.
In these expressions Z can be the empty set, which only has one configuration, usually

denoted by �. We have P(x | �) = P(x) and P(x | �, y) = P(x | y). If IP(X, Y | ∅) holds,
we say that X and Y are a priori independent.

The graphs considered in this paper can have at most one link between each pair of
nodes. A graph is directed when all its links are directed. A directed path is a sequence of
nodes {X1, . . . , Xn} such that there is a link Xi → Xi+1 between each pair of consecutive
nodes. A cycle is a sequence of nodes {X1, . . . , Xn} such that there is a link Xi → Xi+1
between each pair of consecutive nodes and a link Xn → X1. Directed graphs containing
no cycles are said to be acyclic.

When there is a link X → Y, we say that X is a parent of Y and Y is a child of X. The set
of parents of a node X is denoted by Pa(X). When there is a directed path from X to Y, we
say that X is an ancestor of Y and Y is a descendant of X.

A pair of consecutive links in a path is called a trail [5]. A trail can be convergent
(X → Z ← Y), divergent (Y ← X → Z), or consecutive (X → Y → Z); these three types are
sometimes called head-to-head, tail-to-tail, and head-to-tail, respectively [4].

The following two definitions for acyclic directed graphs are relevant to PGMs.

Definition 2 (d-separation). A path consisting of one link is always active. Let X, Y, and Z be
three nodes and E a set of nodes in an acyclic directed graph G, such that E contains neither X
nor Y. A convergent trail X → Z ← Y is active if Z or at least one of its descendants is in E.
A divergent trail Y ← X → Z is active if X is not in E. A sequential trail X → Y → Z is active
if Y is not in E. A path consisting of more than one link is active when all its trails are active.

Given two nodes, X and Y, and a set E containing neither X nor Y, if there is at least one
active path connecting them, we say that they are connected given E; otherwise, we say that they
are separated given E and denote it as SG(X, Y | E).

Proposition 1. Let X and Y be two nodes and E a set of nodes in an acyclic directed graph G, such
that E contains neither X nor Y. A path (not necessarily a directed path) between X and Y is active
if and only if it consists of a single link or every node W between X and Y in the path satisfies
this property:

1. if the arrows that connect W with its two neighbors in the path converge in it (head-to-head
trail), then W or at least one of its descendants is in E;

2. else (i.e., if W is the middle of a divergent or a sequential trail), then W is not in E.

This proposition is a consequence of Definition 2, but it could alternatively be taken as
the definition of d-separation.

Mathematics 2022, 10, 3577 3 of 20

2.2. Probabilistic Graphical Models

A PGM consists of a set of variables V [4,5], a probability distribution P(v), and a
graph G such that each node in the graph represents a variable in V; for this reason, it is
usual to speak indifferently of nodes and variables. The relation between G and P depends
on the type of PGM. In this paper we focus on two types of PGMs whose graphs are
directed and acyclic, namely, BN and IDs.

2.2.1. Bayesian Networks

In a BN every node has a conditional probability distribution for each configuration
of its parents, P(x | pa(X)). Since we assume that all the variables are discrete, the set of
distributions for a node can be encoded as a conditional probability table (CPT).

The relation between G and P is given by the following properties; we can take any
one of them as the definition of a BN and then prove that the other two follow from it [4,5,8]:

1. Factorization of the probability: The joint probability is the product of the probability
of each node conditioned on its parents, i.e.,

P(v) = ∏
X∈V

P(x | pa(X)) . (3)

(In this equation, the value x and the configuration pa(X) in the right-hand side are
given by the projection of v onto X and Pa(X) respectively. The same holds for the
equations in the next section.)

2. Markov property. Each node is independent of its non-descendants given its parents,
i.e., if Y is a set of nodes such that none of them is a descendant of X, then

P(x | pa(X), y) = P(x | pa(X)) . (4)

3. d-separation. If two nodes X and Y are d-separated in the graph given E (cf. Definition 2),
then they are probabilistically independent given E:

∀X, ∀Y, ∀E, SG(X, Y | E) =⇒ IP(X, Y | E) . (5)

2.2.2. Influence Diagrams

IDs [2,3] have three different types of nodes: chance (VC), decision (VD), and util-
ity (VU). In this paper we assume that utility nodes have no children; for a more general
presentation, see [9]. Every chance node C has a CPT and each utility node U has a table,
ψ, that represents the decision maker’s values for each configuration of the parents of U,
ψU(pa(U)).

The meaning of a link (sometimes called arc) depends on the type of nodes it connects.
A link from a decision Di to a decision Dj means that Di is made before Dj. A link from a
chance node C to a decision node Dj means that the value of variable C is known when
making the decision Dj. Links into utility nodes represent functional dependency.

IDs require that there is a directed path connecting all the decisions; it induces a
total ordering {D0, . . . , Dn−1}, the order in which they are made. It is usual to assume the
non-forgetting hypothesis, which means that a variable C known for a decision Dj is also
known for any subsequent decision Dk. The set of chance variables, VC, can be partitioned
into {C0, C1, . . . , Cn}, where Ci is the subset of variables unknown for Di−1 and known
for Di. The set of variables known to the decision maker when deciding on Di is called the
informational predecessors of Di and denoted by InfPred(Di) [10].

A stochastic policy for a decision D is a probability distribution PD(d|infPred(D)). If PD
is degenerate (i.e., consisting of ones and zeros only) then the policy is deterministic. A strat-
egy ∆ for an ID is a set of policies, one for each decision, {PD | D ∈ VD}. A strategy ∆
induces a joint probability distribution over VC ∪VD defined as follows:

Mathematics 2022, 10, 3577 4 of 20

P∆(vC, vD) = ∏
C∈VC

P(c | pa(C)) ∏
D∈VD

PD(d | infPred(D)) , (6)

so that the expected utility under the strategy ∆ is

EU(∆) = ∑
vC

∑
vD

P∆(vC | vD) ∑
U∈VU

ψU(pa(U)) , (7)

where infPred(D) and pa(U) are the projections of the configuration (vC, vD) onto InfPred(D)
and Pa(U) respectively. The maximum expected utility (MEU) is

MEU = max
∆∈∆∗

EU(∆) , (8)

where ∆∗ is the set of all the strategies. A strategy ∆opt is optimal if it maximizes the expected
utility, i.e., if EU(∆opt) = MEU. Each policy in an optimal strategy is an optimal policy.

The evaluation of an ID consists in finding the MEU and an optimal strategy. It can be
proved [11] that

MEU = ∑
c0

max
d0

. . . ∑
cn−1

max
dn−1

∑
cn

P(vC | vD) ∑
U∈VU

ψU(vC, vD) . (9)

When the information available for Di is infPred(Di), the best choice for this decision is

δi = arg max
di∈Di

∑
ci

max
di+1

. . . ∑
cn−1

max
dn

∑
cn

P∆(vC | vD) ∑
U∈VU

ψU(pa(U)) ,

which implies that, in the optimal strategy, the policy for D1 is

Popt
Di

(di | iPred(Di)) =

{
1 if di = δi

0 otherwise .
(10)

2.2.3. Arc Reversal Algorithm

An arc (a link) X → Y in a BN can be inverted without modifying the joint probabilities
or the expected utilities of the network, as long as there is no other path from X to Y [2].
It proceeds as follows. Let A = pa(X) ∩ pa(Y), B = pa(X) \A, and C = pa(Y) \A, which
are disjoint sets. The CPT for the two nodes in the original network are P(x | a, b) and
P(y | x, a, c), respectively. In the new BN, this link is replaced with Y → X and the new
CPTs are P(y | a, b, c) and P(x | y, a, b, c):

P(x, y | a, b, c) = P(x | a, b) · P(y | x, a, c)

P(y | a, b, c) = ∑
x

P(x, y | a, b, c)

P(x | y, a, b, c) =
P(x, y | a, b, c)
P(y | a, b, c)

In order to maintain the consistency of the BN, it is then necessary to share the parents by
drawing a link from each node in C to X and from each node in B to Y.

Arc reversal can be applied to compute the posterior probability P(v | e) of a variable
of interest, V, in a BN. A node is said to be barren when it is not V, is not in E, and is not
an ancestor of any evidence variable. Due to the Markov property, barren nodes can be
removed from the network without altering the posterior probability of V. If necessary,
some links can be inverted one by one to create new barren nodes until the evidence
variables are the parents of X and all the other nodes have been removed; the probability
of interest can be read from the CPT for X—we will see an example in Section 3.3.1.

Similarly, a link X → Y between two chance nodes in an ID can be inverted to remove
all the chance and decision nodes one by one, and some utility nodes can be fused, until

Mathematics 2022, 10, 3577 5 of 20

only one utility node remains [12,13]—there is an example in Section 4.1.2. A chance node X
whose only descendants are utility nodes can be absorbed as follows. If the only child of X
is U, the algorithm adds a link from each node in V = pa(X) \ pa(U) to U and removes X.
The new utility potential is

U(v′) = ∑
x

P(x | pa(X)) ·U(x, pa(U)) . (11)

where V′ = (pa(X)∪ pa(U)) \ {X}. If X has more than one utility node, UX = {U1, . . . , Un},
they must be fused into a new utility node U, with Pa(U) = ∪Ui∈UX Pa(Ui) and ψU =
∑Ui∈UX

ψUi .
Similarly, a decision D whose only descendant is U can be absorbed, so that the new

utility is
U(v′) = max

d
U(d, v′) , (12)

where V′ = pa(U) \ {D}. If D has more than one utility node, they must be fused, as above.

2.3. OpenMarkov

There are many software tools for PGMs, either commercial (AgenaRisk, BayesFusion,
BayesiaLab, Bayes Server, HUGIN, Netica. . .), free (SamIam), or open-source (OpenMarkov,
UnBBayes, Weka. . .). OpenMarkov has been developed at the National University for
Distance Education (UNED) in Madrid, Spain (http://www.openmarkov.org; accessed
on 20 September 2022). It consists of around 115,000 lines of Java code (excluding com-
ments and blank lines), structured in 44 Maven subprojects and stored in a Git repository
at Bitbucket (https://maven.apache.org, https://git-scm.com, https://bitbucket.org; ac-
cessed on 20 September 2022). The first versions were distributed under the European
Union Public License (EUPL), version 1.1 (https://eupl.eu; accessed on 20 September
2022); recent versions are distributed under the GNU public license, version 3 (GPLv3)
(https://www.gnu.org/licenses/gpl-3.0.en.html; accessed on 20 September 2022).

OpenMarkov offers support for editing and evaluating several types of PGMs, such as
BNs, IDs, Markov IDs [14], and decision analysis networks [15]. It can also edit limited-
memory IDs (LIMIDs) [16] and several types of temporal models, such as dynamic Bayesian
networks [17], which include Markov chains and hidden Markov models as a particular
case, factored Markov decision processes (MDPs) [18], factored partially observable MDPS
(POMDPs) [19], and DLIMIDs [20]. Its native format for encoding these models is Prob-
ModelXML (http://www.ProbModelXML.org; accessed on 20 September 2022).

OpenMarkov has been designed primarily for medicine and for teaching. With this
tool and its predecessor, Elvira [21], our research group has built complex models for
several real-world health problems. (Some of those networks and other examples are
available at http://www.probmodelxml.org/networks; accessed on 20 September 2022.)
Other groups have used it to build PGMs in other fields, such as planning and robotics [22].
Both Elvira and OpenMarkov have paid special attention to the explanation of reasoning
[23,24], a topic whose importance has been acknowledged in the area of expert systems
since the 1980s [25], and is now an issue of utmost relevance in modern AI—see [24] and
references therein.

To our knowledge, OpenMarkov has been used for research and tuition in more than
30 countries, from top universities, large companies, and centers of the Government of the
United States to students in low-income countries who cannot afford paying for commercial
software for PGMs.

3. Teaching Bayesian Networks
3.1. Evidence Propagation in BNs with OpenMarkov

In a diagnostic problem, the assignment of a value to a variable as a result of an obser-
vation is called a finding. The set of findings is called evidence. The propagation of evidence
consists in computing the posterior probability of some variables given the evidence.

http://www.openmarkov.org
https://maven.apache.org
https://git-scm.com
https://bitbucket.org
https://eupl.eu
https://www.gnu.org/licenses/gpl-3.0.en.html
http://www.ProbModelXML.org
http://www.probmodelxml.org/networks

Mathematics 2022, 10, 3577 6 of 20

In OpenMarkov chance variables are drawn as rounded rectangles and colored in
cream, as shown in Figure 1. When a finding is entered (usually by double-clicking on the
value/state of the variable), OpenMarkov propagates it and shows the posterior probability
by means of a horizontal bar. It is possible to have several sets of findings, each called an
evidence case, and display several bars for each state. Figure 1 shows three evidence cases: in
the first one, corresponding to the red bars, there is no finding (E = ∅); in the second one,
shown in blue, the presence of virus A is confirmed, so E = {VA} and e = (+vA); in the
third one, shown in green, this virus is known to be absent, i.e., E = {VA} and e = (¬vA).
This allows the user to see how the probabilities of the variables change when new findings
are entered.

Figure 1. A Bayesian network for the differential diagnosis of two hypothetical diseases. The
horizontal bars represent the probability of each state for each evidence case. We can check that VA

and VB are a priori independent by introducing evidence about VA and observing that the probability
of VB does not change. The same holds for the 5 variables at the right of F. In contrast, the 4
descendants of VA do depend on the evidence for this variable.

3.2. Correlation and Independence
3.2.1. Conditional Independence

Even though the concepts of probabilistic dependence (correlation) and independence
are mathematically very simple (cf. Equation (1)), many students have difficulties to under-
stand them intuitively, especially in the case of conditional independence. In our teaching,
we use the network in Figure 1, which has a clear causal interpretation: all the variables are
Boolean, and for each link X → Y, the finding +x increases the probability of +y, except in
the case of vaccination, +v, which decreases the probability of D2 being present.

In order to illustrate a priori independence, we point out that in this model there is no
link between the two viruses, VA and VB, and they have no common ancestors. Therefore,
they are d-separated in the graph, and because of Property (5) (with E = ∅), they are a
priori independent. We can check it by introducing a finding for VA and observing that the
probability of VB does not change, or vice versa; for example, P(+vB|+vA) = P(+vB|¬vA) =
P(+vB) = 0.01, as shown in Figure 1, which confirms that Equation (2) holds. In contrast,
we can see that the variables VA and D1 are correlated by introducing evidence about the
one and observing that the probability of the other changes; for example, in Figure 1 we
observe that P(+d1|+vA) = 0.9009 > P(+d1) = 0.0268 > P(+d1 | ¬vA) = 0.009.

We can also see that in this graph each node at the left of F is separated from each
variable at its right when E = ∅, which implies that they are pairwise a priori independent—
see again Figure 1. We can verify it by introducing evidence for one variable in one side
and observing that the probabilities on the other side do not change.

Mathematics 2022, 10, 3577 7 of 20

To illustrate conditional independence, we first show that S (a sign) and F (fever) are
a priori correlated by introducing evidence on one of them and seeing that the probability
of the other changes. However, if we first introduce evidence about D1, which plays the role
of E, and introduce a finding S (by generating a new evidence case in OpenMarkov), then
the probability of F does not change, as we can observe in Figure 2. This shows that F and S,
despite being correlated a priori, are conditionally independent given D1 (it is an instance of
Equation (1) with E = {D1}). Our students easily understand that the correlation between
fever and the sign is due to a common cause, and when we know with certainty whether
this cause is present or absent, the correlation disappears. OpenMarkov confirms that our
intuitive understanding of causation leads to the numerical results we expected.

Figure 2. An example of conditional independence: once we know with certainty that disease 1 is
present, no finding about sign S affects the probability of fever or the suspicion about the viruses.

3.2.2. d-Separation

Section 2.2.1 introduced the definition of d-separation. If we just left our students with
it (or with its equivalent definition in Proposition 1), they would be absolutely unable to
understand the rationale behind it—so would we! In particular, it is difficult to understand
why some trails are active if and only if the intermediate node is in E, while for other trails
the opposite is true—see Definition 2. Additionally, a convergent path X → Z ← Y, which
is a priori inactive, can be activated not only by Z but also by any of its descendants, while
a divergent path Y ← X → Z, which is a priori active, can be blocked by X but not by its
ancestors. It sounds arbitrary, if not esoteric.

To make d-separation intuitive, we explain that this property is a consequence of
the factorization of the probability (cf. Equation (3)) and that it agrees with our notions
of causality, provided that E in Definition 2 is interpreted as the evidence, i.e., a set of
findings for the observed variables. We first consider that a path containing just one link
is always active, by definition, whatever the evidence. We can observe for the network in
Figure 1 that introducing a finding for one variable affects the posterior probabilities of
all its neighbors, even if there is evidence for other nodes. The correlation in this case is
explained by a direct cause-effect relation.

We then consider a divergent trail, such as S ← D1 → F. Definition 2 says that this
path is active a priori, i.e., when there is no evidence. We can verify it by introducing a
finding for S or for F, as explained above. This correlation is intuitive because S and F are
effects of a common cause. However, when the presence or the absence of this disease is
confirmed or ruled out by direct observation, then E = {D1}, and SG(S, F | {D1}) implies
IP(S, F | {D1}). We can check it by first entering evidence for D1 and then, in a new

Mathematics 2022, 10, 3577 8 of 20

evidence case, adding a finding for S, either +s or ¬s; the probability of F does not change,
as shown in Figure 2. This also agrees with our notion of causal influence.

The behavior of a sequential trail is similar; for example, the path VA → D1 → S
means that the causal influence of VA on S is mediated by D1. This path is active a priori
because detecting virus A increases the probability of the disease and, consequently, that of
the symptom (deductive reasoning). Similarly, the symptom makes us suspect the presence
of the virus (abductive reasoning). However, the finding +d1 blocks this path, because once
we know that the disease is present (or absent), the information about the virus does not
affect the probability of the symptom, and vice versa. We can check it with OpenMarkov.
Again, d-separation agrees with our intuitive notion of causality.

Let us now consider the convergent trail VA → D1 ← VB. When E = ∅, it is inactive
and VA and VB are separated. (At this point, it may be worth warning our students that,
contrary to intuition, “being connected” is not a transitive property: VA is connected
with D1 and D1 is connected with VB, but VA is not connected with VB. The analysis of
whether a path is active cannot be done link by link, because an individual link is always
active; it is necessary to consider every pair of consecutive links, i.e., every trail, as in
Definition 2 and Proposition 1. The lesson is that, even though intuition is very useful in
mathematics, it must be properly trained and supported by formal reasoning.)

We can check that VA and VB are separated—and, because of Property (5), a priori
independent—by introducing evidence for VA and observing that the probability of VB
does not change, as shown in Figure 1. This is intuitive, because there is no common cause
for these variables. In contrast, when there is evidence about D1, the trail VA → D1 ← VB
becomes active and, consequently, VA and VB are no longer separated: ¬SG(VA, VB | {D1}).
We can verify it by first introducing evidence about D1—for example, +d1—, generating a
new evidence case, introducing evidence about VA, and observing that now the probability
of VB changes: P(+vB | +d1, +vA) < P(+vB | +d1) < P(+vB | +d1, ¬vA). This is consistent
with the causal interpretation of the BN, because when a patient has the first disease, we
suspect that the cause is virus A or virus B; if additional evidence (for example, the result
of a test) leads us to ruling out virus A, we then suspect that the cause of the disease is
virus B; conversely, if the presence of A is confirmed, our suspicion of B decreases. Put
another way, the finding +d1 creates a negative correlation between VA and VB, which were
are a priori independent. This phenomenon, called explaining away [4], is the most typical
case of intercausal reasoning; in particular, it is a property of the noisy-OR model [4,26]. (In
this network there is another noisy OR at F.)

It also follows from the definition of d-separation that the convergent trail VA →
D1 ← VB is not only activated by D1 itself, but also by any of its descendants. We can
verify it with OpenMarkov by introducing the findings +s or + f . This is another instance of
explaining-away because any of these findings makes us suspect the presence of at least
one of the viruses, with a negative correlation between VA and VB.

We may now ask ourselves: if the middle node in a divergent trail can block it, and the
descendants of the middle node can activate a convergent trail, why cannot the ancestors
of the middle node in a divergent trail block it? We can check with OpenMarkov that this is
the case; for example, given the trail S← D1 → F, if we first introduce the finding +vA and
then add in a new evidence case the finding +s, we observe that the probability increases,
which proves that S and F are not conditionally independent given VA. The reason for
this correlation is that the presence of a virus increases the probability of the disease, but—
unlike the case in which the disease is confirmed by direct observation—the probability is
not yet 100%, so it can be further increased by +s. We can also try other combinations of
findings to check that no ancestor of D1 blocks this trail.

3.2.3. Markov Property and Markov Blankets

As we saw in Section 2.2.1 (cf. Equation (4)), the Markov property means that every
node is conditionally independent of its non-descendants given its parents. Again, this
definition may be difficult to understand for students when stated in abstract, but it is

Mathematics 2022, 10, 3577 9 of 20

intuitive when explained with examples. In particular, when a node has no parents, it
is conditionally independent of its non-descendants. We can illustrate it with the two-
diseases network (Figure 1) by showing, for example, that the probability of Disease 1 does
not change when introducing evidence for the nodes at the right of Fever, which are not
descendants of that disease; and vice versa. Similarly, we can introduce evidence for the
parents of a node—for example, Fever—and then see that adding evidence about other
nodes that are not its descendants does not alter its probability.

We can illustrate in the same manner the concept of Markov blanket, which denotes a set
of nodes that surround a node, making it conditionally independent of the other variables
in the network [4]. One might think that the set of parents and children of a node D1
constitute a Markov blanket for it. However, this is not the case: if we introduce evidence
for the parents and children of D1, i.e., for VA, VB, S, and F, we can see that D1 is not yet
separated from all the other nodes in the network; in fact, every node in {V, D2, A, X, E} is
correlated with D1 because F has activated the trail D1 → F ← D2. Therefore, the Markov
blanket of a node must include not only its parents and children, but also the parents of
its children.

3.3. Inference Algorithms for Bayesian Networks

We have seen that OpenMarkov is able to propagate evidence, but so far we have not
discussed inference algorithms. In this section, we explain how this tool can help illustrate
some of the basic algorithms, namely, arc reversal, logic sampling, and likelihood weighting.

3.3.1. Arc Reversal for Bayesian Networks

Arc reversal was initially designed to transform IDs into decision trees [2], but in our
opinion, students understand it better if it is first introduced for BNs.

Let us use again the two-diseases network (Figure 1) as an example. When processing
the query P(+d1|+ f , +s, ¬v), D1 is the variable of interest and F, S, and V are the evidence
variables. Then X and U can be removed in OpenMarkov’s GUI because they are barren
nodes. Then A becomes a barren node, which can also be removed. The user can invert
link B→ D1 by right-clicking on it; OpenMarkov replaces it with D1 → B, adds a new link
A→ B (because A was a parent of D1), and computes the new probability table P(b | a, d1);
the probability P(a) does not change because A has received no new parent. Now B is
barren and can be removed. The user can then invert A→ D1 to remove A. After inverting
D2 → S, which adds the links D1 → D2 and V → S, it is possible to remove D2. In each
step the user can inspect the new CPTs and check that they have been computed correctly.
Finally, after inverting D1 → S and D1 → F the parents of D1 (the variable of interest) are
the three evidence nodes, and the user can retrieve the probability P(+d1|+ f , +s, ¬v) by
opening the CPT for D1.

When there is a link X → Y and another directed path from X to Y, the option for
inverting the link is disabled in its contextual menu (it appears in gray) because it would
create a cycle. In the future, we might add a dialog that would suggest to the user the
node deletions and arc reversals that will lead to calculating the probability of the variable
of interest.

3.3.2. Stochastic Algorithms

OpenMarkov currently implements two stochastic algorithms: logic sampling [27] and
likelihood weighting [28]. Both start by sampling a value for each node without parents,
using its prior distribution, and then proceed in topological order (i.e., downwards), sam-
pling each other node in accordance with the probability distribution for the configuration
of its parents. This way, every iteration of the algorithm obtains a sample—a configuration
of all the nodes. OpenMarkov is able to store these configurations in a spreadsheet and
compute some statistics, including the posterior probability of each variable, as shown
in Figure 3.

Mathematics 2022, 10, 3577 10 of 20

The left side of this figure displays the output of the logic sampling algorithm. The
10,000 configurations obtained are stored in the “Samples” sheet (not visible in the figure),
with a sample per row and a variable per column; those compatible with the evidence are
colored in green and those incompatible in red. The “General stats” tab shows that only
37 samples are compatible (see cell B6), a clear indication of the inefficiency of this algorithm.

Figure 3. Output of two stochastic algorithms: logic sampling (left) and likelihood weighting (right),
for the evidence {+ f , +s, ¬v}. The latter only samples the variables that are not part of the evidence.

For each variable, the spreadsheet displays the number of samples in which each state
has appeared; for example, D1 has taken the state “absent” in 9714 samples (cell B23) and
“present” in 286 (cell C23). It also shows the posterior probability for each state, which is
not proportional to the number of occurrences because the samples incompatible with the
evidence do not count.

The right side of Figure 3 shows the output of likelihood weighting. One difference
with the previous algorithm is that it only samples the variables that do not make part of the
evidence; therefore, the evidence variables are not shown in the sheet. Another difference is
that now the number of non-null samples (cell B6) equals the number of samples, because
all of them are valid. However, each sample has a weight between 0 and 1 (in logic sampling
it was either 0 or 1), as shown in the “Samples” sheet. As a consequence, the total weight
for this simulation is 188.15 (cell B6), much higher than the value of 37 obtained for logic
sampling, and this usually leads to more accurate estimates of the posterior probabilities,
as we can see by comparing the approximate probabilities with their exact probabilities for
both algorithms.

Mathematics 2022, 10, 3577 11 of 20

3.4. Learning Bayesian Networks

BNs can be built from human knowledge, data, or a combination of both. OpenMarkov
implements the two basic algorithms for learning BNs from data: search-and-score [29]
and PC [30]. Other tools offer many more algorithms, but the advantage of OpenMarkov
is the possibility of interactive learning [31]: in every step, the GUI displays a list of the
edits (operations) that it is ready to perform and a motivation for each edit, as shown in
Figures 4 and 5. This way, the user can monitor how the algorithm proceeds, step by step,
and either accept the next edit proposed by the algorithm, or select another one from the
list, or do a different edit at the GUI.

Figure 4. Initial state of the interactive search-and-score algorithm when applied to a dataset gener-
ated from the Bayesian network Asia. The “Motivation” column shows the score of each edit for the
metric selected.

Figure 5. Initial state of the interactive PC algorithm when applied to the same dataset as in the
previous figure. The “Motivation” column shows, for each edit, the p-value obtained for the test of
independence conditioned on the variables in curly brackets.

Mathematics 2022, 10, 3577 12 of 20

The search-and-score algorithm, also called “hill climbing”, departs from a network
with a node for each variable in the data, and no link (cf. Figure 4). The possible edits
are: adding a directed link (the most common edit), deleting one of the existing links,
or inverting a link. This process is guided by a metric chosen by the user. Currently
OpenMarkov offers six well-known metrics: BD, Bayesian, K2, entropy, AIC, and MDLM.
When learning the network, it selects the edits compatible with the restrictions of the
network (for example, a BN cannot have cycles) and ranks them according to their scores.
This way, a student can see, for example, that when the network has no link yet, the
K2 metric usually assigns different scores to the links X → Y and Y → X, although
the resulting networks represent exactly the same probability distribution, which is an
unsatisfactory property of this metric. It is also possible to see that every edit (for example,
adding a link) usually changes the scores of future edits.

In contrast, the PC algorithm departs from a fully connected undirected graph (Figure 5)
and removes the links one by one depending on the conditional independencies found in the
database. For each undirected link X–Y, OpenMarkov performs a statistical test that returns
the p-value for the “null hypothesis” that X and Y are a priori independent; if p is below a
certain threshold, α—called significance level, set by the user—, the null hypothesis is rejected
and the link is kept; otherwise, it is removed. Links with higher p-values, which correspond
to correlations that can be explained by chance, are proposed to be removed first. Then the
PC algorithm tests, for each pair of variables, whether they are independent given a third
variable, and then given a pair of other variables, and so on. In each step, the GUI shows the
user a list of the links that might be removed, and for each link, the conditioning variables and
the p-value. This way, the user can not only see the removals that the algorithm is considering,
but also the certainty for each one. Finally, the algorithm assigns a direction to each link.

The tutorial of OpenMarkov, available at www.openmarkov.org/docs/tutorial; ac-
cessed on 20 September 2022, explains in detail the options it offers for learning BNs, either
automatically or interactively.

4. Teaching Influence Diagrams
4.1. Evaluation of Influence Diagrams
4.1.1. Expected Utility and Optimal Policies

In Section 2.2.2 we mentioned that the evaluation of an ID consists in finding the
maximum expected utility (MEU) and an optimal strategy. When OpenMarkov evaluates
an ID in the GUI, it presents to the user the posterior probability of each chance and decision
node and the expected utility of each utility node, as shown in Figure 6.

One way to evaluate an ID—the original method proposed by Howard and Matheson [2]
when introducing this formalism—is to convert it into an equivalent decision tree (DT). For
example, the ID in Figure 6 can be expanded into the DT in Figure 7, where each branch is
labeled with its expected utility, obtained when evaluating the tree from the leaves to the root;
for every decision node, one of its branches is marked with a small red rectangle to indicate the
optimal choice in that scenario (in the case of a tie, more than one branch would have this mark).
This evaluation method is very inefficient, because the size of the tree grows exponentially
with the number of nodes in the ID. In fact, in our group we have built IDs for some medical
problems [32,33], having fewer than 30 nodes, whose equivalent DTs contain tens of thousands
of leaves. However, when teaching PGMs it is very useful to compare IDs with DTs for small
problems because, in our opinion, an ID can only be understood as a compact representation of
a DT, and all the algorithms for evaluating IDs take the DT as a reference. For these reasons, we
implemented in OpenMarkov the automatic conversion of IDs into DTs.

www.openmarkov.org/docs/tutorial

Mathematics 2022, 10, 3577 13 of 20

Figure 6. An influence diagram (ID) for deciding the optimal therapy based on the result of a test.
The red bars represent the probabilities and the utility when no finding is introduced, i.e., the values
for the general population. The blue and green bars correspond to a positive and a negative test
result respectively.

Figure 7. A decision tree equivalent to the ID in Figure 6. A red rectangle denotes the optimal choice
for each decision. Some branches have been collapsed to make the figure more compact.

Mathematics 2022, 10, 3577 14 of 20

However, OpenMarkov can also evaluate IDs with more efficient algorithms; by
default, the GUI uses variable elimination [9,34]. After the evaluation, in addition to
showing the posterior probability of each chance variable, with a bar for each evidence case,
as in the case of BNs, it also displays a bar for every state (option) of every decision and for
the expected utility of every utility node. For example, Figure 6 displays the probabilities
and the expected utility for three evidence cases: when the test is not yet done (red bars),
when it is positive (blue bars), and when it is negative (green bars).

The optimal strategy calculated by OpenMarkov can be examined in different ways.
One of them is to open for each decision D the probability table PD(d|iPred(D)) for the
optimal policy—cf. Section 2.2.2. Since the optimal policies are deterministic—except in the
case of ties—these tables usually contain only 0’s and 1’s, as in Figure 8, where the only
informational predecessor of the decision (the only variable known when making it) is the
result of the test.

Figure 8. Optimal policy of Therapy: the best choice (with probability 1) is “therapy 2” when the test
is positive and “no therapy” when it is negative.

More insight about this policy is presented in Figure 9, which shows the expected
utilities obtained when calculating the optimal policy for Therapy—cf. Equation (10).

Figure 9. Expected utility for Therapy. When the test is positive, “therapy 2” is chosen because it has
the highest expected utility. When the test is negative, the highest expected utility is obtained for
“no therapy”.

An alternative way to see the optimal strategy in OpenMarkov is to display the
strategy tree [35], which summarizes all the policies in one figure. It is more compact than
the DT—please compare Figures 7 and 10—because it prunes the suboptimal branches
(which implies that only one branch goes out from each decision node, except in the case of
a tie) as well as the branches with null probability (for example, when we decide not to do
a test, its result is neither “positive” nor “negative”). The strategy tree is very useful for
large IDs; for example, the optimal-policy table for the last decision in Mediastinet, an ID
for lung cancer [32], contained more than 15,000 columns, but only 5 were relevant because
the others corresponded to impossible or suboptimal scenarios. In contrast, the strategy for
that ID only has 5 leaves, one for each relevant column [35].

Figure 10. Optimal strategy for the ID of Figure 6. It is much more compact than the decision tree
in Figure 7.

Mathematics 2022, 10, 3577 15 of 20

4.1.2. Arc Reversal for Influence Diagrams

As mentioned above, arc reversal was introduced by Howard and Matheson [2] to
transform IDs and convert them into DTs. Later, Olmsted [12] designed an algorithm
that iteratively removes the nodes from the graph, one by one, until only the utility node
remains; this is much more efficient than expanding a DT—see also [13].

Again, we can illustrate this algorithm with OpenMarkov. For example, when eval-
uating the ID in Figure 6, we should remove first the node Disease because it is not an
informational predecessor of any decision; but this node has a descendant that is not a util-
ity node. We can then invert the link Disease→ Test by right-clicking on it, as in BNs. Now
Effectiveness, a utility node, is the only descendant of Disease, so the user can click “Absorb
node” on the contextual menu of this node, which adds a link from Test to Effectiveness
and computes the new utility table with Equation (11). If Disease were the parent of more
than one utility node, OpenMarkov would fuse them into a single node, as explained in
Section 2.2.3. Then the only descendant of Therapy is the utility node, and this decision can
be absorbed by applying Equation (12); the optimal policy is obtained from Equation (10).
Now the only descendant of Test is the utility node, so this chance node can be absorbed
by applying again Equation (11). At the end, only one utility node remains in the ID; its
potential contains a single numerical parameter, which is the MEU.

4.1.3. Expected Value of Perfect Information (EVPI)

A relevant concept in decision analysis is the EVPI [36], which measures the advantage
we would obtain from a certain piece of information, such as knowing the exact value of
a parameter or the value taken by a variable. For example, given the ID in Figure 6, we
may ask ourselves: “What would be the value of knowing for sure whether the patient
has the disease (or not) before deciding about the therapy?” In OpenMarkov this question
can be easily solved by drawing an information link from Disease to Therapy. Students can
observe that the expected utility (effectiveness) increases from 9.3937—see Figure 6—to
9.5100, which means that the EVPI is 0.1163. This example illustrates the advantages of
IDs, because if the original problem had been modeled with a decision tree, computing the
EVPI would require building a new decision tree almost from scratch.

4.2. Explanation of Reasoning

OpenMarkov offers several options for explaining the conclusions achieved by an ID,
most of them developed for its predecessor, Elvira [24]. These options have been useful
for our research group when building BNs and IDs for medicine [23] and also for teaching
PGMs to our students.

4.2.1. Imposing Policies for What-If Reasoning

OpenMarkov allows the user to impose policies on some decision nodes, in which
case the evaluation algorithm only calculates optimal policies for the other decisions, which
may differ from those obtained without imposed policies. This functionality allows the
user to analyze decision scenarios that can never occur if the decision maker applies the
optimal strategy, thus performing what-if reasoning [24].

For example, the optimal strategy for the ID in Figure 6 is: “if the result of test is
negative, then do not apply any therapy; otherwise, apply therapy 2”. However, the user
might wish to investigate other policies, such as applying therapy 1 instead of therapy 2
when the test is positive, or applying therapy 1 in all cases, and calculate the expected
utility for different results of the test, as shown in Figure 11.

Mathematics 2022, 10, 3577 16 of 20

Figure 11. What-if reasoning: OpenMarkov allows the user to analyze what would happen if the
decision maker applied a non-optimal policy. The node Therapy is colored in dark blue to indicate
that a policy was imposed, instead of allowing the evaluation algorithm find the optimal strategy.
The colors of the bars have the same meaning as in Figure 6.

4.2.2. Introducing Evidence

Lacave et al. [24] distinguished two types of evidence in the context of IDs: pre-
resolution and post-resolution. Post-resolution evidence is introduced when every decision
has been assigned a policy, either by the user or by the evaluation algorithm. The goal is
to see how some findings affect the posterior probabilities—as in BNs—and the expected
utilities. We have already seen two examples in Figures 6 and 11: OpenMarkov displays
the utility expected before doing the test (which is the same as the utility for the general
population, because some people test positive and others test negative), but we can also
compute the expected utility and the posterior probability of the disease for those people
having a positive test result and for those having a negative result.

In contrast, pre-resolution evidence corresponds to the classical definition of evidence
in IDs [37]. In this case the question is: “What would the optimal strategy and the expected
utilities be if we had that information when making the decisions?”

4.2.3. Example: Justifying a Policy

The usefulness of these two explanation facilities can be illustrated with the following
example, adapted from a situation we encountered during the construction of an ID for
lung cancer [32], when the pneumologist did not understand why the model built so far
advised against doing a test that, in his opinion, would be useful.

The ID in Figure 12 presents a similar situation, in which it is better not doing the
test, which might be counterintuitive. The reason seems to be that the result of the test
does not modify the optimal policy. To confirm it, we first perform the sensitivity analysis
shown in Figure 13, which shows that when the probability of disease is below 3.45% no
therapy should be applied. Then we try to find out the posterior probability of disease
after a positive test, but when we try to introduce the finding “Result of test = positive”.
OpenMarkov throws an error message saying that this finding is incompatible with the
optimal policy, which precludes doing the test. A workaround consists in imposing the
policy “Do test? = yes”, which allows us introducing that finding and observing that the
posterior probability increases of disease increases only to 2.51% (see Figure 14), still below
the 3.45% threshold.

Mathematics 2022, 10, 3577 17 of 20

Figure 12. What-if reasoning: OpenMarkov allows the user to analyze what would happen if the
decision maker applied a non-optimal policy. The node Therapy is colored in dark blue to indicate
that a policy was imposed, instead of allowing the evaluation algorithm find the optimal strategy.

Figure 13. Sensitivity analysis for the ID in Figure 12, showing that when the probability of disease is
below 0.0345, the best option is no therapy.

Figure 14. OpenMarkov allows the user to impose the suboptimal policy “Do test? = yes” and
observe that a positive test result is unable to raise the posterior probability of disease above the
0.0345 threshold. This explains why it is not worth doing the test. The colors of the bars have the
same meaning as in Figures 6 and 11.

Mathematics 2022, 10, 3577 18 of 20

5. Discussion and Conclusions

OpenMarkov is an open-source tool for building and evaluating several types of PGMs.
It has been especially designed for medical applications and for teaching. It has been used
for research and tuition in more than 30 countries.

In this paper we have illustrated with several examples how to teach several aspects
of PGMs with OpenMarkov. Some of them—for example, the properties of d-separation,
which are far from intuitive for beginners—might be illustrated with any other tool having
a graphical user interface (GUI) able to show on a screen the graph of the model and a
probability bar for each node, such as those mentioned in Section 2.3, but the explanation is
much clearer if there is a probability bar for each evidence case, a feature that is only avail-
able in OpenMarkov. This tool also allows building networks in which some conditional
probability tables (CPTs) are encoded as canonical models based on the independence of
causal interactions, such as the noisy and leaky of the OR, AND, MAX, MIN, etc. [4,26],
and implements efficient algorithms for evaluating them [38]. Students can learn how to
apply these models and how they behave when propagating evidence.

Additionally OpenMarkov is useful to illustrate the execution of several iterative
algorithms for inference and learning. In particular, it is able to display on a spreadsheet
the samples generated by stochastic algorithms, as well the number of valid samples, the
accumulated weights, and the posterior probabilities. It also allows the user to apply arc
reversal iteratively for both BNs and IDs, showing how the probabilities and the utility
tables are updated in each step. Similarly, it can learn BNs from a database using several
variations of the two basic algorithms, search-and-score (hill climbing) and PC; in this case,
the GUI offers several edits (such as adding, removing, or inverting a link), along with a
qualitative score for each one, so that the user can understand what the algorithm intends
to do and why. Students can compare the performance of different algorithms by observing
not only the differences in the networks learned from the same database, but also how the
algorithms differ step by step.

Our tool offers several possibilities for evaluating IDs. One of them is the conversion
into decision trees, which can only be done for very small problems, but is very useful to
intuitively understand the relation between the two formalisms. OpenMarkov can also
apply efficient algorithms, such as variable elimination and arc reversal, and show the
optimal policy (a table) for each decision, as well as the expected utility and the posterior
probability of each chance and decision node, with the possibility of entering pre- and
post-resolution evidence to observe how those utilities and probabilities vary. It can also
show the optimal strategy in the form of a tree (cf. Figure 10), which is much more compact
than the decision tree and the policy tables. Most of these features are not available in any
other tool, whether commercial, free, or open-source.

Finally, OpenMarkov has novel types of PGMs, such as Markov influence diagrams [14]
and decision analysis networks [15], developed by our research group, as well as new al-
gorithms for cost-effectiveness analysis with these models [14,39,40]. They can be very
useful for teaching health technology assessment (HTA), but that topic is out of the scope
of this paper.

A limitation of OpenMarkov is that, although it implements several algorithms for
exact inference, it only offers the most basic algorithms for stochastic inference and for
learning. We implemented them just for pedagogical purposes, because these topics fall
outside the priorities of our research group.

However, being open-source is an important advantage of OpenMarkov because it
allows students with some knowledge of Java to inspect the implementation of the algo-
rithms. For example, in the abstract class StochasticPropagation.java the students can find
the data structures and methods common to the two algorithms discussed in this paper,
while the classes that extend it, namely, LogicSampling.java and LikelihoodWeighting.java,
implement the aspects in which the algorithms differ. Furthermore, advanced students
can add new features—see [41] as an example. In fact, a significant part of OpenMarkov’s
code has been written by undergraduate, master, and Ph.D. students. In the future, other

Mathematics 2022, 10, 3577 19 of 20

researchers and students, not necessarily from our university, might contribute new algo-
rithms for inference and learning. This tool can be especially useful as a workbench for
new learning algorithms because it has been carefully designed to allow implementing
other algorithms, integrating them in the GUI, and executing them interactively.

Given that nowadays PGMs make part of the computer science curriculum in all
universities around the world, we hope that many teachers and students may consider
using OpenMarkov as a pedagogical tool, and some of them will later use it for building
real-world applications.

Author Contributions: M.A. implemented Carmen, the first prototype of this software tool. All
authors have contributed to the design and implementation of OpenMarkov, and to writing, re-
viewing, and editing the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been supported by grant PID2019-110686RB-I00 from the Spanish Gov-
ernment. The development of OpenMarkov has also received support from other grants of the
Spanish Government and from the Regional Government of Madrid, most of them co-financed by the
European Regional Development Fund.

Data Availability Statement: Some of the networks shown in this paper, together with several
PMGs for real-world medical problems, are available at http://www.probmodelxml.org/networks;
accessed on 20 September 2022.)

Acknowledgments: We thank the reviewers of this journal and those of the PGM-2018 conference for
their comments and corrections. We thank all the students who have collaborated in the development
of OpenMarkov, in particular, José Enrique Mendoza and Antonio Sáez for their work on the GUI,
and Iago París for implementing arc reversal and the stochastic algorithms.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BN Bayesian network
CPT Conditional probability table
DT Decision tree
GUI Graphical user interface
ID Influence diagram
MEU Maximum expected utility
PGM Probabilistic graphical model

References
1. Pearl, J. Fusion, propagation and structuring in belief networks. Artif. Intell. 1986, 29, 241–288. [CrossRef]
2. Howard, R.A.; Matheson, J.E. Influence diagrams. In Readings on the Principles and Applications of Decision Analysis; Howard, R.A.,

Matheson, J.E., Eds.; Strategic Decisions Group: Menlo Park, CA, USA, 1984; pp. 719–762.
3. Howard, R.A.; Matheson, J.E. Influence diagrams. Decis. Anal. 2005, 2, 127–143. [CrossRef]
4. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Mateo, CA, USA, 1988.
5. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; The MIT Press: Cambridge, MA, USA, 2009.
6. Sucar, L.E. Probabilistic Graphical Models. Principles and Applications; Springer: London, UK, 2015.
7. Díez, F.J.; París, I.; Pérez-Martín, J.; Arias, M. Teaching Bayesian networks with OpenMarkov. In Proceedings of the Ninth

European Workshop on Probabilistic Graphical Models (PGM’18), Prague, Czech Republic, 11–14 September 2018.
8. Neapolitan, R.E. Probabilistic Reasoning in Expert Systems: Theory and Algorithms; Wiley-Interscience: New York, NY, USA, 1990.
9. Luque, M.; Díez, F.J. Variable elimination for influence diagrams with super-value nodes. Int. J. Approx. Reason. 2010, 51, 615–631.

[CrossRef]
10. Nielsen, T.D.; Jensen, F.V. Welldefined decision scenarios. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial

Intelligence (UAI’99), Stockholm, Sweden, 30 July–1 August 1999; Laskey, K., Prade, H., Eds.; Morgan Kaufmann: San Francisco,
CA, USA, 1999; pp. 502–511.

11. Cowell, R.G.; Dawid, A.P.; Lauritzen, S.L.; Spiegelhalter, D.J. Probabilistic Networks and Expert Systems; Springer: New York, NY,
USA, 1999.

http://www.probmodelxml.org/networks
http://doi.org/10.1016/0004-3702(86)90072-X
http://dx.doi.org/10.1287/deca.1050.0020
http://dx.doi.org/10.1016/j.ijar.2009.11.004

Mathematics 2022, 10, 3577 20 of 20

12. Olmsted, S.M. On Representing and Solving Decision Problems. Ph.D. Thesis, Dept. Engineering-Economic Systems, Stanford
University, Stanford CA, USA, 1983.

13. Shachter, R.D. Evaluating influence diagrams. Oper. Res. 1986, 34, 871–882. [CrossRef]
14. Díez, F.J.; Yebra, M.; Bermejo, I.; Palacios-Alonso, M.A.; Arias, M.; Luque, M.; Pérez-Martín, J. Markov influence diagrams: A

graphical tool for cost-effectiveness analysis. Med. Decis. Mak. 2017, 37, 183–195. [CrossRef] [PubMed]
15. Díez, F.J.; Luque, M.; Bermejo, I. Decision analysis networks. Int. J. Approx. Reason. 2018, 96, 1–17. [CrossRef]
16. Lauritzen, S.L.; Nilsson, D. Representing and solving decision problems with limited information. Manag. Sci. 2001, 47, 1235–1251.

[CrossRef]
17. Dean, T.; Kanazawa, K. A model for reasoning about persistence and causation. Comput. Intell. 1989, 5, 142–150. [CrossRef]
18. Boutilier, C.; Dearden, R.; Goldszmidt, M. Stochastic dynamic programming with factored representations. Artif. Intell. 2000,

121, 49–107. [CrossRef]
19. Boutilier, C.; Poole, D. Computing optimal policies for partially observable decision processes using compact representations. In

Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI’96), Portland, OR, USA, 4–8 August 1996;
Clancey, W.J., Weld, D.S., Eds.; AAAI Press/MIT Press: Portland, OR, USA, 1996; pp. 1168–1175.

20. Díez, F.J.; van Gerven, M.A.J. Dynamic LIMIDs. In Decision Theory Models for Applications in Artificial Intelligence: Concepts and
Solutions; Sucar, L.E., Hoey, J., Morales, E., Eds.; IGI Global: Hershey, PA, USA, 2011; pp. 164–189.

21. Elvira Consortium. Elvira: An environment for creating and using probabilistic graphical models. In Proceedings of the First
European Workshop on Probabilistic Graphical Models (PGM’02), Cuenca, Spain, 6–8 November 2002; pp. 1–11.

22. Oliehoek, F.A.; Spaan, M.T.J.; Terwijn, B.; Robbel, P.; Messias, J.V. The MADP Toolbox: An open source library for planning and
learning in (multi-)agent systems. J. Mach. Learn. Res. 2017, 18, 1–5.

23. Lacave, C.; Oniśko, A.; Díez, F.J. Use of Elvira’s explanation facilities for debugging probabilistic expert systems. Knowl.-Based
Syst. 2006, 19, 730–738. [CrossRef]

24. Lacave, C.; Luque, M.; Díez, F.J. Explanation of Bayesian networks and influence diagrams in Elvira. IEEE Trans. Syst. Man
Cybern.—Part B Cybern. 2007, 37, 952–965. [CrossRef] [PubMed]

25. Teach, R.L.; Shortliffe, E.H., An analysis of physician’s attitudes. In Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project; Addison-Wesley: Reading, MA, USA, 1984; pp. 635–652.

26. Díez, F.J.; Druzdzel, M.J. Canonical Probabilistic Models for Knowledge Engineering; Technical Report CISIAD-06-01; UNED: Madrid,
Spain, 2006.

27. Henrion, M. Propagation of uncertainty by logic sampling in Bayes’ networks. In Proceedings of the Uncertainty in Artificial
Intelligence 4 (UAI’88), Minneapolis, MN, USA, 10–12 July 1988; Shachter, R.D., Levitt, T., Kanal, L.N., Lemmer, J.F., Eds.; Elsevier
Science Publishers: Amsterdam, The Netherlands, 1988; pp. 149–164.

28. Fung, R.; Chang, K.C. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Proceedings of the
Uncertainty in Artificial Intelligence 6 (UAI’90), Cambridge, MA, USA, 27–29 July 1990; Bonissone, P., Henrion, M., Kanal, L.N.,
Lemmer, J.F., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1990; pp. 209–219.

29. Cooper, G.F.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 1992,
9, 309–347. [CrossRef]

30. Spirtes, P.; Glymour, C. An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 1991, 9, 62–72. [CrossRef]
31. Bermejo, I.; Oliva, J.; Díez, F.J.; Arias, M. Interactive learning of Bayesian networks with OpenMarkov. In Proceedings of the

Sixth European Workshop on Probabilistic Graphical Models (PGM’12), Granada, Spain, 19–21 September 2012; pp. 27–34.
32. Luque, M.; Díez, F.J.; Disdier, C. Optimal sequence of tests for the mediastinal staging of non-small cell lung cancer. BMC Med.

Inform. Decis. Mak. 2016, 16, 9. [CrossRef] [PubMed]
33. León, D. A Probabilistic Graphical Model for Total Knee Arthroplasty. Master’s Thesis, Department Artificial Intelligence, UNED,

Madrid, Spain, 2011.
34. Jensen, F.V.; Nielsen, T.D. Bayesian Networks and Decision Graphs, 2nd ed.; Springer: New York, NY, USA, 2007.
35. Luque, M.; Arias, M.; Díez, F.J. Synthesis of strategies in influence diagrams. In Proceedings of the Thirty-third Conference on

Uncertainty in Artificial Intelligence (UAI’17), Sydney, Australia, 11–15 August 2017; AUAI Press: Corvallis, OR, USA, 2017; pp. 1–9.
36. Felli, J.C.; Hazen, G.B. Sensitivity Analysis and the Expected Value of Perfect Information. Med. Decis. Mak. 1998, 18, 95–109.

[CrossRef] [PubMed]
37. Ezawa, K.J. Value of evidence on influence diagrams. In Proceedings of the Tenth Conference on Uncertainty in Artificial

Intelligence (UAI’94), Seattle, WA, USA, 29–31 July 1994; de Mántaras, R.L., Poole, D., Eds.; Morgan Kaufmann: San Francisco,
CA, USA, 1994; pp. 212–220.

38. Díez, F.J.; Galán, S.F. Efficient computation for the noisy MAX. Int. J. Intell. Syst. 2003, 18, 165–177. [CrossRef]
39. Arias, M.; Díez, F.J. Cost-effectiveness analysis with influence diagrams. Methods Inf. Med. 2015, 54, 353–358. [CrossRef]

[PubMed]
40. Díez, F.J.; Luque, M.; Arias, M.; Pérez-Martín, J. Cost-effectiveness analysis with unordered decisions. Artif. Intell. Med. 2021,

117, 102064. [CrossRef] [PubMed]
41. Li, L.; Ramadan, O.; Schmidt, P. Improving visual cues for the interactive learning of Bayesian networks. UC Berkeley. Available

online: http://vis.berkeley.edu/courses/cs294-10-fa14/wiki/images/0/0a/Li_Ramadan_Schmidt_Paper.pdf (accessed on 20
September 2022).

http://dx.doi.org/10.1287/opre.34.6.871
http://dx.doi.org/10.1177/0272989X16685088
http://www.ncbi.nlm.nih.gov/pubmed/28076183
http://dx.doi.org/10.1016/j.ijar.2018.02.007
http://dx.doi.org/10.1287/mnsc.47.9.1235.9779
http://dx.doi.org/10.1111/j.1467-8640.1989.tb00324.x
http://dx.doi.org/10.1016/S0004-3702(00)00033-3
http://dx.doi.org/10.1016/j.knosys.2006.05.010
http://dx.doi.org/10.1109/TSMCB.2007.896018
http://www.ncbi.nlm.nih.gov/pubmed/17702292
http://dx.doi.org/10.1007/BF00994110
http://dx.doi.org/10.1177/089443939100900106
http://dx.doi.org/10.1186/s12911-016-0246-y
http://www.ncbi.nlm.nih.gov/pubmed/26813400
http://dx.doi.org/10.1177/0272989X9801800117
http://www.ncbi.nlm.nih.gov/pubmed/9456214
http://dx.doi.org/10.1002/int.10080
http://dx.doi.org/10.3414/ME13-01-0121
http://www.ncbi.nlm.nih.gov/pubmed/25762363
http://dx.doi.org/10.1016/j.artmed.2021.102064
http://www.ncbi.nlm.nih.gov/pubmed/34127243
http://vis.berkeley.edu/courses/cs294-10-fa14/wiki/images/0/0a/Li_Ramadan_Schmidt_Paper.pdf

	Introduction
	Background
	Basic Definitions about Probability and Graphs
	Probabilistic Graphical Models
	Bayesian Networks
	Influence Diagrams
	Arc Reversal Algorithm

	OpenMarkov

	Teaching Bayesian Networks
	Evidence Propagation in BNs with OpenMarkov
	Correlation and Independence
	Conditional Independence
	d-Separation
	Markov Property and Markov Blankets

	Inference Algorithms for Bayesian Networks
	Arc Reversal for Bayesian Networks
	Stochastic Algorithms

	Learning Bayesian Networks

	Teaching Influence Diagrams
	Evaluation of Influence Diagrams
	Expected Utility and Optimal Policies
	Arc Reversal for Influence Diagrams
	Expected Value of Perfect Information (EVPI)

	Explanation of Reasoning
	Imposing Policies for What-If Reasoning
	Introducing Evidence
	Example: Justifying a Policy

	Discussion and Conclusions
	References

